JP2008037750A - Steel fiber for reinforcing high strength composition - Google Patents

Steel fiber for reinforcing high strength composition Download PDF

Info

Publication number
JP2008037750A
JP2008037750A JP2007237506A JP2007237506A JP2008037750A JP 2008037750 A JP2008037750 A JP 2008037750A JP 2007237506 A JP2007237506 A JP 2007237506A JP 2007237506 A JP2007237506 A JP 2007237506A JP 2008037750 A JP2008037750 A JP 2008037750A
Authority
JP
Japan
Prior art keywords
fiber
strength
steel
fibers
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007237506A
Other languages
Japanese (ja)
Other versions
JP4711196B2 (en
Inventor
Shuzo Nakamura
秀三 中村
Makoto Katagiri
誠 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007237506A priority Critical patent/JP4711196B2/en
Publication of JP2008037750A publication Critical patent/JP2008037750A/en
Application granted granted Critical
Publication of JP4711196B2 publication Critical patent/JP4711196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel fiber giving remarkably high bending strength or tensile strength to a high strength composition when the steel fiber is mixed with the high strength composition. <P>SOLUTION: The steel fiber for reinforcing the high strength composition has 0.05-0.5 mm fiber diameter, aspect ratio (fiber length/fiber diameter) of 30-150 as the fiber length, has a spiral shape having no projecting part or recessed part being ≥0.1 times the fiber diameter on the surface, the amplitude of the spiral shape being 0.3-3 times fiber length, the period of the spiral shape being 0.1-0.5 time the fiber length and has ≥150 GPs Young's modulus and ≥1 GPa tensile strength. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度のコンクリートやモルタルなどに混合され、これを補強する鋼繊維に関する。より詳細には、圧縮強度150MPa以上の高強度コンクリートや高強度モルタルを補強する鋼繊維に関するものである。   The present invention relates to a steel fiber that is mixed with high-strength concrete or mortar and reinforces it. More specifically, the present invention relates to steel fibers that reinforce high-strength concrete having a compressive strength of 150 MPa or higher and high-strength mortar.

コンクリートの曲げや引張に対する強度、およびこれらに対する粘り強さを高める目的で、コンクリートに繊維を混入させた繊維補強コンクリートが知られている。この補強用繊維には鋼や合成樹脂あるいはガラスなどの繊維を短く切断したものが一般に用いられている。この場合、コンクリートのひび割れに対する強度を高めるには、補強用繊維のヤング率がコンクリートマトリックスのヤング率よりも大きいものが効果的であるので、補強用繊維としてはヤング率の大きい炭素繊維、鋼繊維、ガラス繊維、などが適する。これらの繊維のうち鋼繊維は比較的安価であり、普通強度のコンクリートの強化用繊維として実用化しつつある。   For the purpose of increasing the strength against bending and tensile of concrete and the tenacity against these, fiber reinforced concrete in which fibers are mixed into concrete is known. As this reinforcing fiber, a fiber obtained by cutting a fiber such as steel, synthetic resin or glass is generally used. In this case, in order to increase the strength against cracks in concrete, it is effective that the Young's modulus of the reinforcing fiber is larger than the Young's modulus of the concrete matrix. Therefore, as the reinforcing fiber, carbon fiber or steel fiber having a large Young's modulus is used. Glass fiber, etc. are suitable. Among these fibers, steel fibers are relatively inexpensive and are being put into practical use as reinforcing fibers for ordinary strength concrete.

繊維によるコンクリートの補強効果は、繊維とコンクリートマトリックスの付着強度に大きく影響を受ける。鋼繊維を補強用繊維として用いた場合、繊維の引張強度よりも付着強度が小さいため、付着強度を向上させるべく、繊維断面を一定の間隔で変形させたインデントや、繊維全体あるいは端部を折り曲げた形状にするなどの工夫が従来なされている。   The effect of reinforcing concrete by fibers is greatly influenced by the bond strength between the fibers and the concrete matrix. When steel fibers are used as reinforcing fibers, the bond strength is smaller than the tensile strength of the fibers. Therefore, indentation with the fiber cross section deformed at regular intervals, or the entire fiber or the ends are bent to improve the bond strength. Ingenuity has been made in the past, such as creating a different shape.

しかし、高強度のコンクリートやモルタル、例えば圧縮強度が150MPa以上のコンクリートやモルタルでは、既存の鋼繊維を使用すると十分な補強効果が得られない問題がある。すなわち、未硬化の高強度組成物マトリックスの流動性が高い場合には、既存の鋼繊維は一般に繊維径が太く、繊維長さも比較的長いので鋼繊維がマトリックス中で沈降しやすい。また、繊維に大きく折り曲げなどの加工が施されているものは混練時に繊維どうしが絡みあうためマトリックス中に均一に分散し難い。さらに、硬化した高強度組成物はマトリックスが密実堅牢なので、従来のインデントや折り曲げ加工が施された鋼繊維は大きな負荷が加わったときに繊維表面とマトリックスとの界面の滑りが抑制されるために鋼繊維が破断してしまうなどの問題がある。このように、既存の鋼繊維を配合した高強度組成物は、繊維の補強効果が十分ではないため、曲げ強度や引張強度は必ずしも飛躍的には向上しない。   However, high-strength concrete or mortar, for example, concrete or mortar having a compressive strength of 150 MPa or more, has a problem that a sufficient reinforcing effect cannot be obtained when existing steel fibers are used. That is, when the fluidity of the uncured high-strength composition matrix is high, existing steel fibers generally have a large fiber diameter and a relatively long fiber length, so that the steel fibers tend to settle in the matrix. In addition, when the fiber is subjected to a large bending process, the fibers are entangled with each other during kneading, so that it is difficult to uniformly disperse in the matrix. In addition, the hardened high-strength composition has a solid and solid matrix, and steel fibers that have been subjected to conventional indentation and bending work are prevented from slipping at the interface between the fiber surface and the matrix when a large load is applied. In addition, there are problems such as breakage of steel fibers. Thus, since the high-strength composition which mix | blended the existing steel fiber is not enough in the reinforcement effect of a fiber, bending strength and tensile strength do not necessarily improve drastically.

なお、従来、下記特許文献1〜5に記載された補強材が知られているが、特許文献1の補強繊維は波形であり、螺旋形繊維とは異なる。特許文献2には螺旋形の補強繊維が記載されているが、この螺旋形は繊維直径および螺旋の振幅が本発明とは大きく異なる。特許文献3には、補強材として螺旋状の金属切子が例示されているが、螺旋形状のものではない。特許文献4の補強繊維は波形であり、螺旋形繊維とは異なる。特許文献5には補強繊維としてステンレススチールファイバーが記載されているが、螺旋形ではない。従って、特許文献1〜5に記載されている補強材は何れも本発明のような効果を得ることができない。
特公平04−042347号公報 特開平01−122942号公報 特開昭52−033919号公報 特開平07−053247号公報 特開昭63−295459号公報
Conventionally, the reinforcing materials described in the following Patent Documents 1 to 5 are known, but the reinforcing fiber of Patent Document 1 is corrugated and is different from the spiral fiber. Patent Document 2 describes a helical reinforcing fiber, but this helical shape is greatly different from the present invention in fiber diameter and helical amplitude. Patent Document 3 exemplifies a helical metal facet as a reinforcing material, but is not a helical shape. The reinforcing fiber of Patent Document 4 is corrugated and is different from a spiral fiber. Patent Document 5 describes a stainless steel fiber as a reinforcing fiber, but it is not helical. Therefore, none of the reinforcing materials described in Patent Documents 1 to 5 can obtain the effect of the present invention.
Japanese Patent Publication No. 04-04347 Japanese Patent Laid-Open No. 01-122942 JP 52-033919 A Japanese Patent Laid-Open No. 07-053247 Japanese Unexamined Patent Publication No. Sho 63-29559

本発明は、高強度組成物に用いる補強用繊維について、このような従来の問題を解決したものであり、高強度組成物に配合した場合、飛躍的に高い曲げ強度や引張強度を付与することができる鋼繊維を提供するものである。   The present invention solves such conventional problems for reinforcing fibers used in high-strength compositions, and when blended in high-strength compositions, it provides dramatically higher bending strength and tensile strength. It provides a steel fiber that can be used.

本発明は、繊維直径が0.05mm〜0.5mm、繊維長さが繊維のアスペクト比(繊維長/繊維直径)で30〜150であり、表面に繊維直径の0.1倍以上の突起ないし窪みを有しない螺旋形状であって、螺旋形状の振幅が繊維直径の0.3〜3倍であり、螺旋形状の周期が繊維長さの0.1〜0.5倍であり、ヤング率150GPa以上、引張強度1GPa以上であることを特徴とする高強度組成物補強用鋼繊維である。   In the present invention, the fiber diameter is 0.05 mm to 0.5 mm, the fiber length is 30 to 150 in terms of the fiber aspect ratio (fiber length / fiber diameter), and the surface has protrusions or more than 0.1 times the fiber diameter. The spiral shape has no depression, the amplitude of the spiral shape is 0.3 to 3 times the fiber diameter, the period of the spiral shape is 0.1 to 0.5 times the fiber length, and the Young's modulus is 150 GPa As described above, the steel fiber for reinforcing a high strength composition having a tensile strength of 1 GPa or more.

本発明の補強用鋼繊維は、高強度コンクリート等の高強度組成物に対して優れた補強効果を発揮するものであり、その組成物の高い圧縮強度に加えて飛躍的に高い曲げ強度や引張強度を付与することができる。   The reinforcing steel fiber of the present invention exhibits an excellent reinforcing effect for high-strength compositions such as high-strength concrete. In addition to the high compressive strength of the composition, dramatically higher bending strength and tensile strength are achieved. Strength can be imparted.

以下、本発明を実施形態に即して詳細に説明する。
コンクリートに短繊維を混入して曲げや引張に対する強度を補強する場合、混入する補強用繊維の形状や混入量、補強用繊維のヤング率や引張強度などの機械的特性、およびマトリックスの機械的特性はもとより、補強用繊維とマトリックスとの付着強度などの界面特性の制御が重要である。
Hereinafter, the present invention will be described in detail according to embodiments.
When reinforcing short fibers with concrete to reinforce the strength against bending and tension, the shape and amount of reinforcing fibers mixed in, the mechanical properties such as Young's modulus and tensile strength of the reinforcing fibers, and the mechanical properties of the matrix Of course, it is important to control the interface properties such as the adhesion strength between the reinforcing fiber and the matrix.

これは、マトリックスに亀裂が生じていない場合でも補強用繊維が荷重を負担し、その負担の割合は、マトリックスと補強用繊維のヤング率の比に支配されるからである。この時、補強用繊維の強度や補強用繊維とマトリックスとの付着強度に関連して補強用繊維の荷重負担の限界が決定される。すなわち、補強用繊維の強度が付着強度に比べて小さいと補強用繊維が破断し、また付着強度が小さいと補強用繊維とマトリックスとの界面が剥離や滑りを生じ、何れの場合も結果的に補強用繊維の荷重負担が減少するからである。   This is because the reinforcing fiber bears a load even when the matrix is not cracked, and the proportion of the burden is governed by the ratio of the Young's modulus between the matrix and the reinforcing fiber. At this time, the limit of the load burden of the reinforcing fiber is determined in relation to the strength of the reinforcing fiber and the adhesion strength between the reinforcing fiber and the matrix. That is, if the strength of the reinforcing fiber is smaller than the adhesive strength, the reinforcing fiber is broken, and if the adhesive strength is low, the interface between the reinforcing fiber and the matrix is peeled off or slipped. It is because the load burden of the reinforcing fiber is reduced.

一方、マトリックスに亀裂が生じた場合には、荷重は亀裂部分を橋渡ししている繊維のみが負担することになるため、同様に、繊維強度やマトリックスとの付着強度に関連して補強用繊維の荷重負担の限界が決定される。   On the other hand, when cracks occur in the matrix, the load is only borne by the fibers bridging the cracks. Similarly, the reinforcement fibers are related to the fiber strength and the adhesion strength to the matrix. The limit of load sharing is determined.

従って、コンクリートやモルタルなどの流動性に富む高強度組成物を補強し、その高い圧縮強度に加えて飛躍的に高い曲げ強度や引張強度を得るには、マトリックスの機械的特性とよく合致する機械的特性の補強用繊維を選定すると共にその補強用繊維とマトリックスとの界面特性の最適化を図ることが不可欠である。   Therefore, in order to reinforce a high-strength composition with high fluidity such as concrete and mortar, and to obtain dramatically high bending strength and tensile strength in addition to its high compressive strength, it is a machine that matches well with the mechanical properties of the matrix. It is indispensable to select a reinforcing fiber having a specific characteristic and to optimize an interface characteristic between the reinforcing fiber and the matrix.

このためには、補強用繊維としては炭素鋼製あるいはステンレス鋼製の鋼繊維が適している。鋼繊維のヤング率は150GPa以上のものが望ましい。また鋼繊維の引張強度は1GPa以上のものが望ましく、1.5GPa以上のものがさらに望ましい。鋼繊維のヤング率が150GPa未満ではコンクリートマトリックスのヤング率に近づくため、繊維の荷重分担が減り、高強度組成物のひび割れ荷重を高めることができない。   For this purpose, steel fibers made of carbon steel or stainless steel are suitable as reinforcing fibers. The Young's modulus of the steel fiber is desirably 150 GPa or more. The tensile strength of the steel fiber is preferably 1 GPa or more, and more preferably 1.5 GPa or more. If the Young's modulus of the steel fiber is less than 150 GPa, it approaches the Young's modulus of the concrete matrix, so that the load sharing of the fiber is reduced and the crack load of the high-strength composition cannot be increased.

鋼繊維の直径は0.05mm〜0.5mmが望ましい。この直径が0.05mm未満では混練時に繊維どうしが干渉して塊状になりやすい。また、鋼繊維の直径が0.5mmより大きいと、高強度組成物が硬化するまでの間に繊維が沈降しやすい。このため何れの場合も高強度組成物中に配合した鋼繊維の分散が均一にならないので、十分な補強効果が得られない。   The diameter of the steel fiber is desirably 0.05 mm to 0.5 mm. If the diameter is less than 0.05 mm, the fibers tend to be clumped due to interference between the fibers during kneading. On the other hand, if the diameter of the steel fiber is larger than 0.5 mm, the fiber tends to settle before the high-strength composition is cured. For this reason, since the dispersion | distribution of the steel fiber mix | blended in the high intensity | strength composition is not uniform in any case, sufficient reinforcement effect is not acquired.

鋼繊維の長さは、そのアスペクト比(繊維長/繊維直径)が30〜200のものが望ましい。なお、アスベクト比が50〜150であれば、混練時の流動性の低下も殆ど無く、繊維混入量を比較的大きくでき、その結果、十分な補強効果が得られるのでさらに望ましい。一方、鋼繊維のアスペクト比が30未満では、亀裂の開口が広がる際に、亀裂箇所を橋渡ししている鋼繊維が引抜けやすく、繊維の補強効果が低下するので望ましくない。また、鋼繊維のアスペクト比が200を越えると混練時に流動性が低下するので、型枠に流し込むなどの作業性が劣るばかりでなく、気泡も抜け難くなる。因みに、繊維混入量を減少すれば流動性の低下は抑えられるが、繊維量が少ないので繊維が負担する荷重が小さくなり、やはり繊維補強した高強度組成物の強度は低下するので望ましくない。   The length of the steel fiber is preferably 30 to 200 in aspect ratio (fiber length / fiber diameter). In addition, if the aspect ratio is 50 to 150, the fluidity at the time of kneading is hardly lowered, the amount of mixed fibers can be made relatively large, and as a result, a sufficient reinforcing effect can be obtained, which is further desirable. On the other hand, when the aspect ratio of the steel fiber is less than 30, it is not desirable because the steel fiber bridging the cracked portion is easily pulled out when the crack opening is widened, and the reinforcing effect of the fiber is lowered. Further, if the aspect ratio of the steel fiber exceeds 200, the fluidity is lowered at the time of kneading, so that not only the workability such as pouring into a mold is inferior but also the bubbles are difficult to escape. Incidentally, if the amount of mixed fibers is reduced, the decrease in fluidity can be suppressed, but the load of the fibers is reduced because the amount of fibers is small, and the strength of the high-strength composition reinforced with fibers is also undesirable.

鋼繊維の表面は繊維直径の0.1倍以上の突起や窪みが無く、滑らかであることが望ましい。繊維直径の0.1倍以上の突起や窪みが無ければ、コンクリートの亀裂箇所を橋渡ししている鋼繊維とコンクリートマトリックスとの界面が剥離した後も、鋼繊維とマトリックスとの相対的な移動が拘束されないため鋼繊維が破断し難くなり、高強度組成物を高靭化できる。一方、繊維直径の0.1倍を越える突起や窪みがあると、鋼繊維とマトリックスとの付着強度のピーク値は大きくなるが、鋼繊維とマトリックスとの滑りが抑制されるため、繊維の破断やマトリックスの破壊を生じやすくなり、従って、コンクリートに亀裂が生じると直ちに亀裂箇所を橋渡ししている鋼繊維の付着力が急減する。この結果、高強度組成物の脆性的な破壊を生じるようになる。   It is desirable that the surface of the steel fiber is smooth without protrusions or depressions that are 0.1 times or more the fiber diameter. If there are no protrusions or depressions greater than 0.1 times the fiber diameter, the relative movement between the steel fibers and the matrix will continue even after the interface between the steel fibers bridging the cracks in the concrete and the concrete matrix peels. Since it is not restrained, the steel fiber is difficult to break, and the high-strength composition can be made tough. On the other hand, if there are protrusions or depressions that exceed 0.1 times the fiber diameter, the peak value of the adhesion strength between the steel fibers and the matrix will increase, but the slippage between the steel fibers and the matrix will be suppressed, so the fiber will break. As a result, the adhesion of the steel fibers bridging the cracked portion immediately decreases when a crack occurs in the concrete. As a result, brittle fracture of the high strength composition occurs.

本発明の鋼繊維は螺旋形状のものである。螺旋形状のものは、亀裂を橋渡ししている鋼繊維とマトリックスとの界面が剥離した場合にも、鋼繊維とマトリックスとの相対的な移動時に適切な摩擦力を鋼繊維とマトリックスとの界面に生じ、結果として繊維補強した高強度組成物の靱性を高めることができる。   The steel fiber of the present invention has a spiral shape. In the case of the spiral shape, even when the interface between the steel fiber and the matrix bridging the crack is peeled off, an appropriate frictional force is applied to the interface between the steel fiber and the matrix during the relative movement of the steel fiber and the matrix. As a result, the toughness of the fiber-reinforced high strength composition can be increased.

本発明に係る螺旋形状の鋼繊維について、螺旋の振幅は繊維直径の0.3〜3倍であることが望ましい。螺旋の振幅が繊維直径の0.3倍未満では繊維とマトリックスとの相対移動時に発生する摩擦力が小さくなるので好ましくない。一方、この振幅が繊維直径の3倍を越えると高強度組成物の混練時に繊維が絡み合うので、繊維を均一に分散し難い。   In the helical steel fiber according to the present invention, the amplitude of the spiral is desirably 0.3 to 3 times the fiber diameter. If the amplitude of the helix is less than 0.3 times the fiber diameter, the frictional force generated during the relative movement between the fiber and the matrix is small, which is not preferable. On the other hand, if the amplitude exceeds three times the fiber diameter, the fibers are entangled during kneading of the high-strength composition, so that it is difficult to uniformly disperse the fibers.

また、本発明に係る螺旋形状の鋼繊維について、螺旋の周期は繊維長さの0.1〜0.5倍であることが望ましい。この周期が繊維長さの0.5倍を越えると、繊維とマトリックスとの相対移動時に繊維に十分な抗力が作用せず、繊維とマトリックスとの界面に発生する摩擦力は急減する。また、この周期が繊維長さの0.1倍未満であると摩擦力が大きくなり過ぎて繊維とマトリックスとの相対的な移動を拘束するようになる。これらの結果として、鋼繊維による十分な補強効果が得られず、繊維補強した高強度組成物は脆性的な破壊をするようになるので、何れも望ましくない。なお、螺旋の振幅または周期は繊維中心を基準としたものである。   Moreover, about the helical steel fiber which concerns on this invention, it is desirable for the period of a spiral to be 0.1 to 0.5 time of fiber length. When this period exceeds 0.5 times the fiber length, sufficient drag does not act on the fiber during relative movement of the fiber and the matrix, and the frictional force generated at the interface between the fiber and the matrix decreases rapidly. Further, if this period is less than 0.1 times the fiber length, the frictional force becomes too large and the relative movement between the fiber and the matrix is restricted. As a result of these, a sufficient reinforcing effect by the steel fibers cannot be obtained, and the high-strength composition reinforced with fibers becomes brittle fracture, which is undesirable. In addition, the amplitude or period of the spiral is based on the fiber center.

以下、本発明を実施例によって具体的に示す。なお、本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.

〔実施例1〕
マトリックスとなる高強度組成物(高強度コンクリート)の原料として、中庸熱セメント2246g、シリカフューム250g、砂(山形県産の珪砂:4号)1880g、および混和剤(ポリカルボン酸系高性能減水剤62.4gおよび消泡剤0.6g)を含む水450gを秤量した。また、鋼製の繊維を用意した。この鋼繊維は直径0.05mm、アスペクト比120(長さ6mm)、顕微鏡で評価した表面凹凸は0.005mmの螺旋状のものであり、螺旋の形状は振幅0.1mm(繊維直径の2倍)および周期2.4mm(繊維長さの0.4倍)であって、繊維の引張強度およびヤング率はそれぞれ2GPaおよび200GPaである。この繊維316gを秤量した。なお、このコンクリートに対する繊維混入率は2体積%である。
[Example 1]
As raw materials for the high-strength composition (high-strength concrete) serving as a matrix, 2246 g of medium heat cement, 250 g of silica fume, 1880 g of sand (silica sand produced in Yamagata Prefecture: No. 4), and admixture (polycarboxylic acid-based high-performance water reducing agent 62 450 g of water containing 0.4 g and defoaming agent 0.6 g) was weighed. Steel fibers were also prepared. This steel fiber has a diameter of 0.05 mm, an aspect ratio of 120 (length: 6 mm), and surface roughness as evaluated by a microscope is 0.005 mm, and the spiral shape has an amplitude of 0.1 mm (twice the fiber diameter). ) And a period of 2.4 mm (0.4 times the fiber length), and the tensile strength and Young's modulus of the fiber are 2 GPa and 200 GPa, respectively. 316 g of this fiber was weighed. In addition, the fiber mixing rate with respect to this concrete is 2 volume%.

秤量した原料をホバート型ミキサを用いて混練した。水、セメントとシリカフュームを予め混合させたものを混練し、次ぎに砂、繊維を投入して試料を作製した。この試料は、曲げ強度測定用の供試体を作製するため、縦160mm×横40mm×深さ40mmの型枠に流し込んで成型した。また、引張強度測定用の供試体を作製するため、縦300mm×横50mm×深さ10mmの型枠に試料を流し込みんで成型した。この成型24時間後、脱型し、引き続き、80℃、48時間の蒸気養生を行い、供試体を得た。   The weighed raw materials were kneaded using a Hobart mixer. A sample in which water, cement and silica fume were mixed in advance was kneaded, and then sand and fibers were added to prepare a sample. This sample was cast into a mold having a length of 160 mm, a width of 40 mm, and a depth of 40 mm in order to produce a specimen for measuring bending strength. Further, in order to produce a specimen for measuring the tensile strength, the sample was poured into a mold having a length of 300 mm, a width of 50 mm, and a depth of 10 mm and molded. After 24 hours of this molding, the mold was removed, and then steam curing was performed at 80 ° C. for 48 hours to obtain a specimen.

この供試体について、曲げ強度の測定は、インストロン型試験機を用い、下部支点間距離120mmとして三点曲げ試験を行い、その荷重の最大値から算出した。また引張強度の測定は、供誠体の両端にアルミニウム板(50mm角、1.5mm厚)をエポキシ樹脂で固着した後、インストロン型試験機を用いて一軸引張試験を行い、その荷重の最大値から引張強度を算出した。何れの試験においても、試験速度はクロスヘッド速度0.5mm/minとした。   For this specimen, the bending strength was measured by performing a three-point bending test using an Instron type tester with a distance between the lower fulcrums of 120 mm, and calculating from the maximum value of the load. Tensile strength is measured by fixing an aluminum plate (50mm square, 1.5mm thickness) to both ends of the body with epoxy resin, and then performing a uniaxial tensile test using an Instron type testing machine. The tensile strength was calculated from the value. In any test, the test speed was a crosshead speed of 0.5 mm / min.

また、混練直後の試料の流動性を評価するフロー値は、水平な350mm角のガラス板上に置いたJISモルタル用のリングに試料を流し込み、リング上端を擦り切り後、リングを静かに引き上げ、流れ出た試料が静止した時の長径とそれに直交する径を測定し、両者の平均値をフロー値とした。その結果、フロー値は230mmと良好な流動性を示し、また三点曲げ強度は50MPa、一軸引張強度は20MPaと極めて高い値であった。   The flow value for evaluating the fluidity of the sample immediately after kneading is to pour the sample into a JIS mortar ring placed on a horizontal 350 mm square glass plate, scrape the top of the ring, gently lift the ring, The major axis when the sample was stationary and the diameter orthogonal thereto were measured, and the average value of the two was taken as the flow value. As a result, the flow value was as good as 230 mm, the three-point bending strength was 50 MPa, and the uniaxial tensile strength was 20 MPa.

〔実施例2〕
使用した鋼繊維が直径0.5mm、アスペクト比50(長さ25mm)の螺旋形繊維であり、螺旋の振幅1mm(直径の2倍)、螺旋の周期5mm(長さの0.2倍)、繊維の混合量554g(繊維混入率3.5体積%)、砂の配合量1802gとした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値250mm、三点曲げ強度45MPa、一軸引張強度20MPaであり、何れも良好な値を示した。
[Example 2]
The steel fiber used is a spiral fiber with a diameter of 0.5 mm and an aspect ratio of 50 (length 25 mm). The amplitude of the helix is 1 mm (twice the diameter), the spiral period is 5 mm (0.2 times the length), The flow value, three-point bending strength and uniaxial tensile strength were measured in the same manner as in Example 1 except that the mixing amount of fibers was 554 g (fiber mixing rate: 3.5% by volume) and the mixing amount of sand was 1802 g. As a result, the flow value was 250 mm, the three-point bending strength was 45 MPa, and the uniaxial tensile strength was 20 MPa, all showing good values.

〔参考例1〕
使用した鋼繊維が直径0.1mm、アスペクト比200(長さ20mm)の波形繊維であり、波形の振幅0.2mm(直径の2倍)、波形の周期6mm(長さの0.3倍)、繊維の混合量158g(繊維混入率1体積%)、砂の配合量1935gとした以外は実施例1と同様にしてそのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値240mm、三点曲げ強度45MPa、一軸引張強度20MPaであり、何れも良好な値を示した。
[Reference Example 1]
The steel fiber used is a corrugated fiber with a diameter of 0.1 mm and an aspect ratio of 200 (length 20 mm), a corrugated amplitude of 0.2 mm (twice the diameter), and a corrugated period of 6 mm (0.3 times the length). The flow value, the three-point bending strength, and the uniaxial tensile strength were measured in the same manner as in Example 1 except that the fiber mixing amount was 158 g (fiber mixing rate: 1 vol%) and the sand mixing amount was 1935 g. As a result, the flow value was 240 mm, the three-point bending strength was 45 MPa, and the uniaxial tensile strength was 20 MPa, all showing good values.

〔実施例3〕
使用した鋼繊維が直径0.3mm、アスペクト比30(長さ9mm)の螺旋形繊維であり、螺旋の振幅0.6mm(直径の2倍)、螺旋の周期1.8mm(長さの0.2倍)、繊維の混合量1264g(繊維混入率8体積%)、砂の配合量1564gとした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値230mm、三点曲げ強度42MPa、一軸引張強度18MPaであり、何れも良好な値を示した。
Example 3
The steel fiber used is a spiral fiber having a diameter of 0.3 mm and an aspect ratio of 30 (length: 9 mm), a spiral amplitude of 0.6 mm (twice the diameter), and a spiral period of 1.8 mm (length of 0.5 mm). 2 times), the flow value, the three-point bending strength and the uniaxial tensile strength were measured in the same manner as in Example 1 except that the fiber mixing amount was 1264 g (fiber mixing rate: 8 vol%) and the sand mixing amount was 1564 g. . As a result, the flow value was 230 mm, the three-point bending strength was 42 MPa, and the uniaxial tensile strength was 18 MPa, all showing good values.

〔参考例2〕
使用した鋼繊維が直径0.4mm、アスペクト比50(長さ20mm)の波形繊維であり、波形の振幅0.4mm(直径の1倍)、波形の周期5mm(長さの0.25倍)、繊維の表面凹凸0.04mm、繊維の混合量790g(繊維混入率5体積%)、砂の配合量1722gとした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値235mm、三点曲げ強度40MPa、一軸引張強度18MPaであり、何れも良好な値を示した。
[Reference Example 2]
The steel fiber used is a corrugated fiber with a diameter of 0.4 mm and an aspect ratio of 50 (length 20 mm). The corrugation amplitude is 0.4 mm (one time the diameter), and the corrugation period is 5 mm (the length is 0.25 times). The flow value, the three-point bending strength and uniaxiality were the same as in Example 1 except that the fiber surface irregularity was 0.04 mm, the fiber mixing amount was 790 g (fiber mixing rate 5 vol%), and the sand mixing amount 1722 g. Tensile strength was measured. As a result, the flow value was 235 mm, the three-point bending strength was 40 MPa, and the uniaxial tensile strength was 18 MPa, all showing good values.

〔実施例4〕
使用した鋼繊維が直径0.1mm、アスペクト比150(長さ15mm)の螺旋形繊維であり、螺旋の振幅0.03mm(直径の0.3倍)、螺旋の周期3mm(長さの0.2倍)とした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値230mm、三点曲げ強度45MPa、一軸引張強度17MPaであり、何れも良好な値を示した。
Example 4
The steel fiber used is a spiral fiber having a diameter of 0.1 mm and an aspect ratio of 150 (length 15 mm), a spiral amplitude of 0.03 mm (0.3 times the diameter), and a spiral period of 3 mm (length of 0.0 mm). The flow value, three-point bending strength, and uniaxial tensile strength were measured in the same manner as in Example 1 except that it was 2 times. As a result, the flow value was 230 mm, the three-point bending strength was 45 MPa, and the uniaxial tensile strength was 17 MPa, all showing good values.

〔実施例5〕
使用した鋼繊維が直径0.3mm、アスペクト比40(長さ12mm)の螺旋形繊維であり、螺旋の振幅0.9mm(直径の3倍)、螺旋の周期1.8mm(長さの0.15倍)、繊維の混合量790g(繊維混入率5体積%)、砂の配合量1722gとした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値230mm、三点曲げ強度41MPa、一軸引張強度19MPaであり、何れも良好な値を示した。
Example 5
The steel fiber used is a spiral fiber having a diameter of 0.3 mm and an aspect ratio of 40 (length 12 mm), a spiral amplitude of 0.9 mm (three times the diameter), and a spiral period of 1.8 mm (length of 0.8 mm). 15 times), the flow value, the three-point bending strength, and the uniaxial tensile strength were measured in the same manner as in Example 1 except that the fiber mixing amount was 790 g (fiber mixing rate: 5% by volume) and the sand mixing amount was 1722 g. . As a result, the flow value was 230 mm, the three-point bending strength was 41 MPa, and the uniaxial tensile strength was 19 MPa, all showing good values.

〔実施例6〕
使用した鋼繊維が直径0.1mm、アスペクト比80(長さ8mm)の螺旋形繊維であり、螺旋の振幅0.1mm(直径の1倍)、螺旋の周期0.8mm(長さの0.1倍)、繊維の表面凹凸0.01mm、繊維の混合量554g(繊維混入率3.5体積%)、砂の配合量1802gとした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値240mm、三点曲げ強度58MPa、一軸引張強度23MPaであり、何れも良好な値を示した。
Example 6
The steel fiber used is a spiral fiber with a diameter of 0.1 mm and an aspect ratio of 80 (length 8 mm), a spiral amplitude of 0.1 mm (1 time of the diameter), and a spiral period of 0.8 mm (0.1 times the length). ), The surface roughness of the fiber is 0.01 mm, the mixing amount of the fiber is 554 g (fiber mixing ratio: 3.5% by volume), and the mixing amount of sand is 1802 g. Uniaxial tensile strength was measured. As a result, the flow value was 240 mm, the three-point bending strength was 58 MPa, and the uniaxial tensile strength was 23 MPa, all showing good values.

〔実施例7〕
使用した鋼繊維が直径0.2mm、アスペクト比80(長さ16mm)の螺旋形繊維であり、螺旋の振幅0.2mm(直径の1倍)、螺旋の周期8mm(長さの0.5倍)、繊維の表面凹凸0.01mm、繊維の混合量554g(繊維混入率3.5体積%)、砂の配合量1802gとした以外は実施例1と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。これらの結果、フロー値250mm、三点曲げ強度45MPa、一軸引張強度20MPaであり、何れも良好な値を示した。
Example 7
The steel fiber used is a spiral fiber with a diameter of 0.2 mm and an aspect ratio of 80 (length 16 mm), a spiral amplitude of 0.2 mm (1 times the diameter), and a spiral period of 8 mm (0.5 times the length). ), The surface roughness of the fiber is 0.01 mm, the mixing amount of the fiber is 554 g (fiber mixing ratio: 3.5% by volume), and the mixing amount of sand is 1802 g. Uniaxial tensile strength was measured. As a result, the flow value was 250 mm, the three-point bending strength was 45 MPa, and the uniaxial tensile strength was 20 MPa, all showing good values.

〔比較例1〕
使用した鋼繊維が直径0.02mmの螺旋形繊維であり、螺旋の振幅0.04mm(直径の2倍)、螺旋の周期0.96mm(長さの0.4倍)、表面の凹凸が0.002mmとした以外は実施例1と同様にしてそのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、繊維が細すぎたので、実施例1と比較すると脆性的な破断を示し、三点曲げ強度は16MPa、一軸引張強度は7.2MPaと劣り、フロー値も180mmと流動性が低くかった。
[Comparative Example 1]
The steel fiber used was a spiral fiber with a diameter of 0.02 mm, the amplitude of the spiral was 0.04 mm (twice the diameter), the spiral period was 0.96 mm (0.4 times the length), and the surface irregularities were zero. The flow value, three-point bending strength and uniaxial tensile strength were measured in the same manner as in Example 1 except that the thickness was 0.002 mm. As a result, since the fiber was too thin, it showed a brittle fracture as compared with Example 1, the three-point bending strength was inferior to 16 MPa, the uniaxial tensile strength was inferior to 7.2 MPa, and the flow value was 180 mm, which was low in fluidity. It was.

〔比較例2〕
使用した鋼繊維が直径0.6mmの螺旋形繊維であり、螺旋の振幅1.2mm(直径の2倍)、螺旋の周期6mm(長さの0.2倍)とした以外は実施例2と同様にしてそのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、フロー値は240mmであり、流動性は低下しなかったが、繊維が太すぎたので、実施例2と比較すると脆性的な破断を示し、三点曲げ強度は21MPa、一軸引張強度は8.3MPaと劣った。
[Comparative Example 2]
The steel fiber used was a spiral fiber having a diameter of 0.6 mm, and the example 2 was different from that of Example 2 except that the amplitude of the helix was 1.2 mm (twice the diameter) and the period of the helix was 6 mm (0.2 times the length). Similarly, the flow value, three-point bending strength and uniaxial tensile strength were measured. As a result, the flow value was 240 mm and the fluidity did not decrease, but the fiber was too thick, so it showed a brittle fracture compared to Example 2, the three-point bending strength was 21 MPa, and the uniaxial tensile strength was It was inferior to 8.3 MPa.

〔比較例3〕
使用した繊維をアスペクト比240(長さ24mm)とし、それに伴い波形の周期7.2mm(長さの0.3倍)とした以外は参考例1と同様にしてそのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、繊維が長すぎたためフロー値は170mmとなり流動性が低下し、成型時の作業性にも劣った。また、三点曲げ強度は20MPa、一軸引張強度は9.3MPaであり、実施例3と比較すると劣るものとなった。
[Comparative Example 3]
The flow value and three-point bending strength were the same as in Reference Example 1 except that the used fiber had an aspect ratio of 240 (length 24 mm), and the waveform period was 7.2 mm (0.3 times the length). And the uniaxial tensile strength was measured. As a result, since the fiber was too long, the flow value became 170 mm, the fluidity was lowered, and the workability at the time of molding was inferior. Further, the three-point bending strength was 20 MPa and the uniaxial tensile strength was 9.3 MPa, which was inferior to Example 3.

〔比較例4〕
使用した繊維をアスペクト比20(長さ6mm)とし、それに伴い螺旋の周期1.2mm(長さの0.2倍)とした以外は、実施例3と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、フロー値は235mmであり、流動性は低下しないが、繊維が短すぎるので供試体が脆性的な破断を示した。この供試体の三点曲げ強度は22MPa、一軸引張強度は8.5MPaであり、実施例4と比較すると劣るものとなった。
[Comparative Example 4]
The flow value and three points were the same as in Example 3 except that the used fiber had an aspect ratio of 20 (length: 6 mm) and a spiral period of 1.2 mm (0.2 times the length). Bending strength and uniaxial tensile strength were measured. As a result, the flow value was 235 mm, and the fluidity was not lowered, but the test piece exhibited a brittle fracture because the fiber was too short. The three-point bending strength of this specimen was 22 MPa, and the uniaxial tensile strength was 8.5 MPa, which was inferior to Example 4.

〔比較例5〕
使用した繊維が表面凹凸0.1mmのインデント加工したものを用いた以外は参考例2と同様にしてフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、繊維どうしの絡みが顕著であるためフロー値は200mmとなり、流動性が低下した。また強度試験中、繊維が引き抜ける時にマトリクスを破壊する傾向があるため供試体は脆性的な破断を示した。この供試体の三点曲げ強度は22MPa、一軸引張強度は8.8MPaであり、実施例5と比較すると劣るものとなった。
[Comparative Example 5]
The flow value, three-point bending strength, and uniaxial tensile strength were measured in the same manner as in Reference Example 2 except that the fiber used was indented with a surface irregularity of 0.1 mm. As a result, since the entanglement between the fibers was remarkable, the flow value was 200 mm, and the fluidity was lowered. In addition, during the strength test, the specimen showed a brittle fracture because the matrix had a tendency to break when the fiber pulled out. This sample had a three-point bending strength of 22 MPa and a uniaxial tensile strength of 8.8 MPa, which was inferior to Example 5.

〔比較例6〕
使用した繊維を螺旋や波形のない直線状のものにした以外は実施例4と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、フロー値は220mmとなり、混練後の試料の流動性は低下しなかったが、強度試験においては、繊維の付着強度が不足するためか、三点曲げ強度は21MPa、一軸引張強度は9.1MPaであり、実施例6と比較して低かった。
[Comparative Example 6]
The flow value, the three-point bending strength, and the uniaxial tensile strength were measured in the same manner as in Example 4 except that the fibers used were linear without spirals or corrugations. As a result, the flow value was 220 mm, and the fluidity of the sample after kneading did not decrease. However, in the strength test, the three-point bending strength was 21 MPa and the uniaxial tensile strength was 9 because the fiber adhesion strength was insufficient. 0.1 MPa, which is lower than that of Example 6.

〔比較例7〕
使用した繊維を螺旋の振幅1.2mm(直径の4倍)とした以外は実施例5と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、繊維どうしの絡みが顕著なためフロー値は170mmとなり、流動性の低下が顕著であった。また強度試験中、繊維が引き抜ける際にマトリクスを破壊する傾向があるため供試体の強度は低く脆性的な破断を示した。強度の測定結果は、三点曲げ強度20MPa、一軸引張強度8.4MPaであり、実施例7と比較すると劣るものとなった。
[Comparative Example 7]
The flow value, three-point bending strength and uniaxial tensile strength were measured in the same manner as in Example 5 except that the used fiber had a helical amplitude of 1.2 mm (4 times the diameter). As a result, since the entanglement between the fibers was remarkable, the flow value was 170 mm, and the decrease in fluidity was remarkable. Further, during the strength test, since the matrix tends to break when the fibers are pulled out, the strength of the specimen is low and brittle fracture is shown. The strength measurement results were a three-point bending strength of 20 MPa and a uniaxial tensile strength of 8.4 MPa, which was inferior to Example 7.

〔比較例8〕
使用した繊維を螺旋の周期0.64mm(長さの0.08倍)とした以外は実施例6と同様にして、そのフロー値、三点曲げ強度および一軸引張強度を測定した。この結果、繊維どうしの絡みが顕著なため、混練作業もやや困難であり、フロー値は170mmとなり流動性の低下が顕著であった。また、強度試験では、繊維が引き抜ける際にマトリクスを破壊する傾向があるため供試体の強度は低く、脆性的な破断を示した。強度の測定結果は、三点曲げ強度16MPa、一軸引張強度6.9MPaであり、実施例8と比較すると劣るものとなった。
[Comparative Example 8]
The flow value, three-point bending strength, and uniaxial tensile strength were measured in the same manner as in Example 6 except that the used fiber had a helical period of 0.64 mm (0.08 times the length). As a result, since the entanglement between the fibers was remarkable, the kneading operation was somewhat difficult, and the flow value was 170 mm, and the decrease in fluidity was remarkable. Further, in the strength test, the strength of the specimen was low because of the tendency to break the matrix when the fiber was pulled out, and the brittle fracture was shown. The strength measurement results were a three-point bending strength of 16 MPa and a uniaxial tensile strength of 6.9 MPa, which were inferior to those of Example 8.

〔比較例9〕
使用した繊維を螺旋の周期9.6mm(長さの0.6倍)とした以外は実施例7と同様にして、フロー値、三点曲げ強度および一軸引張強度を測定した。この結果、フロー値は250mmであり試料の流動性は低下しないが、強度試験においては、繊維の付着強度が不足するためか、三点曲げ強度21MPa、一軸引張強度8.7MPaであり、実施例9と比較して低かった。
[Comparative Example 9]
The flow value, three-point bending strength, and uniaxial tensile strength were measured in the same manner as in Example 7 except that the used fiber had a spiral period of 9.6 mm (0.6 times the length). As a result, the flow value is 250 mm, and the fluidity of the sample does not decrease. However, in the strength test, the three-point bending strength is 21 MPa and the uniaxial tensile strength is 8.7 MPa because the fiber adhesion strength is insufficient. Low compared to 9.

上記実施例1〜7、参考例1、2、および比較例1〜9の結果を表1に示した。   The results of Examples 1 to 7, Reference Examples 1 and 2, and Comparative Examples 1 to 9 are shown in Table 1.

Figure 2008037750
Figure 2008037750

Claims (1)

繊維直径が0.05mm〜0.5mm、繊維長さが繊維のアスペクト比(繊維長/繊維直径)で30〜150であり、表面に繊維直径の0.1倍以上の突起ないし窪みを有しない螺旋形状であって、螺旋形状の振幅が繊維直径の0.3〜3倍であり、螺旋形状の周期が繊維長さの0.1〜0.5倍であり、ヤング率150GPa以上、引張強度1GPa以上であることを特徴とする高強度組成物補強用鋼繊維。   The fiber diameter is 0.05 mm to 0.5 mm, the fiber length is 30 to 150 in terms of the fiber aspect ratio (fiber length / fiber diameter), and the surface has no protrusions or depressions greater than 0.1 times the fiber diameter. It has a spiral shape, the amplitude of the spiral shape is 0.3 to 3 times the fiber diameter, the period of the spiral shape is 0.1 to 0.5 times the fiber length, Young's modulus 150 GPa or more, tensile strength A steel fiber for reinforcing a high-strength composition characterized by being 1 GPa or more.
JP2007237506A 2007-09-13 2007-09-13 Steel fiber for reinforcing high-strength compositions Expired - Lifetime JP4711196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237506A JP4711196B2 (en) 2007-09-13 2007-09-13 Steel fiber for reinforcing high-strength compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237506A JP4711196B2 (en) 2007-09-13 2007-09-13 Steel fiber for reinforcing high-strength compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11093311A Division JP2000281402A (en) 1999-03-31 1999-03-31 Steel fiber for reinforcing high strength composition

Publications (2)

Publication Number Publication Date
JP2008037750A true JP2008037750A (en) 2008-02-21
JP4711196B2 JP4711196B2 (en) 2011-06-29

Family

ID=39173190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237506A Expired - Lifetime JP4711196B2 (en) 2007-09-13 2007-09-13 Steel fiber for reinforcing high-strength compositions

Country Status (1)

Country Link
JP (1) JP4711196B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095994A (en) * 2008-10-17 2010-04-30 Schoeck Bauteile Gmbh Concrete building structure, and block type thermal insulation structure and concrete building to which the building structure is applied
WO2011114810A1 (en) * 2010-03-19 2011-09-22 宇部興産株式会社 Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JP2020100523A (en) * 2018-12-20 2020-07-02 株式会社竹中工務店 Steel fiber for reinforcing cement-hardened body, and cement composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233919A (en) * 1975-09-11 1977-03-15 Tomoyuki Nishimori Metal chip mixed concrete
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS54122330A (en) * 1978-03-15 1979-09-21 Teikoku Sangyo Kk Concrete embedded with short length steel wire fiber
JPS63295459A (en) * 1987-05-27 1988-12-01 Taisei Corp Fiber mortar
JPH01122942A (en) * 1987-11-06 1989-05-16 Tekken Constr Co Ltd Concrete reinforcement
JPH0753247A (en) * 1993-06-11 1995-02-28 Bridgestone Metarufua Kk Steel fiber
JP2000281402A (en) * 1999-03-31 2000-10-10 Taiheiyo Cement Corp Steel fiber for reinforcing high strength composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585487A (en) * 1982-12-30 1986-04-29 Destree Xavier P Filiform elements usable for reinforcing moldable materials, particularly concrete

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233919A (en) * 1975-09-11 1977-03-15 Tomoyuki Nishimori Metal chip mixed concrete
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS54122330A (en) * 1978-03-15 1979-09-21 Teikoku Sangyo Kk Concrete embedded with short length steel wire fiber
JPS63295459A (en) * 1987-05-27 1988-12-01 Taisei Corp Fiber mortar
JPH01122942A (en) * 1987-11-06 1989-05-16 Tekken Constr Co Ltd Concrete reinforcement
JPH0753247A (en) * 1993-06-11 1995-02-28 Bridgestone Metarufua Kk Steel fiber
JP2000281402A (en) * 1999-03-31 2000-10-10 Taiheiyo Cement Corp Steel fiber for reinforcing high strength composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095994A (en) * 2008-10-17 2010-04-30 Schoeck Bauteile Gmbh Concrete building structure, and block type thermal insulation structure and concrete building to which the building structure is applied
WO2011114810A1 (en) * 2010-03-19 2011-09-22 宇部興産株式会社 Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JP2020100523A (en) * 2018-12-20 2020-07-02 株式会社竹中工務店 Steel fiber for reinforcing cement-hardened body, and cement composition
JP7151962B2 (en) 2018-12-20 2022-10-12 株式会社竹中工務店 Steel fiber and cement composition for reinforcing hardened cement body

Also Published As

Publication number Publication date
JP4711196B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
Dey et al. Mechanical properties of micro and sub-micron wollastonite fibers in cementitious composites
KR100877026B1 (en) Hydraulic Composition
JP2010116274A (en) Short fiber-reinforced cement formed body
JP6176434B2 (en) Hydraulic material and cured hydraulic material
Kwon et al. Effect of wollastonite microfiber on ultra-high-performance fiber-reinforced cement-based composites based on application of multi-scale fiber-reinforcement system
JP4711196B2 (en) Steel fiber for reinforcing high-strength compositions
EP0383348B1 (en) Carbon fiber-reinforced hydraulic composite material
Dagar Slurry infiltrated fibrous concrete (SIFCON)
KR100708058B1 (en) FRP panel for concrete structure reinforcement
CN113072343A (en) Steel fiber cement-based composite material reinforced based on nano scale and preparation method thereof
JP2000281402A (en) Steel fiber for reinforcing high strength composition
Kan et al. Effects of thickener on macro-and meso-mechanical properties of ECC
Lan et al. Effect of fibre types on the tensile behaviour of engineered cementitious composites
JP2000281402A5 (en)
JP2002154852A (en) Metallic fiber for reinforcing cementitious hardened body
JP2003335559A (en) Concrete reinforcement material and concrete moldings material using the same
JP5417238B2 (en) Mortar composition and method for producing the same
KR102255034B1 (en) Conslat, Ultra High Performance Concrete for Conslat, and Manufacturing Method thereof
JP4836135B2 (en) Metal fiber for reinforcing cementitious body and hardened cementitious body
JP7151962B2 (en) Steel fiber and cement composition for reinforcing hardened cement body
JP2002037653A (en) Cement slurry
JP5758597B2 (en) Reinforcing material and molded article containing the reinforcing material
KR20090010734A (en) Steel fiber for fiber reinforcing concrete
JP2018052748A (en) A fiber-reinforced cement molded body and method for the preparation thereof
JP2018090464A (en) Fiber-reinforced cementitious composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term