JP2008037727A - Water-resistant setting cement material - Google Patents

Water-resistant setting cement material Download PDF

Info

Publication number
JP2008037727A
JP2008037727A JP2006217768A JP2006217768A JP2008037727A JP 2008037727 A JP2008037727 A JP 2008037727A JP 2006217768 A JP2006217768 A JP 2006217768A JP 2006217768 A JP2006217768 A JP 2006217768A JP 2008037727 A JP2008037727 A JP 2008037727A
Authority
JP
Japan
Prior art keywords
water
micelle
pts
agent
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217768A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshida
安廣 吉田
Hideki Shimada
英樹 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO MATERIAL KK
Original Assignee
SANKYO MATERIAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO MATERIAL KK filed Critical SANKYO MATERIAL KK
Priority to JP2006217768A priority Critical patent/JP2008037727A/en
Publication of JP2008037727A publication Critical patent/JP2008037727A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent water-resistant setting cement material which, even in contact with water, is excellent in anti-washout properties, resistance to material segregation, and capability of suppressing ion elution, has fluidity high enough to enable long-distance pumping through a hose and excellent workability, and can develop high strengths after being set. <P>SOLUTION: The water-resistant setting cement material is prepared by mixing 100 pts.wt. cement with 20 pts.wt. fly ash composed of nearly uniformly mixed with 1,000 to 6,000 mesh grains, 5.7 pts.wt. Viscotop (R) which is a micelle agent that electrically associates in the presence of water to form tubular micelle structures, 57 pts.wt. water, and 10 pts.wt. admixture and uniformly kneading the resulting mixture. This material can exhibit water stop performance and high uniaxial compressive strength, has no bleeding tendency, has such excellent long-distance pumpability as to be pumped by 200 m through a 1-inch diameter hose, and is reduced in elution of elutable metal ions of Na, K, Ca, etc., and of hexavalent chromium ions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、河川・海岸の堤体ブロック・コンクリート矢板間の空隙又は連結空間に、あるいは地下水・貯水があって止水性が要求される地中壁間の接続部、地下構造物のコンクリート間の間隙・連結部に充填し、セメントを主成分とする止水性のあるセメント固化体を形成するための耐水性セメント硬化材、あるいは水底の床壁・水中の側壁の構築に使用できる耐水性セメント硬化材に関する。   The present invention relates to a gap between a river block, a coastal embankment block, a concrete sheet pile, or a connecting space between underground walls where underground water or water storage is required, and between concrete in an underground structure. Water-resistant cement hardener that can be used to build water-resistant cement hardeners that fill the gaps and joints and form cement-solidified water-cemented cement solids, or floor floors and underwater side walls. Regarding materials.

従来、水の存在がないコンクリートブロック間、コンクリート矢板間の連結部の空隙・連結空間には、セメントミルク・モルタルが充填され、ブロック間を連結して止水していた。
しかしながら、河川・海岸等の水と接触する堤体ブロック・護岸ブロック・コンクリート矢板間の空隙・連結空間にセメントミルク・モルタルを充填すると、セメントミルク・モルタルが水中に散逸して、セメント硬化材成分が流出して充填が不完全となったり、成分が分離して硬化しても硬化体の強度低下・品質の場所的な不均一を生起してしまうものであった。更にセメント硬化材の成分がイオン溶出して環境を悪化させるといった問題が生じていた。
この対策として、増粘剤又はミセル構造を生起するミセル剤をセメント系硬化材に混入することがなされている。その一例が、特開2002−24935号公報で公知として知られている。
しかしながら、水分離を抑止するために増粘剤を入れて、不分離モルタルとすることがなされているが、これでは流動性が悪化し、長距離ホース圧送ができず、又ワーカビリティが悪くなっていた。
又、セメントと細骨材・粗骨材を混入したコンクリート原料に、ミセル構造を有する増粘剤を添加混合して水中不分離性と水散逸性と材料非分離の性能を獲得させたコンクリートが開発されている。
しかしながら、コンクリート原料にミセル構造の増粘剤を混入させると流動性が低く長距離圧送ができにくくなっている。
一方、フライアッシュの有効利用方法として、セメントに混入してフライアッシュセメントとして使用することが知られているが、空洞充填材として使用するとき、ブリージングと流動性を制御するため各種添加剤を加えることがなされているが、地下水のある場所、水境の場所で使用されるとフライアッシュセメントが水中に散逸しがちであって、水との接触場所では使用できにくいものであった。
特開2002−249357号公報
Conventionally, cement milk and mortar were filled in the gaps and connection spaces between the concrete blocks without water and between the concrete sheet piles, and the blocks were connected to stop water.
However, if cement milk or mortar is filled in the gap or connection space between the dike block, revetment block, concrete sheet pile, etc. that come into contact with water such as rivers and coasts, the cement milk and mortar will dissipate into the water, resulting in a cement hardening material component However, even if the components are separated and hardened, the strength of the cured product is reduced and the quality of the product is not uniform. Further, there has been a problem that the components of the cement hardening material are ion-eluting to deteriorate the environment.
As a countermeasure, a thickener or a micelle agent that causes a micelle structure is mixed in a cement-based hardener. One example is known as publicly known in Japanese Patent Application Laid-Open No. 2002-24935.
However, in order to suppress water separation, a thickener is added to make a non-separated mortar. However, this deteriorates fluidity, cannot pump a long distance hose, and worsens workability. It was.
In addition, a concrete material that is mixed with cement, fine aggregate, and coarse aggregate is mixed with a thickener having a micellar structure to achieve water inseparability, water dissipation, and material non-separation performance. Has been developed.
However, when a thickener having a micelle structure is mixed into a concrete raw material, the fluidity is low and long-distance feeding is difficult.
On the other hand, as an effective method of using fly ash, it is known to be mixed with cement and used as fly ash cement, but when used as a hollow filler, various additives are added to control breathing and fluidity. However, fly ash cement tends to dissipate into the water when used in places where there is groundwater or water boundaries, making it difficult to use in places where it comes into contact with water.
JP 2002-249357 A

本発明は、従来のこれらの問題点を解消し、水中不分離性・材料非分離性・イオン溶出抑制に優れながら、流動性も高く長距離ホース圧送が可能で、又ワーカビリティに優れ、硬化後の強度も高くできるという優れた耐水性セメント硬化材を提供することにある。   The present invention eliminates these conventional problems and is excellent in workability and hardenability while being excellent in fluidity and long-distance hose pumping while being excellent in water inseparability, material non-separability, and ion elution suppression. An object of the present invention is to provide an excellent water-resistant cement hardener capable of increasing the later strength.

かかる課題を解決した本発明の構成は、
1) セメントを主成分とし、これにフライアッシュと、水の存在下で電気的に会合してチューブ状ミセル構造を形成するミセル剤とを添加混合したことを特徴とする、耐水性セメント硬化材
2) ミセル剤が、アルキルアリルスルホン酸を主成分とするミセルA剤と、アルキルアンモニウム塩を主成分とするミセルB剤とを混合したもので、ミセルA剤とミセルB剤を混合させることでミセル構造を発現させるものである前記1)記載の耐水性セメント硬化材
3) セメント100重量部に対してフライアッシュを10〜54重量部、ミセル剤を2〜10重量部の割合で混合した、前記1)又は2)記載の耐水性セメント硬化材
4) 石膏を添加混入した前記1)〜3)何れか記載の耐水性セメント硬化材
5) 微細粒度の硅砂を添加混入した前記1)〜4)何れか記載の耐水性セメント硬化材
にある。
The configuration of the present invention that solves this problem is as follows.
1) A water-resistant cement hardening material comprising cement as a main component, fly ash, and a micelle agent that electrically associates with water in the presence of water to form a tubular micelle structure. 2) A micelle agent is a mixture of a micelle A agent mainly composed of alkylallyl sulfonic acid and a micelle B agent mainly composed of an alkyl ammonium salt. By mixing the micelle A agent and the micelle B agent, The water-resistant cement hardening material according to 1), which expresses a micelle structure 3) 10 to 54 parts by weight of fly ash and 2 to 10 parts by weight of a micelle agent are mixed with 100 parts by weight of cement. The water-resistant cement hardened material according to 1) or 2) 4) The water-resistant cement hardened material according to any one of 1) to 3) added with gypsum 5) Before adding the fine grained cinnabar 1) to 4) in water-resistant cement material according to any one.

本発明では、水中不分離性・流動性・イオン溶出抑制・材料不分離・ワーカビリティの性能においていずれも優れていて、水との接触がある河川・海岸・湖・池の護岸ブロック・護岸壁・堤体ブロック・矢板ブロック等の間隙・連結空間を充填して一体化・連結する硬化充填材として有用である。   In the present invention, the water, river, shore, lake, pond revetment block, revetment wall that is excellent in water inseparability, fluidity, ion elution suppression, material non-separation, and workability are all in contact with water. -It is useful as a hardened filler that fills and integrates and connects gaps and connecting spaces such as bank blocks and sheet pile blocks.

本発明のフライアッシュは粒度が1000〜6000メッシュのものを混在させたものがよい。ミセル剤としてはビスコトップ(商品名:花王株式会社)のものが優れていてよい。   The fly ash of the present invention preferably has a particle size of 1000 to 6000 mesh. As the micelle agent, Visco Top (trade name: Kao Corporation) may be excellent.

以下、本発明を実施例をもって説明する。
本実施例では、ミセル剤としてビスコトップ(商品名:花王株式会社販売)を使用した。ビスコトップはアルキルアリルスルホン酸を主成分とするビスコトップA(商品名:花王株式会社販売)のミセルA剤と、アルキルアンモニウム塩を主成分とするビスコトップB(商品名:花王株式会社販売)のミセルB剤とを混合させたものである。
Hereinafter, the present invention will be described with reference to examples.
In this example, Visco Top (trade name: sold by Kao Corporation) was used as the micelle agent. Biscotop is a micelle A agent of Viscotop A (trade name: Kao Co., Ltd.) based on alkylallyl sulfonic acid and Viscotop B (trade name: Kao Co., Ltd.) based on alkylammonium salt. The micelle B agent was mixed.

本実施例で混練したスラリー状態では、ビスコトップのミセル剤が電気的に会合し、チューブ状ミセルの凝集構造を呈し、ミセルのチューブ内に、セメント・フライアッシュの成分を包み込んで、水中不分離性となり、又イオン溶出を抑制している。
又、粘性も高くなるが、ミセル剤と材料特性によるチキソトロピー性が発現して流動性を悪くせず長距離ホース圧送を可能とさせている。又同チキソトロピー性により圧送・充填の段階における材料分離も少なくなる。
In the slurry state kneaded in the present example, the micelle agent of Viscotop is electrically associated, exhibits a tube-like micelle aggregation structure, encloses the components of cement fly ash in the micelle tube, and does not separate in water And suppresses ion elution.
In addition, although the viscosity is increased, thixotropic properties due to the micelle agent and material characteristics are expressed, and the long-distance hose can be pumped without deteriorating the fluidity. The thixotropy also reduces material separation at the pumping / filling stage.

本実施例は、セメント100重量部に対し、1000〜6000メッシュの粒度のものを大略均一に混在させたフライアッシュを20重量部、上記ビスコトップを5.7重量部、水を57重量部、及び混和剤を10重量部混入して均一に混練したものである。
上記の成分配合の実施例を用いて、水中不分離性能、圧送性能、イオン溶出抑制性能、材料不分離性能、容積変化性能、強度性能、止水性能、ワーカビリティ、流動性能について試験を行った。本実施例の耐水性セメント硬化材を試料Bにとし、これと比較するフライアッシュセメントと従来のモルタルを試料A,Cとする表1の配合の試料A,B,Cを作製した。
In this example, 20 parts by weight of fly ash in which particles having a particle size of 1000 to 6000 mesh are mixed almost uniformly with respect to 100 parts by weight of cement, 5.7 parts by weight of the above viscotop, 57 parts by weight of water, And 10 parts by weight of an admixture are mixed uniformly.
Using the examples of the above-described component blending, tests were conducted for in-water non-separation performance, pumping performance, ion elution suppression performance, material non-separation performance, volume change performance, strength performance, water stop performance, workability, and flow performance. . Samples A, B, and C having the composition shown in Table 1 were prepared in which the water-resistant cement hardening material of this example was used as sample B, and fly ash cement and conventional mortar were compared with samples A and C, respectively.

Figure 2008037727
Figure 2008037727

水中不分離性:水散逸性の試験
実施例のスラリーと、モルタルを筒体に注入すると、モルタルは筒体下方からモルタル成分が吐出して、水中に溶け出して水槽の水の下半部分が混濁した。その水槽底面で硬化した形状は凹凸が大きく、又成分が不均一・溶出で強度が低下した。
一方、本実施例のスラリーは、水に成分が溶け出して混濁することがなく水槽に沈降して、成分は均一のまま盤状に硬化し、強度の低下がなかった。
Inseparability in water: When the slurry of the water dissipation test example and mortar are injected into the cylinder, the mortar component is discharged from the bottom of the cylinder and melts into the water, so that the lower half of the water in the aquarium It became cloudy. The shape cured at the bottom of the water tank had large irregularities, and the strength was reduced due to non-uniform components and dissolution.
On the other hand, in the slurry of this example, the components dissolved in water and did not become turbid and settled in the water tank, and the components were cured in a plate shape while being uniform, and there was no decrease in strength.

次に、水槽の水面上方からスラリー状の実施例と、モルタルとを流下させる実験を行ったら、モルタルは水中で流下巾がランダムに広くなって広がり、水槽底に到着したモルタルの上面が大きく上下に起伏するようになった。又、水中で硬化した硬化体のモルタル成分の成分分離が大きく、下方に分離セメントペースト相が認められた。
これに対して本実施例は、流下巾は水中で変化がなく滑らかなモルタル束として流下し、水槽の底面に上面が崩れることなく平坦になって成分の分離もなく均一で強度低下もなかった。その状態を図1(a),(b)に示している。(a)が本実施例の流下状態、(b)がフライアッシュセメントモルタルの流下状態である。
Next, when the slurry-like embodiment and the mortar were flowed down from above the water surface of the aquarium, the flow of the mortar expanded randomly in the water, and the top surface of the mortar arrived at the bottom of the aquarium greatly up and down. Began to undulate. Moreover, the component separation of the mortar component of the hardened | cured material hardened | cured in water was large, and the isolation | separation cement paste phase was recognized below.
On the other hand, in this example, the flow width did not change in water and flowed as a smooth mortar bundle, and the bottom surface of the aquarium became flat without collapsing the upper surface, and there was no separation of components and there was no decrease in strength. . The state is shown in FIGS. 1 (a) and 1 (b). (A) is the flow-down state of the present embodiment, and (b) is the flow-down state of the fly ash cement mortar.

:イオン溶出抑制性能
1リットルの純水中に実施例の耐水セメント硬化材を100g注入し、一定時間後pH・導電率を測定した。溶出試験結果は、各試料の試験開始直後の(−1),6時間経過の(−2),7日間経過後(−3)で各元素の溶出試験結果を表2に示している。又六価クロムの溶出も0.1pp以下で低いものに抑えられた。
: Ion elution suppression performance 100 g of the water-resistant cement hardener of the example was poured into 1 liter of pure water, and pH and conductivity were measured after a certain time. The dissolution test results for each element are shown in Table 2 (-1) immediately after the start of the test, (-2) after 6 hours, and (-3) after 7 days (-3). The elution of hexavalent chromium was also suppressed to a low value of 0.1 pp or less.

Figure 2008037727
Figure 2008037727

pHは、試料A,Bの初期pHは低く、7日を経過すると12近くで試料A,B,Cとも略同じとなった。
この表2から分かるように、本実施例の試料Bは、試料A,Cと比較しNa,K,Ca等の溶出金属イオンの総濃度が半減している。しかし、Na,Kに関しては7日経過(B−3)すると大量に溶出している。これは、Na,Kが一価のイオンであるため溶解度が大きく、また、水和錯体を形成しやすいことによると考えられる。一方、二価のCaイオンに関してはVTを添加することで溶出が抑えられている。このことから、試料Bの導電率が1日経過後、試料Aよりも上昇した要因はNa,Kイオンの溶出によると考えられる。
また、試料A,Cから0.10〜0.13ppm程度の六価クロムを検出するのに対し、VTを添加した試料Bは六価クロムの環境基準値0.05ppm以下であった。従って六価クロムの溶出を抑制できるビスコトップを添加した充填材は、この点においても優れていると言える。
The initial pH of Samples A and B was low, and after 7 days, the pH was nearly the same for Samples A, B, and C near 12.
As can be seen from Table 2, the total concentration of eluted metal ions such as Na, K, and Ca is halved in the sample B of this example compared to the samples A and C. However, Na and K are eluted in large quantities after 7 days (B-3). This is presumably because Na and K are monovalent ions, so the solubility is high and hydration complexes are easily formed. On the other hand, elution of divalent Ca ions is suppressed by adding VT. From this, it is considered that the factor that the conductivity of the sample B increased from that of the sample A after 1 day was due to elution of Na and K ions.
Further, about 0.10 to 0.13 ppm of hexavalent chromium was detected from Samples A and C, whereas Sample B to which VT was added had an environmental standard value of 0.05 ppm or less for hexavalent chromium. Therefore, it can be said that the filler to which Visco Top that can suppress elution of hexavalent chromium is excellent also in this respect.

:長距離圧送性
本実施例のスラリー状の耐水性セメント硬化材を直径1インチホースで200m圧送できた。又直径2インチのホースでは300m圧送でき、長距離圧送性は高く、広い地域・遠方への輸送が可能となった。
これは、ミセル剤のチキソトロピー性によって長距離圧送が可能とし、且つ圧送中での材料分離を非常に少なくしたものであった。
: Long-distance pumpability The slurry-like water-resistant cement hardener of this example could be pumped by 200 m with a 1-inch diameter hose. In addition, a 2-inch diameter hose can be pumped by 300m, and long-distance pumping performance is high, making it possible to transport to a wide area or far away.
This enabled long-distance pumping by the thixotropy of the micelle agent, and material separation during pumping was greatly reduced.

:容積変化
本実施例の試料Bでは容積変化も少なくなり、ブリージングはほとんど認められなくなった。(ブリージング率が1に近くなった。)一方試料Aの体積収縮率は試料Bの5倍あった。試料A,Bの体積収縮率を下記表3に示す。
: Volume change In Sample B of this example, the volume change was small, and almost no breathing was observed. (The breathing rate was close to 1.) On the other hand, the volumetric shrinkage of sample A was 5 times that of sample B. The volume shrinkage rates of Samples A and B are shown in Table 3 below.

Figure 2008037727
Figure 2008037727

:強度
本実施例の硬化体を硬化させ、その硬化体から供試体をとり出して強度試験をした。その結果、下記の平均一軸圧縮強度となり、高い一軸圧縮強度を得た。
平均一軸圧縮強度60.6N/mm
: Strength The cured body of this example was cured, and the specimen was taken out of the cured body and subjected to a strength test. As a result, the following average uniaxial compressive strength was obtained, and high uniaxial compressive strength was obtained.
Average uniaxial compressive strength 60.6 N / mm 2

:ブリージング及び強度・粘性
まず、材料分離特性を把握するため、ポリエチレン袋方法(JSCE−F533)を用いてブリージング試験を行ったが、VTを添加した試料Bはブリージングを生じなかった。
強度試験には、50×100mmのプラモールド管を用いて供試体を作製し、7および28日間水中養生させ、一軸圧縮強度を求めた。図2に試料AとBの養生日数と一軸圧縮強度の関係を示す。また、表2に試料AとBの体積収縮率を示す。図2より、VT添加した試料Bの一軸圧縮強度はVT添加していない試料Aより小さいが、28日強度としては大きな差は無いことが分かる。また、表3に示すように、試料Bの充填後の体積収縮率は極めて小さいことから均一な充填が可能であり、実施工においてはブリージングに伴うスラリーの補充を必要としない利点を有する。
: Breathing and strength / viscosity First, in order to grasp the material separation characteristics, a breathing test was conducted using the polyethylene bag method (JSCE-F533), but the sample B to which VT was added did not cause breathing.
For the strength test, a specimen was prepared using a plastic mold tube of 50 × 100 mm, and was cured in water for 7 and 28 days, and the uniaxial compressive strength was determined. FIG. 2 shows the relationship between the curing days of samples A and B and the uniaxial compressive strength. Table 2 shows the volume shrinkage rates of Samples A and B. FIG. 2 shows that the uniaxial compressive strength of the sample B added with VT is smaller than that of the sample A not added with VT, but there is no significant difference in the 28-day strength. Further, as shown in Table 3, since the volume shrinkage after filling of the sample B is extremely small, uniform filling is possible, and there is an advantage that the slurry does not need to be replenished during breathing.

:止水性(透水性)
本実施例の硬化体を用いて不透水性の試験を行ったら、15°Cに対する透水係数K15(cm/s)は、代表値として、8.5E−08となって、透水性(止水性)は高いものであった。
: Water stoppage (water permeability)
When a water impermeability test was performed using the cured body of the present example, the water permeability coefficient K15 (cm / s) at 15 ° C. was 8.5E-08 as a representative value, and the water permeability (water blocking property). ) Was expensive.

:ワーカビリティ
ワーカビリティは、ポンプで均一に混練され、均一の品質になった。
干拓地かんがい排水事業のコンクリート矢板の止水性充填材(連結材)として使用したら、止水性は良好であった。
: Workability Workability was uniformly kneaded with a pump, resulting in uniform quality.
When used as a water-stopping filler (connecting material) for concrete sheet piles in the landfill irrigation and drainage project, the water-stopping was good.

本実施例によれば、下記表4の如く、1〜6の性能の点でモルタルに比べ総合的に優れたものとなった。 According to this example, as shown in Table 4 below, the performance of 1 to 6 was generally superior to that of mortar.

Figure 2008037727
Figure 2008037727

以上のように、本実施例は、水中不分離性、流動性(長距離ホース圧送輸送性)、材料の不分離性、水との接触によるイオン溶出は抑制され、品質、ワーカビリティともに優れたものとなった。 As described above, this example is excellent in quality and workability because it is inseparable in water, fluidity (long-distance hose pumping transportability), material inseparability, and ion elution due to contact with water is suppressed. It became a thing.

本発明は、水と接触する河川・池・海岸・地下水のある地盤のセメント硬化材として有用であるが、一般の地盤の充填材、建築用セメント硬化体としても使用できる。   INDUSTRIAL APPLICABILITY The present invention is useful as a cement hardener for ground with rivers, ponds, coasts, and groundwater in contact with water, but can also be used as a general ground filler and a hardened cement for construction.

実施例のスラリーとモルタルとの水槽への流下状態を示す説明図である。It is explanatory drawing which shows the flowing-down state to the water tank of the slurry and mortar of an Example. 試料A,Bの養生日数と一軸圧縮強度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the curing days of samples A and B, and uniaxial compressive strength.

Claims (5)

セメントを主成分とし、これにフライアッシュと、水の存在下で電気的に会合してチューブ状ミセル構造を形成するミセル剤とを添加混合したことを特徴とする、耐水性セメント硬化材。   A water-resistant cement hardening material comprising cement as a main component, fly ash, and a micelle agent that electrically associates in the presence of water to form a tubular micelle structure. ミセル剤が、アルキルアリルスルホン酸を主成分とするミセルA剤と、アルキルアンモニウム塩を主成分とするミセルB剤とを混合したもので、ミセルA剤とミセルB剤を混合させることでミセル構造を発現させるものである請求項1記載の耐水性セメント硬化材。   The micelle agent is a mixture of a micelle A agent mainly composed of alkylallyl sulfonic acid and a micelle B agent mainly composed of an alkyl ammonium salt. By mixing the micelle A agent and the micelle B agent, the micelle structure The water-resistant cement hardener according to claim 1, wherein セメント100重量部に対してフライアッシュを10〜54重量部、ミセル剤を
2〜10重量部の割合で混合した、請求項1又は2記載の耐水性セメント硬化材。
The water resistant cement hardening material according to claim 1 or 2, wherein fly ash is mixed in an amount of 10 to 54 parts by weight and a micelle agent is mixed in a ratio of 2 to 10 parts by weight with respect to 100 parts by weight of cement.
石膏を添加混入した請求項1〜3何れか記載の耐水性セメント硬化材。   The water-resistant cement hardening material in any one of Claims 1-3 which added and mixed gypsum. 微細粒度の硅砂を添加混入した請求項1〜4何れか記載の耐水性セメント硬化材。   The water-resistant cement hardening material according to any one of claims 1 to 4, wherein fine sand grains are added and mixed.
JP2006217768A 2006-08-10 2006-08-10 Water-resistant setting cement material Pending JP2008037727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217768A JP2008037727A (en) 2006-08-10 2006-08-10 Water-resistant setting cement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217768A JP2008037727A (en) 2006-08-10 2006-08-10 Water-resistant setting cement material

Publications (1)

Publication Number Publication Date
JP2008037727A true JP2008037727A (en) 2008-02-21

Family

ID=39173173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217768A Pending JP2008037727A (en) 2006-08-10 2006-08-10 Water-resistant setting cement material

Country Status (1)

Country Link
JP (1) JP2008037727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221730A (en) * 2014-05-22 2015-12-10 東京電力株式会社 Cement-based material, cement-based material filling method and prepacked concrete construction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067453A (en) * 2002-08-07 2004-03-04 Kao Corp Void filling material and void filling work
JP2004091217A (en) * 2002-08-29 2004-03-25 Kao Corp Hydraulic composition
JP2006117471A (en) * 2004-10-21 2006-05-11 Kajima Corp Underwater concrete construction method
JP2006143548A (en) * 2004-11-24 2006-06-08 Kumagai Gumi Co Ltd Low-strength mortar composition and artificial ground
JP2006176397A (en) * 2004-11-24 2006-07-06 Kumagai Gumi Co Ltd High-fluidity mortar composition and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067453A (en) * 2002-08-07 2004-03-04 Kao Corp Void filling material and void filling work
JP2004091217A (en) * 2002-08-29 2004-03-25 Kao Corp Hydraulic composition
JP2006117471A (en) * 2004-10-21 2006-05-11 Kajima Corp Underwater concrete construction method
JP2006143548A (en) * 2004-11-24 2006-06-08 Kumagai Gumi Co Ltd Low-strength mortar composition and artificial ground
JP2006176397A (en) * 2004-11-24 2006-07-06 Kumagai Gumi Co Ltd High-fluidity mortar composition and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221730A (en) * 2014-05-22 2015-12-10 東京電力株式会社 Cement-based material, cement-based material filling method and prepacked concrete construction method

Similar Documents

Publication Publication Date Title
JP5833859B2 (en) Bubble mortar kneaded material and filling method
JP5999718B2 (en) Underground impermeable wall construction material
JP3686888B2 (en) Gap filling material and gap filling method
EP3289865B1 (en) Process for producing a concrete structure for marine or river applications
JP4744813B2 (en) Method for producing concrete composition
JP5697228B2 (en) Plastic grout material
JP2008037727A (en) Water-resistant setting cement material
KR101051968B1 (en) Deep soil mixing method using eco-friendly soil grouting material
JP5741113B2 (en) Construction method for housing foundation structure and housing foundation structure constructed using the same
JP6498716B2 (en) Ground improvement method
JP5768431B2 (en) High flow mortar composition
JP2882259B2 (en) Hydraulic material and self-hardening stabilizer
JP3806420B2 (en) Low strength mortar filler using shirasu
JPH0443864B2 (en)
KR101015235B1 (en) Modifier composition for controlling rheology characteristics of grouting material
JPH0692709A (en) Grout material for fixing underwater structure and installation method therefor
JP5149489B2 (en) Acid resistant composition
EA030349B1 (en) Method for manufacturing a protective negative buoyancy concrete coating for a pipeline
KR102475894B1 (en) Grout material composition for tide embankment
JP5664395B2 (en) Construction method for housing foundation structure and housing foundation structure constructed using the same
KR101457096B1 (en) Eco-friendly deep soil mixing method using heavy metal absorbents and air bubbling
JP2001225037A (en) Seepage control and bank protection construction method of waste disposal site
JP6345641B2 (en) Water stop agent
JP5796764B2 (en) Grout, method for producing grout, method for placing plasticized grout, and method for producing plasticized grout
JP2010155642A (en) Cement composition and prolonged storage method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110414