JP2008034306A - Manufacturing method of positive electrode active material for lithium secondary battery - Google Patents

Manufacturing method of positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP2008034306A
JP2008034306A JP2006208608A JP2006208608A JP2008034306A JP 2008034306 A JP2008034306 A JP 2008034306A JP 2006208608 A JP2006208608 A JP 2006208608A JP 2006208608 A JP2006208608 A JP 2006208608A JP 2008034306 A JP2008034306 A JP 2008034306A
Authority
JP
Japan
Prior art keywords
lithium
water soluble
mixed
carbonhydrate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208608A
Other languages
Japanese (ja)
Other versions
JP5127179B2 (en
Inventor
Hidetoshi Abe
英俊 阿部
Tomomune Suzuki
智統 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2006208608A priority Critical patent/JP5127179B2/en
Publication of JP2008034306A publication Critical patent/JP2008034306A/en
Application granted granted Critical
Publication of JP5127179B2 publication Critical patent/JP5127179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium battery having large charge and discharge capacity, excellent high-rate discharge in particular, and stability for a long period of time, in which a conductive carbon layer is formed by baking water soluble carbonhydrate having reducibility, or mixed water soluble carbonhydrate mixed with the water soluble carbonhydrate having reducibility and the water soluble carbonhydrate having no reducibility on the surface of an olivine type M lithium phosphate particle or between the particles as a positive electrode active material of olivine type M lithium phosphate (M is an element containing at least one or more kinds of iron, cobalt, manganese, and nickel), and threreby, elution of a metal component can be suppressed in order to coat the active material particle, and current collecting effect is enhanced. <P>SOLUTION: Olivine type M lithium phosphate (M is an element containing at least one or more kinds of iron, cobalt, manganese, and nickel), and water soluble carbonhydrate having reducibility or mixed water soluble carbonhydrate mixed with the water soluble carbonhydrate are heat-treated in an inert atmosphere to carbonize the water soluble cabonhydrate or the mixed water soluble carbonhydrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池正極活物質の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery.

リチウム金属、リチウム合金あるいはリチウムイオンを吸蔵、放出可能な物質を負極活物質とするリチウム二次電池は高い電圧と優れた可逆性を特徴としている。特に、正極活物質としてリチウムと遷移金属との複合酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池は、従来の鉛二次電池やニッケル−カドミウム二次電池などに比較し、軽量で放電容量も大きいことから、電子機器に広く使用されている。 A lithium secondary battery using a negative electrode active material as a material capable of occluding and releasing lithium metal, lithium alloy or lithium ion is characterized by high voltage and excellent reversibility. In particular, lithium ion secondary batteries using a composite oxide of lithium and a transition metal as a positive electrode active material and a carbon-based material as a negative electrode active material are used in conventional lead secondary batteries and nickel-cadmium secondary batteries. In comparison, it is light in weight and has a large discharge capacity, so it is widely used in electronic equipment.

現在、一般的に用いられているリチウムイオン二次電池の正極活物質として、主にLiCoO2、LiNiO、LiMnO、あるいはLiMnが用いられているが、特に、コバルトやニッケルは埋蔵量が少なく、しかも限られた地域でしか産出しないため、今後、より一層の需要増加が見込まれるリチウムイオン二次電池の正極活物質としては、価格の面からも原料の安定供給の面からも好ましくない。また、安全性の面からも、これらの活物質では反応性が高いために問題になることがある。またマンガン系は比較的安価な材料ではあるが、サイクル特性の安定性に問題がある。 Currently, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiMn 2 O 4 is mainly used as a positive electrode active material for lithium ion secondary batteries that are generally used. In particular, cobalt and nickel are buried. Because it is produced only in a limited area, the positive electrode active material for lithium-ion secondary batteries is expected to increase further in the future, both from the viewpoint of price and the stable supply of raw materials. It is not preferable. From the viewpoint of safety, these active materials may be problematic because of their high reactivity. Manganese is a relatively inexpensive material, but has a problem in stability of cycle characteristics.

これに対して、産出量が多く安価で安定な鉄を原料に用いたリン酸鉄リチウムあるいはリン酸鉄リチウムの鉄の一部を他元素で置換した材料が、リチウム二次電池の正極活物質として動作することが知られている。 In contrast, lithium iron phosphate using low-cost and stable iron as a raw material, or a material obtained by substituting a part of iron in lithium iron phosphate with other elements, is a positive electrode active material for lithium secondary batteries. Is known to work as.

しかし、これらのオリビン型リン酸Mリチウム(Mは遷移金属)系材料は電池充放電時のリチウムの挿入脱離反応が遅く、従来用いられてきたLiCoO2などのリチウム金属酸化物に比べて電気抵抗が非常に大きいため、充放電を行った場合に抵抗分極が増大し、十分な放電容量が得られないこと、充電では受入れ性が悪い問題がある。特に、大電流の充放電において顕著となる。 However, these olivine-type M lithium phosphate (M is a transition metal) -based material has a slow lithium insertion / release reaction during battery charging / discharging, and is more electrically than conventional lithium metal oxides such as LiCoO 2. Since the resistance is very large, there is a problem that resistance polarization increases when charging / discharging is performed, a sufficient discharge capacity cannot be obtained, and chargeability is poor. In particular, it becomes remarkable in charge / discharge of a large current.

この様な問題を解決する方法として、オリビン型リン酸Mリチウム系材料の粒子を微細化し、反応面積を増やし、リチウムイオン拡散を容易にすること、および電気がリン酸鉄リチウム系材料粒子内部を流れる距離を短くすることが考えられている。 As a method for solving such a problem, the particles of olivine-type M lithium phosphate material are made finer, the reaction area is increased, lithium ion diffusion is facilitated, and the electricity inside the lithium iron phosphate material particles is increased. It is considered to shorten the flowing distance.

しかし、オリビン型リン酸Mリチウム系材料の微細粒子は電極作製時にカーボンブラック等の導電材と混合する際に二次凝集を起こしやすい。凝集粒内部ではリン酸鉄リチウム系材料粒子同士、および導電剤が点で接触しているために、十分な集電効果が得られずに電気抵抗が非常に大きくなる。よって凝集粒子中央部の活物質は電池の充放電を行っても電子伝導が起こらず、充放電容量が低下する。 However, the fine particles of the olivine-type M lithium phosphate-based material are liable to cause secondary aggregation when mixed with a conductive material such as carbon black during electrode production. Since the lithium iron phosphate material particles and the conductive agent are in contact with each other inside the aggregated particles, a sufficient current collecting effect cannot be obtained and the electric resistance becomes very large. Therefore, the active material in the central part of the aggregated particles does not cause electron conduction even when the battery is charged / discharged, and the charge / discharge capacity decreases.

そこで、リン酸鉄リチウム系材料の微細粒子上に導電性で酸化還元電位よりも貴な銀、炭素、白金、パラジウム等の微粒子のうち少なくとも一種を担持する方法(特許文献1)や、導電剤としてカーボンを使用し、カーボン源として、カーボンブラックまたは有機化合物等の懸濁液をリン酸鉄リチウム系材料の合成時に投入して、粒子表面に均一に分散する方法(特許文献2)や、オリビン型リン酸リチウムの粒子内部に炭素からなる導電パスが組み込まれた粒子を用いる方法(特許文献3)や、オリビン系化合物の合成原料、例えばリチウム化合物、二価の金属化合物およびリン酸化合物へ炭素質前駆体や水溶性有機物を添加し、焼成後に炭素コンポジットを作製する方法(特許文献4)などが提案されている。 Therefore, a method of carrying at least one kind of fine particles of silver, carbon, platinum, palladium, etc. that are conductive and nobler than the redox potential on fine particles of lithium iron phosphate material (Patent Document 1), or a conductive agent As a carbon source, and a suspension of carbon black or an organic compound as a carbon source is added during the synthesis of the lithium iron phosphate material and dispersed uniformly on the particle surface (Patent Document 2), or olivine A method using particles in which a conductive path made of carbon is incorporated inside the particles of type lithium phosphate (Patent Document 3), or a synthetic raw material for olivine compounds such as lithium compounds, divalent metal compounds, and phosphate compounds. A method of adding a carbon precursor or a water-soluble organic substance and producing a carbon composite after firing (Patent Document 4) has been proposed.

特開2001−110414号公報JP 2001-110414 A 特開2005−116392号公報JP 2005-116392 A 特開2003−203628号公報JP 2003-203628 A 特開2003−292309号公報JP 2003-292309 A

しかしながら、特許文献1に記載の方法は、金属粒子の担持であるために還元剤の使用や、ボールミリングまたはビーズミリングが必要になり工程が煩雑になるばかりか、金属であるために化学的な変性も受けやすく安定性に問題がある。また粒子同士の接続なので、上記の集電性の問題は十分に解決されない。
また、特許文献2に記載の方法においても分散効果が不十分であり、十分な集電効果は期待できるものではない。
また、特許文献3に記載の方法は、炭素からなる導電パスを粒子内部に形成することで電池性能および導電性を向上させることが可能としているが、市場の要求を満足するものとなっていない。
また、特許文献4に記載の方法は、電池活物質としては高度な粒度制御が必要になるので、原料への添加により著しく制御が困難になる問題がある。
この他、オリビン型リン酸Mリチウム系材料の粒子表面はバルクと比較して、結晶性が低いためにアモルファス状になっていると考えられている。このために空気中での放置により二価の金属が酸化され、より抵抗の大きな三価のリン酸塩に変化する。これにより、初充電時に大きな分極を発生するので、放置条件が厳しいことや、活性化が煩雑になることや、抵抗成分が残留する問題もある。
However, the method described in Patent Document 1 requires the use of a reducing agent because of the support of metal particles, requires ball milling or bead milling, and the process is complicated. It is easily denatured and has a problem with stability. In addition, since the particles are connected to each other, the above problem of current collection cannot be sufficiently solved.
Moreover, the dispersion effect is also insufficient in the method described in Patent Document 2, and a sufficient current collecting effect cannot be expected.
Moreover, although the method described in Patent Document 3 makes it possible to improve battery performance and conductivity by forming a conductive path made of carbon inside the particles, it does not satisfy market demands. .
Moreover, since the method described in Patent Document 4 requires a high degree of particle size control as a battery active material, there is a problem that the control becomes remarkably difficult when added to the raw material.
In addition, it is considered that the particle surface of the olivine-type M lithium phosphate material is amorphous because of its lower crystallinity than the bulk. For this reason, the divalent metal is oxidized by being left in the air, and is converted into a trivalent phosphate having higher resistance. As a result, a large polarization is generated at the time of initial charge, so that there are problems that the leaving condition is severe, activation becomes complicated, and resistance components remain.

このような背景の下、本発明は上記課題を解決するため鑑みなされたものであり、その目的は、安価なリン酸鉄リチウム系材料を正極に用いたリチウム二次電池の大電流での放電特性あるいは充電特性の改善、および安定供給を目指すものである。 Under such a background, the present invention has been made in order to solve the above-described problems, and the purpose thereof is to discharge a lithium secondary battery using an inexpensive lithium iron phosphate material as a positive electrode at a large current. It aims to improve the characteristics or charging characteristics and to provide a stable supply.

本発明は、オリビン型リン酸Mリチウム(Mは鉄、コバルト、マンガン、ニッケルのうち少なくとも一種以上を含む元素)と、還元性を有する水溶性炭水化物または前記水溶性炭水化物を混合した混合水溶性炭水化物とを不活性雰囲気中で加熱処理して、該水溶性炭水化物または混合水溶性炭化物を炭化したことを特徴とするものである。 The present invention relates to olivine-type lithium M phosphate (M is an element containing at least one of iron, cobalt, manganese and nickel) and a water-soluble carbohydrate having a reducing property or a mixed water-soluble carbohydrate obtained by mixing the water-soluble carbohydrate. Is heated in an inert atmosphere to carbonize the water-soluble carbohydrate or mixed water-soluble carbide.

また、正極活物質中に、更にカーボン系導電剤を混在したことを特徴とするものである。 In addition, a carbon-based conductive agent is further mixed in the positive electrode active material.

本発明は、オリビン型リン酸Mリチウム(Mは鉄、コバルト、マンガン、ニッケルのうち少なくとも一種以上を含む元素)の正極活物質として、オリビン型リン酸Mリチウム粒子表面または粒子間に、還元性を有する水溶性炭水化物、または還元性を有する水溶性炭水化物と還元性を有さない水溶性炭水化物とを混合した混合水溶性炭化物を焼成し導電カーボン層を形成することで、活物質粒子を被覆するために金属成分の溶出を抑制することが可能であり、集電効果が向上し、充放電容量が大きく、特に高率放電が良好な長期安定なオリビン型リン酸Mリチウム電池を提供することが可能である。 In the present invention, as a positive electrode active material of olivine-type lithium M phosphate (M is an element containing at least one of iron, cobalt, manganese, and nickel), the surface of the olivine-type lithium phosphate M particles is reducible. The active material particles are coated by firing a water-soluble carbohydrate having a water content or a mixed water-soluble carbide in which a water-soluble carbohydrate having a reducing property and a water-soluble carbohydrate not having a reducing property are mixed to form a conductive carbon layer. Therefore, it is possible to provide a long-term stable olivine-type M lithium phosphate battery that can suppress elution of metal components, has an improved current collection effect, has a large charge / discharge capacity, and particularly has a high rate of discharge. Is possible.

オリビン型リン酸Mリチウム(Mは鉄、コバルト、マンガン、ニッケルのうち少なくとも一種以上を含む元素)は、導電性が非常に低いことから、結晶粒子の粒径・結晶化度を精細に制御する必要がある。
そこで、本発明はオリビン型リン酸Mリチウム粒子表面または粒子間に、還元性を有する水溶性炭水化物または前記水溶性炭水化物を混合した混合水溶性炭水化物から得られた導電カーボンを形成するものである。
Since olivine-type lithium M phosphate (M is an element containing at least one of iron, cobalt, manganese, and nickel) has very low conductivity, the grain size and crystallinity of crystal grains are precisely controlled. There is a need.
Therefore, the present invention forms conductive carbon obtained from a water-soluble carbohydrate having reducibility or a mixed water-soluble carbohydrate in which the water-soluble carbohydrate is mixed between the surfaces or particles of the olivine-type lithium M phosphate.

本発明によれば、リン酸Mリチウム粒子に還元性を有する水溶性炭水化物または前記水溶性炭水化物を混合した混合水溶性炭水化物から得られた粉末を不活性雰囲気中で加熱処理することでリン酸Mリチウム粉末と炭素源を合成時に混合したものより、結晶粒子の粒径・結晶化度が良く制御された粒子を得ることが可能である。また、加熱処理した粉末にカーボン系導電剤を付与することにより、さらに特性の向上したリン酸Mリチウム粉末を得ることが可能である。この様にすることで、粒子を制御して合成した表面積の大きな微細オリビン型リン酸Mリチウム粒子表面の酸化を抑制しつつ、導電性を持つ炭素を析出させることが可能である。 According to the present invention, phosphoric acid M is obtained by heat-treating a powder obtained from a water-soluble carbohydrate having reducibility to lithium M phosphate particles or a mixed water-soluble carbohydrate obtained by mixing the water-soluble carbohydrate in an inert atmosphere. It is possible to obtain particles in which the particle size and crystallinity of the crystal particles are well controlled from those obtained by mixing lithium powder and a carbon source during synthesis. Further, by applying a carbon-based conductive agent to the heat-treated powder, it is possible to obtain an M lithium phosphate powder with further improved characteristics. By doing so, it is possible to deposit carbon having conductivity while suppressing the oxidation of the surface of the fine olivine-type M lithium phosphate particles having a large surface area synthesized by controlling the particles.

本発明において還元性を有する水溶性炭水化物または水溶性炭水化物を混合した混合水溶性炭水化物に限定したのは、粒子表面に水で溶いた炭水化物を万遍なく行き渡らせるためであり、この状態とすることで粒子に有機物が被覆した状態とすることが可能である。
結晶粒子の酸化は還元性を有する炭水化物によって抑制することが可能であり、還元性を有する炭水化物としては、ブドウ糖や果糖、ショ糖加水分解物、セルロース加水分解物の他、アルデヒド基やケトン基等の還元性官能基を有するものであれば良い。また、本発明で用いる炭素源としては、例えば、水溶性炭化水素が挙がられ、ショ糖、オリゴ糖やデキストリン等の糖類、糊化したデンプンやグリコーゲン等を用いることができる。これらの炭水化物は安価である点、またバイオマスであるので環境配慮の面からも使用が望ましい。
In the present invention, the water-soluble carbohydrate having a reducing property or the mixed water-soluble carbohydrate mixed with the water-soluble carbohydrate is limited to spread the water-dissolved carbohydrate on the surface of the particles uniformly. Thus, the particles can be coated with an organic substance.
Oxidation of crystal particles can be suppressed by reducing carbohydrates. Examples of reducing carbohydrates include glucose, fructose, sucrose hydrolysates, and cellulose hydrolysates, as well as aldehyde groups and ketone groups. As long as it has a reducing functional group of Examples of the carbon source used in the present invention include water-soluble hydrocarbons, and sugars such as sucrose, oligosaccharides and dextrin, gelatinized starch, glycogen, and the like can be used. Since these carbohydrates are inexpensive and are biomass, it is desirable to use them from the viewpoint of environmental considerations.

以下に、本発明の実施例を説明する。なお、本発明は以下の実施例のみに限定されるものではない。 Examples of the present invention will be described below. In addition, this invention is not limited only to a following example.

まず、公知の方法である水熱法によりリン酸鉄リチウムを合成した。リン酸鉄リチウムは、リン酸リチウム4.63g、及び2価の鉄化合物として2価の塩化鉄4水和物7.95gを耐圧容器(オートクレーブ)中に蒸留水200mlと共に入れ、耐熱容器内の空気をアルゴンガスで置換した後に密閉した。この耐圧容器を180℃のオイルバス中で、48時間反応させた。その後、室温まで放冷し内容物を取り出して100℃で乾燥させて粉末試料を6.47g得た。
なお、得られた粉末試料はX線回折パターンにより、リン酸鉄リチウムであることが確認され、また、走査型電子顕微鏡(SEM)観察から、20〜200nmの粒径を有していることが確認できた。
First, lithium iron phosphate was synthesized by a hydrothermal method which is a known method. Lithium iron phosphate was charged with 4.63 g of lithium phosphate and 7.95 g of divalent iron chloride tetrahydrate as a divalent iron compound together with 200 ml of distilled water in a pressure vessel (autoclave). The air was replaced with argon gas and sealed. The pressure vessel was reacted in an oil bath at 180 ° C. for 48 hours. Thereafter, the mixture was allowed to cool to room temperature, and the contents were taken out and dried at 100 ° C. to obtain 6.47 g of a powder sample.
The obtained powder sample was confirmed to be lithium iron phosphate by an X-ray diffraction pattern, and it had a particle size of 20 to 200 nm from observation with a scanning electron microscope (SEM). It could be confirmed.

(粉末Aの作製)
そして、前記方法によって得られたリン酸鉄リチウム6.47gと、ショ糖を主成分とし転化糖(還元性官能基のアルデヒド基を有するブドウ糖と果糖の混合物)を含んだ市販の砂糖1.54gとを混合した。本実施例で用いた砂糖は、還元性を持つ水溶性炭水化物であり、リン酸鉄リチウムに対して10%に相当する炭素を持つ。次に、混合物に蒸留水を10ml投入して、良く混練後、100℃で2時間乾燥した。その後、窒素雰囲気下600℃で2時間の焼成をし、室温まで放冷後に黒色塊状の反応物を得た。この過程で表面に被覆した還元性炭水化物の作用により、混合した粒子の二価から三価への酸化を抑制することが可能となっている。同時に、混合した粒子を焼成することで導電性の炭素に変化していると考えられる。反応物を直径10mmのジルコニアボールを用いてボールミルによる粉砕を実施し、平均粒径2μmの粉末を得た(粉末A)。
なお、リン酸鉄リチウムと砂糖を混合物し反応させて作製した粉末Aを走査電子顕微鏡(SEM)で観察したところ、表面積が大きく微細な粉末であり、生成した炭素は多孔質であった。また、生成した炭素はリン酸鉄リチウム粒子の周囲に密着し、粒子同士は炭素によって結着していることが確認された。このことから、得られた粉末Aの結晶粒径は大きいものであり、塗工用スラリーが作製し易くなり、またリン酸鉄リチウム粒子からの鉄の溶出を抑制することが可能となっている。
なお、粉末Aは誘導結合プラズマ(ICP)によるFe定量分析結果から算出し、6%の炭素含量であった。
(Preparation of powder A)
Then, 6.47 g of lithium iron phosphate obtained by the above method and 1.54 g of commercially available sugar containing sucrose as a main component and invert sugar (a mixture of glucose and fructose having an aldehyde group of a reducing functional group). And mixed. The sugar used in this example is a water-soluble carbohydrate having reducibility and has carbon corresponding to 10% with respect to lithium iron phosphate. Next, 10 ml of distilled water was added to the mixture, kneaded well, and dried at 100 ° C. for 2 hours. Thereafter, baking was performed at 600 ° C. for 2 hours in a nitrogen atmosphere, and after cooling to room temperature, a black lump reaction product was obtained. In this process, the action of the reducing carbohydrate coated on the surface can suppress the oxidation of the mixed particles from divalent to trivalent. At the same time, it is considered that the mixed particles are changed to conductive carbon by firing. The reaction product was pulverized by a ball mill using zirconia balls having a diameter of 10 mm to obtain a powder having an average particle diameter of 2 μm (powder A).
In addition, when the powder A produced by mixing and reacting lithium iron phosphate and sugar was observed with a scanning electron microscope (SEM), it was a fine powder having a large surface area, and the produced carbon was porous. In addition, it was confirmed that the produced carbon was in close contact with the periphery of the lithium iron phosphate particles, and the particles were bound by carbon. From this, the crystal grain size of the obtained powder A is large, it becomes easy to produce a slurry for coating, and it is possible to suppress elution of iron from the lithium iron phosphate particles. .
Powder A was calculated from the result of quantitative analysis of Fe by inductively coupled plasma (ICP) and had a carbon content of 6%.

(粉末Bの作製)
実施例1と同様の方法によって得られたリン酸鉄リチウム6.47gと、還元性を持つ水溶性炭水化物として0.08gのブドウ糖と、1.39gのショ糖を混合した以外は粉末Aの作製と同様の方法で平均粒径2μmの粉末を得た(粉末B)。
なお、粉末はICPによるFe定量分析結果から算出し、5.8%の炭素含量であった。
(Preparation of powder B)
Preparation of powder A except that 6.47 g of lithium iron phosphate obtained by the same method as in Example 1, 0.08 g of glucose as a water-soluble carbohydrate having a reducing property, and 1.39 g of sucrose were mixed. A powder having an average particle diameter of 2 μm was obtained in the same manner as (Powder B).
The powder was calculated from the results of quantitative analysis of Fe by ICP and had a carbon content of 5.8%.

(粉末Cの作製)
実施例1と同様の方法によって得られたリン酸鉄リチウム6.47gと、還元性を持つ水溶性炭水化物として0.08gのブドウ糖を混合した。水溶性炭水化物として馬鈴薯デンプン1.39g含む100℃の糊化デンプン水溶液を10ml投入した以外は粉末Aの作製と同様の方法で平均粒径2μmの粉末を得た(粉末C)。
なお、粉末はICPによるFe定量分析結果から算出し、5.5%の炭素含量であった。
(Preparation of powder C)
6.47 g of lithium iron phosphate obtained by the same method as in Example 1 was mixed with 0.08 g of glucose as a water-soluble carbohydrate having a reducing property. A powder having an average particle diameter of 2 μm was obtained in the same manner as in the preparation of Powder A (Powder C) except that 10 ml of a 100 ° C. gelatinized starch aqueous solution containing 1.39 g of potato starch as a water-soluble carbohydrate was added.
The powder was calculated from the results of quantitative analysis of Fe by ICP and had a carbon content of 5.5%.

(比較例)
(粉末Dの作製)
まず、リン酸第一鉄含水塩(Fe(PO・8HO)10gと前記のリン酸リチウム(LiPO)2.4gをミキサーで十分乾式混合した。次いで、蒸留水10mlにポリエチレングリコール3g溶解した溶液に攪拌下に1時間浸漬し、減圧下に乾燥して溶媒を除去した。この混合物を粒径8mmのアルミナビーズで乾式ビーズミル装置を用いて粉砕処理し、反応前駆体を得た。そして、この反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、このプレス成形品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分級して炭素質物質を被覆したリン酸鉄リチウムを得た(粉末D)。
なお、粉末はICPによるFe定量分析結果から算出し、5.6%の炭素含量であった。
また、この複合体のリン酸鉄リチウム部分の粒径は0.2〜2μm程度であり、水熱法で得られたリン酸鉄リチウムの粒径と比較して大きいことが判明した。また、製造条件を変化させて小粒径物を得ようと試みたが、安定して小粒径のリン酸鉄リチウムを得ることは困難であった。
(Comparative example)
(Preparation of powder D)
First, 10 g of ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) and 2.4 g of the above lithium phosphate (Li 3 PO 4 ) were sufficiently dry-mixed with a mixer. Next, the mixture was immersed in a solution of 3 g of polyethylene glycol in 10 ml of distilled water for 1 hour with stirring, and dried under reduced pressure to remove the solvent. This mixture was pulverized with alumina beads having a particle diameter of 8 mm using a dry bead mill apparatus to obtain a reaction precursor. And 10 g of this reaction precursor was press-molded at 44 MPa by hand press. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified to obtain lithium iron phosphate coated with a carbonaceous material (powder D).
The powder was calculated from the results of quantitative analysis of Fe by ICP and had a carbon content of 5.6%.
Moreover, the particle size of the lithium iron phosphate portion of this composite was about 0.2 to 2 μm, which was found to be larger than the particle size of lithium iron phosphate obtained by the hydrothermal method. Moreover, although it tried to obtain a small particle size product by changing manufacturing conditions, it was difficult to stably obtain a small particle size lithium iron phosphate.

(粉末Eの作製)
水とエタノールを体積比で1:1に混合した溶液中に、水熱法で得られたリン酸鉄リチウム粉末を入れ十分に攪拌し、攪拌を続けながら硝酸銀を、含まれる銀イオンの重量がリン酸鉄リチウムの重量の5%となるよう秤量して加えた。更に攪拌を続けながらアセトアルデヒドを、硝酸銀1g当たり20ml加えてリン酸鉄リチウム粉末上に銀を析出させた。これをろ過、乾燥することにより粉末を得た(粉末E)。
(Preparation of powder E)
In a solution in which water and ethanol are mixed at a volume ratio of 1: 1, the lithium iron phosphate powder obtained by the hydrothermal method is sufficiently stirred, and silver nitrate is added while the stirring is continued. Weighed and added to 5% of the weight of lithium iron phosphate. While further stirring, 20 ml of acetaldehyde was added per 1 g of silver nitrate to deposit silver on the lithium iron phosphate powder. This was filtered and dried to obtain a powder (powder E).

(粉末Fの作製)
硝酸リチウム(LiNO)と、硝酸鉄(Fe(NO)と、リン酸(HPO)をモル比で1:1:1となるように混合して、リン酸鉄リチウムに換算して0.1Mになるように水に溶解した。この溶液1000ccにアセチレンブラックを20g投入して十分に攪拌後、この溶液を超音波霧化器で霧状にした後、空気をキャリアガスとして300℃の熱処理炉内に導入して熱分解を行ない、前駆体を得た。次いで、この前駆体を窒素ガス雰囲気中にて450℃で1時間、熱処理して粉末を得た(粉末F)。
(Preparation of powder F)
Lithium nitrate (LiNO 3 ), iron nitrate (Fe (NO 3 ) 3 ), and phosphoric acid (H 3 PO 4 ) are mixed at a molar ratio of 1: 1: 1 to obtain lithium iron phosphate. It was dissolved in water so that it was converted to 0.1M. After 20 g of acetylene black was added to 1000 cc of this solution and sufficiently stirred, the solution was atomized with an ultrasonic atomizer and then introduced into a heat treatment furnace at 300 ° C. using air as a carrier gas for thermal decomposition. The precursor was obtained. Subsequently, this precursor was heat-treated at 450 ° C. for 1 hour in a nitrogen gas atmosphere to obtain a powder (powder F).

(粉末Gの作製)
実施例1と同様の方法によって得られたリン酸鉄リチウム6.47gと、アセチレンブラック20gとを混合し粉末を得た(粉末G)。アセチレンブラックは、リン酸鉄リチウムに対して6%に相当する炭素を持つ。
(Preparation of powder G)
6.47 g of lithium iron phosphate obtained by the same method as in Example 1 and 20 g of acetylene black were mixed to obtain a powder (powder G). Acetylene black has 6% of carbon relative to lithium iron phosphate.

(正極の作製)
まず、実施例1で作製した粉末A(無添加のリン酸鉄リチウム)に、結着剤であるポリフッ化ビニリデン(PVdF)を、重量比95:5の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練し、正極スラリーを得た。正極ペーストを厚さ20μmのアルミニウム箔集電体に塗布し、120℃で30分間乾燥した。その後、ロールプレスで圧延加工し、2cmの円盤状に打抜いて、正極とした。
(Preparation of positive electrode)
First, polyvinylidene fluoride (PVdF) as a binder was mixed with the powder A (additionless lithium iron phosphate) prepared in Example 1 at a weight ratio of 95: 5, and N-methyl-2 -Pyrrolidone (NMP) was added and sufficiently kneaded to obtain a positive electrode slurry. The positive electrode paste was applied to a 20 μm thick aluminum foil current collector and dried at 120 ° C. for 30 minutes. Thereafter, it was rolled with a roll press and punched into a 2 cm 2 disk shape to obtain a positive electrode.

(負極の作製)
次に、負極材料である人造黒鉛(平均粒径5μm、d002=0.337nm、Lc=58nm)及びポリフッ化ビニリデン(PVdF)を重量比95:5の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練し、負極ペーストを得た。そして、前記負極ペーストを厚さ20μmの銅箔集電体上に塗布し、25℃の常温中で自然乾燥後、さらに減圧下130℃で12時間乾燥した。その後、ロールプレスで圧延加工し、2cmの円盤状に打抜いて、負極とした。
(Preparation of negative electrode)
Next, artificial graphite (average particle size 5 μm, d 002 = 0.337 nm, Lc = 58 nm) and polyvinylidene fluoride (PVdF) as a negative electrode material were mixed at a weight ratio of 95: 5, and N-methyl-2 -Pyrrolidone (NMP) was added and sufficiently kneaded to obtain a negative electrode paste. And the said negative electrode paste was apply | coated on the 20-micrometer-thick copper foil electrical power collector, and it dried at 130 degreeC under pressure reduction for 12 hours after natural drying in 25 degreeC normal temperature. Thereafter, it was rolled with a roll press and punched into a 2 cm 2 disk shape to obtain a negative electrode.

(電解液の作製)
そして、エチレンカーボネートおよびジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPFを1Mの濃度で溶解し、電解液を作製した。電解液中の水分量は15ppm未満とした。
(Preparation of electrolyte)
Then, a volume of ethylene carbonate and diethyl carbonate ratio of 1: 1 solvent mixture in a ratio of the LiPF 6 was dissolved at a concentration of 1M, to prepare an electrolyte solution. The amount of water in the electrolyte was less than 15 ppm.

(リチウム二次電池の作製)
これら、正極、負極、電解液およびセパレータを用いて、公知の方法により直径25mm、厚さ1.6mmのコイン型リチウム二次電池を作製した(本発明1)。
なお、負極缶、正極缶、負極集電体および正極集電体はステンレス鋼板から成り、絶縁パッキングはポリフェニレンスルフィドから成る。セパレータとしては、ポリフェニレンスルフィド製の不織布を使用し、これに電解液を含浸させた。
また、コイン型リチウム二次電池作製時の雰囲気は露点が−50℃以下とした。
(Production of lithium secondary battery)
Using these positive electrode, negative electrode, electrolyte and separator, a coin-type lithium secondary battery having a diameter of 25 mm and a thickness of 1.6 mm was produced by a known method (Invention 1).
The negative electrode can, the positive electrode can, the negative electrode current collector, and the positive electrode current collector are made of stainless steel plates, and the insulating packing is made of polyphenylene sulfide. As the separator, a polyphenylene sulfide non-woven fabric was used, and this was impregnated with an electrolytic solution.
The atmosphere at the time of producing the coin-type lithium secondary battery was a dew point of −50 ° C. or lower.

次に、上記で得た種々の粉末(粉末A〜G)にカーボン系導電剤としてアセチレンブラックを全炭素量として10%になるように混合した以外は上記記載の方法と同様に正極を作製し、次いで、負極、電解液を作製し種々のコイン型リチウム二次電池を作製した(粉末A〜Cを用いたもの本発明2〜4、粉末D〜Gを用いたもの比較例1〜4)。 Next, a positive electrode was prepared in the same manner as described above except that acetylene black as a carbon-based conductive agent was mixed with the various powders (powder A to G) obtained above so that the total carbon amount was 10%. Then, a negative electrode and an electrolytic solution were produced to produce various coin-type lithium secondary batteries (in which powders A to C are used, the present inventions 2 to 4 and powders D to G are used in comparative examples 1 to 4). .

(各正極のFe溶出量の測定)
リン酸鉄リチウムを正極に用いた電池は、高温でのフロート充電または放置によって電解液中に鉄が溶出し、これが負極に析出することによる容量低下が問題になることが知られている。そこで、電池に使用した電解液100ccに各正極をリン酸鉄リチウムが5gになるように耐熱性プラスチック容器の中に入れ、80℃で10日間放置後に電解液中に溶出した鉄濃度を原子吸光分析法によって測定した。
表1は種々の正極のFe溶出量を示したものである。
(Measurement of Fe elution amount of each positive electrode)
It is known that a battery using lithium iron phosphate as a positive electrode has a problem of capacity reduction due to iron eluting into the electrolytic solution by float charging at high temperature or standing and depositing on the negative electrode. Therefore, 100 cc of the electrolyte used in the battery was placed in a heat-resistant plastic container so that the lithium iron phosphate was 5 g, and the iron concentration eluted in the electrolyte after standing at 80 ° C. for 10 days was atomic absorption. Measured by analytical method.
Table 1 shows the amount of Fe elution from various positive electrodes.

表1に示すように、本発明1〜4は比較例1〜4に比し、リン酸鉄リチウム粒子表面への炭素被覆効果が高く、電解液への鉄溶出を抑制する効果が非常に高いことが分かる。従って、電解液への鉄の溶出を抑制できることから長期間安定な電池が得られることを示唆される。なお、本発明1と2から明らかな通り、追加混合した導電剤の有無は鉄の溶出には影響しないことが分かる。   As shown in Table 1, the present invention 1-4 has a high carbon coating effect on the surface of lithium iron phosphate particles and a very high effect of suppressing iron elution into the electrolytic solution, as compared with Comparative Examples 1-4. I understand that. Therefore, elution of iron into the electrolytic solution can be suppressed, which suggests that a battery that is stable for a long time can be obtained. As is clear from the present inventions 1 and 2, it can be seen that the presence or absence of the additionally mixed conductive agent does not affect the elution of iron.

(リチウム二次電池の電池試験)
種々作製したコイン型リチウム二次電池(本発明1〜4、比較例1〜4)を用いて充放電サイクル試験を10サイクル行った。この時の試験条件は、充電を充電電流0.1CA、電圧4.5Vの定電流定電圧充電とし、放電を放電電流0.1CA、放電終止電圧2.0Vの定電流放電とした。なお、試験は25℃の環境下で行った。この時の、種々の放電容量を表2に示す。
また、11サイクル目には充電を充電電流5.0CA、電圧4.5Vの定電流定電圧充電とし、放電を放電電流5.0CA、放電終止電圧2.0Vの定電流放電とした高率放電試験を行った。この時の、種々の放電容量を表2に併せて示す。また、表2には高率放電特性を見るため5.0CAと0.1CAの比を併せて示した。高率放電特性に優れる電池ほど5.0CAと0.1CAの比が高いことを示している。
なお、0.1CAおよび5.0CA夫々の容量は充填したリン酸鉄リチウムの1g当たりの容量とした。
(Battery test of lithium secondary battery)
10 cycles of charge / discharge cycle tests were performed using various coin-type lithium secondary batteries (Inventions 1 to 4 and Comparative Examples 1 to 4). The test conditions at this time were charging with a constant current and constant voltage with a charging current of 0.1 CA and a voltage of 4.5 V, and discharging with a constant current with a discharging current of 0.1 CA and a discharge end voltage of 2.0 V. The test was performed in an environment of 25 ° C. Table 2 shows various discharge capacities at this time.
In the 11th cycle, charging is performed at a constant current and a constant voltage with a charging current of 5.0 CA and a voltage of 4.5 V, and discharging is performed at a constant current of a discharging current of 5.0 CA and a discharge end voltage of 2.0 V. A test was conducted. Various discharge capacities at this time are also shown in Table 2. Table 2 also shows the ratio of 5.0 CA and 0.1 CA in order to see the high rate discharge characteristics. It shows that the ratio of 5.0CA to 0.1CA is higher for a battery that is superior in high rate discharge characteristics.
In addition, each capacity | capacitance of 0.1CA and 5.0CA was made into the capacity | capacitance per 1 g of the filled lithium iron phosphate.

表2に示すように、本発明1〜4は良好な放電性能が得られていることが分わかる。特に、5CAの放電容量において比較例1〜4に比し本発明1〜4が優れていることが分かる。また、リン酸鉄リチウム粉末に導電剤を混合した本発明2〜4は、リン酸鉄リチウム粒子からの集電効率が向上し、炭素による導電マトリックスが隅々にまで張り巡らされ、さらに放電特性が向上していることが分かる。
それに対し、比較例1は炭素質前駆体として還元作用のないポリエチレングリコールを使用したことと、水溶液への浸漬時間が1時間と長いことによりリン酸鉄リチウム粒子表面のアモルファス層の二価の鉄が三価まで酸化されて、表面抵抗が増加したことにより、放電特性が劣ったものと推定される。比較例2と3は活物質粒子との接触が点接触であること、比較例4は単純な物理混合であることにより、十分な集電効果が得られず、放電特性が悪いと推定される。
As shown in Table 2, it can be seen that the present inventions 1 to 4 have good discharge performance. In particular, it can be seen that the present inventions 1 to 4 are superior to Comparative Examples 1 to 4 in a discharge capacity of 5 CA. In addition, the present invention 2 to 4 in which a conductive agent is mixed with lithium iron phosphate powder improves the current collection efficiency from the lithium iron phosphate particles, and the conductive matrix made of carbon is stretched all over, and further has discharge characteristics. It can be seen that is improved.
On the other hand, Comparative Example 1 uses divalent iron of the amorphous layer on the surface of lithium iron phosphate particles because polyethylene glycol having no reducing action is used as the carbonaceous precursor and the immersion time in the aqueous solution is as long as 1 hour. It is presumed that the discharge characteristics were inferior because the surface resistance was increased by oxidation to trivalent. In Comparative Examples 2 and 3, contact with the active material particles is point contact, and in Comparative Example 4 is simple physical mixing, it is estimated that sufficient current collection effect cannot be obtained and discharge characteristics are poor. .

以上の結果より、オリビン型リン酸Mリチウムの正極活物質として、オリビン型リン酸Mリチウム粒子表面または粒子間に、還元性を有する水溶性炭水化物、または還元性を有する水溶性炭水化物と還元性を有さない水溶性炭水化物とを混合した混合水溶性炭化物を焼成し導電カーボン層を形成することで、電解液への鉄の溶出を抑制できることから長期間安定な電池が得られる。また、これを用いたリチウム電池は集電効率が向上し、特に高率放電が良好な長期安定なリチウム電池を提供する。
なお、本実施例ではリン酸鉄リチウムの例を示したが、鉄の代わりにコバルト、マンガン、ニッケル、またはこれらの混合物を用いた場合においても同様の結果が得られた。
From the above results, as a positive electrode active material of olivine-type lithium M phosphate, the water-soluble carbohydrate having reducibility, or the water-soluble carbohydrate having reducibility and the reducibility between the surfaces of the olivine-type lithium M phosphate particles or between the particles. By firing the mixed water-soluble carbide mixed with the water-soluble carbohydrate not present to form the conductive carbon layer, it is possible to suppress the elution of iron into the electrolytic solution, and thus a battery that is stable for a long period of time can be obtained. In addition, a lithium battery using this improves the current collection efficiency, and provides a long-term stable lithium battery with particularly good high rate discharge.
In this example, an example of lithium iron phosphate was shown, but similar results were obtained when cobalt, manganese, nickel, or a mixture thereof was used instead of iron.

Claims (2)

オリビン型リン酸Mリチウム(Mは鉄、コバルト、マンガン、ニッケルのうち少なくとも一種以上を含む元素)と、還元性を有する水溶性炭水化物または前記水溶性炭水化物を混合した混合水溶性炭水化物とを不活性雰囲気中で加熱処理して、該水溶性炭水化物または混合水溶性炭化物を炭化したことを特徴とするリチウム二次電池正極活物質の製造方法。 Inactive olivine-type lithium M phosphate (M is an element containing at least one of iron, cobalt, manganese and nickel) and a water-soluble carbohydrate having a reducing property or a mixed water-soluble carbohydrate mixed with the water-soluble carbohydrate A method for producing a positive electrode active material for a lithium secondary battery, wherein the water-soluble carbohydrate or mixed water-soluble carbide is carbonized by heat treatment in an atmosphere. 正極活物質中に、更にカーボン系導電剤を混在したことを特徴とする請求項1記載のリチウム二次電池正極活物質の製造方法。
2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein a carbon-based conductive agent is further mixed in the positive electrode active material.
JP2006208608A 2006-07-31 2006-07-31 Method for producing positive electrode active material for lithium secondary battery Active JP5127179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208608A JP5127179B2 (en) 2006-07-31 2006-07-31 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208608A JP5127179B2 (en) 2006-07-31 2006-07-31 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008034306A true JP2008034306A (en) 2008-02-14
JP5127179B2 JP5127179B2 (en) 2013-01-23

Family

ID=39123494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208608A Active JP5127179B2 (en) 2006-07-31 2006-07-31 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5127179B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301813A (en) * 2008-06-12 2009-12-24 Tayca Corp Method for manufacturing carbon-olivine type iron lithium phosphate complex, and cathode material for lithium ion battery
US20100119947A1 (en) * 2008-11-13 2010-05-13 Electronics And Telecommunications Research Institute Method for forming cathode active material powder for lithium secondary cell, and cathode active material powder for lithium secondary cell prepared using the method
KR100969236B1 (en) * 2008-04-14 2010-07-09 한국기초과학지원연구원 manufacturing method of active electrode materials nano carbon coated with humic acid for lithium batteries
WO2010150889A1 (en) 2009-06-26 2010-12-29 旭硝子株式会社 Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries
CN102097613A (en) * 2009-12-14 2011-06-15 韩国电子通信研究院 Method of manufacturing cathode active material for lithium secondary battery and cathode active material obtained by the method
WO2011118328A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
JP2014239036A (en) * 2006-10-30 2014-12-18 フォステック リチウム インコーポレイテッドPhostech Lithium Inc. Carbonated complex oxide and method for producing the same
WO2015045009A1 (en) * 2013-09-24 2015-04-02 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US9040199B2 (en) 2010-09-27 2015-05-26 Panasonic intellectual property Management co., Ltd Positive electrode active material particles for lithium ion secondary batteries, positive electrode using the same, and lithium ion secondary battery
CN104781966A (en) * 2012-11-14 2015-07-15 古河电气工业株式会社 Positive electrode active material, production method for same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US9705132B2 (en) 2010-11-25 2017-07-11 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
WO2017119171A1 (en) * 2016-01-06 2017-07-13 ソニー株式会社 Nonaqueous secondary battery, and positive electrode active material for nonaqueous secondary batteries and method for producing same
US9923203B2 (en) 2013-10-04 2018-03-20 Kabushiki Kaisha Toshiba Positive electrode active material, nonaqueous electrolyte battery, and battery pack
US10096833B2 (en) 2013-09-20 2018-10-09 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, and battery pack
JP2019169283A (en) * 2018-03-22 2019-10-03 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022097612A1 (en) 2020-11-06 2022-05-12 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte power storage element, non-aqueous electrolyte power storage element, and power storage device
CN114873573A (en) * 2022-04-19 2022-08-09 江苏理工学院 NaTi 2 (PO4) 3 @ C micro-nano composite material and preparation method and application thereof
DE112021005840T5 (en) 2020-11-06 2023-08-17 Gs Yuasa International Ltd. POSITIVE ENERGY STORAGE DEVICE ACTIVE MATERIAL, POSITIVE ENERGY STORAGE DEVICE ELECTRODE, ENERGY STORAGE DEVICE AND ENERGY STORAGE DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996576B1 (en) 2003-05-09 2010-11-24 주식회사 탑 엔지니어링 Liquid crystal dispensing system and method of dispensing liquid crystal material using thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036671A1 (en) * 2002-10-18 2004-04-29 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for secondary cell, and secondary cell
WO2004068620A1 (en) * 2003-01-31 2004-08-12 Mitsui Engineering & Shipbuilding Co., Ltd. Positive electrode material for secondary battery, process for producing the same and secondary battery
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2006315939A (en) * 2005-05-10 2006-11-24 Aquire Energy Co Ltd Method for forming lithium-mixed metal compound
WO2007034821A1 (en) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP2007250417A (en) * 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd Electrode material, its manufacturing method and lithium ion battery
JP2008532910A (en) * 2005-03-18 2008-08-21 ジュート−ヒェミー アクチェンゲゼルシャフト Circulation method for producing lithium metal phosphate by wet chemical method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
WO2004036671A1 (en) * 2002-10-18 2004-04-29 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for secondary cell, and secondary cell
WO2004068620A1 (en) * 2003-01-31 2004-08-12 Mitsui Engineering & Shipbuilding Co., Ltd. Positive electrode material for secondary battery, process for producing the same and secondary battery
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP2008532910A (en) * 2005-03-18 2008-08-21 ジュート−ヒェミー アクチェンゲゼルシャフト Circulation method for producing lithium metal phosphate by wet chemical method
JP2006315939A (en) * 2005-05-10 2006-11-24 Aquire Energy Co Ltd Method for forming lithium-mixed metal compound
WO2007034821A1 (en) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP2007250417A (en) * 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd Electrode material, its manufacturing method and lithium ion battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239036A (en) * 2006-10-30 2014-12-18 フォステック リチウム インコーポレイテッドPhostech Lithium Inc. Carbonated complex oxide and method for producing the same
KR100969236B1 (en) * 2008-04-14 2010-07-09 한국기초과학지원연구원 manufacturing method of active electrode materials nano carbon coated with humic acid for lithium batteries
JP2009301813A (en) * 2008-06-12 2009-12-24 Tayca Corp Method for manufacturing carbon-olivine type iron lithium phosphate complex, and cathode material for lithium ion battery
US20100119947A1 (en) * 2008-11-13 2010-05-13 Electronics And Telecommunications Research Institute Method for forming cathode active material powder for lithium secondary cell, and cathode active material powder for lithium secondary cell prepared using the method
WO2010150889A1 (en) 2009-06-26 2010-12-29 旭硝子株式会社 Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries
CN102097613A (en) * 2009-12-14 2011-06-15 韩国电子通信研究院 Method of manufacturing cathode active material for lithium secondary battery and cathode active material obtained by the method
US20110143200A1 (en) * 2009-12-14 2011-06-16 Electronics And Telecommunications Research Institute Method of manufacturing cathode active material for lithium secondary battery and 1-d nanocluster cathode active material with chestnut type morphology obtained by the method
WO2011118328A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US8841027B2 (en) 2010-03-26 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9040199B2 (en) 2010-09-27 2015-05-26 Panasonic intellectual property Management co., Ltd Positive electrode active material particles for lithium ion secondary batteries, positive electrode using the same, and lithium ion secondary battery
US10218001B2 (en) 2010-11-25 2019-02-26 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
US9705132B2 (en) 2010-11-25 2017-07-11 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
CN104781966A (en) * 2012-11-14 2015-07-15 古河电气工业株式会社 Positive electrode active material, production method for same, positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US10096833B2 (en) 2013-09-20 2018-10-09 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, and battery pack
JPWO2015045009A1 (en) * 2013-09-24 2017-03-02 株式会社東芝 Nonaqueous electrolyte battery and battery pack
WO2015045009A1 (en) * 2013-09-24 2015-04-02 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US10305106B2 (en) 2013-09-24 2019-05-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
US9923203B2 (en) 2013-10-04 2018-03-20 Kabushiki Kaisha Toshiba Positive electrode active material, nonaqueous electrolyte battery, and battery pack
WO2017119171A1 (en) * 2016-01-06 2017-07-13 ソニー株式会社 Nonaqueous secondary battery, and positive electrode active material for nonaqueous secondary batteries and method for producing same
JP2019169283A (en) * 2018-03-22 2019-10-03 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022097612A1 (en) 2020-11-06 2022-05-12 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte power storage element, non-aqueous electrolyte power storage element, and power storage device
DE112021005840T5 (en) 2020-11-06 2023-08-17 Gs Yuasa International Ltd. POSITIVE ENERGY STORAGE DEVICE ACTIVE MATERIAL, POSITIVE ENERGY STORAGE DEVICE ELECTRODE, ENERGY STORAGE DEVICE AND ENERGY STORAGE DEVICE
CN114873573A (en) * 2022-04-19 2022-08-09 江苏理工学院 NaTi 2 (PO4) 3 @ C micro-nano composite material and preparation method and application thereof
CN114873573B (en) * 2022-04-19 2023-09-22 江苏理工学院 NaTi (sodium silicate) 2 (PO 4 ) 3 @C micro-nano composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5127179B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5127179B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP5314264B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP6216965B2 (en) Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP5165515B2 (en) Lithium ion secondary battery
JP5155498B2 (en) Method for producing positive electrode active material for lithium secondary battery
CN113328069A (en) Lithium phosphate coated high-nickel cathode material of lithium ion battery and preparation method of lithium phosphate coated high-nickel cathode material
EP2171781A1 (en) Synthesis of cathode active materials
CN109768228A (en) Electrode for lithium ion secondary battery material, electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012513097A (en) Method for producing fluorinated lithium vanadium polyanion powder for battery
JP4264513B2 (en) Composite powder for electrode and method for producing the same
Huo et al. Facile synthesis of MgFe 2 O 4/C composites as anode materials for lithium-ion batteries with excellent cycling and rate performance
JP2014216240A (en) Electrode active material and electrode material, electrode, lithium ion battery, and method for producing electrode material
JP4963675B2 (en) Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same
JP2015060799A (en) Electrode material for lithium ion battery and method for producing the same, electrode for lithium ion battery, and lithium ion battery
JP5790745B2 (en) ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP6374348B2 (en) Lithium phosphorus-based vanadium composite oxide carbon composite, method for producing the same, lithium ion secondary battery, and electrochemical device
CN108807904B (en) Preparation method of modified lithium iron phosphate cathode material for lithium battery
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
CN111554914B (en) Lithium iron phosphate-sodium vanadium phosphate-carbon composite material and preparation method and application thereof
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
CN116435494A (en) High-first-efficiency silicon-based anode material and preparation method and application thereof
JP2014232569A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing the same
CN109585799A (en) Electrode material for lithium ion cell and lithium ion battery
KR20090108964A (en) Manufacturing method of active electrode materials nano carbon coated with humic acid for lithium batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3