JP2002154852A - Metallic fiber for reinforcing cementitious hardened body - Google Patents

Metallic fiber for reinforcing cementitious hardened body

Info

Publication number
JP2002154852A
JP2002154852A JP2000347157A JP2000347157A JP2002154852A JP 2002154852 A JP2002154852 A JP 2002154852A JP 2000347157 A JP2000347157 A JP 2000347157A JP 2000347157 A JP2000347157 A JP 2000347157A JP 2002154852 A JP2002154852 A JP 2002154852A
Authority
JP
Japan
Prior art keywords
fiber
metal
cementitious
strength
metal fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000347157A
Other languages
Japanese (ja)
Other versions
JP4799729B2 (en
Inventor
Makoto Katagiri
誠 片桐
Makoto Nakayama
誠 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Seiko Co Ltd
Original Assignee
Taiheiyo Cement Corp
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Seiko Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2000347157A priority Critical patent/JP4799729B2/en
Publication of JP2002154852A publication Critical patent/JP2002154852A/en
Application granted granted Critical
Publication of JP4799729B2 publication Critical patent/JP4799729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a metallic fiber for reinforcement for strengthening a cementitious hardened body having compressive strength above 100 MPa by further increasing its bending strength and breaking energy. SOLUTION: The metallic fiber 1 for reinforcing the cementitious hardened body consists of a steel fiber 2 of <=0.5 mm in diameter and 1 to 3.5 GPa in tensile strength and its boundary bond strength to the cementitious hardened body (base material) having the compressive strength of 180 MPa is >=3 MPa. The surface of the steel fiber 2 may be provided with a metallic layer 3 having the Young's modulus smaller than the Young's modulus of the steel fiber 2. The metallic fiber 1 is preferably worked to a corrugated or spiral shape. The metallic fiber 1 may be indented so as to have >=2 grooves or projections in the longitudinal direction of the fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、100MPa以上の圧縮
強度を有するセメント質硬化体を補強するのに好適なセ
メント質硬化体補強用金属繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal fiber for reinforcing a hardened cementitious material suitable for reinforcing a hardened cementitious material having a compressive strength of 100 MPa or more.

【0002】[0002]

【従来の技術】セメント質硬化体(例えば、コンクリー
ト等)の補強用としての従来の鋼繊維は、一般に、引張
強度の大きさと比べて、母材(セメント質硬化体中の鋼
繊維以外の部分)に対する付着強度が小さい。そのた
め、鋼繊維による補強効果は、母材との付着強度を反映
して、小さいものとなり、必ずしも満足すべきものでは
なかった。また、従来の鋼繊維は、直径が0.5〜1.0mm程
度、長さが30mm程度と大き過ぎるため、高強度のセメン
ト質硬化体(例えば、100MPa以上の圧縮強度を有するコ
ンクリート)中に混入された時に、母材から分離し易い
という欠点があった。
2. Description of the Related Art Conventional steel fibers for reinforcing hardened cementitious materials (for example, concrete, etc.) generally use a base material (a part other than steel fibers in hardened cementitious materials) in comparison with the magnitude of tensile strength. Adhesive strength is small. Therefore, the reinforcing effect of the steel fiber is small, reflecting the bonding strength with the base material, and is not always satisfactory. In addition, conventional steel fibers have a diameter of about 0.5 to 1.0 mm and a length of about 30 mm, which are too large, so that they are mixed into a high-strength hardened cementitious material (for example, concrete having a compressive strength of 100 MPa or more). At times, there is a disadvantage that it is easily separated from the base material.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑みて、高強度のセメント質硬化体(典型
的には、100MPa以上の圧縮強度を有するセメント質硬化
体)中の母材に対する付着性が良好で、セメント質硬化
体を補強するのに好適に用いられるセメント質硬化体補
強用金属繊維を提供せんとする。
DISCLOSURE OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a hardened cementitious material having high strength (typically, a hardened cementitious material having a compressive strength of 100 MPa or more). It is an object of the present invention to provide a hardened cementitious body reinforcing metal fiber which has good adhesion to a base material and is suitably used for reinforcing a hardened cementitious body.

【0004】[0004]

【課題を解決するための手段】本願請求項1に記載のセ
メント質硬化体補強用金属繊維は、直径が0.5mm以下、
引張強度が1〜3.5GPaの鋼繊維からなり、かつ、180MPa
の圧縮強度を有するセメント質硬化体に対する界面付着
強度(付着面の単位面積当たりの最大引張力)が3MPa以
上であることを特徴とする。このように構成した本発明
の金属繊維は、母材に対する付着強度が大きいため、母
材から容易に分離することがなく、セメント質硬化体を
効果的に補強することができる。
The metal fiber for reinforcing a cementitious hardened material according to claim 1 of the present invention has a diameter of 0.5 mm or less,
Made of steel fiber with a tensile strength of 1 to 3.5 GPa and 180 MPa
Characterized in that the interface adhesion strength (maximum tensile force per unit area of the adhesion surface) to the cementitious cured product having a compressive strength of 3 MPa or more. Since the metal fiber of the present invention thus configured has a high adhesive strength to the base material, it does not easily separate from the base material, and can effectively reinforce the hardened cementitious material.

【0005】上記本発明の金属繊維は、前記鋼繊維の表
面に、当該鋼繊維のヤング係数よりも小さなヤング係数
を有する金属層を設けたものとして構成することができ
る(請求項2)。このように、特定の物性を有する金属
層を鋼繊維の表面上に設けることによって、セメント質
硬化体の曲げ及び引張の破断強度や靭性を高めることが
できる。
[0005] The metal fiber of the present invention can be configured such that a metal layer having a Young's modulus smaller than the Young's modulus of the steel fiber is provided on the surface of the steel fiber (claim 2). Thus, by providing the metal layer having specific physical properties on the surface of the steel fiber, it is possible to increase the bending and tensile breaking strength and toughness of the cementitious cured product.

【0006】上記本発明の金属繊維は、繊維の表面上に
形成された溝または突起(例えば、繊維の周面上に円環
状に形成された溝または突起)を、繊維の長手方向に2
つ以上有するようにインデント加工してもよい(請求項
3)。このように、特定の形状にインデント加工するこ
とによって、セメント質硬化体の母材に対する本発明の
金属繊維の界面付着強度をより一層高めることができ
る。
[0006] The metal fiber of the present invention has grooves or projections formed on the surface of the fiber (for example, grooves or projections formed in an annular shape on the peripheral surface of the fiber) in the longitudinal direction of the fiber.
Indentation may be performed so as to have at least one indentation. In this way, by performing indentation into a specific shape, the interfacial adhesion strength of the metal fiber of the present invention to the base material of the hardened cementitious body can be further increased.

【0007】上記本発明の金属繊維は、波形又は螺旋形
の形状に加工されたものとして構成することができる
(請求項4)。このように特定の形状に加工することに
よって、繊維補強したセメント質硬化体の靭性をより一
層高めることができる。
The metal fiber of the present invention can be constituted as processed into a corrugated or spiral shape. By processing into a specific shape in this manner, the toughness of the fiber-reinforced hardened cementitious material can be further increased.

【0008】前記波形又は螺旋形の形状は、繊維長さの
0.25〜1倍の周期、及び、繊維直径の4倍以下の振幅を
有するように形成させることが好ましい(請求項5)。
これらの条件から外れた形状とした場合には、セメント
質硬化体を構成する他の材料との混練時に、金属繊維が
絡み合う等の不都合が生じるおそれがある。
[0008] The corrugated or helical shape may be of a fiber length.
It is preferable that the fiber is formed so as to have a period of 0.25 to 1 times and an amplitude of 4 times or less of the fiber diameter (claim 5).
If the shape deviates from these conditions, there is a possibility that inconveniences such as entanglement of metal fibers may occur when kneading with other materials constituting the hardened cementitious material.

【0009】上記本発明の金属繊維は、アスペクト比
(繊維長/繊維直径)が20〜200であることが好ましい
(請求項6)。アスペクト比を上記範囲内とすることに
よって、良好な作業性(セメント質硬化体の硬化前の流
動性)等を確保しつつ、大きな補強効果を得ることがで
きる。
The metal fibers of the present invention preferably have an aspect ratio (fiber length / fiber diameter) of 20 to 200 (claim 6). By setting the aspect ratio within the above range, a large reinforcing effect can be obtained while ensuring good workability (fluidity before hardening of the cementitious cured body) and the like.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のセメント質硬化体補強用金属繊維は、鋼繊維単
独、または鋼繊維の表面(周面)に特定の金属層を形成
させたものからなる。本発明で用いる鋼繊維としては、
特に材質が限定されず、例えば、炭素鋼、ステンレス鋼
等からなる鋼繊維が挙げられる。中でも、炭素鋼は、低
価格で入手できる点で、好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The metal fiber for reinforcing a hardened cementitious material of the present invention comprises a steel fiber alone or a steel fiber having a specific metal layer formed on the surface (peripheral surface) thereof. As the steel fiber used in the present invention,
The material is not particularly limited, and examples thereof include steel fibers made of carbon steel, stainless steel, and the like. Among them, carbon steel is preferable because it can be obtained at a low price.

【0011】本発明で用いる鋼繊維の引張強度は、1〜
3.5GPa、好ましくは1.5〜3.5GPaである。引張強度が1GP
a未満では、金属繊維が破断し易く、十分な補強効果が
得られない。すなわち、補強の対象となるセメント質硬
化体が、極めて高い強度とヤング係数を持つ場合には、
ひび割れる時に解放される弾性エネルギーが大きいた
め、金属繊維の引張強度は、破断の防止のために1GPa以
上にする必要がある。一方、鋼繊維の引張強度が3.5GPa
を超えても、補強効果がほとんど向上しないばかりか、
鋼繊維のコストが高くなるので、鋼繊維の引張強度は、
3.5GPa以下とするのが好ましい。
The tensile strength of the steel fiber used in the present invention is 1 to
It is 3.5 GPa, preferably 1.5 to 3.5 GPa. Tensile strength is 1GP
If it is less than a, the metal fibers are easily broken, and a sufficient reinforcing effect cannot be obtained. That is, when the cementitious hardened material to be reinforced has extremely high strength and Young's modulus,
Since the elastic energy released when cracking is large, the tensile strength of the metal fiber needs to be 1 GPa or more to prevent breakage. On the other hand, the tensile strength of steel fiber is 3.5GPa
Even if it exceeds, not only does the reinforcing effect hardly improve,
As the cost of steel fiber increases, the tensile strength of steel fiber
It is preferably 3.5 GPa or less.

【0012】本発明で用いる鋼繊維の直径は、0.5mm以
下、好ましくは0.3mm以下、特に好ましくは0.1〜0.25mm
である。直径が0.5mmを超えると、セメント質硬化体が
硬化するまでの間に金属繊維(鋼繊維)が沈降し易く、
セメント質硬化体中の金属繊維の分散が均一にならない
ばかりでなく、繊維の強度に比べ界面付着強度が相対的
に低下するので、十分な補強効果が得られず、好ましく
ない。
The diameter of the steel fiber used in the present invention is 0.5 mm or less, preferably 0.3 mm or less, particularly preferably 0.1 to 0.25 mm.
It is. If the diameter exceeds 0.5 mm, metal fibers (steel fibers) tend to settle before the hardened cementitious material hardens,
Not only is the dispersion of the metal fibers in the hardened cementitious material not uniform, but also the interfacial adhesion strength is relatively lower than the fiber strength, so that a sufficient reinforcing effect cannot be obtained, which is not preferable.

【0013】本発明で用いる鋼繊維の長さは、繊維のア
スペクト比(繊維長/繊維直径)で20〜200とするのが
好ましい。アスペクト比が20未満では、亀裂の開口量が
増加していく際に、亀裂を橋渡ししている金属繊維が引
き抜け易く、金属繊維による補強効果が低下するので、
好ましくない。アスペクト比が200を超えると、混練時
に流動性が低下して、型枠内への混練物の流し込み時等
における作業性が劣るばかりでなく、気泡が抜け難くな
って、繊維補強されたセメント質硬化体の強度が低下す
るので、好ましくない。また、アスペクト比が200を超
える場合、金属繊維の混入量を少なくすれば、流動性の
低下を比較的抑えることができるのであるが、この場
合、金属繊維量が少ないために、金属繊維全体が負担す
ることのできる荷重の大きさが小さくなり、繊維補強さ
れたセメント質硬化体の強度が低下してしまう。繊維の
アスペクト比は、特に好ましくは40〜150である。アス
ペクト比がこの範囲内であれば、混練時の流動性の低下
もほとんどなく、しかも、金属繊維の混入量を比較的大
きくすることができるので、十分な補強効果を得ること
ができる。
The length of the steel fiber used in the present invention is preferably 20 to 200 in terms of fiber aspect ratio (fiber length / fiber diameter). When the aspect ratio is less than 20, when the opening amount of the crack increases, the metal fiber bridging the crack is easily pulled out, and the reinforcing effect by the metal fiber decreases,
Not preferred. When the aspect ratio exceeds 200, the fluidity is reduced during kneading, and not only is the workability at the time of pouring the kneaded material into the formwork inferior, but also it is difficult for bubbles to escape, and the fiber reinforced cement material It is not preferable because the strength of the cured product is reduced. Also, when the aspect ratio exceeds 200, if the amount of mixed metal fibers is reduced, a decrease in fluidity can be relatively suppressed, but in this case, since the amount of metal fibers is small, the entire metal fibers are reduced. The magnitude of the load that can be borne is reduced, and the strength of the fiber-reinforced hardened cementitious material is reduced. The aspect ratio of the fibers is particularly preferably from 40 to 150. When the aspect ratio is within this range, there is almost no decrease in fluidity during kneading, and the amount of metal fibers mixed can be made relatively large, so that a sufficient reinforcing effect can be obtained.

【0014】本発明の金属繊維(鋼繊維単独または鋼繊
維に特定の金属層を被覆したもの)としては、鋼繊維に
関する上記の条件に加えて、更に、180MPaの圧縮強度を
有するセメント質硬化体に対する界面付着強度が3MPa以
上、好ましくは3.5MPa以上、特に好ましくは4MPa以上で
あることが必要である。界面付着強度が3MPa未満では、
亀裂の開口量(開口の度合または程度)が増加していく
際に、亀裂を橋渡ししている金属繊維が引き抜け易くな
り、金属繊維による補強効果が低下するので、好ましく
ない。界面付着強度の数値を表す際に、セメント質硬化
体(母材)の圧縮強度の大きさ(180MPa)を一緒に表示
する理由は、セメント質硬化体の圧縮強度が変化すれ
ば、それに伴って金属繊維の界面付着強度も変化するた
め、同一の圧縮強度を有する母材を基準にして、界面付
着強度を示す必要があるからである。なお、界面付着強
度の測定に用いるセメント質硬化体は、圧縮強度が180M
Paのものであればよく、その使用材料等が限定されるも
のではない。
The metal fiber (steel fiber alone or steel fiber coated with a specific metal layer) of the present invention may be a cementitious hardened material having a compressive strength of 180 MPa in addition to the above-mentioned conditions for steel fiber. Is required to be 3 MPa or more, preferably 3.5 MPa or more, particularly preferably 4 MPa or more. If the interfacial adhesion strength is less than 3MPa,
When the opening amount (degree or degree of opening) of the crack increases, the metal fiber bridging the crack becomes easy to pull out, and the reinforcing effect by the metal fiber decreases, which is not preferable. When expressing the value of interfacial adhesion strength, the reason why the compressive strength (180 MPa) of the hardened cementitious material (base material) is also displayed is that if the compressive strength of the hardened cementitious material changes, This is because the interfacial adhesion strength of the metal fiber also changes, and it is necessary to indicate the interfacial adhesion strength based on a base material having the same compressive strength. The hardened cementitious material used for the measurement of interfacial adhesion strength has a compression strength of 180M.
Any material may be used as long as it is Pa, and the materials used are not limited.

【0015】金属繊維の表面状態は、特に限定されず、
用途や要求される性能によって適宜定めればよい。金属
繊維の表面が粗面であれば、セメント質硬化体との付着
強度を高くすることができるので、繊維補強したセメン
ト質硬化体の曲げ強度や引張強度を高めることができ
る。一方、金属繊維の表面が平滑面であれば、セメント
質硬化体と金属繊維との界面において、金属繊維が引き
抜ける時にセメント質硬化体を損傷することが少なくな
るので、比較的長い引抜け長さになるまで金属繊維に大
きな引張力(付着力)を作用させることができ、その結
果、繊維補強したセメント質硬化体の曲げや引張の破断
までの歪みを大きくすることができるなど、靭性を高め
ることができる。
The surface condition of the metal fiber is not particularly limited.
What is necessary is just to determine suitably according to a use and required performance. If the surface of the metal fiber is rough, the adhesive strength with the cementitious cured body can be increased, and therefore the bending strength and tensile strength of the fiber-reinforced cured cementitious body can be increased. On the other hand, if the surface of the metal fiber is a smooth surface, at the interface between the hardened cementitious material and the metal fiber, damage to the hardened cementitious material when the metal fiber is pulled out is reduced. Large tensile force (adhesive force) can be applied to the metal fibers until the metal fiber becomes hardened. As a result, the strain of the fiber reinforced hardened cementitious material can be increased until bending or tensile fracture occurs. be able to.

【0016】本発明においては、図1に示すように、鋼
繊維の表面(周面)に、鋼繊維のヤング係数よりも小さ
なヤング係数を有する金属層を設けることが好ましい。
図1中、金属繊維1は、鋼繊維2の表面に金属層3が被
覆されてなる。金属層を設ける理由は、次の通りであ
る。セメント質硬化体の亀裂を橋渡ししている鋼繊維に
は、引張力が作用するので、鋼繊維と、鋼繊維に付着し
ているセメント質硬化体(母材)との界面には、剪断力
が生じる。鋼繊維の表面に、鋼繊維よりも小さなヤング
係数を有する金属層を設けると、金属繊維と、金属繊維
に付着しているセメント質硬化体(母材)との界面に作
用する剪断力は、セメント質硬化体(母材)中に比較的
広く分散するようになる。そのため、金属繊維に作用す
る引張力によって受けるセメント質硬化体の損傷が軽減
され、繊維補強したセメント質硬化体の曲げや引張の破
断強度や靭性が高まるものと考えられる。
In the present invention, as shown in FIG. 1, it is preferable to provide a metal layer having a Young's modulus smaller than that of the steel fiber on the surface (peripheral surface) of the steel fiber.
In FIG. 1, a metal fiber 1 is formed by coating a metal fiber 3 on a surface of a steel fiber 2. The reason for providing the metal layer is as follows. Since tensile force acts on the steel fiber bridging the cracks in the cementitious hardened material, the shear force is applied to the interface between the steel fiber and the cementitious hardened material (base material) adhering to the steel fiber. Occurs. When a metal layer having a Young's modulus smaller than that of the steel fiber is provided on the surface of the steel fiber, the shear force acting on the interface between the metal fiber and the cementitious hardened material (base material) attached to the metal fiber becomes It becomes relatively widely dispersed in the cementitious hardened material (base material). Therefore, it is considered that the damage to the hardened cementitious body caused by the tensile force acting on the metal fiber is reduced, and the fracture strength and toughness of bending and tensile of the hardened cementitious body reinforced with fiber are increased.

【0017】更に、鋼繊維の表面の金属層が、セメント
質硬化体(母材)との付着面において剥離し、該付着面
が相対運動する場合においても、金属層は、鋼繊維に比
べてヤング係数が小さいので、セメント質硬化体(母
材)との接触面での応力集中を緩和させる作用を有する
とともに、金属層自身の比較的弾塑性変形し易い性質か
ら、金属繊維の引き抜け時においても付着力を増大させ
るように作用する。これらの作用は、繊維補強されたセ
メント質硬化体の曲げや引張の破断強度や靭性が高くな
ることと等価である。金属層を構成する金属の種類とし
ては、例えば、亜鉛、錫、銅、アルミニウム、それらの
合金等が挙げられる。金属層の厚みは、通常、鋼繊維の
直径の5%以下である。
Further, even when the metal layer on the surface of the steel fiber is peeled off at the surface where it adheres to the hardened cementitious material (base material) and the surface of adhesion relatively moves, the metal layer is still smaller than the steel fiber. Since the Young's modulus is small, it has the effect of alleviating stress concentration at the contact surface with the cementitious hardened material (base material). Also acts to increase the adhesive force. These effects are equivalent to an increase in the bending and tensile breaking strength and toughness of the fiber-reinforced hardened cementitious material. Examples of the type of metal constituting the metal layer include zinc, tin, copper, aluminum, and alloys thereof. The thickness of the metal layer is usually 5% or less of the diameter of the steel fiber.

【0018】本発明においては、金属繊維の表面に、イ
ンデント加工と称する塑性加工等によって凹凸を形成さ
せると、セメント質硬化体(母材)に対する金属繊維の
付着力を高めることができ、その結果、繊維補強された
セメント質硬化体の曲げ強度や引張強度が高まるので、
好ましい。なお、本明細書中で、「インデント加工」と
は、セメント質硬化体に対して金属繊維が相対運動する
際の抵抗が大きくなるように、金属繊維の外周面上に溝
(凹部)または突起(凸部)を設けることをいう。溝ま
たは突起は、例えば、金属繊維の軸線に対して垂直な方
向に延びる円環状(全周またはその一部)の溝または突
起として、金属繊維の長手方向に適宜の間隔で複数形成
してもよいし、あるいは、金属繊維の両端部を加圧して
押し潰し、各端部にて扁平状のもの(突起を2つ有す
る。)として形成してもよい。インデント加工の例を図
2及び図3に示す。図2は、金属繊維4の周面上に円環
状の溝5を所定の間隔で複数形成させた状態を示す正面
図である。図3中の(a)は、金属繊維6の両端部を押
し潰して扁平状にし、各端部に2つの突起7を形成させ
た状態を示す正面図(一端部)であり、(b)は、その
側面図である。(c)は、金属繊維8の両端部を片側に
押し潰して、先端部に突起9を形成させた状態を示す正
面図(一端部)である。
In the present invention, by forming irregularities on the surface of the metal fiber by plastic working called indenting or the like, the adhesive force of the metal fiber to the hardened cementitious material (base material) can be increased. Since the bending strength and tensile strength of the hardened cementitious material reinforced with fiber increase,
preferable. In this specification, the term “indentation” refers to a groove (recess) or a protrusion on the outer peripheral surface of the metal fiber so as to increase resistance when the metal fiber relatively moves with respect to the cementitious cured body. (Protrusions). A plurality of grooves or projections may be formed at appropriate intervals in the longitudinal direction of the metal fiber, for example, as annular (all or a part thereof) grooves or projections extending in a direction perpendicular to the axis of the metal fiber. Alternatively, both ends of the metal fiber may be pressed and crushed to form a flat shape (having two projections) at each end. 2 and 3 show examples of indentation processing. FIG. 2 is a front view showing a state in which a plurality of annular grooves 5 are formed on the peripheral surface of the metal fiber 4 at predetermined intervals. (A) in FIG. 3 is a front view (one end) showing a state in which both ends of the metal fiber 6 are crushed into a flat shape and two projections 7 are formed at each end. Is a side view thereof. (C) is a front view (one end) showing a state in which both ends of the metal fiber 8 are crushed to one side to form a protrusion 9 at the tip.

【0019】インデント加工で、金属繊維の周面上に円
環状に形成される溝の深さまたは突起の高さ(インデン
ト加工されない周面を基準とした深さまたは高さ)は、
金属繊維の直径の0.1倍以下とするのが好ましい。円環
状に形成される溝の深さまたは突起の高さが、金属繊維
の直径の0.1倍を超えると、金属繊維と母材の間の付着
力が大きなピーク値を示す反面、金属繊維と母材の間の
滑りが抑制されるため、金属繊維が破断したり、あるい
は母材が破壊されたりして、亀裂が生じた後の金属繊維
の付着力が急減するおそれがあり、好ましくない。
In the indenting process, the depth of the groove or the height of the protrusion (depth or height based on the non-indented peripheral surface) formed in an annular shape on the peripheral surface of the metal fiber is:
It is preferable that the diameter be 0.1 times or less the diameter of the metal fiber. If the depth of the annular groove or the height of the protrusion exceeds 0.1 times the diameter of the metal fiber, the adhesive force between the metal fiber and the base material shows a large peak value, while the metal fiber and the base material have a large peak value. Since the slip between the materials is suppressed, the metal fibers may be broken or the base material may be broken, and the adhesion of the metal fibers after the cracks may be suddenly reduced, which is not preferable.

【0020】インデント加工で、金属繊維の両端を押し
潰して扁平状に形成される突起の高さ(インデント加工
されない周面を基準とした高さ)は、金属繊維の直径以
下とするのが好ましく、0.7倍以下とするのがより好ま
しい。扁平状に形成される突起の高さが、金属繊維の直
径を超えると、金属繊維と母材の間の付着力が大きなピ
ーク値を示す反面、金属繊維と母材の間の滑りが抑制さ
れるため、金属繊維が破断したり、あるいは母材が破壊
されたりして、亀裂が生じた後の金属繊維の付着力が急
減するおそれがあり、好ましくない。インデント加工
は、金属繊維1本当たり、金属繊維の長手方向の少なく
とも2箇所以上に施すことが好ましい。長手方向に1箇
所施しただけでは、インデント加工による十分な効果を
期待できない。
In the indenting process, the height of the flattened projection formed by crushing both ends of the metal fiber (height based on the peripheral surface on which no indentation is performed) is preferably not more than the diameter of the metal fiber. , 0.7 times or less. When the height of the flattened protrusion exceeds the diameter of the metal fiber, the adhesion between the metal fiber and the base material shows a large peak value, but the slip between the metal fiber and the base material is suppressed. For this reason, the metal fibers may be broken or the base material may be broken, so that the adhesive force of the metal fibers after cracking may be suddenly reduced, which is not preferable. The indentation processing is preferably performed on at least two or more locations in the longitudinal direction of the metal fiber per one metal fiber. A single effect in the longitudinal direction cannot provide a sufficient effect by indentation.

【0021】金属繊維の形状は、波形または螺旋形であ
ることが好ましい。これらの形状に形成すれば、亀裂を
橋渡ししている金属繊維が母材から剥離した後に、金属
繊維と母材の相対運動時に界面上に適当な摩擦力が生
じ、繊維補強されたセメント質硬化体が高靭化される。
上記波形または螺旋形の形状における振幅は、金属繊維
の直径の4倍以下であることが好ましい。振幅が金属繊
維の直径の4倍を超えると、混練時に金属繊維同士が絡
み合い、金属繊維が均一に分散し難くなるおそれがあ
る。
The shape of the metal fiber is preferably corrugated or spiral. If these shapes are formed, after the metal fibers bridging the cracks are separated from the base material, an appropriate frictional force is generated on the interface during the relative movement between the metal fibers and the base material, and the fiber-reinforced cementitious hardening The body is toughened.
It is preferable that the amplitude in the corrugated or spiral shape is not more than four times the diameter of the metal fiber. If the amplitude exceeds four times the diameter of the metal fibers, the metal fibers may become entangled during kneading, and the metal fibers may be difficult to be uniformly dispersed.

【0022】上記波形または螺旋形の形状における周期
は、金属繊維の長さの0.25〜1倍であることが好まし
い。周期が金属繊維の長さの0.25倍未満では、金属繊維
同士が干渉し、混練が困難になる。周期が金属繊維の長
さの1倍を超えると、金属繊維と母材の相対運動時に、
金属繊維が母材に対して十分な付着力を有さず、金属繊
維と母材の界面に生じる摩擦力が低減するので、金属繊
維による十分な補強効果が得られず、繊維補強されたセ
メント質硬化体が、脆性的な破壊を示すようになる。な
お、本明細書中において、「振幅」とは、金属繊維の軸
線(中心線)が形成する波形に対するものである。波形
の金属繊維を作製するには、例えば、適当なモジュール
を有する歯車の間に、金属繊維を通過させればよい。螺
旋形の金属繊維を作製するには、例えば、芯棒の周囲に
5本の金属繊維を環状に平行に配置させた状態で、芯棒
の軸線を中心として全体を回転させればよい。
The period of the corrugated or spiral shape is preferably 0.25 to 1 times the length of the metal fiber. If the period is less than 0.25 times the length of the metal fibers, the metal fibers will interfere with each other, making kneading difficult. If the period exceeds one time the length of the metal fiber, the relative movement between the metal fiber and the base material
Since the metal fibers do not have sufficient adhesion to the base material and the frictional force generated at the interface between the metal fibers and the base material is reduced, a sufficient reinforcing effect by the metal fibers cannot be obtained, and fiber reinforced cement The hardened material exhibits brittle fracture. In this specification, “amplitude” refers to a waveform formed by the axis (center line) of the metal fiber. In order to produce corrugated metal fibers, for example, the metal fibers may be passed between gears having appropriate modules. In order to produce a helical metal fiber, for example, the entire metal rod may be rotated around the axis of the core rod in a state where five metal fibers are annularly arranged in parallel around the core rod.

【0023】本発明の金属繊維を含むセメント質硬化体
は、一般的には、100MPa以上の圧縮強度と、30MPa以上
の曲げ強度と、15kJ/m2以上の破壊エネルギーとを有す
るものであり、好ましくは、150MPa以上の圧縮強度と、
35MPa以上の曲げ強度と、18kJ/m2以上の破壊エネルギー
とを有するものであり、特に好ましくは、170MPa以上の
圧縮強度と、38MPa以上の曲げ強度と、20kJ/m2以上の破
壊エネルギーとを有するものである。
The hardened cementitious material containing the metal fiber of the present invention generally has a compressive strength of 100 MPa or more, a bending strength of 30 MPa or more, and a breaking energy of 15 kJ / m 2 or more, Preferably, a compressive strength of 150 MPa or more,
It has a bending strength of 35 MPa or more and a breaking energy of 18 kJ / m 2 or more, and particularly preferably has a compressive strength of 170 MPa or more, a bending strength of 38 MPa or more, and a breaking energy of 20 kJ / m 2 or more. Have

【0024】[0024]

【実施例】以下、実施例を挙げて本発明を説明する。 (1)使用した金属繊維 金属繊維として、次の〜を使用した。なお、金属繊
維〜は、本発明の金属繊維であり、金属繊維は、
本発明に該当しない金属繊維である。 引張強度2.7GPa、直径0.2mmの鋼繊維(材質:炭素
鋼); の鋼繊維の表面に0.2μmの厚さで黄銅を被覆(コ
ート)したもの; の鋼繊維の表面に0.2μmの厚さで黄銅を被覆した
後、鋼繊維の両端を潰すように塑性加工して、突起高さ
0.1mmのインデント加工を施したもの; の鋼繊維の表面に0.2μmの厚さで黄銅を被覆した
後、周期7.5mm、振幅0.35mmの螺旋加工を施したもの; 引張強度0.8GPa、直径0.2mmの鋼繊維(材質:炭素
鋼)
The present invention will be described below with reference to examples. (1) Metal fiber used The following (1) was used as a metal fiber. The metal fibers are the metal fibers of the present invention, and the metal fibers are
This is a metal fiber that does not fall under the present invention. A steel fiber with a tensile strength of 2.7 GPa and a diameter of 0.2 mm (material: carbon steel); a steel fiber surface coated with brass with a thickness of 0.2 μm; a steel fiber surface with a thickness of 0.2 μm After covering with brass, plastic working to crush both ends of steel fiber
0.1mm indented; a steel fiber surface coated with brass with a thickness of 0.2μm, and then spiral-processed with a period of 7.5mm and an amplitude of 0.35mm; tensile strength 0.8GPa, diameter 0.2 mm steel fiber (material: carbon steel)

【0025】(2)金属繊維の界面付着強度の測定 上記〜の各金属繊維について、セメント質硬化体
(圧縮強度:180MPa)に対する界面付着強度を測定し
た。用いたセメント質硬化体の成分の配合割合、及び試
験方法は、次の通りである。 [セメント質硬化体の配合条件]表1に示す配合条件
で、配合1及び配合2のセメント質硬化体を作製した。
なお、これらのセメント質硬化体の圧縮強度は、いずれ
も180MPaであった。
(2) Measurement of interfacial adhesion strength of metal fiber The interfacial adhesion strength of each of the above metal fibers to a cementitious cured product (compression strength: 180 MPa) was measured. The mixing ratio of the components of the cementitious hardened material used and the test method are as follows. [Compounding conditions of hardened cementitious material] Under the mixing conditions shown in Table 1, hardened cementitious products of Formulations 1 and 2 were produced.
The compressive strength of each of these cementitious cured products was 180 MPa.

【0026】[0026]

【表1】 [Table 1]

【0027】[試験方法]縦4cm、横4cm、高さ1cmの型
枠の底板の中心に穿設された孔の中に、1本の金属繊維
(長さ:約10cm)の下端部を貫通させた状態で垂直に立
設した後、型枠内に、上記配合割合で各成分を混練した
試料を流し込み、成型した。湿気箱(20℃)中で24時間
養生後、材齢28日まで20℃で水中養生した。養生後、イ
ンストロン型試験機で金属繊維を引っ張り、得られた最
大荷重を付着界面の面積で除し、界面付着強度とした。 [結果]界面付着強度の測定結果を表2に示す。
[Test Method] A lower end of one metal fiber (length: about 10 cm) is penetrated into a hole formed in the center of a bottom plate of a mold frame having a length of 4 cm, a width of 4 cm and a height of 1 cm. After being erected vertically in this state, a sample in which the respective components were kneaded at the above mixing ratio was poured into a mold and molded. After curing for 24 hours in a moisture box (20 ° C.), it was cured in water at 20 ° C. until the age of 28 days. After curing, the metal fiber was pulled with an Instron type testing machine, and the obtained maximum load was divided by the area of the bonding interface to obtain the interface bonding strength. [Results] Table 2 shows the measurement results of the interfacial adhesion strength.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示すように、各々の金属繊維(〜
)は、同一の圧縮強度(180MPa)を有し成分組成が異
なる2種のセメント質硬化体(配合1、配合2)に対し
て、一定の界面付着強度を示す。
As shown in Table 2, each metal fiber (~
) Shows a constant interfacial adhesion strength to two types of hardened cementitious products (formulations 1 and 2) having the same compressive strength (180 MPa) and different component compositions.

【0030】(3)金属繊維を含むセメント質硬化体の
作製 金属繊維を含むセメント質硬化体として、表3に示すセ
メント質硬化体No.1〜No.6を作製した。なお、
混練方法及び養生条件は、次の通りである。 [混練方法]ホバートミキサに金属繊維以外の材料を一
括投入し、混練して流動性が現れた後に金属繊維を投入
し、更に混練を行なった。 [養生条件]湿気箱(20℃)中で24時間養生した後、材
齢28日まで20℃で水中養生した。
(3) Preparation of Hardened Cementitious Material Containing Metal Fiber As a hardened cementitious material containing metal fiber, a cementitious hardened material No. shown in Table 3 was used. 1 to No. No. 6 was produced. In addition,
The kneading method and curing conditions are as follows. [Kneading method] Materials other than metal fibers were put into the Hobart mixer all at once, and after kneading and fluidity appeared, the metal fibers were added and kneading was further performed. [Curing conditions] After curing for 24 hours in a humidity box (20 ° C), the specimens were cured in water at 20 ° C until the age of 28 days.

【0031】[0031]

【表3】 [Table 3]

【0032】(4)金属繊維を含むセメント質硬化体の
評価 表3に示すセメント質硬化体No.1〜No.6につい
て、フロー値等の物性を測定した。 [物性の測定方法]フロー値は、JIS R5201
(セメントの物理試験方法)に準じて測定した。ただ
し、15回の落下運動は行なわずに測定した。圧縮強度
は、JIS A1108(コンクリートの圧縮試験方
法)を参考にして求めた。供試体の形状は、直径5cm、
高さ10cmとした。曲げ強度は、JIS R5201(セ
メントの物理試験方法)を参考にして求めた。供試体の
形状は、縦4cm、横4cm、長さ16cmとした。載荷条件は、
下支点間距離12cm、上支点間距離4cmの4点曲げとし
た。破壊エネルギーは、曲げ試験において、荷重が最大
荷重に達したのち、最大荷重の1/3まで低下するまで
の荷重−荷重点変位の積分値を供試体断面積で除した値
とした。 [結果]結果を表4〜表9に示す。
(4) Evaluation of hardened cementitious material containing metal fiber 1 to No. For No. 6, physical properties such as a flow value were measured. [Measurement method of physical properties]
(Physical test method of cement). However, the measurement was performed without performing the falling motion 15 times. The compressive strength was determined with reference to JIS A1108 (compression test method for concrete). The shape of the specimen is 5cm in diameter,
The height was 10 cm. The flexural strength was determined with reference to JIS R5201 (physical test method for cement). The specimen was 4 cm long, 4 cm wide, and 16 cm long. Loading conditions are
Four-point bending was performed with a distance between the lower supports of 12 cm and a distance between the upper supports of 4 cm. The fracture energy was a value obtained by dividing the integrated value of the load-displacement at the load point until the load decreased to 1/3 of the maximum load after the load reached the maximum load in the bending test, by the cross-sectional area of the specimen. [Results] The results are shown in Tables 4 to 9.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【表8】 [Table 8]

【0038】[0038]

【表9】 [Table 9]

【0039】表2〜表9に示すように、本発明の金属繊
維〜で繊維補強したセメント質硬化体(実施例1〜
24)では、いずれも高い曲げ強度と破壊エネルギーを
得ている。一方、界面付着強度が低い金属繊維を配合
したセメント質硬化体(比較例1〜6)では、曲げ強度
及び破壊エネルギーがいずれも低く、金属繊維による補
強の効果が不十分である。
As shown in Tables 2 to 9, the cementitious cured product fiber-reinforced with the metal fiber of the present invention (Examples 1 to 9)
In 24), high bending strength and high breaking energy were obtained. On the other hand, in the case of a cementitious cured product containing a metal fiber having a low interfacial adhesion strength (Comparative Examples 1 to 6), both the bending strength and the breaking energy are low, and the effect of reinforcement by the metal fiber is insufficient.

【0040】[0040]

【発明の効果】本発明の金属繊維を配合することによっ
て、大きな曲げ強度と大きな破壊エネルギーを有する高
強度のセメント質硬化体を得ることができる。
By blending the metal fiber of the present invention, a high-strength hardened cementitious material having a large bending strength and a large breaking energy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属繊維の一例(部分)を示す斜視図
である。
FIG. 1 is a perspective view showing an example (part) of a metal fiber of the present invention.

【図2】インデント加工の一例を示す正面図である。FIG. 2 is a front view showing an example of indentation processing.

【図3】インデント加工の他の例を示す正面図(a)、
側面図(b)、及び更に他の例を示す正面図(c)であ
る。
FIG. 3 is a front view (a) showing another example of indentation processing;
It is a side view (b) and a front view (c) showing still another example.

【符号の説明】[Explanation of symbols]

1,4,6,8 金属繊維 2 鋼繊維 3 金属層 5 溝 7,9 突起 1,4,6,8 metal fiber 2 steel fiber 3 metal layer 5 groove 7,9 protrusion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 誠 東京都中央区日本橋室町2−3−14 東京 製綱株式会社内 Fターム(参考) 4G012 PA19  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Makoto Nakayama 2-3-14 Nihonbashi Muromachi, Chuo-ku, Tokyo Tokyo Terminator Co., Ltd. F-term (reference) 4G012 PA19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 直径が0.5mm以下、引張強度が1〜3.5GPa
の鋼繊維からなり、かつ、180MPaの圧縮強度を有するセ
メント質硬化体に対する界面付着強度が3MPa以上である
ことを特徴とするセメント質硬化体補強用金属繊維。
1. A diameter of 0.5 mm or less and a tensile strength of 1 to 3.5 GPa
A metal fiber for hardening a cementitious hardened material comprising a steel fiber of the formula (1) and having an interfacial adhesion strength of 3 MPa or more to the hardened cementitious material having a compressive strength of 180 MPa.
【請求項2】 前記鋼繊維の表面に、当該鋼繊維のヤン
グ係数よりも小さなヤング係数を有する金属層を設けて
なる請求項1に記載のセメント質硬化体補強用金属繊
維。
2. The metal fiber for reinforcing a cementitious cured product according to claim 1, wherein a metal layer having a Young's modulus smaller than the Young's modulus of the steel fiber is provided on a surface of the steel fiber.
【請求項3】 繊維の表面上に形成された溝または突起
を、繊維の長手方向に2つ以上有するようにインデント
加工された請求項1又は2に記載のセメント質硬化体補
強用金属繊維。
3. The metal fiber for reinforcing a cementitious cured body according to claim 1, wherein the metal fiber is indented so as to have two or more grooves or projections formed on the surface of the fiber in the longitudinal direction of the fiber.
【請求項4】 波形又は螺旋形の形状に加工されてなる
請求項1〜3のいずれかに記載のセメント質硬化体補強
用金属繊維。
4. The metal fiber for reinforcing a hardened cementitious product according to claim 1, which is processed into a corrugated or spiral shape.
【請求項5】 前記波形又は螺旋形の形状が、繊維長さ
の0.25〜1倍の周期、及び、繊維直径の4倍以下の振幅を
有する請求項4に記載のセメント質硬化体補強用金属繊
維。
5. A reinforcing cementitious metal according to claim 4, wherein the corrugated or spiral shape has a period of 0.25 to 1 times the fiber length and an amplitude of 4 times or less the fiber diameter. fiber.
【請求項6】 アスペクト比が20〜200である請求項1
〜5のいずれかに記載のセメント質硬化体補強用金属繊
維。
6. The method according to claim 1, wherein the aspect ratio is 20 to 200.
6. The metal fiber for reinforcing a hardened cementitious product according to any one of items 1 to 5.
JP2000347157A 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies Expired - Lifetime JP4799729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347157A JP4799729B2 (en) 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347157A JP4799729B2 (en) 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies

Publications (2)

Publication Number Publication Date
JP2002154852A true JP2002154852A (en) 2002-05-28
JP4799729B2 JP4799729B2 (en) 2011-10-26

Family

ID=18820931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347157A Expired - Lifetime JP4799729B2 (en) 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies

Country Status (1)

Country Link
JP (1) JP4799729B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320834A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2007320833A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2008137823A (en) * 2006-11-30 2008-06-19 Taiheiyo Cement Corp Metallic fiber for reinforcing cement hardened body and cement hardened body
JP2011256080A (en) * 2010-06-10 2011-12-22 Taiheiyo Cement Corp Cementitious hardened material
JP2012529416A (en) * 2009-06-12 2012-11-22 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム High elongation fiber
JP2014037714A (en) * 2012-08-16 2014-02-27 St Engineering Kk Long mirror bolt construction method
WO2015005320A1 (en) * 2013-07-09 2015-01-15 黒崎播磨株式会社 Metal fiber composite
CN105859171A (en) * 2016-03-30 2016-08-17 江苏苏博特新材料股份有限公司 Anti-crack and toughening steel fiber and preparation method thereof
JP2020100523A (en) * 2018-12-20 2020-07-02 株式会社竹中工務店 Steel fiber for reinforcing cement-hardened body, and cement composition
EP3908560A4 (en) * 2019-01-10 2022-09-28 The Regents of The University of Michigan Striated fiber-based concrete reinforcement

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS57156362A (en) * 1981-03-23 1982-09-27 Kawasaki Steel Co Steel fiber and manufacture
JPS60195043A (en) * 1984-03-14 1985-10-03 株式会社神戸製鋼所 Steel fiber for concrete reinforcement
JPH01122942A (en) * 1987-11-06 1989-05-16 Tekken Constr Co Ltd Concrete reinforcement
JPH04214055A (en) * 1990-12-12 1992-08-05 Sumitomo Cement Co Ltd Ultra-rapid setting mortar
JPH05262543A (en) * 1992-03-17 1993-10-12 Bridgestone Bekaert Steel Code Kk Steel fiber member for reinforcing concrete and its production
JPH0753247A (en) * 1993-06-11 1995-02-28 Bridgestone Metarufua Kk Steel fiber
JPH09500352A (en) * 1993-07-01 1997-01-14 ブイゲ METAL FIBER CONCRETE COMPOSITION FOR MOLDING CONCRETE PARTS, OBTAINED PARTS AND METHOD OF THERMAL CURING
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS57156362A (en) * 1981-03-23 1982-09-27 Kawasaki Steel Co Steel fiber and manufacture
JPS60195043A (en) * 1984-03-14 1985-10-03 株式会社神戸製鋼所 Steel fiber for concrete reinforcement
JPH01122942A (en) * 1987-11-06 1989-05-16 Tekken Constr Co Ltd Concrete reinforcement
JPH04214055A (en) * 1990-12-12 1992-08-05 Sumitomo Cement Co Ltd Ultra-rapid setting mortar
JPH05262543A (en) * 1992-03-17 1993-10-12 Bridgestone Bekaert Steel Code Kk Steel fiber member for reinforcing concrete and its production
JPH0753247A (en) * 1993-06-11 1995-02-28 Bridgestone Metarufua Kk Steel fiber
JPH09500352A (en) * 1993-07-01 1997-01-14 ブイゲ METAL FIBER CONCRETE COMPOSITION FOR MOLDING CONCRETE PARTS, OBTAINED PARTS AND METHOD OF THERMAL CURING
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320834A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2007320833A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2008137823A (en) * 2006-11-30 2008-06-19 Taiheiyo Cement Corp Metallic fiber for reinforcing cement hardened body and cement hardened body
JP2012529416A (en) * 2009-06-12 2012-11-22 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム High elongation fiber
JP2011256080A (en) * 2010-06-10 2011-12-22 Taiheiyo Cement Corp Cementitious hardened material
JP2014037714A (en) * 2012-08-16 2014-02-27 St Engineering Kk Long mirror bolt construction method
WO2015005320A1 (en) * 2013-07-09 2015-01-15 黒崎播磨株式会社 Metal fiber composite
JP2015017001A (en) * 2013-07-09 2015-01-29 黒崎播磨株式会社 Metal fiber composite
CN105859171A (en) * 2016-03-30 2016-08-17 江苏苏博特新材料股份有限公司 Anti-crack and toughening steel fiber and preparation method thereof
JP2020100523A (en) * 2018-12-20 2020-07-02 株式会社竹中工務店 Steel fiber for reinforcing cement-hardened body, and cement composition
JP7151962B2 (en) 2018-12-20 2022-10-12 株式会社竹中工務店 Steel fiber and cement composition for reinforcing hardened cement body
EP3908560A4 (en) * 2019-01-10 2022-09-28 The Regents of The University of Michigan Striated fiber-based concrete reinforcement

Also Published As

Publication number Publication date
JP4799729B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US5993537A (en) Fiber reinforced building materials
JP2002154852A (en) Metallic fiber for reinforcing cementitious hardened body
Qian et al. Fiber alignment and property direction dependency of FRC extrudate
US20030188667A1 (en) Composite materials using novel reinforcements
Ghugal et al. Performance of alkali-resistant glass fiber reinforced concrete
KR20040041535A (en) Highly dispersible reinforcing polymeric fibers
IE45045B1 (en) Cementitious compositions
KR100708058B1 (en) FRP panel for concrete structure reinforcement
JP2003335559A (en) Concrete reinforcement material and concrete moldings material using the same
JP4836135B2 (en) Metal fiber for reinforcing cementitious body and hardened cementitious body
CN1119143A (en) Production of composites
JP6626539B2 (en) Manufacturing method of high strength fiber reinforced mortar
JP4711196B2 (en) Steel fiber for reinforcing high-strength compositions
JP7208692B1 (en) Stair structure with concrete structural material in the steps
US4725491A (en) Reinforced cement products with improved mechanical properties and creep resistance
JP2000281402A (en) Steel fiber for reinforcing high strength composition
JP6214393B2 (en) Multiple fine cracked fiber reinforced cement composites
WO1999041440A1 (en) Reinforced composites including bone-shaped short fibers
JP4056841B2 (en) Prestressed hydraulic cured body
JP2011121832A (en) Kneaded material for cement composite material excellent in shear break resistance, composite material, and bridge beam member
KR20090010734A (en) Steel fiber for fiber reinforcing concrete
JP2000264708A (en) High-toughness fiber reinforced cement product and its production
JP2002193653A (en) Sprayable material for repair work
JP2005170715A (en) Fiber reinforced cement based mixed material
JP5829459B2 (en) Cement hardener reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term