JP2008032030A - Fluid-sealed damping device - Google Patents

Fluid-sealed damping device Download PDF

Info

Publication number
JP2008032030A
JP2008032030A JP2006202660A JP2006202660A JP2008032030A JP 2008032030 A JP2008032030 A JP 2008032030A JP 2006202660 A JP2006202660 A JP 2006202660A JP 2006202660 A JP2006202660 A JP 2006202660A JP 2008032030 A JP2008032030 A JP 2008032030A
Authority
JP
Japan
Prior art keywords
fluid
pressure receiving
elastic body
rubber elastic
receiving chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006202660A
Other languages
Japanese (ja)
Inventor
Yuichi Ogawa
雄一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2006202660A priority Critical patent/JP2008032030A/en
Publication of JP2008032030A publication Critical patent/JP2008032030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid-sealed damping device capable of advantageously developing an excellent damping effect by a structure easily manufacturable and having excellent durability. <P>SOLUTION: A pressure receiving chamber 32 and an equilibrium chamber 34 are formed between a first mounting member 10 and a second mounting member 12 connected to each other through a body rubber elastic body 14 on both sides of a partition member 30. An orifice passage 50 allowing the pressure receiving chamber 32 to communicate with the equilibrium chamber 34 is formed of a tubular part 38 formed of a rubber elastic body which is formed integrally with the partition member 30. A projection 40 projecting in the direction crossing the axial direction is formed integrally with one end of the tubular part 38 positioned in the pressure receiving chamber 32. A narrowed part 52 is formed between the end surface of the projection 40 and the inner wall surface of the pressure receiving chamber 32. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体封入式防振装置に係り、特に、非圧縮性流体が封入された複数の液室を有し、それら複数の液室間での流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置の改良された構造に関するものである。   The present invention relates to a fluid-filled vibration isolator, and in particular, has a plurality of liquid chambers filled with an incompressible fluid, and has a vibration-proof effect based on the fluid flow action between the plurality of liquid chambers. The present invention relates to an improved structure of a fluid-filled vibration isolator.

従来から、振動伝達系を構成する部材間に介装される防振連結体乃至は防振支持体の一種として、互いに離間配置された第一の取付部材と第二の取付部材とを、それらの間に介装された本体ゴム弾性体で連結すると共に、第二の取付部材に支持された仕切部材を挟んで、第一の取付部材側に、本体ゴム弾性体により壁部の一部が構成されて、振動入力時に内圧変動が惹起される、内部に所定の非圧縮性流体が封入された受圧室を形成する一方、受圧室とは反対側に、壁部の一部が可撓性膜で構成されて、かかる可撓性膜の変形に基づいて容積変化が許容される、内部に所定の非圧縮性流体が封入された平衡室を形成し、更に、それら受圧室と平衡室とを相互に連通するオリフィス通路を設けて構成した流体封入式防振装置が、知られている。   Conventionally, as a type of anti-vibration coupling body or anti-vibration support body interposed between members constituting the vibration transmission system, a first mounting member and a second mounting member that are spaced apart from each other are used. Are connected by a main rubber elastic body interposed therebetween, and a partition member supported by the second mounting member is sandwiched, and a part of the wall portion is formed by the main rubber elastic body on the first mounting member side. It is configured to form a pressure receiving chamber in which a predetermined incompressible fluid is enclosed, in which internal pressure fluctuation is caused when vibration is input, while a part of the wall portion is flexible on the side opposite to the pressure receiving chamber An equilibrium chamber composed of a membrane, in which a volume change is allowed based on the deformation of the flexible membrane, in which a predetermined incompressible fluid is sealed, is formed, and the pressure receiving chamber, the equilibrium chamber, 2. Description of the Related Art A fluid-filled vibration isolator configured by providing orifice passages that communicate with each other is known.

このような構造を有する流体封入式防振装置にあっては、振動入力時における受圧室の内圧変動によりオリフィス通路内を流通せしめられる非圧縮性流体の流動作用に基づいて、ゴム弾性体だけでは得られ難い優れた防振効果を容易に得ることが出来る。そのため、例えば、自動車用エンジンマウントやボデーマウント、デフマウント等として、有利に採用されている。   In the fluid-filled vibration isolator having such a structure, the rubber elastic body alone is based on the flow action of the incompressible fluid circulated in the orifice passage due to the internal pressure fluctuation of the pressure receiving chamber at the time of vibration input. It is possible to easily obtain an excellent anti-vibration effect that is difficult to obtain. Therefore, for example, it is advantageously employed as an automobile engine mount, body mount, differential mount, and the like.

ところで、かくの如き流体封入式防振装置においては、近年における自動車の高級化に伴って、要求される防振特性も高度化してきている。そして、特に、互いに異なる周波数域を有する複数種類の振動の何れに対しても十分な防振効果が発揮され得ることが、望まれている。   By the way, in such a fluid-filled vibration isolator, the required vibration isolating characteristics have been advanced with the recent upgrading of automobiles. In particular, it is desired that a sufficient anti-vibration effect can be exhibited for any of a plurality of types of vibration having different frequency ranges.

そこで、かかる要求に応え得るものの一つとして、例えば、下記特許文献1等には、受圧室内に、傘形状をもって広がる作用部材が、第一の取付部材に支持されて、この作用部材と受圧室の内壁面との間に、狭窄流路(狭窄部)が形成されてなる流体封入式防振装置が、提案されている。   Therefore, as one of the things that can meet such a demand, for example, in Patent Document 1 below, an action member that spreads in an umbrella shape in a pressure receiving chamber is supported by a first mounting member. There has been proposed a fluid-filled vibration isolator in which a constricted flow path (constricted portion) is formed between the inner wall surface of the material.

このような構造を有する流体封入式防振装置にあっては、例えば、シェイク等の低周波振動の入力時に、オリフィス通路内を流動せしめられる流体の共振作用に基づいて、優れた減衰効果が発揮され得るようになっており、また、高周波数域の振動入力時には、本体ゴム弾性体の弾性変形に伴う作用部材の変位(振動)により狭窄流路を通じて流動せしめられる流体の有効な流動作用乃至は共振作用が惹起され、それに基づいて、十分な低動ばね効果が発揮されるようになっている。かくして、かかる流体封入式防振装置では、低周波数域から高周波数域までの互いに周波数が異なる複数種類の振動に対する優れた防振効果が発揮され得るようになっているのである。   In the fluid-filled vibration isolator having such a structure, for example, when a low frequency vibration such as a shake is input, an excellent damping effect is exhibited based on the resonance action of the fluid that flows in the orifice passage. In addition, at the time of vibration input in a high frequency range, effective flow action or fluid of the fluid that is caused to flow through the constricted flow path due to displacement (vibration) of the action member accompanying elastic deformation of the main rubber elastic body A resonance action is induced, and based on this, a sufficiently low dynamic spring effect is exhibited. Thus, in such a fluid filled type vibration isolator, an excellent anti-vibration effect for a plurality of types of vibrations having different frequencies from a low frequency range to a high frequency range can be exhibited.

ところが、かくの如き従来の流体封入式防振装置においては、仕切部材が、例えば、上部に開口する凹所を備えた下金具と、この下金具に対して、凹所を覆蓋するように重ね合わされて、組み付けられた上金具との二つの金具にて構成されて、それら下金具と上金具との間に、オリフィス通路が形成されており、また、傘状の作用部材が、かかる仕切部材とは別個の独立した部材にて構成されていた。このため、上記の如き複数種の入力振動に対して十分な防振効果が得られるようにした従来の流体封入式防振装置にあっては、その前提技術であるところの、単に、受圧室と平衡室とそれらを連通するオリフィス通路とを設けただけの流体封入式防振装置に比して、部品点数が不可避的に増大し、それによって、構造が複雑なものとなり、そして、その分だけ、製作性も低下してしまうといった問題が内在していた。   However, in such a conventional fluid-filled vibration isolator, the partition member overlaps, for example, a lower metal fitting having a recess opened at the upper part and the lower metal fitting so as to cover the recess. The upper metal fitting is composed of two metal fittings, an orifice passage is formed between the lower metal fitting and the upper metal fitting, and the umbrella-shaped working member is provided with the partition member. It was composed of separate and independent members. For this reason, in the conventional fluid-filled vibration isolator capable of obtaining a sufficient anti-vibration effect with respect to a plurality of types of input vibrations as described above, the pressure receiving chamber is simply a prerequisite technology. Compared to a fluid-filled vibration isolator that only has an equilibrium chamber and an orifice passage that communicates them, the number of parts is inevitably increased, thereby complicating the structure and accordingly. However, the problem that productivity was also lowered was inherent.

なお、下記特許文献2には、仕切部材が、受圧室と平衡室とを仕切る板状の仕切部と、受圧室と平衡室とにそれぞれ開口する開口部を有して、板状の仕切部の中央部位に一体形成された筒状のノズル部とからなり、このノズル部の内孔にて、オリフィス通路が構成された流体封入式防振装置が、開示されている。このような防振装置では、オリフィス通路を有する仕切部材が、単に1個の部材にて構成されることで、部品点数の削減が図られるものの、仕切部材が金属製のプレス成形品であるため、振動入力による本体ゴム弾性体の弾性変形時に、本体ゴム弾性体とノズル部との接触により、それら本体ゴム弾性体やノズル部が損傷乃至は変形し、それによって、耐久性が著しく損なわれてしまう恐れがあったのである。   In Patent Document 2 below, the partition member has a plate-shaped partition portion that partitions the pressure receiving chamber and the equilibrium chamber, and an opening portion that opens to each of the pressure receiving chamber and the equilibrium chamber. There is disclosed a fluid-filled vibration isolator having an orifice passage formed by an inner hole of the nozzle portion formed integrally with a central nozzle portion. In such an anti-vibration device, the partition member having the orifice passage is constituted by only one member, so that the number of parts can be reduced, but the partition member is a metal press-formed product. When elastic deformation of the main rubber elastic body is caused by vibration input, the main rubber elastic body and the nozzle portion are damaged or deformed due to the contact between the main rubber elastic body and the nozzle portion, thereby significantly impairing the durability. There was a fear of it.

特許第2510903号公報Japanese Patent No. 2510903 特開平9−166174号公報JP-A-9-166174

ここにおいて、本発明は、上述せる如き事情を背景にして為されたものであって、その解決課題とするところは、互いに周波数が異なる複数種類の振動に対する優れた防振効果が、簡略且つ製作が容易で、しかも耐久性を損なうことない構造をもって有利に発揮され得る流体封入式防振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that the excellent vibration-proofing effect against a plurality of types of vibrations having different frequencies is simple and manufactured. It is an object of the present invention to provide a fluid filled type vibration damping device that can be advantageously exhibited with a structure that is easy to perform and that does not impair durability.

そして、本発明にあっては、かかる課題の解決のために、その要旨とするところは、互いに離間配置された第一の取付部材と第二の取付部材とを、それらの間に介装された本体ゴム弾性体で連結すると共に、該第二の取付部材に支持された仕切部材を挟んで、該第一の取付部材側に、該本体ゴム弾性体により壁部の一部が構成されて、振動入力時に内圧変動が惹起される、内部に所定の非圧縮性流体が封入された受圧室を形成する一方、該受圧室とは反対側に、壁部の一部が可撓性膜で構成されて、該可撓性膜の変形に基づいて容積変化が許容される、内部に所定の非圧縮性流体が封入された平衡室を形成し、更に、それら受圧室と平衡室とを相互に連通するオリフィス通路を設けて構成した流体封入式防振装置において、前記受圧室内に一方側の先端部分が位置して、該受圧室と前記平衡室とを連通する、ゴム弾性体からなる筒状部を、前記仕切り部材に対して一体的に設けて、前記オリフィス通路を該筒状部にて構成すると共に、該筒状部における該一方側の先端部分に、軸方向と交差する方向に突出する突出部を一体形成して、該突出部の先端面と該受圧室の内壁面との間に、狭窄部を設けたことを特徴とする流体封入式防振装置にある。   In the present invention, in order to solve such a problem, the gist of the present invention is that a first mounting member and a second mounting member that are spaced apart from each other are interposed between them. The main rubber elastic body connects the partition member supported by the second mounting member, and a part of the wall portion is formed by the main rubber elastic body on the first mounting member side. A pressure receiving chamber in which a predetermined incompressible fluid is sealed is formed, and a wall portion is formed of a flexible membrane on the opposite side of the pressure receiving chamber. Configured to form an equilibrium chamber in which a predetermined incompressible fluid is enclosed, in which volume change is allowed based on deformation of the flexible membrane, and the pressure receiving chamber and the equilibrium chamber are mutually connected. In the fluid-filled vibration isolator constructed by providing an orifice passage communicating with the A cylindrical portion made of a rubber elastic body is provided integrally with the partition member, and the orifice passage is connected to the cylindrical shape. And a projecting portion projecting in a direction intersecting the axial direction is integrally formed at the one end portion of the cylindrical portion, and the leading end surface of the projecting portion and the inner wall surface of the pressure receiving chamber The fluid-filled vibration isolator is characterized by providing a constriction between the two.

また、かかる本発明に従う流体封入式防振装置の好ましい態様の一つによれば、前記仕切部材が、一方の面において、前記受圧室内の非圧縮性流体に接触する一方、他方の面において、前記平衡室内の非圧縮性流体に接触する板状仕切部を有し、該板状仕切部に対して、前記筒状部が一体形成される。   Moreover, according to one of the preferable aspects of the fluid-filled vibration isolator according to the present invention, the partition member is in contact with the incompressible fluid in the pressure receiving chamber on one side, and on the other side, It has a plate-shaped partition part which contacts the incompressible fluid in the said equilibrium chamber, and the said cylindrical part is integrally formed with respect to this plate-shaped partition part.

さらに、本発明の別の好ましい態様の一つによれば、前記板状仕切部が、ゴム弾性体にて構成されて、前記受圧室と前記平衡室との流体圧差によって弾性変形せしめられ得るように構成される。   Furthermore, according to another preferred aspect of the present invention, the plate-shaped partitioning portion is made of a rubber elastic body and can be elastically deformed by a fluid pressure difference between the pressure receiving chamber and the equilibrium chamber. Configured.

更にまた、本発明の望ましい態様の一つによれば、前記仕切り部材の全体が、ゴム弾性体にて構成される。   Furthermore, according to one of the desirable modes of the present invention, the whole partition member is constituted by a rubber elastic body.

なお、本発明は、前記した課題又は明細書全体の記載や図面から把握される課題を解決するために、上記に列挙せる如き各種の態様において、好適に実施され得るものであるが、また、上記に記載の各態様は、任意の組み合わせにおいても、採用可能である。なお、本発明の態様乃至は技術的特徴は、上記に記載のものに何等限定されることなく、明細書全体の記載並びに図面に開示の発明思想に基づいて認識され得るものであることが、理解されるべきである。   The present invention can be suitably implemented in various aspects as listed above in order to solve the problems described above or the problems grasped from the description of the entire specification and the drawings. Each aspect described above can be employed in any combination. It should be noted that the aspects or technical features of the present invention are not limited to those described above, and can be recognized based on the description of the entire specification and the inventive concept disclosed in the drawings. Should be understood.

すなわち、本発明に従う流体封入式防振装置にあっては、オリフィス通路内を流動せしめられる流体の共振作用に基づいて、低周波振動に対する優れた減衰効果が発揮され得ると共に、狭窄部を通じて流動せしめられる流体の流動作用乃至は共振作用によって、高周波振動に対する優れた低動ばね効果が発揮され、以て、低周波数域から高周波数域に亘る複数種類の振動に対する優れた防振効果が有効に発揮され得るのである。   That is, in the fluid-filled vibration isolator according to the present invention, an excellent damping effect against low-frequency vibration can be exhibited based on the resonance action of the fluid that flows in the orifice passage, and the fluid-filled vibration isolator can flow through the constriction. Excellent low dynamic spring effect against high-frequency vibrations is exhibited by the flow action or resonance action of the fluid to be produced, and therefore, excellent anti-vibration effects against multiple types of vibrations ranging from the low frequency range to the high frequency range are effectively exhibited. It can be done.

そして、かかる本発明装置にあっては、特に、オリフィス通路が、仕切部材に一体形成された筒状部にて構成されているため、例えば、オリフィス通路を、仕切部材とは別個の部材に設けたり、或いは仕切部材を二つの部材の組付品にて構成して、それら二つの部材の間に、オリフィス通路を形成した従来装置とは異なって、仕切部材とオリフィス通路とを、単に1個の部材にて構成することが可能となっている。しかも、仕切部材に一体形成された筒状部の先端部分に、更に一体形成された突出部の先端面と受圧室の内壁面との間に、狭窄部が設けられているところから、従来装置とは異なって、かかる狭窄部を形成するのに、仕切部材とは別個の部材からなる作用部材等を設ける必要が皆無ならしめられ得る。   In the apparatus of the present invention, since the orifice passage is constituted by a cylindrical portion formed integrally with the partition member, for example, the orifice passage is provided on a member separate from the partition member. Or, unlike the conventional device in which the partition member is constituted by an assembly of two members and an orifice passage is formed between the two members, only one partition member and one orifice passage are provided. It is possible to comprise by this member. In addition, since the narrowed portion is provided between the distal end surface of the protruding portion formed integrally with the inner wall surface of the pressure receiving chamber at the distal end portion of the cylindrical portion integrally formed with the partition member, the conventional device Unlike this, it is possible to eliminate the necessity of providing an action member or the like made of a member separate from the partition member in order to form such a narrowed portion.

また、本発明に係る流体封入式防振装置では、筒状部とそれに一体形成された突出部とが、何れもゴム弾性体にて構成されているため、振動入力による本体ゴム弾性体の弾性変形時に、筒状部及び突出部と本体ゴム弾性体との接触により、それら筒状部や突出部、本体ゴム弾性体が損傷するようなことが有利に防止され、以て、それらの部材、ひいては防振装置全体における十分な耐久性が、安定的に確保され得る。   Further, in the fluid filled type vibration damping device according to the present invention, since the cylindrical portion and the protruding portion formed integrally therewith are both made of a rubber elastic body, the elasticity of the main rubber elastic body due to vibration input. At the time of deformation, it is advantageously prevented that the cylindrical portion and the protruding portion, and the main rubber elastic body are damaged by the contact between the cylindrical portion and the protruding portion and the main rubber elastic body. As a result, sufficient durability in the entire vibration isolator can be stably secured.

従って、かくの如き本発明に従う流体封入式防振装置にあっては、低周波数域から高周波数域までの互いに周波数が異なる複数種類の振動に対する優れた防振効果が、簡略且つ製作が容易で、しかも耐久性を損なうことない構造をもって有利に発揮され得ることとなるのである。   Therefore, in the fluid-filled vibration isolator according to the present invention as described above, the excellent anti-vibration effect against a plurality of types of vibrations having different frequencies from the low frequency range to the high frequency range is simple and easy to manufacture. Moreover, it can be advantageously exhibited with a structure that does not impair the durability.

以下、本発明をより具体的に明らかにするために、本発明の構成について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, the configuration of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明に従う流体封入式防振装置の一実施形態としての自動車用エンジンマウントが、その縦断面形態において、概略的に示されている。かかる図1から明らかなように、本実施形態のエンジンマウントは、第一の取付部材としての第一の取付金具10と、第二の取付部材としての第二の取付金具12を備えており、それら第一の取付金具10と第二の取付金具12とが、上下方向に互いに離間配置されて、本体ゴム弾性体14により弾性的に連結されている。そして、第一の取付金具10がパワーユニット側に、第二の取付金具12が車体側に、それぞれ取り付けられることにより、パワーユニットを車体に対して防振支持せしめるようになっている。また、そのような装着時、かかるエンジンマウントには、パワーユニット荷重が及ぼされると共に、防振すべき主たる振動荷重が、上下方向に入力されることとなる。なお、以下の説明中、上下方向とは、原則として図1中の上下方向を言う。   First, FIG. 1 schematically shows an automotive engine mount as an embodiment of a fluid-filled vibration isolator according to the present invention in the form of a longitudinal section thereof. As is clear from FIG. 1, the engine mount of the present embodiment includes a first mounting bracket 10 as a first mounting member and a second mounting bracket 12 as a second mounting member. The first mounting bracket 10 and the second mounting bracket 12 are spaced apart from each other in the vertical direction and are elastically connected by the main rubber elastic body 14. The first mounting bracket 10 is attached to the power unit side, and the second mounting bracket 12 is attached to the vehicle body side, so that the power unit is supported in a vibration-proof manner with respect to the vehicle body. Further, at the time of such mounting, a power unit load is applied to the engine mount, and a main vibration load to be vibration-proofed is input in the vertical direction. In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.

より詳細には、第一の取付金具10は、略円柱ブロック形状を呈している。また、この第一の取付金具10の上面の中央部には、取付ボルトが螺合される雌ねじ穴16が形成されている。   More specifically, the first mounting bracket 10 has a substantially cylindrical block shape. Further, a female screw hole 16 into which a mounting bolt is screwed is formed at the center of the upper surface of the first mounting bracket 10.

一方、第二の取付金具12は、全体として、上下両方向に開口し、且つ上部側が下部側よりも大径化された略段付円筒形状を呈している。そして、上部側部位が大径部18とされる一方、下部側部位が小径部20とされている。なお、この第二の取付金具12においては、例えば、車体に取り付けられたブラケット(図示せず)に対して、その筒部に圧入される等して固定されることにより、車体に取り付けられるようになっている。   On the other hand, the second mounting member 12 as a whole has a substantially stepped cylindrical shape that is open in both the upper and lower directions and whose upper side is larger in diameter than the lower side. The upper portion is the large diameter portion 18, while the lower portion is the small diameter portion 20. The second mounting bracket 12 is attached to the vehicle body by, for example, being press-fitted and fixed to a bracket (not shown) attached to the vehicle body. It has become.

また、そのような第一の取付金具10と第二の取付金具12とを連結する本体ゴム弾性体14は、全体として略円錐台形状を呈している。そして、かかる本体ゴム弾性体14の小径側の端面に対して、第一の取付金具10が、上面以外の大部分を本体ゴム弾性体14の小径側部位に埋入させた状態で、加硫接着される一方、大径側の端面に、第二の取付金具12における大径部18の内周面の全体が、加硫接着されている。即ち、本体ゴム弾性体14が、第一の取付金具10と第二の取付金具12とを有する一体加硫成形品として、形成されている。そして、それにより、本体ゴム弾性体14にて、第一の取付金具10と第二の取付金具12とが弾性的に連結されていると共に、第二の取付金具12の上側開口部が流体密に覆蓋されている。   Moreover, the main rubber elastic body 14 that connects the first mounting bracket 10 and the second mounting bracket 12 has a substantially truncated cone shape as a whole. Then, with respect to the end surface on the small diameter side of the main rubber elastic body 14, the first mounting bracket 10 is vulcanized in a state where most of the portion other than the upper surface is embedded in the small diameter side portion of the main rubber elastic body 14. On the other hand, the entire inner peripheral surface of the large-diameter portion 18 of the second mounting bracket 12 is vulcanized and bonded to the end surface on the large-diameter side. That is, the main rubber elastic body 14 is formed as an integrally vulcanized molded product having the first mounting bracket 10 and the second mounting bracket 12. Thereby, the first mounting bracket 10 and the second mounting bracket 12 are elastically connected by the main rubber elastic body 14, and the upper opening of the second mounting bracket 12 is fluid-tight. It is covered with.

また、かかる本体ゴム弾性体14には、第二の取付金具12における小径部20の内周面の全面に加硫接着されたシールゴム層22が、一体に形成されている。更に、このシールゴム層22においては、小径部20の高さ方向の中間部に対応位置する部分に、かかる中間部よりも上側に位置する部分を、下側に位置する部分よりも厚肉と為す段差部24が、設けられている。   The main rubber elastic body 14 is integrally formed with a seal rubber layer 22 vulcanized and bonded to the entire inner peripheral surface of the small diameter portion 20 of the second mounting bracket 12. Further, in the seal rubber layer 22, the portion located above the intermediate portion is thicker than the portion located below the intermediate portion in the height direction of the small diameter portion 20. A step portion 24 is provided.

また、第二の取付金具12における小径部20の下端部の内側には、高さの低い円筒状の支持スリーブ26が、シールゴム層22の薄肉部を介して、位置固定に配設されている。なお、この支持スリーブ26は、例えば、第二の取付金具12の下側開口部から、小径部20の下端部の内側に圧入されるか、或いは小径部20の下端部の内側に配置された状態で、小径部20に対する八方絞り等の縮径加工が施されることによって、小径部20の下端部内に固定されている。そして、この支持スリーブ26の内周面に対して、薄肉円板状のゴム弾性膜からなる、可撓性膜としてのダイヤフラム28が、その外周面において加硫接着されており、これによって、第二の取付金具12の下側開口部が、流体密に覆蓋されている。   A cylindrical support sleeve 26 having a low height is disposed inside the lower end portion of the small-diameter portion 20 in the second mounting bracket 12 via a thin portion of the seal rubber layer 22 so as to be fixed in position. . The support sleeve 26 is, for example, press-fitted into the lower end portion of the small diameter portion 20 from the lower opening of the second mounting bracket 12 or disposed inside the lower end portion of the small diameter portion 20. In the state, the small-diameter portion 20 is fixed in the lower end portion of the small-diameter portion 20 by subjecting the small-diameter portion 20 to diameter reduction processing such as eight-way drawing. A diaphragm 28 as a flexible film made of a thin disk-like rubber elastic film is bonded to the inner peripheral surface of the support sleeve 26 by vulcanization on the outer peripheral surface. The lower opening of the second mounting bracket 12 is covered with a fluid tight cover.

かくして、本実施形態のエンジンマウントにおいては、第二の取付金具12の内側における本体ゴム弾性体14とダイヤフラム28との間に、所定の非圧縮性流体が封入されてなる流体室が形成されている。なお、この流体室中に封入される非圧縮性流体としては、例えば、水やアルキレングリコール、ポリアルキレングリコール、シリコーン油等が、好適に用いられる。   Thus, in the engine mount of the present embodiment, a fluid chamber in which a predetermined incompressible fluid is sealed is formed between the main rubber elastic body 14 and the diaphragm 28 inside the second mounting bracket 12. Yes. As the incompressible fluid enclosed in the fluid chamber, for example, water, alkylene glycol, polyalkylene glycol, silicone oil or the like is preferably used.

そして、そのような流体室内には、仕切部材30が収容されて、第二の取付金具12に支持されており、この仕切部材30にて、流体室が二分されている。これによって、流体室内における仕切部材30を挟んで第一の取付金具10側に、壁部の一部が本体ゴム弾性体14にて構成されて、振動入力時に内圧変動が惹起される受圧室32が形成されている一方、仕切部材30を挟んで受圧室32と反対側には、壁部の一部がダイヤフラム28にて構成されて、このダイヤフラム28の変形に基づいて、容積変化が容易に許容される平衡室34が設けられている。   In such a fluid chamber, a partition member 30 is accommodated and supported by the second mounting member 12, and the fluid chamber is divided into two by this partition member 30. Accordingly, a part of the wall portion is configured by the main rubber elastic body 14 on the first mounting member 10 side with the partition member 30 in the fluid chamber interposed therebetween, and a pressure receiving chamber 32 in which an internal pressure fluctuation is caused when vibration is input. On the other hand, on the side opposite to the pressure receiving chamber 32 with the partition member 30 in between, a part of the wall portion is constituted by a diaphragm 28, and the volume change is easily performed based on the deformation of the diaphragm 28. An allowed equilibrium chamber 34 is provided.

なお、それら非圧縮性流体が封入された受圧室32と平衡室34の形成操作は、例えば、本体ゴム弾性体14にて第一の取付金具10に連結された第二の取付金具12内に、仕切部材30と、ダイヤフラム44が加硫接着された支持スリーブ26とを内挿固定する操作を、封入されるべき非圧縮性流体中で行うことによって、容易に実施される。   The operation of forming the pressure receiving chamber 32 and the equilibrium chamber 34 in which the incompressible fluid is sealed is performed, for example, in the second mounting bracket 12 connected to the first mounting bracket 10 by the main rubber elastic body 14. The operation of inserting and fixing the partition member 30 and the support sleeve 26 to which the diaphragm 44 is vulcanized and bonded is performed easily in an incompressible fluid to be sealed.

而して、本実施形態のエンジンマウントにあっては、それら受圧室32と平衡室34とを流体室内に画成する仕切部材30が、特別な構造とされている。   Thus, in the engine mount of this embodiment, the partition member 30 that defines the pressure receiving chamber 32 and the equilibrium chamber 34 in the fluid chamber has a special structure.

すなわち、仕切部材30は、板状仕切部36と筒状部38と突出部40とからなっている。板状仕切部36は、全体として、第二の取付金具12における小径部20の内径よりも所定寸法だけ小さな径を有する円板形状を呈しており、その外周部が、金属製の円環板からなる支持板部42とされている一方、内周部(中心側部分)が、支持板部42よりも厚肉の円形ゴム弾性板からなる可動板部44とされている。また、かかる可動板部44の中心部には、それを板厚方向に貫通する円形の貫通孔46が、設けられている。   That is, the partition member 30 includes a plate-shaped partition portion 36, a tubular portion 38, and a protruding portion 40. The plate-like partition part 36 has a disk shape having a diameter smaller than the inner diameter of the small-diameter part 20 in the second mounting bracket 12 as a whole, and its outer peripheral part is a metal annular plate. On the other hand, the inner peripheral portion (center side portion) is a movable plate portion 44 made of a thick circular rubber elastic plate than the support plate portion 42. In addition, a circular through hole 46 that penetrates the movable plate portion 44 in the thickness direction is provided at the center of the movable plate portion 44.

筒状部38は、全体として、略厚肉円筒形状を呈し、板状仕切部36の中心部の上面における貫通孔46の開口周縁部に、鉛直上方に所定高さで延びるようにして、一体的に立設されている。つまり、筒状部38は、その全体が、可動板部44を構成するゴム弾性体からなり、貫通孔46と同一の内径をもって、上下方向に延びる内孔を有している。そして、そのような内孔が、筒状部38の上部先端側の開口部を通じて、上方に向かって開口している一方、可動板部44に設けられた貫通孔46を通じて、板状仕切部36(可動板部44)の下面において、下方に向かって開口している。   The tubular portion 38 has a substantially thick cylindrical shape as a whole, and is integrated with the opening peripheral edge portion of the through-hole 46 in the upper surface of the central portion of the plate-like partition portion 36 so as to extend vertically upward at a predetermined height. Is erected. That is, the entire cylindrical portion 38 is made of a rubber elastic body that constitutes the movable plate portion 44, and has an inner hole that extends in the vertical direction with the same inner diameter as the through hole 46. Such an inner hole opens upward through the opening on the upper tip side of the cylindrical portion 38, and on the other hand, the plate-shaped partition portion 36 passes through the through hole 46 provided in the movable plate portion 44. On the lower surface of the (movable plate portion 44), it opens downward.

突出部40は、筒状部38の上端部の外周面に対して、軸直角方向に、板状仕切部36の半径よりも所定寸法小さな高さ寸法で突出し、且つ全周に亘って周方向に連続して延びる外フランジ形態をもって、一体形成されている。つまり、この突出部40は、その全体が、可動板部44や筒状部38を構成するゴム弾性体からなっている。そして、全体として、板状仕切部36の外径よりも所定寸法小さな外径を有する、比較的に厚肉の円環板形状を呈している。また、かかる突出部40においては、円環板形状の上部外側角部が、面取りされるように、全周に亘って斜めにカットされた状態とされることで、外周部の上部に、下方に向かうに従って大径化するテーパ面部48が、形成されている。なお、このテーパ面部48のテーパ角度は、本体ゴム弾性体14の下面のテーパ面部分のテーパ角度と略同一の大きさとされている。   The protruding portion 40 protrudes in a direction perpendicular to the axis with respect to the outer peripheral surface of the upper end portion of the cylindrical portion 38 with a height dimension that is smaller than the radius of the plate-like partition portion 36, and is circumferential in the entire circumference Are integrally formed with an outer flange extending continuously. That is, the entire protrusion 40 is made of a rubber elastic body that constitutes the movable plate portion 44 and the tubular portion 38. As a whole, it has a relatively thick annular plate shape having an outer diameter smaller than the outer diameter of the plate-like partition portion 36 by a predetermined dimension. Further, in the protruding portion 40, the upper outer corner portion of the annular plate shape is cut obliquely over the entire circumference so as to be chamfered, so that the upper portion of the outer peripheral portion A tapered surface portion 48 having a diameter increasing toward is formed. The taper angle of the taper surface portion 48 is approximately the same as the taper angle of the taper surface portion of the lower surface of the main rubber elastic body 14.

要するに、本実施形態のエンジンマウントにおいては、仕切部材30が、厚肉円板状の可動板部44と、この可動板部44の中心部の上面に立設された厚肉円筒状の筒状部38と、かかる筒状部38の上部外周面に周設された厚肉円環板状の突出部40とを一体的に備えたゴム弾性部材と、円環状金属板からなる支持板部42とを有し、そして、かかるゴム弾性部材における可動板部44の外周面に対して、支持板部42が、その内周部を可動板部44の外周部に埋入させた状態で加硫接着された一体加硫成形品として、構成されているのである。   In short, in the engine mount of the present embodiment, the partition member 30 has a thick disc-shaped movable plate portion 44 and a thick cylindrical tube-like tube standing on the upper surface of the central portion of the movable plate portion 44. A rubber elastic member integrally including a portion 38 and a thick annular plate-like protruding portion 40 provided around the upper outer peripheral surface of the cylindrical portion 38; and a support plate portion 42 made of an annular metal plate. The support plate portion 42 is vulcanized with the inner peripheral portion embedded in the outer peripheral portion of the movable plate portion 44 with respect to the outer peripheral surface of the movable plate portion 44 in the rubber elastic member. It is configured as a bonded vulcanized molded product.

そして、このような構造を有する仕切部材30が、前記流体室内に、突出部40のテーパ面部48を本体ゴム弾性体14のテーパ状の下面に対して所定距離を隔てて対向位置させるように収容配置されている。また、かかる配置状態下で、支持板部42の外周縁部が、第二の取付金具12に支持された前記支持スリーブ26の上端面と、第二の取付金具12における小径部20の内周面に固着された前記シールゴム層22の段差部24との間で、液密に挟持されて、仕切部材30の全体が、第二の取付金具12にて支持されている。   The partition member 30 having such a structure is accommodated in the fluid chamber so that the tapered surface portion 48 of the protruding portion 40 is opposed to the tapered lower surface of the main rubber elastic body 14 with a predetermined distance. Has been placed. In such an arrangement state, the outer peripheral edge portion of the support plate portion 42 has an upper end surface of the support sleeve 26 supported by the second mounting bracket 12 and an inner periphery of the small-diameter portion 20 of the second mounting bracket 12. The whole partition member 30 is supported by the second mounting member 12 so as to be liquid-tightly sandwiched between the stepped portion 24 of the sealing rubber layer 22 fixed to the surface.

かくして、ここでは、仕切部材30の板状仕切部36を間に挟んだ上側と下側とに、受圧室32と平衡室34とが、それぞれ設けられて、板状仕切部36の上面に設けられた筒状部38の全体が、受圧室32内に配置されている。そして、筒状部38が、その上端開口部において、受圧室32内に開口せしめられている一方、下端開口部において、板状仕切部36(可動板部44)の貫通孔46を通じて、平衡室34内に開口せしめられている。これによって、受圧室32と平衡室34とが、筒状部38の内孔と貫通孔46とを通じて連通されており、以て、かかる筒状部38の内孔と板状仕切部36の貫通孔46とにて、受圧室32と平衡室34との間での流体の流動を許容するオリフィス通路50が、構成されている。なお、ここでは、このオリフィス通路50の流路長さと流路断面積とが、低周波数域にチューニングされている。   Thus, here, the pressure receiving chamber 32 and the equilibrium chamber 34 are provided on the upper side and the lower side of the partition member 30 with the plate-like partition portion 36 interposed therebetween, and are provided on the upper surface of the plate-like partition portion 36. The entire cylindrical portion 38 is disposed in the pressure receiving chamber 32. The cylindrical portion 38 is opened in the pressure receiving chamber 32 at the upper end opening portion, and the equilibrium chamber is passed through the through hole 46 of the plate-like partition portion 36 (movable plate portion 44) at the lower end opening portion. 34 is opened. As a result, the pressure receiving chamber 32 and the equilibrium chamber 34 are communicated with each other through the inner hole of the cylindrical portion 38 and the through hole 46, and thus the inner hole of the cylindrical portion 38 and the penetration of the plate-like partition portion 36. An orifice passage 50 that allows fluid to flow between the pressure receiving chamber 32 and the equilibrium chamber 34 is formed by the hole 46. Here, the flow path length and the cross-sectional area of the orifice passage 50 are tuned to a low frequency range.

また、本実施形態においては、上記の如く、筒状部38の全体が受圧室32内に配置されていることにより、筒状部38の上端部外周面に円環板形態をもって一体形成された突出部40も、その全体が、受圧室32内に位置せしめられている。そして、前記せるように、かかる突出部40の外径が板状仕切部36の外径よりも小さくされていることで、突出部40の先端面と、受圧室32の内壁面を構成する本体ゴム弾性体(シールゴム層22)の内周面とが、突出部40の突出方向において狭い間隔で対向位置せしめられている。これによって、突出部40の先端面と本体ゴム弾性体(シールゴム層22)の内周面との間に、受圧室32内における突出部40よりも上側の部分と下側の部分とを連通して、それらの部分同士の間での流体の流動を許容する環状の狭窄部52が、形成されている。   Further, in the present embodiment, as described above, the entire cylindrical portion 38 is disposed in the pressure receiving chamber 32, so that the cylindrical portion 38 is integrally formed with an annular plate shape on the outer peripheral surface of the upper end portion. The entire protrusion 40 is also positioned in the pressure receiving chamber 32. And the main body which comprises the front end surface of the protrusion part 40, and the inner wall face of the pressure receiving chamber 32 because the outer diameter of this protrusion part 40 is made smaller than the outer diameter of the plate-shaped partition part 36 so that it may make the above-mentioned. The rubber elastic body (seal rubber layer 22) is opposed to the inner peripheral surface at a narrow interval in the protruding direction of the protruding portion 40. As a result, the upper part and the lower part of the pressure receiving chamber 32 are communicated between the front end surface of the protrusion 40 and the inner peripheral surface of the main rubber elastic body (seal rubber layer 22). Thus, an annular constriction 52 that allows fluid to flow between these portions is formed.

さらに、本実施形態では、仕切部材30の板状仕切部36を間に挟んだ上側と下側とに、受圧室32と平衡室34とがそれぞれ位置せしめられていることで、板状仕切部36の可動板部44が、その上面において、受圧室32内の非圧縮性流体に接触させられている一方、その下面において、平衡室34内の非圧縮性流体に接触させられている。そして、それにより、第一の取付金具10と第二の取付金具12との間への高周波振動の入力時に、受圧室32と平衡室34との流体圧差に基づいて、可動板部44が、その上面や下面に押圧力が作用され、以て、板厚方向において弾性的に微小変形(振動)せしめられるようになっている。   Furthermore, in the present embodiment, the pressure receiving chamber 32 and the equilibrium chamber 34 are respectively positioned on the upper side and the lower side of the partition member 30 with the plate-like partition portion 36 interposed therebetween, so that the plate-like partition portion. The 36 movable plate portions 44 are brought into contact with the incompressible fluid in the pressure receiving chamber 32 on the upper surface thereof, and are brought into contact with the incompressible fluid in the equilibrium chamber 34 on the lower surface thereof. Then, when the high frequency vibration is input between the first mounting bracket 10 and the second mounting bracket 12, the movable plate portion 44 is based on the fluid pressure difference between the pressure receiving chamber 32 and the equilibrium chamber 34. A pressing force is applied to the upper surface and the lower surface, so that it is elastically minutely deformed (vibrated) in the thickness direction.

そうして、本実施形態においては、シェイク等の低周波大振幅振動の入力時に、オリフィス通路50内を流動せしめられる流体の共振作用に基づいて、かかる低周波振動に対する高減衰効果が発揮される一方、こもり音等の高周波小振幅振動の入力時には、可動板部44の弾性的な微小変形による流体の流動(振動)に基づいて、かかる高周波振動に対して、低動ばね作用による絶縁乃至遮断効果が発揮されるようになっている。また、そのような可動板部44の変形による低動ばね効果が有効に発揮され得ない程の高周波数域の振動入力時には、狭窄部52を通じての流体の流動作用乃至は共振作用に基づいて、より高い周波数域の振動に対して、優れた低動ばね作用による絶縁乃至遮断効果が発揮されるようになっている。   Thus, in this embodiment, when a low-frequency large-amplitude vibration such as a shake is input, a high damping effect for the low-frequency vibration is exhibited based on the resonance action of the fluid that flows in the orifice passage 50. On the other hand, when high-frequency small-amplitude vibration such as a booming sound is input, based on the fluid flow (vibration) caused by the elastic minute deformation of the movable plate portion 44, the high-frequency vibration is insulated or blocked by a low dynamic spring action. The effect has come to be demonstrated. Further, at the time of vibration input in such a high frequency range that the low dynamic spring effect due to such deformation of the movable plate portion 44 cannot be effectively exhibited, based on the fluid flow action or resonance action through the constriction 52, With respect to vibration in a higher frequency range, an insulating or blocking effect by an excellent low dynamic spring action is exhibited.

このように、本実施形態のエンジンマウントでは、流体室内に、単に一つの一体加硫成形品からなる仕切部材30が配置されて、第二の取付金具12にて支持されるだけで、受圧室32と平衡室34とが画成されると同時に、オリフィス通路50と狭窄部52と可動板部44とが、一挙に且つ極めて容易に設けられて、低周波数域から高周波数域までの互いに周波数が異なる複数種類の振動に対する優れた防振効果が、極めて有効に得られるようになっている。   Thus, in the engine mount of this embodiment, the partition member 30 made of a single integral vulcanization molded product is simply arranged in the fluid chamber and supported by the second mounting bracket 12, so that the pressure receiving chamber 32 and the equilibrium chamber 34 are defined, and simultaneously, the orifice passage 50, the constricted portion 52, and the movable plate portion 44 are provided at once and very easily, so that the frequency from the low frequency range to the high frequency range is mutually reduced. An excellent anti-vibration effect against a plurality of types of vibrations having different values can be obtained very effectively.

従って、かくの如き本実施形態のエンジンマウントにあっては、例えば、オリフィス通路50を、仕切部材30とは別個の部材に設けたり、仕切部材30を二つの部材を互いに組み付けて構成すると共に、それら互いに組み付けられた二つの部材の間にオリフィス通路50を設けたりする従来装置や、狭窄部52を形成するための部材を仕切部材30とは別個の部材にて構成する従来装置、更には、可動板部44を仕切部材30とは別個の部材にて構成する従来装置等に比して、部品点数が可及的に少なくされることで、製作性の向上と低コスト化とが有利に図られ得、しかも、そのような有利な構造をもって、互いに周波数が異なる複数種類の振動に対する優れた防振効果が、極めて有効に確保され得るのである。   Therefore, in the engine mount of this embodiment as described above, for example, the orifice passage 50 is provided in a member separate from the partition member 30, or the partition member 30 is configured by assembling two members together. A conventional device in which the orifice passage 50 is provided between the two members assembled with each other, a conventional device in which the member for forming the narrowed portion 52 is formed of a member separate from the partition member 30, Compared to a conventional device or the like in which the movable plate portion 44 is formed of a member separate from the partition member 30, the number of parts is reduced as much as possible, thereby improving the manufacturability and reducing the cost. In addition, with such an advantageous structure, an excellent anti-vibration effect against a plurality of types of vibrations having different frequencies can be ensured extremely effectively.

また、かかるエンジンマウントにおいては、仕切部材30における板状仕切部36の上面から上方に延出乃至は突出するように設けられた筒状部38と、この筒状部38の上端部に対して、軸直角方向に突設された突出部40とが、ゴム弾性体にて構成されている。そのため、例えば、振動入力に伴う本体ゴム弾性体14の弾性変形により、かかる本体ゴム弾性体14の内壁面が筒状部38や突出部40に接触せしめられたときに、それら筒状部38や突出部40の本体ゴム弾性体14との接触部分が容易に弾性変形せしめられるようになり、以て、それら本体ゴム弾性体14と筒状部38及び突出部40とが互いの接触により損傷するようなことが、効果的に防止され得る。そして、その結果として、使用耐久性の低下を、何等招くことなく、上述の如き低周波数域から高周波数域までの広範囲な周波数域に亘る複数種類の振動に対する優れた防振効果が、極めて有利に得られるのである。   Further, in such an engine mount, with respect to the cylindrical portion 38 provided so as to extend upward or protrude from the upper surface of the plate-like partition portion 36 in the partition member 30, and the upper end portion of the cylindrical portion 38. The protrusion 40 projecting in the direction perpendicular to the axis is made of a rubber elastic body. Therefore, for example, when the inner wall surface of the main rubber elastic body 14 is brought into contact with the cylindrical portion 38 or the protruding portion 40 due to elastic deformation of the main rubber elastic body 14 due to vibration input, the cylindrical portion 38 or The contact portion of the protruding portion 40 with the main rubber elastic body 14 can be easily elastically deformed, so that the main rubber elastic body 14, the cylindrical portion 38, and the protruding portion 40 are damaged by mutual contact. Such can be effectively prevented. As a result, the vibration-proofing effect is excellent for a plurality of types of vibrations over a wide frequency range from the low frequency range to the high frequency range as described above without causing any deterioration in durability. Is obtained.

さらに、本実施形態では、仕切部材30における突出部40の外周部の上部部位が、本体ゴム弾性体14の下面のテーパ部分に対応したテーパ面部48とされていることによっても、突出部40と本体ゴム弾性体14との互いの接触による損傷が、効果的に防止され得る。   Furthermore, in the present embodiment, the upper portion of the outer peripheral portion of the protruding portion 40 in the partition member 30 is also a tapered surface portion 48 corresponding to the tapered portion of the lower surface of the main rubber elastic body 14, so that the protruding portion 40 Damage due to mutual contact with the main rubber elastic body 14 can be effectively prevented.

更にまた、本実施形態にあっては、受圧室32内の流体と平衡室34内の流体とに対して、板厚方向の一方側と他方側の面とにおいてそれぞれ接触する板状仕切部36に、筒状部38が一体形成されていることにより、筒状部38の形成による仕切部材30全体の高さの増大量が可及的に小さく抑えられて、仕切部材30、ひいてはエンジンマウント全体の大型化の防止が、有利に図られ得る。   Furthermore, in the present embodiment, the plate-like partition portion 36 that contacts the fluid in the pressure receiving chamber 32 and the fluid in the equilibrium chamber 34 on the one side and the other side in the plate thickness direction, respectively. In addition, since the tubular portion 38 is integrally formed, an increase in the height of the entire partition member 30 due to the formation of the tubular portion 38 is suppressed as small as possible, and the partition member 30, and thus the entire engine mount, is reduced. It is possible to advantageously prevent the increase in size.

また、本実施形態のエンジンマウントにおいては、板状仕切部36の外周部が、金属製の円環板からなる支持板部42とされて、かかる板状仕切部36の金属部分からなる外周縁部が、支持スリーブ26の上端面とシールゴム層20の段差部24との間で挟持されて、第二の取付金具12に支持されているため、例えば、板状仕切部36の外周縁部がゴム弾性体からなる場合に比して、第二の取付金具12による板状仕切部36の支持力が、より安定的に且つ確実に確保され得る。   Further, in the engine mount of this embodiment, the outer peripheral portion of the plate-like partition portion 36 is the support plate portion 42 made of a metal annular plate, and the outer peripheral edge made of the metal portion of the plate-like partition portion 36. Is sandwiched between the upper end surface of the support sleeve 26 and the stepped portion 24 of the seal rubber layer 20 and supported by the second mounting bracket 12, for example, the outer peripheral edge of the plate-like partition 36 is Compared to the case of a rubber elastic body, the supporting force of the plate-like partition portion 36 by the second mounting bracket 12 can be ensured more stably and reliably.

以上、本発明の具体的な構成について詳述してきたが、これはあくまでも例示に過ぎないのであって、本発明は、上記の記載によって、何等の制約をも受けるものではない。   The specific configuration of the present invention has been described in detail above. However, this is merely an example, and the present invention is not limited by the above description.

例えば、突出部40の全体形状や大きさは、目的とする防振効果を得るのに必要とされる狭窄部52の大きさ等に応じて、適宜に変更、決定され得るものである。   For example, the overall shape and size of the protruding portion 40 can be changed and determined as appropriate according to the size of the constricted portion 52 required to obtain a target vibration-proof effect.

また、筒状部38の高さや内径も、オリフィス通路50のチューニング周波数によって決定されるものであることは、言うまでもないところである。更に、筒状部38の形状も、例示のものに、決して限定されるものではない。   Needless to say, the height and inner diameter of the cylindrical portion 38 are also determined by the tuning frequency of the orifice passage 50. Further, the shape of the cylindrical portion 38 is not limited to the illustrated one.

更にまた、ゴム弾性体からなる可動板部44の厚さや外径寸法も、目的とする防振効果を得るのに必要とされる、可動板部44の弾性変形による流体の流動量等に応じて、任意に設定され得るものである。   Furthermore, the thickness and outer diameter of the movable plate portion 44 made of a rubber elastic body also depend on the amount of fluid flow caused by the elastic deformation of the movable plate portion 44, which is required to obtain the desired vibration-proofing effect. Can be arbitrarily set.

従って、例えば、図2に示されるように、仕切部材30の板状仕切部36の全体をゴム弾性体からなる可動板部44として構成することも出来る。即ち、仕切部材30の全体を、ゴム弾性体にて構成しても良いのである。こうした場合、仕切部材30をゴム弾性体と金属成形体との一体加硫成形品にて構成するよりも、仕切部材30の製作性が、有利に高められ得るといった利点が確保される。   Therefore, for example, as shown in FIG. 2, the entire plate-like partition portion 36 of the partition member 30 can be configured as a movable plate portion 44 made of a rubber elastic body. In other words, the entire partition member 30 may be composed of a rubber elastic body. In such a case, an advantage that the productivity of the partition member 30 can be advantageously improved is ensured as compared with the case where the partition member 30 is formed of an integrally vulcanized molded product of a rubber elastic body and a metal molded body.

また、求められる防振特性(例えば、低周波振動に対する防振効果と、より高い周波数域の振動に対する防振効果のみが要求されるような特性)によっては、図3に示されるように、仕切部材30から、ゴム弾性体からなる可動板部44を省略して、板状仕切部36の全体を、金属板からなる支持板部42のみにて構成しても良い。この場合には、例えば、狭窄部52の大きさのチューニングに際して、板状仕切部36(可動板部44)の変形による流体の流動を考慮する必要が解消されて、チューニング作業が、より容易となるといった利点が得られる。   Further, depending on the required anti-vibration characteristics (for example, an anti-vibration effect for low-frequency vibration and a characteristic that requires only an anti-vibration effect for vibration in a higher frequency range), as shown in FIG. The movable plate portion 44 made of a rubber elastic body may be omitted from the member 30, and the entire plate-like partition portion 36 may be configured only by the support plate portion 42 made of a metal plate. In this case, for example, when tuning the size of the narrowed portion 52, the necessity of considering the fluid flow due to the deformation of the plate-like partition portion 36 (movable plate portion 44) is eliminated, and the tuning operation becomes easier. The advantage that it becomes becomes.

なお、板状仕切部36の少なくとも外周部を支持板部42にて構成する場合には、金属板からなるものに代えて、例えば合成樹脂板等からなるものを用いても良い。   In the case where at least the outer peripheral portion of the plate-like partition portion 36 is configured by the support plate portion 42, for example, a synthetic resin plate or the like may be used instead of the metal plate.

また、前記実施形態では、筒状部38の全体が、受圧室32内に位置せしめられていたが、この筒状部38は、少なくとも突出部40が形成される一方側の先端部が受圧室32内に位置されておれば良い。従って、例えば、筒状部38が、板状仕切部36の上面から上方に延び出して、受圧室32内に位置せしめられた部分と、板状仕切部36の下面から下方に延び出して、平衡室34内に位置せしめられた部分とを有して構成されていても、何等差し支えない。また、そうすれば、オリフィス通路50の流路長さを、より広い範囲において設定することが出来、以て、オリフィス通路50のチューニング周波数の設計自由度が有利に高められ得る。   Further, in the above-described embodiment, the entire cylindrical portion 38 is positioned in the pressure receiving chamber 32. However, the cylindrical portion 38 has at least a tip portion on one side where the protruding portion 40 is formed at the pressure receiving chamber. It suffices if it is located within 32. Therefore, for example, the cylindrical portion 38 extends upward from the upper surface of the plate-like partition portion 36 and extends downward from the portion positioned in the pressure receiving chamber 32 and the lower surface of the plate-like partition portion 36. Even if it is configured to have a portion positioned in the equilibrium chamber 34, there is no problem. In this case, the flow path length of the orifice passage 50 can be set in a wider range, and thus the degree of freedom in designing the tuning frequency of the orifice passage 50 can be advantageously increased.

さらに、仕切部材30の少なくとも筒状部38と突出部40とを構成するゴム弾性体材料には、一般的なゴム材料の他、例えば自己潤滑ゴム等が好適に用いられる。それによって、筒状部38や突出部40と本体ゴム弾性体14との接触時における擦れ音等の発生が、効果的に防止され得ることとなる。   Further, as the rubber elastic body material constituting at least the cylindrical portion 38 and the protruding portion 40 of the partition member 30, for example, a self-lubricating rubber or the like is preferably used in addition to a general rubber material. As a result, generation of a rubbing sound or the like at the time of contact between the cylindrical portion 38 or the protruding portion 40 and the main rubber elastic body 14 can be effectively prevented.

加えて、前記実施形態では、本発明を、自動車用エンジンマウントに適用したものの具体例を示したが、本発明は、その他、自動車に設置されるエンジンマウント以外の流体封入式防振装置や、自動車以外の流体封入式防振装置の何れに対しても、有利に適用され得るものであることは、勿論である。   In addition, in the above-described embodiment, a specific example of the present invention applied to an engine mount for automobiles has been shown, but the present invention also includes a fluid-filled vibration isolator other than an engine mount installed in an automobile, Of course, it can be advantageously applied to any fluid-filled vibration isolator other than automobiles.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもないところである。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

本発明に従う防振装置の一実施形態を示す縦断面説明図である。It is a longitudinal section explanatory view showing one embodiment of a vibration isolator according to the present invention. 本発明に従う防振装置の別の実施形態を示す、図1に対応する図である。It is a figure corresponding to FIG. 1 which shows another embodiment of the vibration isolator according to this invention. 本発明に従う防振装置の更に別の実施形態を示す、図1に対応する図である。It is a figure corresponding to FIG. 1 which shows another embodiment of the vibration isolator according to this invention.

符号の説明Explanation of symbols

10 第一の取付金具 12 第二の取付金具
14 本体ゴム弾性体 28 ダイヤフラム
30 仕切部材 32 受圧室
34 平衡室 36 板状仕切部
38 筒状部 40 突出部
42 支持板部 44 可動板部
46 貫通孔 50 オリフィス通路
52 狭窄部

DESCRIPTION OF SYMBOLS 10 1st mounting bracket 12 2nd mounting bracket 14 Main body rubber elastic body 28 Diaphragm 30 Partition member 32 Pressure receiving chamber 34 Equilibrium chamber 36 Plate-shaped partition part 38 Cylindrical part 40 Projection part 42 Support plate part 44 Movable plate part 46 Through Hole 50 Orifice passage 52 Constriction

Claims (4)

互いに離間配置された第一の取付部材と第二の取付部材とを、それらの間に介装された本体ゴム弾性体で連結すると共に、該第二の取付部材に支持された仕切部材を挟んで、該第一の取付部材側に、該本体ゴム弾性体により壁部の一部が構成されて、振動入力時に内圧変動が惹起される、内部に所定の非圧縮性流体が封入された受圧室を形成する一方、該受圧室とは反対側に、壁部の一部が可撓性膜で構成されて、該可撓性膜の変形に基づいて容積変化が許容される、内部に所定の非圧縮性流体が封入された平衡室を形成し、更に、それら受圧室と平衡室とを相互に連通するオリフィス通路を設けて構成した流体封入式防振装置において、
前記受圧室内に一方側の先端部分が位置して、該受圧室と前記平衡室とを連通する、ゴム弾性体からなる筒状部を、前記仕切り部材に対して一体的に設けて、前記オリフィス通路を該筒状部にて構成すると共に、該筒状部における該一方側の先端部分に、軸方向と交差する方向に突出する突出部を一体形成して、該突出部の先端面と該受圧室の内壁面との間に、狭窄部を設けたことを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member that are spaced apart from each other are connected by the main rubber elastic body interposed therebetween, and the partition member supported by the second mounting member is sandwiched between the first mounting member and the second mounting member. Thus, a pressure receiving portion in which a part of the wall portion is constituted by the main rubber elastic body on the first mounting member side, and internal pressure fluctuation is caused when vibration is input, and a predetermined incompressible fluid is sealed inside. While forming a chamber, on the side opposite to the pressure receiving chamber, a part of the wall portion is made of a flexible membrane, and volume change is allowed based on deformation of the flexible membrane, and a predetermined inside In the fluid-filled vibration isolator configured to form an equilibrium chamber in which the incompressible fluid is sealed, and further, an orifice passage configured to communicate the pressure receiving chamber and the equilibrium chamber with each other is provided.
A cylindrical portion made of a rubber elastic body, in which a tip portion on one side is located in the pressure receiving chamber and communicates with the pressure receiving chamber and the equilibrium chamber, is provided integrally with the partition member, and the orifice The passage is configured by the cylindrical portion, and a protruding portion that protrudes in a direction intersecting the axial direction is integrally formed at the tip portion on the one side of the cylindrical portion, and the leading end surface of the protruding portion and the A fluid-filled vibration isolator having a constricted portion provided between an inner wall surface of a pressure receiving chamber.
前記仕切部材が、一方の面において、前記受圧室内の非圧縮性流体に接触する一方、他方の面において、前記平衡室内の非圧縮性流体に接触する板状仕切部を有し、該板状仕切部に対して、前記筒状部が一体形成されている請求項1に記載の流体封入式防振装置。   The partition member has a plate-like partition portion that contacts the incompressible fluid in the pressure-receiving chamber on one surface, and a plate-shaped partition portion that contacts the incompressible fluid in the equilibrium chamber on the other surface. The fluid filled type vibration damping device according to claim 1, wherein the cylindrical portion is integrally formed with the partition portion. 前記板状仕切部が、ゴム弾性体にて構成されて、前記受圧室と前記平衡室との流体圧差によって弾性変形せしめられ得るようになっている請求項2に記載の流体封入式防振装置。   The fluid-filled type vibration damping device according to claim 2, wherein the plate-like partition portion is made of a rubber elastic body and can be elastically deformed by a fluid pressure difference between the pressure receiving chamber and the equilibrium chamber. . 前記仕切り部材の全体が、ゴム弾性体からなっている請求項1乃至請求項3のうちの何れか1項に記載の流体封入式防振装置。
The fluid-filled vibration isolator according to any one of claims 1 to 3, wherein the entire partition member is made of a rubber elastic body.
JP2006202660A 2006-07-26 2006-07-26 Fluid-sealed damping device Pending JP2008032030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202660A JP2008032030A (en) 2006-07-26 2006-07-26 Fluid-sealed damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202660A JP2008032030A (en) 2006-07-26 2006-07-26 Fluid-sealed damping device

Publications (1)

Publication Number Publication Date
JP2008032030A true JP2008032030A (en) 2008-02-14

Family

ID=39121688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202660A Pending JP2008032030A (en) 2006-07-26 2006-07-26 Fluid-sealed damping device

Country Status (1)

Country Link
JP (1) JP2008032030A (en)

Similar Documents

Publication Publication Date Title
JP5014329B2 (en) Vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP5557837B2 (en) Vibration isolator
JP2006112608A (en) Fluid-sealed vibration absorbing device
WO2011108035A1 (en) Liquid inclusion vibration-proof device
JP4411659B2 (en) Fluid filled vibration isolator
JP2008101719A (en) Fluid sealed vibration absorbing device
JP2007278399A (en) Vibration control device
JP2006064033A (en) Fluid sealed-type vibration control device
JP6240482B2 (en) Fluid filled vibration isolator
JP5431982B2 (en) Liquid-filled vibration isolator
WO2016174800A1 (en) Antivibration device
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2009236143A (en) Fluid sealed-type vibration control device
JP5925545B2 (en) Liquid-filled vibration isolator
JP2005337299A (en) Pneumatic switching type fluid-filled engine mount
KR20070048551A (en) Engine mount in which fluid is enclosed
JP2003028233A (en) Fluid-filled vibration isolator
JP2009228688A (en) Fluid sealed type vibration damping device
JP2008032030A (en) Fluid-sealed damping device
JP2006291990A (en) Vibration control device
JP5893482B2 (en) Liquid-filled vibration isolator
JP2007155033A (en) Suspended fluid filled vibration control device
JP5899039B2 (en) Fluid filled vibration isolator
JP5154499B2 (en) Fluid filled vibration isolator