JP2008036719A - Manufacturing method of axially symmetric lens - Google Patents

Manufacturing method of axially symmetric lens Download PDF

Info

Publication number
JP2008036719A
JP2008036719A JP2006210063A JP2006210063A JP2008036719A JP 2008036719 A JP2008036719 A JP 2008036719A JP 2006210063 A JP2006210063 A JP 2006210063A JP 2006210063 A JP2006210063 A JP 2006210063A JP 2008036719 A JP2008036719 A JP 2008036719A
Authority
JP
Japan
Prior art keywords
lens
grinding tool
manufacturing
manufactured
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006210063A
Other languages
Japanese (ja)
Other versions
JP4930984B2 (en
Inventor
Yoshihiro Tanigawa
義博 谷川
Norikazu Nakamura
憲和 中村
Hiroaki Nakamura
裕章 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefecture
Original Assignee
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefecture filed Critical Fukuoka Prefecture
Priority to JP2006210063A priority Critical patent/JP4930984B2/en
Publication of JP2008036719A publication Critical patent/JP2008036719A/en
Application granted granted Critical
Publication of JP4930984B2 publication Critical patent/JP4930984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an axially symmetric lens capable of inexpensively forming a lens shape with high accuracy on a surface without restraints due to a shape of a material to be ground. <P>SOLUTION: An axially symmetric lens shape to be manufactured with its central axis matching a rotary center of a grinding tool 10 is formed in advance at an end of the grinding tool 10 rotary driven. The grinding tool 10 is pressed to a ground material 17 during a rotation condition, and the lens shape formed at the end of the grinding tool 10 is formed on the surface of the ground material 17. Here, a Frensnel lens can be used as a lens. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転する研削工具を被削材に押し当て研削工具の端部に形成されたレンズ形状を被削材の表面に形成する軸対称レンズの製造方法に関する。 The present invention relates to a method for manufacturing an axisymmetric lens in which a rotating grinding tool is pressed against a work material to form a lens shape formed at an end of the grinding tool on the surface of the work material.

半導体製品、デジタル機器の小型化、軽量化に伴い、微細な高精度部品が必要となってきている。これにより、部品を製造する金型を製作する金型メーカーに対しても、金型の微細化、高精度化、納期短縮化の要求がますます厳しいものとなっている。そして、携帯電話等のデジタル機器には、多くの光学系が使用されている。これらの機器の光学系には、集光等のためのレンズが使用されており、これらのレンズに関しても更に小型化、薄型化、高精度化、納期短縮化の要求が強まってきている。そこで、レンズの小型化、薄型化を達成する方法のひとつとして、デジタル機器のレンズに、従来の球面レンズからフレネルレンズを使用することが検討されるようになっている。しかし、微細フレネルレンズの金型を従来のような最終仕上げを手作業で行なう金型製作方法で対応することは困難である。そこで、図4に示すように、レンズ金型の母材となる被削材100を旋盤の主軸101の先端面102に取付け、工具にバイト103を使用して、被削材100の端部にフレネルレンズ形状の加工を行なうことが行なわれている。また、被削材の端部に凹溝加工を行なう方法として、バイトの代りに砥石を使用する方法が提案されている(例えば、特許文献1参照)。更に、被削材の端部に凹溝加工を行なう方法として、砥石端面を使用した加工方法も提案されている(例えば、特許文献2参照)。 With the miniaturization and weight reduction of semiconductor products and digital devices, fine high-precision parts have become necessary. As a result, the demands for mold miniaturization, higher precision, and shorter delivery times are becoming even more stringent for mold makers that produce molds for manufacturing parts. Many optical systems are used in digital devices such as mobile phones. Lenses for condensing light and the like are used in the optical systems of these devices, and there is an increasing demand for these lenses to be further reduced in size, thickness, accuracy, and delivery time. Therefore, as one of the methods for achieving a reduction in size and thickness of a lens, it has been studied to use a Fresnel lens from a conventional spherical lens as a lens of a digital device. However, it is difficult to cope with a mold of a fine Fresnel lens by a mold manufacturing method in which a final finish is manually performed as in the prior art. Therefore, as shown in FIG. 4, a work material 100 that is a base material of a lens mold is attached to a tip surface 102 of a main spindle 101 of a lathe, and a tool 103 is used as a tool to be attached to an end of the work material 100. Processing of the Fresnel lens shape is performed. In addition, as a method of performing a concave groove processing on an end portion of a work material, a method of using a grindstone instead of a cutting tool has been proposed (see, for example, Patent Document 1). Furthermore, as a method for performing the groove processing on the end portion of the work material, a processing method using a grindstone end face has also been proposed (for example, see Patent Document 2).

特開2000−237942号公報JP 2000-237942 A 特開平9−70752号公報JP-A-9-70752

しかし、工具にバイト103を使用する方法では、図4に示すように、バイト103の先端部を2軸同時に移動させながら加工を行なう必要があり、レンズ金型の精度が旋盤の運動精度に大きく影響を受け、超精密旋盤を使用することが前提になり、加工コストが高くなるという問題がある。特許文献1に記載された発明では、加工中にフレネル形状の円弧部と砥石の円弧部が相互に干渉するため加工できるフレネル形状の寸法に制限が生じ、溝隅部に鋭いエッジを形成することが非常に困難になる。また、旋盤を使用するため、被削材の形状も円柱状に限定されるという問題もある。特許文献2に記載された発明では、溝隅部に鋭いエッジを形成することは可能であるが、フレネル形状の加工ができないという問題がある。 However, in the method using the cutting tool 103 as the tool, as shown in FIG. 4, it is necessary to perform processing while simultaneously moving the tip of the cutting tool 103 in two axes, and the accuracy of the lens mold is greatly increased in the movement accuracy of the lathe. There is a problem that the use of an ultra-precision lathe is premised and the processing cost is high. In the invention described in Patent Document 1, since the Fresnel-shaped arc portion and the arc-shaped portion of the grindstone interfere with each other during processing, the size of the Fresnel shape that can be processed is limited, and a sharp edge is formed at the groove corner. Becomes very difficult. Moreover, since a lathe is used, there is also a problem that the shape of the work material is limited to a cylindrical shape. In the invention described in Patent Document 2, it is possible to form sharp edges at the groove corners, but there is a problem that Fresnel-shaped processing cannot be performed.

本発明は係る事情に鑑みてなされたもので、被削材の形状に制約されずに表面に高精度なレンズ形状を安価に形成することが可能な軸対称レンズの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an axisymmetric lens manufacturing method capable of forming a highly accurate lens shape on the surface at a low cost without being restricted by the shape of the work material. Objective.

前記目的に沿う第1の発明に係る軸対称レンズの製造方法は、回転駆動される研削工具の端部に、該研削工具の回転中心にその中心軸を合わせて製造しようとする軸対称のレンズ形状を予め形成しておき、前記研削工具を回転させた状態で被削材に押し当て、前記研削工具の端部に形成された前記レンズ形状を前記被削材の表面に形成する。 An axially symmetric lens manufacturing method according to the first invention that meets the above object is an axially symmetric lens to be manufactured by aligning the center axis with the rotation center of the grinding tool at the end of the rotationally driven grinding tool. A shape is formed in advance and pressed against the work material in a state where the grinding tool is rotated, and the lens shape formed at the end of the grinding tool is formed on the surface of the work material.

第1の発明に係る軸対称レンズの製造方法において、前記レンズはフレネルレンズとすることができる。また、前記研削工具の前記レンズの形成面の周囲には水平部が設けられ、前記被削材には該研削工具の端部に形成された前記レンズの形成面及びこの周囲に連続する前記水平部を正確にコピーすることができる。 In the method for manufacturing an axisymmetric lens according to the first invention, the lens may be a Fresnel lens. Further, a horizontal portion is provided around the lens forming surface of the grinding tool, and the work material is formed with the lens forming surface formed at the end of the grinding tool and the horizontal continuous with the lens forming surface. The part can be copied accurately.

前記目的に沿う第2の発明に係る軸対称レンズの製造方法は、回転駆動される研削工具の端部に、該研削工具の回転中心にその中心軸を合わせて製造しようとする軸対称のフレネルレンズの基礎となる全レンズ面を予め形成する第1工程と、
前記第1工程で製造された前記研削工具を回転させた状態で被削材に押し当て、前記研削工具の端部に形成された前記全レンズ面を該被削材に形成する第2工程と、
前工程で製造された前記研削工具の周囲を削って、該研削工具の端部に前工程で製造されたレンズ面より径の小さいレンズ面を形成する第3工程と、
前記第3工程で製造された研削工具を軸心を合わせてその前工程で製造された前記被削材のレンズ面に対して所定深さまで研削する第4工程とを有し、
前記第3工程及び前記第4工程を1又は複数回行う。
An axially symmetric lens manufacturing method according to the second invention that meets the above-mentioned object is an axially symmetric Fresnel to be manufactured by aligning the center axis with the rotation center of the grinding tool at the end of the rotationally driven grinding tool. A first step of pre-forming all lens surfaces that are the basis of the lens;
A second step of pressing the grinding tool manufactured in the first step against the work material in a rotated state and forming the entire lens surface formed on the end of the grinding tool on the work material; ,
A third step of cutting the periphery of the grinding tool manufactured in the previous step to form a lens surface having a smaller diameter than the lens surface manufactured in the previous step at the end of the grinding tool;
A fourth step of grinding the grinding tool manufactured in the third step to a predetermined depth with respect to the lens surface of the work material manufactured in the previous step by aligning the axis.
The third step and the fourth step are performed one or more times.

第1、第2の発明に係る軸対称レンズの製造方法において、前記研削工具の切削部は、ダイヤモンド、立方晶窒化硼素、窒化珪素、炭化珪素、及びアルミナのいずれか1又は2以上を砥粒に使用した砥石であって、該砥粒は導電性を有するメタルボンドで保持されていることが好ましい。 In the method for manufacturing an axially symmetric lens according to the first and second inventions, the cutting portion of the grinding tool is one or more of diamond, cubic boron nitride, silicon nitride, silicon carbide, and alumina. It is preferable that the abrasive grains are held by a conductive metal bond.

請求項1及びこれに従属する請求項2、3、5記載の軸対称レンズの製造方法においては、軸心回りに回転させた研削工具を被削材に押し当てて加工を行なうので、工作機械の運動精度に左右される加工誤差の発生を防止して、高精度のレンズ形状の加工を効率的、かつ安価に行なうことができる。また、被削材を固定した状態で、研削工具のみを回転させて加工を行なうので、任意形状の被削材、例えば、角形状被削材の端部の複数箇所にそれぞれレンズ形状の加工を施すことができる。その結果、軸対称レンズの製造用の転写金型のマスター型を効率的、かつ安価に製造することができる。 In the method for manufacturing an axially symmetric lens according to claim 1 and claims 2, 3, and 5 dependent thereon, the grinding tool rotated around the axis is pressed against the work material. Therefore, it is possible to efficiently and inexpensively process a lens shape with high accuracy by preventing the occurrence of a processing error that depends on the motion accuracy of the lens. In addition, since the workpiece is fixed by rotating only the grinding tool, the lens shape is processed at multiple locations at the end of the arbitrarily shaped workpiece, for example, the square workpiece. Can be applied. As a result, it is possible to efficiently and inexpensively manufacture a transfer mold master mold for manufacturing an axisymmetric lens.

特に、請求項2記載の軸対称レンズの製造方法においては、フレネルレンズのレンズ形状を被削材の表面に効率的、かつ安価に形成することができる。 In particular, in the method for manufacturing an axisymmetric lens according to claim 2, the lens shape of the Fresnel lens can be efficiently and inexpensively formed on the surface of the work material.

請求項3記載の軸対称レンズの製造方法は、研削工具を途中で交換せずに、被削材の表面に研削工具に形成したレンズの形成面及びその周囲の水平部を正確にコピーするので、レンズ形成面と水平部との接続部に鋭い隅部を効率的、かつ安価に形成することができる。そして、フレネルレンズのレンズ形状を形成する場合、形成された同心環状溝の各溝の両側に容易に隅部及び角部を設けることができる。 The method for manufacturing an axisymmetric lens according to claim 3 accurately copies the lens forming surface formed on the grinding tool and the surrounding horizontal portion on the surface of the work material without exchanging the grinding tool halfway. A sharp corner can be formed efficiently and inexpensively at the connecting portion between the lens forming surface and the horizontal portion. And when forming the lens shape of a Fresnel lens, a corner | angular part and a corner | angular part can be easily provided in the both sides of each groove | channel of the formed concentric annular groove.

請求項4及びこれに従属する請求項5記載の軸対称レンズの製造方法においては、軸心回りに回転させた研削工具を被削材に押し当てて加工を行なうので、工作機械の運動精度に左右される加工誤差の発生を防止して、高形状精度のフレネルレンズ面を効率的、かつ安価に形成することができる。また、被削材を固定した状態で、研削工具のみを回転させて加工を行なうので、任意形状の被削材、例えば、角形状被削材の端部の複数箇所にそれぞれフレネルレンズ形状の加工を施すことができる。そして、研削工具の周囲を削りながら全レンズ面に順次径の小さなレンズ面を形成していくので、両側に明確な隅部及び角部が存在する同心環状溝を順次形成することができる。その結果、軸対称フレネルレンズの製造用の転写金型のマスター型を効率的、かつ安価に製造することができる。 In the method for manufacturing an axially symmetric lens according to claim 4 and claim 5 dependent thereon, since the grinding tool rotated around the axis is pressed against the work material, the machining accuracy of the machine tool is improved. It is possible to prevent the occurrence of a processing error that is influenced and to form a Fresnel lens surface with high shape accuracy efficiently and inexpensively. In addition, since the work is performed by rotating only the grinding tool in a state where the work material is fixed, the work material having an arbitrary shape, for example, the Fresnel lens shape is processed at a plurality of positions at the end of the square work material. Can be applied. Since the lens surfaces having small diameters are sequentially formed on all the lens surfaces while grinding the periphery of the grinding tool, concentric annular grooves having clear corners and corners on both sides can be sequentially formed. As a result, it is possible to efficiently and inexpensively manufacture a transfer mold master mold for manufacturing an axially symmetric Fresnel lens.

特に、請求項5記載の軸対称レンズの製造方法においては、砥粒がダイヤモンド、立方晶窒化硼素、窒化珪素、炭化珪素、及びアルミナのいずれか1又は2以上なので研削中に砥石の形状が変化するのを抑制することができる。また、砥粒は導電性のメタルボンド(鉄系又は非鉄金属系)で保持されているので、砥石の成形に放電加工を利用することができ、砥石を任意の形状に高精度かつ容易に加工することができる。 In particular, in the method for manufacturing an axisymmetric lens according to claim 5, since the abrasive grains are any one or more of diamond, cubic boron nitride, silicon nitride, silicon carbide, and alumina, the shape of the grindstone changes during grinding. Can be suppressed. In addition, since the abrasive grains are held by conductive metal bonds (iron-based or non-ferrous metal-based), electric discharge machining can be used to form the grindstone, and the grindstone can be processed into any shape with high precision and ease. can do.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の第1の実施の形態に係る軸対称レンズの製造方法を適用してフレネルレンズ形状を形成する際の状況を示す斜視図、図2は同軸対称レンズの製造方法を適用してフレネルレンズ形状の加工中の状態を示す側断面図、図3(A)〜(D)は本発明の第2の実施の形態に係る軸対称レンズの製造方法を適用したフレネルレンズ形状の加工工程を示す側断面図、(E)は得られたフレネルレンズ形状の側面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a perspective view showing a situation when a Fresnel lens shape is formed by applying the method for manufacturing an axisymmetric lens according to the first embodiment of the present invention, and FIG. 2 is a method for manufacturing a coaxial symmetric lens. FIGS. 3A to 3D are side cross-sectional views showing a state during processing of the Fresnel lens shape by applying the above, and FIGS. 3A to 3D show the Fresnel lens to which the method for manufacturing an axisymmetric lens according to the second embodiment of the present invention is applied A side sectional view showing a shape processing step, (E) is a side view of the obtained Fresnel lens shape.

図1、図2に示すように、本発明の第1の実施の形態に係る軸対称レンズの製造方法に使用する研削工具10は、図示しない加工機械(例えば、マシニングセンター)の回転駆動軸に連結される円柱状の工具保持部11と、工具保持部11の先側に設けられ、砥粒12として、例えば、粒径が3〜25μmのダイヤモンドをメタルボンド13で保持した砥石部(砥石からなる切削部)14を有している。ここで、工具保持部11は、例えば、鉄(炭素鋼材又はステンレス鋼材)、超硬、セラミックスのいずれか1つで形成されている。
そして、砥石部14の端面の内側には、研削工具10の回転中心にその中心軸を合わせて製造しようとする軸対称のレンズ形状の一例であるフレネルレンズ形状(反対の面は平面となっている)が形成されたレンズ形成面15が設けられ、レンズ形成面15の周囲には水平部16が設けられている。なお、砥石部14の周方向には、図示しない複数のスリットが研削工具10の回転中心軸と平行に形成されている。スリットを設けることで、研削液を砥石部14の端面中央部に容易に到達させることができると共に、砥石部14の端面で発生した研削屑を研削液に載せて外部に排出させることができる。
As shown in FIGS. 1 and 2, a grinding tool 10 used in the method for manufacturing an axisymmetric lens according to the first embodiment of the present invention is connected to a rotational drive shaft of a processing machine (for example, a machining center) not shown. A cylindrical tool holding portion 11 and a front end of the tool holding portion 11. As the abrasive grains 12, for example, a grindstone portion (made of a grindstone) in which diamond having a particle diameter of 3 to 25 μm is held by a metal bond 13. Cutting part) 14. Here, the tool holding part 11 is formed of any one of iron (carbon steel material or stainless steel material), cemented carbide, and ceramics, for example.
Further, on the inner side of the end face of the grindstone portion 14, a Fresnel lens shape which is an example of an axially symmetric lens shape to be manufactured by aligning the central axis with the rotation center of the grinding tool 10 (the opposite surface is a flat surface). Is formed, and a horizontal portion 16 is provided around the lens forming surface 15. A plurality of slits (not shown) are formed in parallel with the rotation center axis of the grinding tool 10 in the circumferential direction of the grindstone portion 14. By providing the slit, the grinding liquid can easily reach the center of the end face of the grindstone portion 14, and grinding waste generated at the end face of the grindstone portion 14 can be placed on the grinding liquid and discharged to the outside.

続いて、本発明の第1の実施の形態に係る軸対称レンズの製造方法を適用してフレネルレンズ形状を形成する場合について説明する。
第1段階として、回転駆動される研削工具10の端部に、研削工具10の回転中心にその中心軸を合わせて製造しようとする軸対称のフレネルレンズ形状が形成されたレンズ形成面15を形成する。ここで、研削工具10は、以下の方法で製造する。先ず、窒化硼素材、グラファイト材、及びセラミックス材のいずれか1又は2以上で構成された図示しない有底円筒状の型枠内に、粒径が3〜25μmのダイヤモンド粉末と鉄粉との混合粉末を充填し加圧成形する。そして、得られた成形体を加熱炉内に入れ、鉄粉同士を焼結させる。これにより、導電性を有する鉄系のメタルボンドでダイヤモンドの砥粒が保持された原砥石部が得られる。そして、得られた原砥石部を、円柱状の工具保持部11の基になる鉄製の棒部材の先端に、例えば、ろう付けすることにより、原研削工具を作製する。
なお、鉄粉の焼結は、真空中で行うことが好ましいが、加熱炉内に不活性ガス(例えば、アルゴンガス)を充満させて行うことも可能である。
Next, a case where a Fresnel lens shape is formed by applying the method for manufacturing an axisymmetric lens according to the first embodiment of the present invention will be described.
As a first stage, a lens forming surface 15 is formed on the end of the grinding tool 10 that is rotationally driven, in which an axially symmetric Fresnel lens shape that is to be manufactured by aligning the central axis with the rotational center of the grinding tool 10 is formed. To do. Here, the grinding tool 10 is manufactured by the following method. First, a mixture of diamond powder and iron powder having a particle size of 3 to 25 μm in a bottomed cylindrical mold (not shown) composed of one or more of boron nitride material, graphite material, and ceramic material. Fill with powder and press mold. And the obtained molded object is put in a heating furnace, and iron powders are sintered. Thereby, the original whetstone part by which the abrasive grain of diamond was hold | maintained with the iron-type metal bond which has electroconductivity is obtained. Then, an original grinding tool is produced by brazing, for example, the tip of an iron bar member that is the basis of the columnar tool holding unit 11 with the obtained raw grinding stone part.
In addition, although it is preferable to perform sintering of iron powder in a vacuum, it can also be performed by filling an inert gas (for example, argon gas) in a heating furnace.

ここで、混合粉末中のダイヤモンド粉末の割合は、25〜50体積%とする。ダイヤモンド粉末が25体積%未満では、砥石部14単位体積当たりのダイヤモンド含有量が少な過ぎ、研削効率が低下する。一方、ダイヤモンド粉末が50体積%を超えると、相対的にニッケル系ろう材粉末の割合が低下するため、砥石部14内でのダイヤモンドの保持力が低下し、砥石部14の強度が低下して砥石部14が摩耗し易く、均一な研削ができず加工精度が低下する。 Here, the ratio of the diamond powder in the mixed powder is 25 to 50% by volume. If the diamond powder is less than 25% by volume, the diamond content per unit volume of the grinding wheel portion 14 is too small, and the grinding efficiency is lowered. On the other hand, when the diamond powder exceeds 50% by volume, the ratio of the nickel-based brazing filler metal powder relatively decreases, so that the holding power of diamond in the grindstone portion 14 decreases, and the strength of the grindstone portion 14 decreases. The grindstone portion 14 is easily worn, and uniform grinding cannot be performed, resulting in a decrease in processing accuracy.

次いで、原研削工具の棒部材の外周部を旋盤加工して横断面が真円となる工具保持部11を形成して研削工具10を製造する。そして、研削工具10を放電加工により、工具保持部11の回転中心にその中心軸を合わせて、原研削部の端面の内側に製造しようとする軸対称のフレネルレンズの片面全体を形成したレンズ形成面15、その外側の周囲に水平部16を形成することで砥石部14を完成させる。 Next, the outer peripheral portion of the rod member of the original grinding tool is turned to form the tool holding portion 11 having a perfect cross section, and the grinding tool 10 is manufactured. Then, the grinding tool 10 is formed by electric discharge machining so that the center axis is aligned with the center of rotation of the tool holding portion 11 and the entire surface of the axially symmetric Fresnel lens to be manufactured inside the end surface of the original grinding portion is formed. The grindstone part 14 is completed by forming the horizontal part 16 around the surface 15 and the outside thereof.

第2段階として、砥石部14を完成させた研削工具10を加工機械の回転駆動軸に工具保持部11を介して連結する。そして、被削材17を加工機械の被削材固定テーブル18上に固定し、研削工具10を回転させた状態で被削材17に押し当て、研削工具10の端部に形成されたレンズ形成面15及び水平部16により、フレネルレンズ形状部19及び水平研削部20を被削材17の表面に形成して行く。そして、研削工具10が被削材17に対して予め設定された切り込み深さに達した時点では、図2に示すように、被削材17には研削工具10の端部に形成されたレンズ形成面15及びこの周囲に連続する水平部16が正確にコピーされ、フレネルレンズ形状部19と水平研削部20との接続部には鋭い隅部20aが形成され、フレネルレンズ形状部19内の同心環状溝の各溝の両側には鋭い隅部20b及び角部20cがそれぞれ形成される。 As a second stage, the grinding tool 10 that has completed the grinding wheel portion 14 is connected to the rotational drive shaft of the processing machine via the tool holding portion 11. Then, the work material 17 is fixed on the work material fixing table 18 of the processing machine, pressed against the work material 17 in a state where the grinding tool 10 is rotated, and a lens formed at the end of the grinding tool 10 is formed. A Fresnel lens shape portion 19 and a horizontal grinding portion 20 are formed on the surface of the work material 17 by the surface 15 and the horizontal portion 16. When the grinding tool 10 reaches a cutting depth set in advance with respect to the work material 17, as shown in FIG. 2, the work material 17 has a lens formed at the end of the grinding tool 10. The forming surface 15 and the horizontal portion 16 continuous therearound are accurately copied, and a sharp corner portion 20a is formed at the connecting portion between the Fresnel lens shape portion 19 and the horizontal grinding portion 20, and is concentric in the Fresnel lens shape portion 19. Sharp corners 20b and corners 20c are formed on both sides of each groove of the annular groove.

ここで、被削材17としてはセラミック材、例えば、アルミナ、ジルコニア、石英、炭化珪素、及び窒化珪素のいずれか1を使用する。セラミック材を使用することで、フレネルレンズ製造用の転写金型を溶融金属の鋳込みに製作する際のマスター型が得られる。 Here, as the work material 17, a ceramic material, for example, any one of alumina, zirconia, quartz, silicon carbide, and silicon nitride is used. By using a ceramic material, a master mold for producing a transfer mold for manufacturing a Fresnel lens by casting molten metal can be obtained.

次に、本発明の第2の実施の形態に係る軸対称レンズの製造方法を適用してフレネルレンズ形状を形成する場合について説明する。
図3(A)に示すように、本発明の第2の実施の形態に係る軸対称レンズの製造方法は、回転駆動される研削工具21の端部に、研削工具21の回転中心にその中心軸を合わせて製造しようとする軸対称のフレネルレンズの基礎となる全レンズ面22及び全レンズ面22の周囲に水平部23を予め形成する第1工程を有している。ここで、研削工具21は、原研削工具の棒部材の外周部を旋盤加工して横断面が真円となる工具保持部11を形成して製造され、研削工具21を放電加工により、工具保持部11の回転中心にその中心軸を合わせて、原研削部の端面の内側に全レンズ面22、その外側の周囲に水平部23を形成することで研削部(砥石からなる切削部)24を完成させる。
Next, a case where a Fresnel lens shape is formed by applying the method for manufacturing an axisymmetric lens according to the second embodiment of the present invention will be described.
As shown in FIG. 3A, the axially symmetric lens manufacturing method according to the second embodiment of the present invention is arranged at the center of rotation of the grinding tool 21 at the end of the rotationally driven grinding tool 21. There is a first step of pre-forming a horizontal portion 23 around the entire lens surface 22 and the entire lens surface 22 as the basis of an axially symmetric Fresnel lens to be manufactured with the axes aligned. Here, the grinding tool 21 is manufactured by lathing the outer peripheral portion of the rod member of the original grinding tool to form the tool holding portion 11 having a perfect cross section, and the grinding tool 21 is held by electric discharge machining. By aligning the central axis with the rotation center of the part 11 and forming the entire lens surface 22 inside the end face of the original grinding part and the horizontal part 23 around the outside, a grinding part (cutting part made of a grindstone) 24 is formed. Finalize.

また、本発明の第2の実施の形態に係る軸対称レンズの製造方法は、第1工程で製造された研削工具21を回転させた状態で被削材17に押し当て、被削材17の表面に研削工具21の端部に形成された全レンズ面22及び水平部23がコピーされた全レンズ面25及び水平研削面26を形成する第2工程と、図3(B)に示すように、前工程で製造された研削工具21の研削部24の周囲を放電加工で削って、研削工具21の端部に全レンズ面22の直径より径の小さいレンズ面27を形成する第3工程と、第3工程で製造された研削工具28を軸心を合わせて第2工程で製造された全レンズ面25を所定深さまで研削する第4工程とを有している。従って、第4工程終了後では、全レンズ面25の内側にレンズ面27がコピーされたレンズ面29が形成され、その外側に全レンズ面25の残部である第1環状部30が形成される。 Further, in the method for manufacturing an axisymmetric lens according to the second embodiment of the present invention, the grinding tool 21 manufactured in the first step is pressed against the work material 17 in a rotated state, and the work material 17 As shown in FIG. 3B, the second step of forming the entire lens surface 22 and the horizontal grinding surface 26 on the surface of which the entire lens surface 22 and the horizontal portion 23 formed at the end of the grinding tool 21 are copied. A third step in which the periphery of the grinding portion 24 of the grinding tool 21 manufactured in the previous step is shaved by electric discharge machining to form a lens surface 27 having a diameter smaller than the diameter of all the lens surfaces 22 at the end of the grinding tool 21; And a fourth step of grinding the entire lens surface 25 manufactured in the second step to a predetermined depth by aligning the axis of the grinding tool 28 manufactured in the third step. Therefore, after completion of the fourth step, the lens surface 29 is formed by copying the lens surface 27 inside the entire lens surface 25, and the first annular portion 30 that is the remaining part of the entire lens surface 25 is formed outside thereof. .

更に、本発明の第2の実施の形態に係る軸対称レンズの製造方法では、第3工程及び第4工程が1又は複数回(本実施の形態では3回)行なわれる。すなわち、図3(C)に示すように、前工程で製造された研削工具28の研削部24の周囲を放電加工で削って、研削工具28の端部にレンズ面27の直径より径の小さいレンズ面31が形成された研削工具32を製作し、研削工具32の軸心を合わせて前工程で製造されたレンズ面29を所定深さまで研削する。これにより、レンズ面29の内側にレンズ面31がコピーされたレンズ面33が形成され、その外側にレンズ面29の残部である第2環状部34が形成される。 Furthermore, in the method for manufacturing an axisymmetric lens according to the second embodiment of the present invention, the third step and the fourth step are performed one or more times (three times in the present embodiment). That is, as shown in FIG. 3C, the periphery of the grinding portion 24 of the grinding tool 28 manufactured in the previous process is shaved by electric discharge machining, and the end of the grinding tool 28 has a diameter smaller than the diameter of the lens surface 27. A grinding tool 32 on which the lens surface 31 is formed is manufactured, and the lens surface 29 manufactured in the previous process is ground to a predetermined depth by aligning the axis of the grinding tool 32. As a result, a lens surface 33 in which the lens surface 31 is copied is formed inside the lens surface 29, and a second annular portion 34 that is the remaining part of the lens surface 29 is formed outside the lens surface 33.

更に、図3(D)に示すように、前工程で製造された研削工具32の研削部24の周囲を放電加工で削って、研削工具32の端部にレンズ面31の直径より径の小さいレンズ面35が形成された研削工具36を製作し、研削工具36の軸心を合わせて前工程で製造されたレンズ面33を所定深さまで研削する。これにより、レンズ面33の内側にレンズ面35がコピーされたレンズ面37が形成され、その外側にレンズ面33の残部である第3環状部38が形成される。その結果、図3(E)に示すように、被削材17の表面側に、第1〜第3環状部30、34、38、及びレンズ面37を備えたフレネルレンズ形状部39が形成される。 Further, as shown in FIG. 3D, the periphery of the grinding portion 24 of the grinding tool 32 manufactured in the previous step is shaved by electric discharge machining, and the end of the grinding tool 32 has a diameter smaller than the diameter of the lens surface 31. A grinding tool 36 on which the lens surface 35 is formed is manufactured, and the lens surface 33 manufactured in the previous process is ground to a predetermined depth by aligning the axis of the grinding tool 36. As a result, a lens surface 37 in which the lens surface 35 is copied is formed inside the lens surface 33, and a third annular portion 38 that is the remaining part of the lens surface 33 is formed outside thereof. As a result, as shown in FIG. 3 (E), a Fresnel lens shape portion 39 including first to third annular portions 30, 34, 38 and a lens surface 37 is formed on the surface side of the work material 17. The

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、第1、第2の実施の形態では、ダイヤモンドの砥粒が鉄系のメタルボンドで保持された砥石からなる切削部を有する研削工具を使用したが、ダイヤモンドの砥粒が導電性を有する非鉄金属系(例えば、銅系、銅−錫系)のメタルボンドで保持された切削部を有する研削工具を使用することもできる。また、砥粒としてダイヤモンドの代りに、立方晶窒化硼素、窒化珪素、炭化珪素、及びアルミナのいずれかを使用することができ、更に、ダイヤモンド、立方晶窒化硼素、窒化珪素、炭化珪素、及びアルミナのいずれか2以上を砥粒に使用することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, in the first and second embodiments, a grinding tool having a cutting portion made of a grindstone in which diamond abrasive grains are held by an iron-based metal bond is used, but the diamond abrasive grains have conductivity. It is also possible to use a grinding tool having a cutting part held by a non-ferrous metal (for example, copper, copper-tin) metal bond. Further, instead of diamond, any one of cubic boron nitride, silicon nitride, silicon carbide, and alumina can be used as the abrasive grains. Further, diamond, cubic boron nitride, silicon nitride, silicon carbide, and alumina can be used. Any two or more of these can also be used for the abrasive grains.

ダイヤモンドの砥粒を鉄系のメタルボンドで保持した原研削工具を作製したが、ダイヤモンド粉末とろう材粉末との混合粉末を有底円筒状の型枠内に充填し、この型枠を加熱炉内に入れてろう材粉末の融点より、例えば50℃程度高い温度まで加熱してろう材粉末を溶融させ、ろう材粉末の全体が溶融したら、型枠の上方から型枠形状に対応した円柱状の工具保持部の基になる鉄製の棒部材を型枠内に装入し、溶融させたろう材を上方から押圧しながら冷却することで、棒部材の先端に、切削部の基になる空隙の存在しない原砥石部が形成された原研削工具を作製することも可能である。ろう材粉末の溶融は、例えば、真空中で行うことが好ましいが、加熱炉内に不活性ガス(例えば、アルゴンガス)を充満させて行なってもよい。また、ろう材としては、例えば、ニッケル系、銅系、コバルト、鉄系、及び銀系のいずれか1を使用することができる。 An original grinding tool was produced in which diamond abrasive grains were held with iron-based metal bonds. A mixed powder of diamond powder and brazing filler metal powder was filled into a bottomed cylindrical formwork, and this formwork was placed in a heating furnace. When the brazing filler metal powder is melted by heating to a temperature about 50 ° C. higher than the melting point of the brazing filler metal powder, and the entire brazing filler metal powder is melted, a cylindrical shape corresponding to the formwork shape from above the formwork The steel rod member that is the base of the tool holding part is inserted into the mold, and the molten brazing material is cooled while pressing from above, so that the gap that is the base of the cutting part is formed at the tip of the bar member. It is also possible to produce an original grinding tool in which a non-existing original grindstone portion is formed. The melting of the brazing filler metal powder is preferably performed, for example, in a vacuum, but may be performed by filling the heating furnace with an inert gas (for example, argon gas). As the brazing material, for example, any one of nickel, copper, cobalt, iron, and silver can be used.

また、第1の実施の形態では、切削部の端面の広さを、フレネルレンズ形状の全体を形成したレンズ形成面とその周囲に形成する水平部が一括して納まる面積としたが、フレネルレンズ形状の一部が形成されたレンズ形成面及びこのレンズ形成面の外側に形成する水平部のみが納まる面積とすることもできる。この場合は、研削液を切削部の端面中央部に容易に到達させることができるので、切削部の周方向に形成するスリットの本数を減少させたり、スリットの形成を省略することができる。 In the first embodiment, the width of the end surface of the cutting part is an area in which the lens forming surface forming the entire Fresnel lens shape and the horizontal part formed around the lens forming surface are collectively contained. It may be an area that can accommodate only a lens forming surface on which a part of the shape is formed and a horizontal portion formed outside the lens forming surface. In this case, since the grinding liquid can easily reach the center of the end surface of the cutting part, the number of slits formed in the circumferential direction of the cutting part can be reduced, or the formation of slits can be omitted.

本発明の第1の実施の形態に係る軸対称レンズの製造方法を適用してフレネルレンズ形状を形成する際の状況を示す斜視図である。It is a perspective view which shows the condition at the time of forming the Fresnel lens shape by applying the manufacturing method of the axisymmetric lens which concerns on the 1st Embodiment of this invention. 同軸対称レンズの製造方法を適用してフレネルレンズ形状の加工中の状態を示す側断面図である。It is a sectional side view which shows the state in process of processing of the Fresnel lens shape by applying the manufacturing method of a coaxial symmetrical lens. (A)〜(D)は本発明の第2の実施の形態に係る軸対称レンズの製造方法を適用したフレネルレンズ形状の加工工程を示す側断面図、(E)は得られたフレネルレンズ形状の側面図である。(A)-(D) are sectional side views which show the processing process of the Fresnel lens shape which applied the manufacturing method of the axially symmetric lens which concerns on the 2nd Embodiment of this invention, (E) is the obtained Fresnel lens shape. FIG. 従来例に係るフレネルレンズ形状の加工方法の説明図である。It is explanatory drawing of the processing method of the Fresnel lens shape which concerns on a prior art example.

符号の説明Explanation of symbols

10:研削工具、11:工具保持部、12:砥粒、13:メタルボンド、14:砥石部、15:レンズ形成面、16:水平部、17:被削材、18:被削材固定テーブル、19:フレネルレンズ形状部、20:水平研削部、20a、20b:隅部、20c:角部、21:研削工具、22:全レンズ面、23:水平部、24:研削部、25:全レンズ面、26:水平研削面、27:レンズ面、28:研削工具、29:レンズ面、30:第1環状部、31:レンズ面、32:研削工具、33:レンズ面、34:第2環状部、35:レンズ面、36:研削工具、37:レンズ面、38:第3環状部、39:フレネルレンズ形状部 DESCRIPTION OF SYMBOLS 10: Grinding tool, 11: Tool holding part, 12: Abrasive grain, 13: Metal bond, 14: Whetstone part, 15: Lens formation surface, 16: Horizontal part, 17: Work material, 18: Work material fixed table 19: Fresnel lens shape part, 20: Horizontal grinding part, 20a, 20b: Corner part, 20c: Corner part, 21: Grinding tool, 22: All lens surface, 23: Horizontal part, 24: Grinding part, 25: All Lens surface, 26: Horizontal grinding surface, 27: Lens surface, 28: Grinding tool, 29: Lens surface, 30: First annular portion, 31: Lens surface, 32: Grinding tool, 33: Lens surface, 34: Second Annular part, 35: Lens surface, 36: Grinding tool, 37: Lens surface, 38: Third annular part, 39: Fresnel lens shape part

Claims (5)

回転駆動される研削工具の端部に、該研削工具の回転中心にその中心軸を合わせて製造しようとする軸対称のレンズ形状を予め形成しておき、前記研削工具を回転させた状態で被削材に押し当て、前記研削工具の端部に形成された前記レンズ形状を前記被削材の表面に形成することを特徴とする軸対称レンズの製造方法。 An axially symmetric lens shape to be manufactured by aligning the center axis with the rotation center of the grinding tool is formed in advance at the end of the grinding tool to be rotated, and the grinding tool is rotated and rotated. A method of manufacturing an axially symmetric lens, wherein the lens shape is formed on the surface of the work material by pressing against a work material and forming the lens shape formed at the end of the grinding tool. 請求項1記載の軸対称レンズの製造方法において、前記レンズはフレネルレンズであることを特徴とする軸対称レンズの製造方法。 2. The method for manufacturing an axisymmetric lens according to claim 1, wherein the lens is a Fresnel lens. 請求項1及び2のいずれか1項に記載の軸対称レンズの製造方法において、前記研削工具の前記レンズの形成面の周囲には水平部が設けられ、前記被削材には該研削工具の端部に形成された前記レンズの形成面及びこの周囲に連続する前記水平部が正確にコピーされることを特徴とする軸対称レンズの製造方法。 3. The method of manufacturing an axisymmetric lens according to claim 1, wherein a horizontal portion is provided around the lens forming surface of the grinding tool, and the work material is provided with the grinding tool. A method of manufacturing an axisymmetric lens, wherein the lens forming surface formed at the end and the horizontal portion continuous around the surface are accurately copied. 回転駆動される研削工具の端部に、該研削工具の回転中心にその中心軸を合わせて製造しようとする軸対称のフレネルレンズの基礎となる全レンズ面を予め形成する第1工程と、
前記第1工程で製造された前記研削工具を回転させた状態で被削材に押し当て、前記研削工具の端部に形成された前記全レンズ面を該被削材に形成する第2工程と、
前工程で製造された前記研削工具の周囲を削って、該研削工具の端部に前工程で製造されたレンズ面より径の小さいレンズ面を形成する第3工程と、
前記第3工程で製造された研削工具を軸心を合わせてその前工程で製造された前記被削材のレンズ面に対して所定深さまで研削する第4工程とを有し、
前記第3工程及び前記第4工程を1又は複数回行うことを特徴とする軸対称レンズの製造方法。
A first step of pre-forming all lens surfaces that form the basis of an axisymmetric Fresnel lens to be manufactured by aligning the central axis with the rotation center of the grinding tool at the end of the grinding tool that is rotationally driven;
A second step of pressing the grinding tool manufactured in the first step against the work material in a rotated state and forming the entire lens surface formed on the end of the grinding tool on the work material; ,
A third step of cutting the periphery of the grinding tool manufactured in the previous step to form a lens surface having a smaller diameter than the lens surface manufactured in the previous step at the end of the grinding tool;
A fourth step of grinding the grinding tool manufactured in the third step to a predetermined depth with respect to the lens surface of the work material manufactured in the previous step by aligning the axis.
The method of manufacturing an axially symmetric lens, wherein the third step and the fourth step are performed one or more times.
請求項1〜4のいずれか1項に記載の軸対称レンズの製造方法において、前記研削工具の切削部は、ダイヤモンド、立方晶窒化硼素、窒化珪素、炭化珪素、及びアルミナのいずれか1又は2以上を砥粒に使用した砥石であって、該砥粒は導電性を有するメタルボンドで保持されていることを特徴とする軸対称レンズの製造方法。 5. The method for manufacturing an axisymmetric lens according to claim 1, wherein the cutting portion of the grinding tool is any one of diamond, cubic boron nitride, silicon nitride, silicon carbide, and alumina. A method for manufacturing an axially symmetric lens, comprising: a grinding wheel using the above as abrasive grains, wherein the abrasive grains are held by a conductive metal bond.
JP2006210063A 2006-08-01 2006-08-01 A manufacturing method of a master mold of an axisymmetric lens Expired - Fee Related JP4930984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210063A JP4930984B2 (en) 2006-08-01 2006-08-01 A manufacturing method of a master mold of an axisymmetric lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210063A JP4930984B2 (en) 2006-08-01 2006-08-01 A manufacturing method of a master mold of an axisymmetric lens

Publications (2)

Publication Number Publication Date
JP2008036719A true JP2008036719A (en) 2008-02-21
JP4930984B2 JP4930984B2 (en) 2012-05-16

Family

ID=39172326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210063A Expired - Fee Related JP4930984B2 (en) 2006-08-01 2006-08-01 A manufacturing method of a master mold of an axisymmetric lens

Country Status (1)

Country Link
JP (1) JP4930984B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295557A (en) * 1988-09-28 1990-04-06 Hitachi Ltd Polishing method for rotation symmetric nonspherical face
JPH09262750A (en) * 1996-03-27 1997-10-07 Nikon Corp Method and device for grinding aspheric surface
JP2000237942A (en) * 1999-02-19 2000-09-05 Japan Science & Technology Corp Grinding processing method and its device
JP2002321146A (en) * 2001-04-24 2002-11-05 Canon Inc Method for processing metal mold for diffraction optical element
JP2006159369A (en) * 2004-12-09 2006-06-22 Institute Of Physical & Chemical Research Nozzle type elid grinding method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295557A (en) * 1988-09-28 1990-04-06 Hitachi Ltd Polishing method for rotation symmetric nonspherical face
JPH09262750A (en) * 1996-03-27 1997-10-07 Nikon Corp Method and device for grinding aspheric surface
JP2000237942A (en) * 1999-02-19 2000-09-05 Japan Science & Technology Corp Grinding processing method and its device
JP2002321146A (en) * 2001-04-24 2002-11-05 Canon Inc Method for processing metal mold for diffraction optical element
JP2006159369A (en) * 2004-12-09 2006-06-22 Institute Of Physical & Chemical Research Nozzle type elid grinding method and device

Also Published As

Publication number Publication date
JP4930984B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2012101837A1 (en) Grinding/polishing device for polygonal column member and grinding/polishing method
CN106956224B (en) A kind of skive stick and preparation method thereof
JP3161423U (en) Grinding tool
JPWO2018225719A1 (en) Tapered ferrite core, method and apparatus for manufacturing the same, and inductance element using the same
JPWO2009031348A1 (en) Cutting blade, method for forming cutting blade, and manufacturing method thereof
CN106363501A (en) Arc surface processing and polishing method for ceramic product and ceramic panel
JP4930984B2 (en) A manufacturing method of a master mold of an axisymmetric lens
JP2014501628A (en) Full surface finishing press processing / full surface finishing sintered cutting insert and method of manufacturing the cutting insert
CN1328027C (en) Method for processing crystal combination diamond and products thereof
JP2004216483A (en) Ultraprecision machining tool
JP2001038630A (en) Superfine abrasive grain tool, and its manufacture
JP2008119819A (en) Method for manufacturing grinding wheel having depression
KR100959022B1 (en) Cutter?wheel and method of manufacturing the same
JP2016151033A (en) Method of manufacturing cylindrical member
JP3065987U (en) Super abrasive grinding surface plate
JP2841288B2 (en) Super-finishing wheel holder and method of manufacturing the same
JP2001212769A (en) Super-abrasive grain wheel
CN112351862B (en) Electric spark grinding composite machining tool, tool preparation method and machining method
JPH11254335A (en) Manufacture of grinding tool
KR100398776B1 (en) Method for manufacturing cutting edge of cutting tool to manufacture boll-seat in piston of car compressor
JP3663279B2 (en) Small diameter superabrasive grinding wheel manufacturing method
JP2005111569A (en) Metal bonded grinding wheel
JP2005161510A (en) Metal bond grindstone and its manufacturing method
KR100950256B1 (en) Diamond tools and manufacturing method of the same
JPH11291173A (en) Grinding tool and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

R150 Certificate of patent or registration of utility model

Ref document number: 4930984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees