JP2008032273A - Refrigerant circuit and hot water supply system using the same - Google Patents

Refrigerant circuit and hot water supply system using the same Download PDF

Info

Publication number
JP2008032273A
JP2008032273A JP2006204050A JP2006204050A JP2008032273A JP 2008032273 A JP2008032273 A JP 2008032273A JP 2006204050 A JP2006204050 A JP 2006204050A JP 2006204050 A JP2006204050 A JP 2006204050A JP 2008032273 A JP2008032273 A JP 2008032273A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
heat
hot water
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204050A
Other languages
Japanese (ja)
Inventor
Akira Okuyama
亮 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2006204050A priority Critical patent/JP2008032273A/en
Publication of JP2008032273A publication Critical patent/JP2008032273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant circuit capable of introducing water to a water heat exchanger after a water temperature is surely lowered by a sub-heat exchanger even if an outside air temperature is high, and surely lowering the water temperature by the sub-heat exchanger in the refrigerant circuit operated by supercritical pressure, in the refrigerant circuit for producing hot water by the water heat exchanger. <P>SOLUTION: In this refrigerant circuit constituted by successively connecting a compressor, the water heat exchanger, a pressure reducing mechanism and an air heat exchanger, operated by supercritical pressure at a high pressure side, and introducing the water of which the heat is collected at a low pressure side to the water heat exchanger to heat the water, the sub-heat exchanger for collecting the heat at the low pressure side is disposed at the upstream side of the air heat exchanger and the downstream side of the pressure reducing mechanism. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、臨界温度が低い冷媒に適した冷媒回路、及び給湯システムに関するものである。   The present invention relates to a refrigerant circuit suitable for a refrigerant having a low critical temperature, and a hot water supply system.

一般の蒸気圧縮式冷凍サイクルによるヒートポンプは、冷媒を、圧縮機、凝縮器、膨張弁、及び蒸発器の順に循環させる冷媒回路を有している。冷媒は、蒸発器を通過する過程で蒸発して採熱し、凝縮器を通過する過程で凝縮して放熱する。凝縮器は、給湯用の水や暖房用の熱媒等(流体)のための流通路と共に水熱交換器を構成している。この水熱交換器において、上記冷媒の放熱により水や熱媒を温め、給湯や暖房に供することができる。   A heat pump using a general vapor compression refrigeration cycle has a refrigerant circuit that circulates refrigerant in the order of a compressor, a condenser, an expansion valve, and an evaporator. The refrigerant evaporates and collects heat in the process of passing through the evaporator, and condenses and dissipates heat in the process of passing through the condenser. The condenser constitutes a water heat exchanger together with a flow passage for water for hot water supply and a heating medium (fluid) for heating. In this water heat exchanger, water and a heat medium can be warmed by the heat radiation of the refrigerant and used for hot water supply or heating.

近年、ヒートポンプの冷媒として、オゾン層を破壊しない物質を採用することが望まれている。そのような物質の代表的なものにR410Aや二酸化炭素が挙げられ、それらを利用した給湯システムが多数提案されている。   In recent years, it has been desired to employ a substance that does not destroy the ozone layer as a refrigerant for a heat pump. Typical examples of such substances include R410A and carbon dioxide, and many hot water supply systems using them have been proposed.

これらの冷媒の特徴として、R410Aは地球温暖化係数が二酸化炭素に比べ大きいという事と、二酸化炭素の臨界温度はR410Aの約72℃に比べ約31℃と低温であるという事が挙げられる。また、特に二酸化炭素のような遷臨界サイクルで動作する冷媒を使用した給湯システムでは、高温高圧の冷媒が充分に冷却されないと、放熱のエンタルピー差が取れずに放熱過程での放熱量が小さくなり、COP(=放熱量/圧縮機仕事)が低下する。この傾向は、給水の温度が高くなるほど顕著になる。   The characteristics of these refrigerants include that R410A has a larger global warming potential than carbon dioxide, and that the critical temperature of carbon dioxide is as low as about 31 ° C compared to about 72 ° C of R410A. In addition, in a hot water supply system that uses a refrigerant that operates in a transcritical cycle, such as carbon dioxide, if the high-temperature and high-pressure refrigerant is not sufficiently cooled, the radiative enthalpy difference cannot be obtained and the amount of heat released during the heat release process is reduced. , COP (= heat dissipation / compressor work) decreases. This tendency becomes more prominent as the temperature of the feed water increases.

そこで、水熱交換器への入水温度を低くすることで放熱器での放熱量を大きくし、運転時の能力及びCOPを高く維持するため、水熱交換器に導入される水の温度を副熱交換器で予め低下させるようにした給湯システムが提案されている。
特開2002−98429号公報。 特開2004−132658号公報。
Therefore, the temperature of water introduced into the water heat exchanger is adjusted to reduce the temperature of water entering the water heat exchanger, thereby increasing the heat dissipation amount in the radiator and maintaining high capacity and COP during operation. There has been proposed a hot water supply system that is previously lowered by a heat exchanger.
JP 2002-98429 A. Japanese Patent Application Laid-Open No. 2004-132658.

しかし従来の水熱交換器を有する冷媒回路では、副熱交換器が空気と熱交換を終えた冷媒の流れている空気熱交換器の下流に配置されていたり、ファンにより空気冷却されたりしている。そのため副熱交換器において熱交換される水回路は、空気熱交換器によって加温された冷媒と熱交換したり、外気と直接熱交換したりしているため、副熱交換器における水回路の吸熱が十分行われない場合が考えられる。
特に外気温が高い場合など副熱交換器での吸熱が充分行なわれないため、水熱交換器に流入する水の温度が充分低くならず、COPのさらなる向上を望めないという課題があった。
However, in a refrigerant circuit having a conventional water heat exchanger, the auxiliary heat exchanger is disposed downstream of the air heat exchanger in which the refrigerant that has exchanged heat with air flows or is cooled by a fan. Yes. Therefore, the water circuit that exchanges heat in the auxiliary heat exchanger exchanges heat with the refrigerant heated by the air heat exchanger or directly exchanges heat with the outside air. There may be a case where heat absorption is not sufficiently performed.
In particular, when the outside air temperature is high, heat absorption in the auxiliary heat exchanger is not sufficiently performed, so that the temperature of the water flowing into the water heat exchanger is not sufficiently lowered, and there is a problem that further improvement of COP cannot be expected.

そこで請求項1の冷媒回路は、圧縮機と、水熱交換器と、減圧機構と、空気熱交換器とが順次接続され、かつ高圧側を超臨界圧力で運転すると共に、低圧側の副熱交換器により熱回収させた水を前記水熱交換器に導入して加熱する冷媒回路において、
前記副熱交換器を、前記空気熱交換器と前記減圧機構の間に設けてなることを特徴としている。
Therefore, in the refrigerant circuit of claim 1, the compressor, the water heat exchanger, the pressure reducing mechanism, and the air heat exchanger are sequentially connected, and the high pressure side is operated at supercritical pressure, and the low pressure side auxiliary heat is In the refrigerant circuit for introducing and heating water recovered by the exchanger to the water heat exchanger,
The auxiliary heat exchanger is provided between the air heat exchanger and the pressure reducing mechanism.

請求項2の給湯システムは、上記冷媒回路を用いた給湯システムであって、前記水熱交換器に導入される水が貯湯タンクに蓄えられるようにしてなることを特徴としている。   A hot water supply system according to a second aspect is a hot water supply system using the refrigerant circuit, wherein water introduced into the water heat exchanger is stored in a hot water storage tank.

請求項1の冷媒回路では、低圧側に熱回収させる副熱交換器を、前記空気熱交換器の上流側かつ前記減圧機構の下流側に設けているため、水熱交換器には一定の低い温度の水が送られることになり、水熱交換器で放熱した後膨張弁入口へ流れる冷媒温度は、夏場のぬるい温度の水道水や貯湯タンクに貯まった利用価値の低い30〜40℃の中温水などの影響を受けにくくできるため、冷媒回路を効率良く運転することができる。また、オゾン層破壊係数や地球温暖化係数が代替冷媒よりも極めて小さい二酸化炭素を冷媒に用いることが可能であるので、オゾン層の破壊、環境汚染、地球温暖化等の問題の発生を防止することができる。   In the refrigerant circuit according to claim 1, since the auxiliary heat exchanger for recovering heat to the low pressure side is provided on the upstream side of the air heat exchanger and the downstream side of the pressure reducing mechanism, the water heat exchanger has a certain low value. The temperature of the refrigerant that flows to the expansion valve inlet after radiating heat from the water heat exchanger is between 30 and 40 degrees Celsius, which has a low utility value stored in warm water or hot water storage tanks in summer. Since it is difficult to be affected by hot water or the like, the refrigerant circuit can be operated efficiently. In addition, carbon dioxide, whose ozone depletion coefficient and global warming coefficient are much smaller than alternative refrigerants, can be used as the refrigerant, preventing problems such as ozone depletion, environmental pollution, and global warming. be able to.

上記請求項2の給湯システムでは、水熱交換器に導入される水が貯湯タンクに蓄えられるようにしてあるので、効率の良い給湯システムを構成することができる。   In the hot water supply system according to the second aspect, since water introduced into the water heat exchanger is stored in the hot water storage tank, an efficient hot water supply system can be configured.

本発明の給湯システムは圧縮機、高圧の冷媒から水へ放熱を行なう水熱交換器、減圧機構(膨張弁等)、低圧の冷媒が空気から吸熱を行なう空気熱交換器、前記空気熱交換器と前記減圧機構の間に配置され低圧の冷媒が水から吸熱を行なう副熱交換器、からなる冷媒回路と、水熱交換器で熱交換される水を供給する給水管、貯湯タンク、副熱交換器と水熱交換器を連通する流通路内を循環させる循環ポンプ、からなる水流通回路と、その他図示しない冷媒温度、水温、湯温などを検出する検出器とその検出結果により各要素の制御を行なう制御装置からなる。   The hot water supply system of the present invention includes a compressor, a water heat exchanger that radiates heat from a high-pressure refrigerant to water, a decompression mechanism (such as an expansion valve), an air heat exchanger in which low-pressure refrigerant absorbs heat from the air, and the air heat exchanger A refrigerant circuit comprising a sub heat exchanger disposed between the pressure reducing mechanism and the low pressure refrigerant absorbing heat from water, a water supply pipe for supplying water to be heat exchanged by the water heat exchanger, a hot water storage tank, a sub heat A water circulation circuit consisting of a circulation pump that circulates in the flow passage that communicates the exchanger and the water heat exchanger, other detectors that detect refrigerant temperature, water temperature, hot water temperature, etc. (not shown) and the detection results of each element It consists of a control device that performs control.

以下、具体的な実施の形態について、図面を参照しつつ説明する。まず図1.の実施例では、圧縮機31、高圧の冷媒から水へ放熱を行なう水熱交換器11、減圧機構(膨張弁等)33、前記減圧機構で減圧された低圧の冷媒が水から吸熱を行なう副熱交換器12、低圧の冷媒が空気から吸熱を行なう空気熱交換器34、からなる冷媒回路10を有している。   Hereinafter, specific embodiments will be described with reference to the drawings. First, FIG. In this embodiment, the compressor 31, the water heat exchanger 11 that dissipates heat from the high-pressure refrigerant to the water, the decompression mechanism (expansion valve or the like) 33, and the low-pressure refrigerant decompressed by the decompression mechanism absorbs heat from the water. The refrigerant circuit 10 includes a heat exchanger 12 and an air heat exchanger 34 in which a low-pressure refrigerant absorbs heat from the air.

また、貯湯タンク20に給水管21によって貯められた水道水を、貯湯タンク20下部より水循環ポンプ42で送り出し副熱交換器12にて冷媒と熱交換したのち、水熱交換器入口流路40aから水熱交換器11へ導入し冷媒により加熱し、水熱交換器出口流路から貯湯タンク20上部に戻し、必要に応じて給湯口24から温水を供給する流通路40を有している。   Further, the tap water stored in the hot water storage tank 20 by the water supply pipe 21 is sent from the lower part of the hot water storage tank 20 by the water circulation pump 42 and heat-exchanged with the refrigerant in the auxiliary heat exchanger 12, and then from the water heat exchanger inlet passage 40a. It has the flow path 40 which introduce | transduces into the water heat exchanger 11, heats with a refrigerant | coolant, returns to the upper part of the hot water storage tank 20 from a water heat exchanger exit flow path, and supplies warm water from the hot water supply port 24 as needed.

ここで、副熱交換器12においては低温低圧の冷媒は水から吸熱する。また、水熱交換器11においては高温高圧の冷媒により水を加熱する。このとき吸熱量の調整は、水循環量で対応してもよいし、送風ファン35の回転数で対応しても良いし、圧縮機31の周波数を変えて冷媒循環量で対応しても良い。なお副熱交換器12並びに水熱交換器11は、いずれも冷媒と水を対向流としている。また、貯湯タンク20の内部は、高温の水と低温の水が破線で表すように、その温度差による層を形成している。   Here, in the auxiliary heat exchanger 12, the low-temperature and low-pressure refrigerant absorbs heat from water. In the water heat exchanger 11, water is heated by a high-temperature and high-pressure refrigerant. At this time, the adjustment of the heat absorption amount may be handled by the water circulation amount, the rotation number of the blower fan 35, or the refrigerant circulation amount by changing the frequency of the compressor 31. Note that the auxiliary heat exchanger 12 and the water heat exchanger 11 both use refrigerant and water as counterflows. Further, the hot water storage tank 20 forms a layer due to the temperature difference so that high temperature water and low temperature water are indicated by broken lines.

これによれば、副熱交換器12を減圧機構33の下流側で空気熱交換器34の上流側に配置しているため、空気熱交換器34において冷媒の温度が上昇する前に水と冷媒の熱交換が行なえるようになっている。このため、外気温が高く空気熱交換器34を通過した冷媒の温度が水の温度と同じか高くなるような場合でも、水熱交換器11へ導入される水の温度を低く押さえることが可能になり、水熱交換器11で冷媒によって加熱させることが可能となる。   According to this, since the auxiliary heat exchanger 12 is arranged on the downstream side of the decompression mechanism 33 and on the upstream side of the air heat exchanger 34, water and the refrigerant are cooled before the temperature of the refrigerant rises in the air heat exchanger 34. The heat exchange can be performed. Therefore, even when the outside air temperature is high and the temperature of the refrigerant that has passed through the air heat exchanger 34 is the same as or higher than the temperature of the water, the temperature of the water introduced into the water heat exchanger 11 can be kept low. Thus, the water heat exchanger 11 can be heated by the refrigerant.

つぎに図2.の実施例では、圧縮機31、高圧の冷媒から水へ放熱を行なう水熱交換器11、減圧機構(膨張弁等)33、前記減圧機構で減圧された低圧の冷媒が水から吸熱を行なう副熱交換器12、低圧の冷媒が空気から吸熱を行なう空気熱交換器34、からなる冷媒回路10を有している。   Next, FIG. In this embodiment, the compressor 31, the water heat exchanger 11 that dissipates heat from the high-pressure refrigerant to the water, the decompression mechanism (expansion valve or the like) 33, and the low-pressure refrigerant decompressed by the decompression mechanism absorbs heat from the water. The refrigerant circuit 10 includes a heat exchanger 12 and an air heat exchanger 34 in which a low-pressure refrigerant absorbs heat from the air.

また、貯湯タンク20に給水管21によって貯められた水道水を貯湯タンク20下部より水循環ポンプ42で送り出し、副熱交換器12にて吸熱したのち水熱交換器11で加熱し貯湯タンク20上部に戻し、必要に応じて給湯口24から温水を供給する流通路40を有している。   Further, the tap water stored in the hot water storage tank 20 by the water supply pipe 21 is sent out from the lower part of the hot water storage tank 20 by the water circulation pump 42, absorbed by the auxiliary heat exchanger 12, heated by the water heat exchanger 11, and placed in the upper part of the hot water storage tank 20. Returning, it has the flow path 40 which supplies warm water from the hot water supply port 24 as needed.

これによれば、副熱交換器12を貯湯タンク20内部に設置し、給水管21により供給される水から直接吸熱するようにしたため、貯湯タンク20下部には副熱交換器12により吸熱され冷却された水を蓄えるようにしている。また、その冷却された水を水循環ポンプ42にて水熱交換器11に送り、高温高圧の冷媒から受熱し高温の湯にして貯湯タンク20上部に戻して貯湯するようにしている。   According to this, since the auxiliary heat exchanger 12 is installed inside the hot water storage tank 20 and directly absorbs heat from the water supplied by the water supply pipe 21, the lower heat storage tank 20 absorbs heat by the auxiliary heat exchanger 12 and cools it. The stored water is stored. The cooled water is sent to the water heat exchanger 11 by the water circulation pump 42, receives heat from the high-temperature and high-pressure refrigerant, converts it to hot water, returns it to the upper part of the hot water storage tank 20, and stores the hot water.

また、副熱交換器12を貯湯タンク内部に配置することで給湯システムの小型化を実現できると共に、副熱交換器12で冷却された水を水熱交換器11に直接送り出すことができるため、水流通路40を簡略化できる。   In addition, since the auxiliary heat exchanger 12 can be arranged inside the hot water storage tank, the hot water supply system can be downsized, and the water cooled by the auxiliary heat exchanger 12 can be sent directly to the water heat exchanger 11. The water flow passage 40 can be simplified.

図3.に示す実施例では、圧縮機31、高圧の冷媒から水へ放熱を行なう水熱交換器11、減圧機構(膨張弁等)33、前記減圧機構で減圧された低圧の冷媒が水から吸熱を行なう副熱交換器12、低圧の冷媒が空気から吸熱を行なう空気熱交換器34、からなる冷媒回路10を有している。   FIG. In the embodiment shown in FIG. 1, the compressor 31, the water heat exchanger 11 that radiates heat from the high-pressure refrigerant to the water, the decompression mechanism (expansion valve or the like) 33, and the low-pressure refrigerant decompressed by the decompression mechanism absorbs heat from the water. The refrigerant circuit 10 includes the auxiliary heat exchanger 12 and an air heat exchanger 34 in which a low-pressure refrigerant absorbs heat from the air.

また、貯湯タンク20に給水管21によって貯められた水道水を、貯湯タンク20の略中央より第二水循環ポンプ42aで副熱交換器12に流通させて吸熱したのち貯湯タンク20の下部に戻し、貯湯タンク20下部より水循環ポンプ42で送り出したのち水熱交換器11で加熱し貯湯タンク20上部に戻し、必要に応じて給湯口24から温水を供給する流通路40を有している。   Further, the tap water stored in the hot water storage tank 20 by the water supply pipe 21 is circulated from the approximate center of the hot water storage tank 20 to the auxiliary heat exchanger 12 by the second water circulation pump 42a and then absorbed, and then returned to the lower part of the hot water storage tank 20. It has a flow passage 40 that is fed from the lower part of the hot water storage tank 20 by the water circulation pump 42, heated by the water heat exchanger 11 and returned to the upper part of the hot water storage tank 20, and supplies hot water from the hot water supply port 24 as necessary.

この実施例によれば、上部の高温水と下部の低温水が混ざることで発生した中温水から熱を回収し空気熱交換器34の上流側で冷媒の吸熱量を多くすることで、圧縮機31の吸入温度を高くすることができ、圧縮機31の仕事を低減できる。
次に、冷媒回路の運転効率について実施例に基づき説明を行う。図1から図3に示す冷媒回路によれば、副熱交換器12での吸熱量を大きくできるため水媒熱交換器11に水熱交換器入口流路40aから供給される水が低温となり、そのため水熱交換器11で水と熱交換を行う冷媒の放熱量Qが増大する。
また、水熱交換器11での放熱量が増えるため、水熱交換器11を出た冷媒の温度を低くすることができ、膨張弁入口での冷媒温度が下がる。
According to this embodiment, the heat is recovered from the medium temperature water generated by mixing the upper high temperature water and the lower low temperature water, and the heat absorption amount of the refrigerant is increased on the upstream side of the air heat exchanger 34. The suction temperature of 31 can be increased, and the work of the compressor 31 can be reduced.
Next, the operation efficiency of the refrigerant circuit will be described based on examples. According to the refrigerant circuit shown in FIGS. 1 to 3, the amount of heat absorbed by the auxiliary heat exchanger 12 can be increased, so that the water supplied to the water medium heat exchanger 11 from the water heat exchanger inlet channel 40a has a low temperature, Therefore, the heat dissipation amount Q of the refrigerant that exchanges heat with water in the water heat exchanger 11 increases.
Moreover, since the heat radiation amount in the water heat exchanger 11 increases, the temperature of the refrigerant that has exited the water heat exchanger 11 can be lowered, and the refrigerant temperature at the inlet of the expansion valve decreases.

また、冷凍サイクルにおいて減圧機構33を通過した後の低圧側では、補助熱交換器12における冷媒の吸熱の過程で冷媒の温度が上がるため、圧縮機31の吸込み圧力と吸込み温度が上昇する。そのため、同じ吐出圧力を得るための圧縮機31の仕事Wは少なくできる。   Further, on the low pressure side after passing through the decompression mechanism 33 in the refrigeration cycle, the refrigerant temperature rises in the process of heat absorption of the refrigerant in the auxiliary heat exchanger 12, so that the suction pressure and the suction temperature of the compressor 31 rise. Therefore, the work W of the compressor 31 for obtaining the same discharge pressure can be reduced.

以上のような冷媒回路を構成し、副熱交換器12で水から吸熱を行い、水熱交換器11での放熱量を増大させることで、COP(=放熱量/圧縮機仕事)を改善することが可能となる。   By constructing the refrigerant circuit as described above, the sub heat exchanger 12 absorbs heat from the water, and the heat radiation amount in the water heat exchanger 11 is increased, thereby improving COP (= heat radiation amount / compressor work). It becomes possible.

また、このシステムの特徴として、更に水温は外気温ほど大きな変化をすることが少なく、外気温が氷点下のときも水から吸熱することにより安定した運転が行える。また、システムに四方弁を導入しサイクルを逆にすることで、冷水製造を行うようにしてもよい。   Further, as a feature of this system, the water temperature hardly changes as much as the outside air temperature, and stable operation can be performed by absorbing heat from the water even when the outside air temperature is below freezing. In addition, cold water production may be performed by introducing a four-way valve into the system and reversing the cycle.

本発明による実施例1を示すサイクル図である。It is a cycle diagram which shows Example 1 by this invention. 本発明による実施例2を示すサイクル図である。It is a cycle diagram which shows Example 2 by this invention. 本発明による実施例3を示すサイクル図である。It is a cycle diagram which shows Example 3 by this invention. 従来技術を示すサイクル図である。It is a cycle diagram which shows a prior art.

符号の説明Explanation of symbols

10 冷媒回路(ヒートポンプ)
11 水熱交換器
12 副熱交換器
20 貯湯タンク
21 給水管
24 給湯口
31 圧縮機
33 減圧機構(膨張弁)
34 空気熱交換器
35 送風ファン
40 流通路
40a 水熱交換器入口流路
40b 水熱交換器出口流路
42 循環ポンプ
42a 第二水循環ポンプ
10 Refrigerant circuit (heat pump)
11 Water Heat Exchanger 12 Sub Heat Exchanger 20 Hot Water Storage Tank 21 Water Supply Pipe 24 Hot Water Supply Port 31 Compressor 33 Pressure Reduction Mechanism (Expansion Valve)
34 Air heat exchanger 35 Blower fan 40 Flow path 40a Water heat exchanger inlet flow path 40b Water heat exchanger outlet flow path 42 Circulation pump 42a Second water circulation pump

Claims (2)

圧縮機と、水熱交換器と、減圧機構と、空気熱交換器とが順次接続され、かつ高圧側を超臨界圧力で運転すると共に、低圧側の副熱交換器により熱回収させた水を前記水熱交換器に導入して加熱する冷媒回路において、
前記副熱交換器を、前記空気熱交換器と前記減圧機構の間に設けてなる冷媒回路。
A compressor, a water heat exchanger, a pressure reducing mechanism, and an air heat exchanger are sequentially connected, and the high pressure side is operated at a supercritical pressure, and the water recovered by the low pressure side sub heat exchanger is recovered. In the refrigerant circuit for introducing and heating the water heat exchanger,
A refrigerant circuit in which the auxiliary heat exchanger is provided between the air heat exchanger and the pressure reducing mechanism.
請求項1記載の冷媒回路を用いた給湯システムであって、
前記水熱交換器に導入される水が貯湯タンクに蓄えられるようにしてなることを特徴とする給湯システム。
A hot water supply system using the refrigerant circuit according to claim 1,
A hot water supply system characterized in that water introduced into the water heat exchanger is stored in a hot water storage tank.
JP2006204050A 2006-07-27 2006-07-27 Refrigerant circuit and hot water supply system using the same Pending JP2008032273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204050A JP2008032273A (en) 2006-07-27 2006-07-27 Refrigerant circuit and hot water supply system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204050A JP2008032273A (en) 2006-07-27 2006-07-27 Refrigerant circuit and hot water supply system using the same

Publications (1)

Publication Number Publication Date
JP2008032273A true JP2008032273A (en) 2008-02-14

Family

ID=39121897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204050A Pending JP2008032273A (en) 2006-07-27 2006-07-27 Refrigerant circuit and hot water supply system using the same

Country Status (1)

Country Link
JP (1) JP2008032273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236849A (en) * 2009-03-12 2010-10-21 Air Water Inc Carbon dioxide cleaning device and carbon dioxide cleaning method
JP2014088975A (en) * 2012-10-29 2014-05-15 Orion Mach Co Ltd Heating/cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164087A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005226859A (en) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2006010137A (en) * 2004-06-23 2006-01-12 Sunpot Co Ltd Heat pump system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164087A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005226859A (en) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2006010137A (en) * 2004-06-23 2006-01-12 Sunpot Co Ltd Heat pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236849A (en) * 2009-03-12 2010-10-21 Air Water Inc Carbon dioxide cleaning device and carbon dioxide cleaning method
JP2014088975A (en) * 2012-10-29 2014-05-15 Orion Mach Co Ltd Heating/cooling device

Similar Documents

Publication Publication Date Title
KR101155496B1 (en) Heat pump type speed heating apparatus
US20110154848A1 (en) Heat pump-type cooling/heating system
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2008002759A (en) Binary refrigerating system and cold storage
JP2007010207A (en) Water heater
JP2010144938A (en) Heat pump water heater and method for operating the same
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP2007232282A (en) Heat pump type water heater
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JP4317793B2 (en) Cooling system
JP4442237B2 (en) Air conditioner
JP5636871B2 (en) Refrigeration equipment
JP4033788B2 (en) Heat pump equipment
JP2007071478A (en) Heat pump device
JP2008051370A (en) Water cooling type refrigerating system and cold storage equipped with the same
KR101280211B1 (en) Heat pump system with frost prevention and operating methodology for heat pump system
JP2008032273A (en) Refrigerant circuit and hot water supply system using the same
JP2009281631A (en) Heat pump unit
JP2006194537A (en) Heat pump device
JP3933076B2 (en) Air conditioner
JP2006003023A (en) Refrigerating unit
KR102185416B1 (en) Cooling system
JP2007155203A (en) Air conditioner
JP2005164087A (en) Heat pump water heater
JP2008107057A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726