JP4799729B2 - Metal fibers for reinforcing cementitious hardened bodies - Google Patents

Metal fibers for reinforcing cementitious hardened bodies Download PDF

Info

Publication number
JP4799729B2
JP4799729B2 JP2000347157A JP2000347157A JP4799729B2 JP 4799729 B2 JP4799729 B2 JP 4799729B2 JP 2000347157 A JP2000347157 A JP 2000347157A JP 2000347157 A JP2000347157 A JP 2000347157A JP 4799729 B2 JP4799729 B2 JP 4799729B2
Authority
JP
Japan
Prior art keywords
fiber
metal
cementitious
strength
metal fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000347157A
Other languages
Japanese (ja)
Other versions
JP2002154852A (en
Inventor
誠 片桐
誠 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Taiheiyo Cement Corp
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Rope Manufacturing Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2000347157A priority Critical patent/JP4799729B2/en
Publication of JP2002154852A publication Critical patent/JP2002154852A/en
Application granted granted Critical
Publication of JP4799729B2 publication Critical patent/JP4799729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、100MPa以上の圧縮強度を有するセメント質硬化体を補強するのに好適なセメント質硬化体補強用金属繊維に関する。
【0002】
【従来の技術】
セメント質硬化体(例えば、コンクリート等)の補強用としての従来の鋼繊維は、一般に、引張強度の大きさと比べて、母材(セメント質硬化体中の鋼繊維以外の部分)に対する付着強度が小さい。そのため、鋼繊維による補強効果は、母材との付着強度を反映して、小さいものとなり、必ずしも満足すべきものではなかった。また、従来の鋼繊維は、直径が0.5〜1.0mm程度、長さが30mm程度と大き過ぎるため、高強度のセメント質硬化体(例えば、100MPa以上の圧縮強度を有するコンクリート)中に混入された時に、母材から分離し易いという欠点があった。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑みて、高強度のセメント質硬化体(典型的には、100MPa以上の圧縮強度を有するセメント質硬化体)中の母材に対する付着性が良好で、セメント質硬化体を補強するのに好適に用いられるセメント質硬化体補強用金属繊維を提供せんとする。
【0004】
【課題を解決するための手段】
本願請求項1に記載のセメント質硬化体補強用金属繊維は、直径が0.1〜0.25mm、引張強度が1.5〜3.5GPaの断面が円形の形状の鋼繊維からなり、該鋼繊維の表面に、当該鋼繊維のヤング係数よりも小さなヤング係数を有する金属層が設けられており、180MPaの圧縮強度を有するセメント質硬化体に対する界面付着強度(付着面の単位面積当たりの最大引張力)が3MPa以上であり、螺旋形の形状に加工されており、該螺旋形の形状が、繊維長さの0.25〜1倍の周期、及び、繊維直径の4倍以下の振幅を有し、かつ、アスペクト比が40〜150であることを特徴とする。
このように構成した本発明の金属繊維は、母材に対する付着強度が大きいため、母材から容易に分離することがなく、セメント質硬化体を効果的に補強することができる。
また、このように、特定の物性を有する金属層を鋼繊維の表面上に設けることによって、セメント質硬化体の曲げ及び引張の破断強度や靭性を高めることができる。
さらに、このように特定の形状に加工することによって、繊維補強したセメント質硬化体の靭性をより一層高めることができる。
【0008】
上記螺旋形の形状が、上記条件から外れた形状である場合には、セメント質硬化体を構成する他の材料との混練時に、金属繊維が絡み合う等の不都合が生じるおそれがある。
【0009】
上記アスペクト比を上記範囲内とすることによって、良好な作業性(セメント質硬化体の硬化前の流動性)等を確保しつつ、大きな補強効果を得ることができる。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のセメント質硬化体補強用金属繊維は鋼繊維の表面(周面)に特定の金属層を形成させたものからなる。
本発明で用いる鋼繊維としては、特に材質が限定されず、例えば、炭素鋼、ステンレス鋼等からなる鋼繊維が挙げられる。中でも、炭素鋼は、低価格で入手できる点で、好ましい。
【0011】
本発明で用いる鋼繊維の引張強度は、1.5〜3.5GPaである。
引張強度が1GPa未満では、金属繊維が破断し易く、十分な補強効果が得られない。すなわち、補強の対象となるセメント質硬化体が、極めて高い強度とヤング係数を持つ場合には、ひび割れる時に解放される弾性エネルギーが大きいため、金属繊維の引張強度は、破断の防止のために1.5GPa以上にする必要がある。
一方、鋼繊維の引張強度が3.5GPaを超えても、補強効果がほとんど向上しないばかりか、鋼繊維のコストが高くなるので、鋼繊維の引張強度は、3.5GPa以下とするのが好ましい。
【0012】
本発明で用いる鋼繊維の直径は0.1〜0.25mmである。直径が0.5mmを超えると、セメント質硬化体が硬化するまでの間に金属繊維(鋼繊維)が沈降し易く、セメント質硬化体中の金属繊維の分散が均一にならないばかりでなく、繊維の強度に比べ界面付着強度が相対的に低下するので、十分な補強効果が得られず、好ましくない。
【0013】
本発明で用いる鋼繊維の長さは、繊維のアスペクト比(繊維長/繊維直径)で40〜150である。アスペクト比が20未満では、亀裂の開口量が増加していく際に、亀裂を橋渡ししている金属繊維が引き抜け易く、金属繊維による補強効果が低下するので、好ましくない。アスペクト比が200を超えると、混練時に流動性が低下して、型枠内への混練物の流し込み時等における作業性が劣るばかりでなく、気泡が抜け難くなって、繊維補強されたセメント質硬化体の強度が低下するので、好ましくない。また、アスペクト比が200を超える場合、金属繊維の混入量を少なくすれば、流動性の低下を比較的抑えることができるのであるが、この場合、金属繊維量が少ないために、金属繊維全体が負担することのできる荷重の大きさが小さくなり、繊維補強されたセメント質硬化体の強度が低下してしまう。
繊維のアスペクト比が40〜150の範囲内であれば、混練時の流動性の低下もほとんどなく、しかも、金属繊維の混入量を比較的大きくすることができるので、十分な補強効果を得ることができる。
【0014】
本発明の金属繊維鋼繊維に特定の金属層を被覆したもの)としては、鋼繊維に関する上記の条件に加えて、更に、180MPaの圧縮強度を有するセメント質硬化体に対する界面付着強度が3MPa以上、好ましくは3.5MPa以上、特に好ましくは4MPa以上であることが必要である。界面付着強度が3MPa未満では、亀裂の開口量(開口の度合または程度)が増加していく際に、亀裂を橋渡ししている金属繊維が引き抜け易くなり、金属繊維による補強効果が低下するので、好ましくない。
界面付着強度の数値を表す際に、セメント質硬化体(母材)の圧縮強度の大きさ(180MPa)を一緒に表示する理由は、セメント質硬化体の圧縮強度が変化すれば、それに伴って金属繊維の界面付着強度も変化するため、同一の圧縮強度を有する母材を基準にして、界面付着強度を示す必要があるからである。
なお、界面付着強度の測定に用いるセメント質硬化体は、圧縮強度が180MPaのものであればよく、その使用材料等が限定されるものではない。
【0015】
金属繊維の表面状態は、特に限定されず、用途や要求される性能によって適宜定めればよい。
金属繊維の表面が粗面であれば、セメント質硬化体との付着強度を高くすることができるので、繊維補強したセメント質硬化体の曲げ強度や引張強度を高めることができる。
一方、金属繊維の表面が平滑面であれば、セメント質硬化体と金属繊維との界面において、金属繊維が引き抜ける時にセメント質硬化体を損傷することが少なくなるので、比較的長い引抜け長さになるまで金属繊維に大きな引張力(付着力)を作用させることができ、その結果、繊維補強したセメント質硬化体の曲げや引張の破断までの歪みを大きくすることができるなど、靭性を高めることができる。
【0016】
本発明においては、図1に示すように、鋼繊維の表面(周面)に、鋼繊維のヤング係数よりも小さなヤング係数を有する金属層が設けられる。図1中、金属繊維1は、鋼繊維2の表面に金属層3が被覆されてなる。
金属層を設ける理由は、次の通りである。セメント質硬化体の亀裂を橋渡ししている鋼繊維には、引張力が作用するので、鋼繊維と、鋼繊維に付着しているセメント質硬化体(母材)との界面には、剪断力が生じる。鋼繊維の表面に、鋼繊維よりも小さなヤング係数を有する金属層を設けると、金属繊維と、金属繊維に付着しているセメント質硬化体(母材)との界面に作用する剪断力は、セメント質硬化体(母材)中に比較的広く分散するようになる。そのため、金属繊維に作用する引張力によって受けるセメント質硬化体の損傷が軽減され、繊維補強したセメント質硬化体の曲げや引張の破断強度や靭性が高まるものと考えられる。
【0017】
更に、鋼繊維の表面の金属層が、セメント質硬化体(母材)との付着面において剥離し、該付着面が相対運動する場合においても、金属層は、鋼繊維に比べてヤング係数が小さいので、セメント質硬化体(母材)との接触面での応力集中を緩和させる作用を有するとともに、金属層自身の比較的弾塑性変形し易い性質から、金属繊維の引き抜け時においても付着力を増大させるように作用する。これらの作用は、繊維補強されたセメント質硬化体の曲げや引張の破断強度や靭性が高くなることと等価である。
金属層を構成する金属の種類としては、例えば、亜鉛、錫、銅、アルミニウム、それらの合金等が挙げられる。
金属層の厚みは、通常、鋼繊維の直径の5%以下である。
【0018】
本発明においては、金属繊維の表面に、インデント加工と称する塑性加工等によって凹凸を形成させると、セメント質硬化体(母材)に対する金属繊維の付着力を高めることができ、その結果、繊維補強されたセメント質硬化体の曲げ強度や引張強度が高まるので、好ましい。
なお、本明細書中で、「インデント加工」とは、セメント質硬化体に対して金属繊維が相対運動する際の抵抗が大きくなるように、金属繊維の外周面上に溝(凹部)または突起(凸部)を設けることをいう。溝または突起は、例えば、金属繊維の軸線に対して垂直な方向に延びる円環状(全周またはその一部)の溝または突起として、金属繊維の長手方向に適宜の間隔で複数形成してもよいし、あるいは、金属繊維の両端部を加圧して押し潰し、各端部にて扁平状のもの(突起を2つ有する。)として形成してもよい。
インデント加工の例を図2及び図3に示す。図2は、金属繊維4の周面上に円環状の溝5を所定の間隔で複数形成させた状態を示す正面図である。図3中の(a)は、金属繊維6の両端部を押し潰して扁平状にし、各端部に2つの突起7を形成させた状態を示す正面図(一端部)であり、(b)は、その側面図である。(c)は、金属繊維8の両端部を片側に押し潰して、先端部に突起9を形成させた状態を示す正面図(一端部)である。
【0019】
インデント加工で、金属繊維の周面上に円環状に形成される溝の深さまたは突起の高さ(インデント加工されない周面を基準とした深さまたは高さ)は、金属繊維の直径の0.1倍以下とするのが好ましい。
円環状に形成される溝の深さまたは突起の高さが、金属繊維の直径の0.1倍を超えると、金属繊維と母材の間の付着力が大きなピーク値を示す反面、金属繊維と母材の間の滑りが抑制されるため、金属繊維が破断したり、あるいは母材が破壊されたりして、亀裂が生じた後の金属繊維の付着力が急減するおそれがあり、好ましくない。
【0020】
インデント加工で、金属繊維の両端を押し潰して扁平状に形成される突起の高さ(インデント加工されない周面を基準とした高さ)は、金属繊維の直径以下とするのが好ましく、0.7倍以下とするのがより好ましい。
扁平状に形成される突起の高さが、金属繊維の直径を超えると、金属繊維と母材の間の付着力が大きなピーク値を示す反面、金属繊維と母材の間の滑りが抑制されるため、金属繊維が破断したり、あるいは母材が破壊されたりして、亀裂が生じた後の金属繊維の付着力が急減するおそれがあり、好ましくない。
インデント加工は、金属繊維1本当たり、金属繊維の長手方向の少なくとも2箇所以上に施すことが好ましい。長手方向に1箇所施しただけでは、インデント加工による十分な効果を期待できない。
【0021】
金属繊維の形状は、螺旋形である。この形状に形成すれば、亀裂を橋渡ししている金属繊維が母材から剥離した後に、金属繊維と母材の相対運動時に界面上に適当な摩擦力が生じ、繊維補強されたセメント質硬化体が高靭化される。
上記螺旋形の形状における振幅は、金属繊維の直径の4倍以下である。振幅が金属繊維の直径の4倍を超えると、混練時に金属繊維同士が絡み合い、金属繊維が均一に分散し難くなるおそれがある。
【0022】
上記螺旋形の形状における周期は、金属繊維の長さの0.25〜1倍である。周期が金属繊維の長さの0.25倍未満では、金属繊維同士が干渉し、混練が困難になる。周期が金属繊維の長さの1倍を超えると、金属繊維と母材の相対運動時に、金属繊維が母材に対して十分な付着力を有さず、金属繊維と母材の界面に生じる摩擦力が低減するので、金属繊維による十分な補強効果が得られず、繊維補強されたセメント質硬化体が、脆性的な破壊を示すようになる。なお、本明細書中において、「振幅」とは、金属繊維の軸線(中心線)が形成する波形に対するものである。
螺旋形の金属繊維を作製するには、例えば、芯棒の周囲に5本の金属繊維を環状に平行に配置させた状態で、芯棒の軸線を中心として全体を回転させればよい。
【0023】
本発明の金属繊維を含むセメント質硬化体は、一般的には、100MPa以上の圧縮強度と、30MPa以上の曲げ強度と、15kJ/m2以上の破壊エネルギーとを有するものであり、好ましくは、150MPa以上の圧縮強度と、35MPa以上の曲げ強度と、18kJ/m2以上の破壊エネルギーとを有するものであり、特に好ましくは、170MPa以上の圧縮強度と、38MPa以上の曲げ強度と、20kJ/m2以上の破壊エネルギーとを有するものである。
【0024】
【実施例】
以下、実施例を挙げて本発明を説明する。
(1)使用した金属繊維
金属繊維として、次の▲1▼〜▲5▼を使用した。なお、金属繊維▲1▼〜▲4▼は、本発明の金属繊維であり、金属繊維▲5▼は、本発明に該当しない金属繊維である。
▲1▼ 引張強度2.7GPa、直径0.2mmの鋼繊維(材質:炭素鋼);
▲2▼ ▲1▼の鋼繊維の表面に0.2μmの厚さで黄銅を被覆(コート)したもの;
▲3▼ ▲1▼の鋼繊維の表面に0.2μmの厚さで黄銅を被覆した後、鋼繊維の両端を潰すように塑性加工して、突起高さ0.1mmのインデント加工を施したもの;
▲4▼ ▲1▼の鋼繊維の表面に0.2μmの厚さで黄銅を被覆した後、周期7.5mm、振幅0.35mmの螺旋加工を施したもの;
▲5▼ 引張強度0.8GPa、直径0.2mmの鋼繊維(材質:炭素鋼)
【0025】
(2)金属繊維の界面付着強度の測定
上記▲1▼〜▲5▼の各金属繊維について、セメント質硬化体(圧縮強度:180MPa)に対する界面付着強度を測定した。用いたセメント質硬化体の成分の配合割合、及び試験方法は、次の通りである。
[セメント質硬化体の配合条件]
表1に示す配合条件で、配合1及び配合2のセメント質硬化体を作製した。なお、これらのセメント質硬化体の圧縮強度は、いずれも180MPaであった。
【0026】
【表1】

Figure 0004799729
【0027】
[試験方法]
縦4cm、横4cm、高さ1cmの型枠の底板の中心に穿設された孔の中に、1本の金属繊維(長さ:約10cm)の下端部を貫通させた状態で垂直に立設した後、型枠内に、上記配合割合で各成分を混練した試料を流し込み、成型した。湿気箱(20℃)中で24時間養生後、材齢28日まで20℃で水中養生した。養生後、インストロン型試験機で金属繊維を引っ張り、得られた最大荷重を付着界面の面積で除し、界面付着強度とした。
[結果]
界面付着強度の測定結果を表2に示す。
【0028】
【表2】
Figure 0004799729
【0029】
表2に示すように、各々の金属繊維(▲1▼〜▲5▼)は、同一の圧縮強度(180MPa)を有し成分組成が異なる2種のセメント質硬化体(配合1、配合2)に対して、一定の界面付着強度を示す。
【0030】
(3)金属繊維を含むセメント質硬化体の作製
金属繊維を含むセメント質硬化体として、表3に示すセメント質硬化体No.1〜No.6を作製した。なお、混練方法及び養生条件は、次の通りである。
[混練方法]
ホバートミキサに金属繊維以外の材料を一括投入し、混練して流動性が現れた後に金属繊維を投入し、更に混練を行なった。
[養生条件]
湿気箱(20℃)中で24時間養生した後、材齢28日まで20℃で水中養生した。
【0031】
【表3】
Figure 0004799729
【0032】
(4)金属繊維を含むセメント質硬化体の評価
表3に示すセメント質硬化体No.1〜No.6について、フロー値等の物性を測定した。
[物性の測定方法]
フロー値は、JIS R5201(セメントの物理試験方法)に準じて測定した。ただし、15回の落下運動は行なわずに測定した。
圧縮強度は、JIS A1108(コンクリートの圧縮試験方法)を参考にして求めた。供試体の形状は、直径5cm、高さ10cmとした。
曲げ強度は、JIS R5201(セメントの物理試験方法)を参考にして求めた。供試体の形状は、縦4cm、横4cm、長さ16cmとした。載荷条件は、下支点間距離12cm、上支点間距離4cmの4点曲げとした。
破壊エネルギーは、曲げ試験において、荷重が最大荷重に達したのち、最大荷重の1/3まで低下するまでの荷重−荷重点変位の積分値を供試体断面積で除した値とした。
[結果]
結果を表4〜表9に示す。
【0033】
【表4】
Figure 0004799729
【0034】
【表5】
Figure 0004799729
【0035】
【表6】
Figure 0004799729
【0036】
【表7】
Figure 0004799729
【0037】
【表8】
Figure 0004799729
【0038】
【表9】
Figure 0004799729
【0039】
表2〜表9に示すように、本発明の金属繊維(丸数字の4)で繊維補強したセメント質硬化体(実施例1〜)では、いずれも高い曲げ強度と破壊エネルギーを得ている。一方、界面付着強度が低い金属繊維(丸数字の5)を配合したセメント質硬化体(比較例1〜6)では、曲げ強度及び破壊エネルギーがいずれも低く、金属繊維による補強の効果が不十分である。
【0040】
【発明の効果】
本発明の金属繊維を配合することによって、大きな曲げ強度と大きな破壊エネルギーを有する高強度のセメント質硬化体を得ることができる。
【図面の簡単な説明】
【図1】本発明の金属繊維の一例(部分)を示す斜視図である。
【図2】インデント加工の一例を示す正面図である。
【図3】インデント加工の他の例を示す正面図(a)、側面図(b)、及び更に他の例を示す正面図(c)である。
【符号の説明】
1,4,6,8 金属繊維
2 鋼繊維
3 金属層
5 溝
7,9 突起[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal fiber for reinforcing a cementitious cured body suitable for reinforcing a cemented cured body having a compressive strength of 100 MPa or more.
[0002]
[Prior art]
Conventional steel fibers for reinforcing cementitious hardened bodies (for example, concrete) generally have adhesion strength to the base material (parts other than steel fibers in the hardened cementitious body) as compared with the tensile strength. small. For this reason, the reinforcing effect of the steel fibers is small, reflecting the adhesion strength with the base material, and is not necessarily satisfactory. In addition, conventional steel fibers have a diameter of about 0.5 to 1.0 mm and a length of about 30 mm, so they are mixed in high-strength hardened cementitious materials (for example, concrete having a compressive strength of 100 MPa or more). Sometimes, there is a drawback that it is easy to separate from the base material.
[0003]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention has good adhesion to a base material in a high-strength cementitious cured body (typically a cemented cured body having a compressive strength of 100 MPa or more), It is an object of the present invention to provide a metal fiber for reinforcing a cementitious cured body that is suitably used for reinforcing a cementitious cured body.
[0004]
[Means for Solving the Problems]
The cementitious hardened body reinforcing metal fiber according to claim 1 of the present invention is made of steel fiber having a circular shape with a diameter of 0.1 to 0.25 mm and a tensile strength of 1.5 to 3.5 GPa. A metal layer having a Young's modulus smaller than the Young's modulus of the steel fiber is provided, and the interfacial adhesion strength (maximum tensile force per unit area of the adhesion surface) to the cementitious hardened body having a compressive strength of 180 MPa is 3 MPa or more. The helical shape has a period of 0.25 to 1 times the fiber length, an amplitude of 4 times or less of the fiber diameter, and an aspect ratio of 40-150 .
Since the metal fiber of the present invention configured as described above has high adhesion strength to the base material, it is not easily separated from the base material and can effectively reinforce the cementitious hardened body.
In addition, by providing a metal layer having specific physical properties on the surface of the steel fiber as described above, the bending and tensile breaking strength and toughness of the cementitious hardened body can be increased.
Furthermore, by processing into a specific shape in this way, the toughness of the cementitious cured body reinforced with fibers can be further enhanced.
[0008]
When the helical shape is a shape that does not satisfy the above conditions , there is a risk that inconveniences such as entanglement of metal fibers may occur during kneading with other materials constituting the cementitious hardened body.
[0009]
By setting the aspect ratio within the above range, a large reinforcing effect can be obtained while ensuring good workability (fluidity before hardening of the cementitious cured body) and the like.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The cementitious hardened body reinforcing metal fiber of the present invention is formed by forming a specific metal layer on the surface (circumferential surface) of a steel fiber.
The material of the steel fiber used in the present invention is not particularly limited, and examples thereof include steel fibers made of carbon steel, stainless steel, and the like. Among these, carbon steel is preferable because it can be obtained at a low price.
[0011]
The tensile strength of the steel fiber used in the present invention is 1.5 to 3.5 GPa.
When the tensile strength is less than 1 GPa, the metal fiber is easily broken and a sufficient reinforcing effect cannot be obtained. That is, when the cementitious hardened body to be reinforced has a very high strength and Young's modulus, the elastic energy released when cracked is large, so the tensile strength of the metal fiber is 1.5 to prevent breakage. Must be GPa or higher.
On the other hand, even if the tensile strength of the steel fiber exceeds 3.5 GPa, the reinforcing effect is hardly improved and the cost of the steel fiber increases. Therefore, the tensile strength of the steel fiber is preferably 3.5 GPa or less.
[0012]
The diameter of the steel fiber used in the present invention is 0.1 to 0.25 mm. When the diameter exceeds 0.5 mm, the metal fibers (steel fibers) tend to settle before the hardened cementitious body is hardened, and not only the dispersion of the metal fibers in the hardened cementitious material is not uniform, Since the interfacial adhesion strength is relatively lower than the strength, a sufficient reinforcing effect cannot be obtained, which is not preferable.
[0013]
The length of the steel fiber used in the present invention is 40 to 150 in terms of fiber aspect ratio (fiber length / fiber diameter). If the aspect ratio is less than 20, it is not preferable because the metal fiber bridging the crack is easily pulled out and the reinforcing effect by the metal fiber is reduced when the opening amount of the crack is increased. When the aspect ratio exceeds 200, the fluidity is lowered during kneading, not only the workability when pouring the kneaded material into the mold is inferior, but also the bubbles are difficult to escape, and the fiber reinforced cementum Since the strength of the cured body is lowered, it is not preferable. In addition, when the aspect ratio exceeds 200, the decrease in fluidity can be relatively suppressed if the mixing amount of the metal fibers is reduced. In this case, since the amount of metal fibers is small, the entire metal fibers are reduced. The magnitude of the load that can be borne is reduced, and the strength of the cementitious hardened body reinforced with fiber is lowered.
If the fiber aspect ratio is in the range of 40 to 150 , there is almost no decrease in fluidity during kneading, and the amount of metal fibers mixed can be made relatively large, so that a sufficient reinforcing effect can be obtained. Can do.
[0014]
In addition to the above-mentioned conditions relating to steel fibers, the metal fibers of the present invention (in which steel fibers are coated with a specific metal layer) further have an interfacial adhesion strength of 3 MPa or more to a cementitious hardened body having a compressive strength of 180 MPa. It is necessary that the pressure be 3.5 MPa or more, particularly preferably 4 MPa or more. If the interfacial bond strength is less than 3 MPa, when the crack opening amount (degree or degree of opening) increases, the metal fibers that bridge the cracks are easily pulled out, and the reinforcing effect of the metal fibers is reduced. It is not preferable.
When expressing the numerical value of the interfacial adhesion strength, the reason why the compressive strength (180 MPa) of the hardened cementitious body (base material) is displayed together is that if the compressive strength of the hardened cementitious material changes, This is because the interfacial adhesion strength of the metal fiber also changes, and it is necessary to show the interfacial adhesion strength based on a base material having the same compressive strength.
It should be noted that the cementitious cured body used for the measurement of the interfacial adhesion strength only needs to have a compressive strength of 180 MPa, and the material used is not limited.
[0015]
The surface state of the metal fiber is not particularly limited, and may be appropriately determined depending on the application and required performance.
If the surface of the metal fiber is rough, the adhesion strength with the cementitious hardened body can be increased, so that the bending strength and tensile strength of the fiber-reinforced cementitious hardened body can be increased.
On the other hand, if the surface of the metal fiber is a smooth surface, at the interface between the hardened cementitious material and the metal fiber, the hardened cementitious material is less likely to be damaged when the metal fiber is pulled out. It is possible to apply a large tensile force (adhesive force) to the metal fiber until it becomes, and as a result, it is possible to increase the strain until the fiber-reinforced cementitious hardened body is bent or to break the tensile strength. be able to.
[0016]
In the present invention, as shown in FIG. 1, a metal layer having a Young's modulus smaller than that of the steel fiber is provided on the surface (peripheral surface) of the steel fiber. In FIG. 1, a metal fiber 1 is formed by coating a surface of a steel fiber 2 with a metal layer 3.
The reason for providing the metal layer is as follows. A tensile force acts on the steel fibers bridging the cracks in the hardened cementitious body, so there is a shear force at the interface between the steel fibers and the hardened cementitious material (base material) attached to the steel fibers. Occurs. When a metal layer having a Young's modulus smaller than that of steel fibers is provided on the surface of steel fibers, the shearing force acting on the interface between the metal fibers and the cementitious hardened body (base material) attached to the metal fibers is: It becomes relatively widely dispersed in the cementitious hardened body (base material). Therefore, it is considered that damage to the hardened cementitious body due to the tensile force acting on the metal fibers is reduced, and the bending strength and tensile breaking strength and toughness of the hardened cementitious hardened body are increased.
[0017]
Furthermore, even when the metal layer on the surface of the steel fiber peels off on the surface adhering to the cementitious hardened body (base material) and the adhering surface moves relatively, the metal layer has a Young's modulus as compared with the steel fiber. Since it is small, it has the effect of relaxing stress concentration at the contact surface with the hardened cementitious body (base material), and the metal layer itself is relatively easily elastically plastically deformed. It acts to increase the wearing force. These actions are equivalent to an increase in the bending and tensile breaking strength and toughness of the fiber-reinforced cementitious cured body.
As a kind of metal which comprises a metal layer, zinc, tin, copper, aluminum, those alloys etc. are mentioned, for example.
The thickness of the metal layer is usually 5% or less of the diameter of the steel fiber.
[0018]
In the present invention, when unevenness is formed on the surface of the metal fiber by plastic processing called indent processing, the adhesion of the metal fiber to the cementitious hardened body (base material) can be increased, and as a result, fiber reinforcement Since the bending strength and tensile strength of the cementitious hardened body which were made increase, it is preferable.
In this specification, “indent processing” means grooves (recesses) or protrusions on the outer peripheral surface of the metal fiber so as to increase resistance when the metal fiber moves relative to the cementitious hardened body. This means providing a (convex portion). For example, a plurality of grooves or protrusions may be formed at appropriate intervals in the longitudinal direction of the metal fiber as an annular (entire circumference or a part thereof) groove or protrusion extending in a direction perpendicular to the axis of the metal fiber. Alternatively, both ends of the metal fiber may be pressed and crushed, and each end may be formed into a flat shape (having two protrusions).
Examples of indentation are shown in FIGS. FIG. 2 is a front view showing a state in which a plurality of annular grooves 5 are formed on the peripheral surface of the metal fiber 4 at a predetermined interval. (A) in FIG. 3 is a front view (one end portion) showing a state in which both ends of the metal fiber 6 are crushed into a flat shape and two protrusions 7 are formed at each end, (b) Is a side view thereof. (C) is a front view (one end part) which shows the state which crushed the both ends of the metal fiber 8 to one side, and formed the processus | protrusion 9 in the front-end | tip part.
[0019]
The depth of the groove or the height of the protrusion formed in an annular shape on the peripheral surface of the metal fiber by indenting (the depth or height based on the peripheral surface not indented) is 0.1 of the diameter of the metal fiber. It is preferable to make it not more than twice.
If the depth of the groove formed in the annular shape or the height of the protrusion exceeds 0.1 times the diameter of the metal fiber, the adhesion between the metal fiber and the base material shows a large peak value, but the metal fiber and the base metal Since slippage between the materials is suppressed, the metal fibers may be broken or the base material may be broken, and the adhesion of the metal fibers after the cracks may be rapidly reduced, which is not preferable.
[0020]
It is preferable that the height of the protrusion formed flat by crushing both ends of the metal fiber by indent processing (height based on the peripheral surface not indented) is equal to or less than the diameter of the metal fiber, 0.7 times The following is more preferable.
If the height of the projection formed in a flat shape exceeds the diameter of the metal fiber, the adhesion between the metal fiber and the base material shows a large peak value, but the slip between the metal fiber and the base material is suppressed. For this reason, there is a possibility that the metal fiber breaks or the base material is broken and the adhesion of the metal fiber after the crack is generated may decrease rapidly, which is not preferable.
It is preferable to perform indent processing at least two or more locations in the longitudinal direction of the metal fiber per metal fiber. If only one place is provided in the longitudinal direction, a sufficient effect by indenting cannot be expected.
[0021]
The shape of the metal fiber is a spiral shape. If formed in this shape, after the metal fibers bridging the cracks are peeled off from the base material, an appropriate frictional force is generated on the interface during the relative movement of the metal fibers and the base material, and the fiber-reinforced cementitious cured body Is toughened.
The amplitude of the helical shape is not more than 4 times the diameter of the metal fiber. If the amplitude exceeds 4 times the diameter of the metal fibers, the metal fibers may be entangled during kneading, and the metal fibers may not be uniformly dispersed.
[0022]
Period of the helical shape is 0.25 to 1 times the length of the metal fibers. If the period is less than 0.25 times the length of the metal fiber, the metal fibers interfere with each other and kneading becomes difficult. When the period exceeds 1 times the length of the metal fiber, the metal fiber does not have sufficient adhesion to the base material during the relative movement of the metal fiber and the base material, and occurs at the interface between the metal fiber and the base material. Since the frictional force is reduced, a sufficient reinforcing effect by the metal fiber cannot be obtained, and the hardened cementitious body reinforced with fiber exhibits brittle fracture. In the present specification, “amplitude” refers to the waveform formed by the axis (center line) of the metal fiber.
In order to produce a spiral metal fiber, for example, the entire metal rod may be rotated around the axis of the core rod in a state where five metal fibers are arranged in a ring shape in parallel around the core rod.
[0023]
The hardened cementitious material containing the metal fiber of the present invention generally has a compressive strength of 100 MPa or more, a bending strength of 30 MPa or more, and a fracture energy of 15 kJ / m 2 or more, preferably It has a compressive strength of 150 MPa or more, a bending strength of 35 MPa or more, and a fracture energy of 18 kJ / m 2 or more, particularly preferably a compressive strength of 170 MPa or more, a bending strength of 38 MPa or more, and 20 kJ / m. It has two or more destruction energies.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples.
(1) Metal fiber used As the metal fiber, the following (1) to (5) were used. The metal fibers (1) to (4) are the metal fibers of the present invention, and the metal fiber (5) is a metal fiber not corresponding to the present invention.
(1) Steel fiber (material: carbon steel) with a tensile strength of 2.7 GPa and a diameter of 0.2 mm;
(2) The surface of steel fiber of (1) coated with brass at a thickness of 0.2 μm;
(3) The surface of the steel fiber of (1) is coated with brass at a thickness of 0.2 μm, then plastically processed so as to crush both ends of the steel fiber, and indented with a projection height of 0.1 mm;
(4) The surface of the steel fiber of (1) is coated with brass with a thickness of 0.2 μm, and then subjected to spiral processing with a period of 7.5 mm and an amplitude of 0.35 mm;
(5) Steel fiber with tensile strength 0.8GPa and diameter 0.2mm (Material: Carbon steel)
[0025]
(2) Measurement of Interfacial Adhesion Strength of Metal Fiber The interfacial adhesion strength with respect to the hardened cementitious material (compressive strength: 180 MPa) was measured for each metal fiber of the above (1) to (5). The blending ratio of the components of the used cementitious cured body and the test method are as follows.
[Conditions for hardened cementitious material]
Under the mixing conditions shown in Table 1, hardened cementitious materials of Formulation 1 and Formulation 2 were produced. The compressive strength of these hardened cementitious bodies was 180 MPa.
[0026]
[Table 1]
Figure 0004799729
[0027]
[Test method]
Standing vertically with the lower end of one metal fiber (length: about 10cm) passed through the hole drilled in the center of the bottom plate of the formwork 4cm long, 4cm wide and 1cm high After being installed, a sample in which the respective components were kneaded was poured into the mold at the above blending ratio and molded. After curing for 24 hours in a humidity box (20 ° C), it was cured in water at 20 ° C until the age of 28 days. After curing, the metal fiber was pulled with an Instron type testing machine, and the maximum load obtained was divided by the area of the adhesion interface to obtain the interface adhesion strength.
[result]
Table 2 shows the measurement results of the interfacial adhesion strength.
[0028]
[Table 2]
Figure 0004799729
[0029]
As shown in Table 2, each of the metal fibers (1) to (5) has the same compressive strength (180 MPa) and two different cementitious hardened bodies (compounds 1 and 2). On the other hand, it shows a certain interfacial adhesion strength.
[0030]
(3) Preparation of hardened cementitious material containing metal fibers As hardened cementitious material containing metal fibers, the hardened cementitious material No. 1 shown in Table 3 1-No. 6 was produced. The kneading method and curing conditions are as follows.
[Kneading method]
A material other than metal fibers was charged all at once into the Hobart mixer, and after kneading and fluidity appeared, the metal fibers were added and further kneaded.
[Healing conditions]
After curing in a humidity box (20 ° C) for 24 hours, it was cured in water at 20 ° C until the age of 28 days.
[0031]
[Table 3]
Figure 0004799729
[0032]
(4) Evaluation of hardened cementitious material containing metal fibers 1-No. About 6, physical properties, such as a flow value, were measured.
[Measurement method of physical properties]
The flow value was measured according to JIS R5201 (cement physical test method). However, the measurement was carried out without performing 15 drop movements.
The compressive strength was obtained with reference to JIS A1108 (concrete compression test method). The shape of the specimen was 5 cm in diameter and 10 cm in height.
The bending strength was determined with reference to JIS R5201 (cement physical test method). The shape of the specimen was 4 cm long, 4 cm wide, and 16 cm long. The loading conditions were 4-point bending with a distance between the lower fulcrums of 12 cm and a distance between the upper fulcrums of 4 cm.
In the bending test, the fracture energy was a value obtained by dividing the integrated value of load-load point displacement until the load decreased to 1/3 of the maximum load by the cross-sectional area of the specimen after the load reached the maximum load.
[result]
The results are shown in Tables 4-9.
[0033]
[Table 4]
Figure 0004799729
[0034]
[Table 5]
Figure 0004799729
[0035]
[Table 6]
Figure 0004799729
[0036]
[Table 7]
Figure 0004799729
[0037]
[Table 8]
Figure 0004799729
[0038]
[Table 9]
Figure 0004799729
[0039]
As shown in Tables 2 to 9, each of the hardened cementitious materials (Examples 1 to 6 ) reinforced with the metal fiber of the present invention (circle number 4) has high bending strength and fracture energy. . On the other hand, in the cementitious hardened body (Comparative Examples 1 to 6) containing metal fibers having low interfacial adhesion strength (circle numeral 5 ), the bending strength and the fracture energy are both low, and the reinforcing effect by the metal fibers is insufficient. It is.
[0040]
【The invention's effect】
By blending the metal fiber of the present invention, a high-strength hardened cementitious body having a high bending strength and a high breaking energy can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example (part) of a metal fiber of the present invention.
FIG. 2 is a front view showing an example of indent processing.
FIG. 3 is a front view (a) showing another example of indent processing, a side view (b), and a front view (c) showing still another example.
[Explanation of symbols]
1, 4, 6, 8 Metal fiber 2 Steel fiber 3 Metal layer 5 Groove 7, 9 Protrusion

Claims (1)

直径が0.1〜0.25mm、引張強度が1.5〜3.5GPaの断面が円形の形状の鋼繊維からなり、該鋼繊維の表面に、当該鋼繊維のヤング係数よりも小さなヤング係数を有する金属層が設けられており、180MPaの圧縮強度を有するセメント質硬化体に対する界面付着強度が3MPa以上であり、螺旋形の形状に加工されており、該螺旋形の形状が、繊維長さの0.25〜1倍の周期、及び、繊維直径の4倍以下の振幅を有し、かつ、アスペクト比が40〜150であることを特徴とするセメント質硬化体補強用金属繊維。It consists of steel fibers with a diameter of 0.1 to 0.25 mm and a tensile strength of 1.5 to 3.5 GPa and a circular cross section. A metal layer having a Young's modulus smaller than that of the steel fibers is provided on the surface of the steel fibers. The interfacial adhesion strength to the cementitious cured body having a compressive strength of 180 MPa is 3 MPa or more, and is processed into a spiral shape, and the spiral shape is 0.25 to 1 times the fiber length. A metal fiber for reinforcing a cementitious hardened body , which has a period and an amplitude of 4 times or less of a fiber diameter and has an aspect ratio of 40 to 150 .
JP2000347157A 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies Expired - Lifetime JP4799729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347157A JP4799729B2 (en) 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347157A JP4799729B2 (en) 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies

Publications (2)

Publication Number Publication Date
JP2002154852A JP2002154852A (en) 2002-05-28
JP4799729B2 true JP4799729B2 (en) 2011-10-26

Family

ID=18820931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347157A Expired - Lifetime JP4799729B2 (en) 2000-11-14 2000-11-14 Metal fibers for reinforcing cementitious hardened bodies

Country Status (1)

Country Link
JP (1) JP4799729B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320833A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2007320834A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Ultra rapid hardening cement composition, ultra rapid hardening cement concrete composition and ultra rapid hardening cement concrete
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP4836135B2 (en) * 2006-11-30 2011-12-14 太平洋セメント株式会社 Metal fiber for reinforcing cementitious body and hardened cementitious body
CA2760622C (en) * 2009-06-12 2017-03-28 Nv Bekaert Sa High elongation fibres
JP5536549B2 (en) * 2010-06-10 2014-07-02 太平洋セメント株式会社 Hardened cementitious material
JP5965778B2 (en) * 2012-08-16 2016-08-10 エスティーエンジニアリング株式会社 Long mirror bolt method
JP6204091B2 (en) * 2013-07-09 2017-09-27 黒崎播磨株式会社 Metal fiber composite
CN105859171B (en) * 2016-03-30 2018-05-04 江苏苏博特新材料股份有限公司 A kind of cracking resistance toughness reinforcing steel fibre and preparation method thereof
JP7151962B2 (en) * 2018-12-20 2022-10-12 株式会社竹中工務店 Steel fiber and cement composition for reinforcing hardened cement body
US20220098099A1 (en) * 2019-01-10 2022-03-31 The Regents Of The University Of Michigan Striated fiber-based concrete reinforcement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364663A (en) * 1976-11-20 1978-06-09 Suzuki Metal Industry Co Ltd Concrete reinforcing metal fiber and said manufacturing process
JPS57156362A (en) * 1981-03-23 1982-09-27 Kawasaki Steel Co Steel fiber and manufacture
JPS60195043A (en) * 1984-03-14 1985-10-03 株式会社神戸製鋼所 Steel fiber for concrete reinforcement
JPH01122942A (en) * 1987-11-06 1989-05-16 Tekken Constr Co Ltd Concrete reinforcement
JP2997067B2 (en) * 1990-12-12 2000-01-11 住友大阪セメント株式会社 Ultra-fast mortar for dry spraying
JP3083903B2 (en) * 1992-03-17 2000-09-04 株式会社ブリヂストン Steel fiber member for concrete reinforcement and method of manufacturing the same
JPH0753247A (en) * 1993-06-11 1995-02-28 Bridgestone Metarufua Kk Steel fiber
FR2708263B1 (en) * 1993-07-01 1995-10-20 Bouygues Sa Composition of metal fiber concrete for molding a concrete element, elements obtained and thermal cure process.
FR2771406B1 (en) * 1997-11-27 2000-02-11 Bouygues Sa METAL FIBER CONCRETE, CEMENT MATRIX AND PREMIXES FOR THE PREPARATION OF THE MATRIX AND CONCRETE

Also Published As

Publication number Publication date
JP2002154852A (en) 2002-05-28

Similar Documents

Publication Publication Date Title
JP4799729B2 (en) Metal fibers for reinforcing cementitious hardened bodies
US6082063A (en) Prestressing anchorage system for fiber reinforced plastic tendons
CN109956692A (en) A kind of steel fibre for ultra-high performance concrete
Pereira et al. Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments
JP4836135B2 (en) Metal fiber for reinforcing cementitious body and hardened cementitious body
Wetherhold et al. Shaped ductile fibers to improve the toughness of epoxy-matrix composites
Liu et al. Experimental study on interface performance between implantable cement-based sensor and matrix concrete
JP4308513B2 (en) Elastic cement mortar formulation for tiling
JP2003335559A (en) Concrete reinforcement material and concrete moldings material using the same
JP6626539B2 (en) Manufacturing method of high strength fiber reinforced mortar
Sujivorakul et al. Modeling bond components of deformed steel fibers in FRC composites
Stewardson et al. The bond of different post materials to a resin composite cement and a resin composite core material
JP4711196B2 (en) Steel fiber for reinforcing high-strength compositions
JP3762143B2 (en) Construction method of reinforced / unanchored seismic reinforced walls
KR20090010734A (en) Steel fiber for fiber reinforcing concrete
Wang et al. Failure behavior of glass ionomer cement under Hertzian indentation
JP2000281402A (en) Steel fiber for reinforcing high strength composition
WO1999041440A1 (en) Reinforced composites including bone-shaped short fibers
JP6214393B2 (en) Multiple fine cracked fiber reinforced cement composites
Al-Ghrery et al. Strengthening of Concrete Bridge Girders with Concavely-Curved Soffit Using Fiber Reinforced Polymer
CN209721955U (en) A kind of steel fibre for ultra-high performance concrete
JP4288013B2 (en) Steel fiber for concrete reinforcement
JP3355112B2 (en) Steel fiber for concrete reinforcement
JP2003002708A (en) Steel fiber for concrete reinforcement
CA2131212C (en) Metal fiber with optimized geometry for reinforcing cement-based materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term