JP2008031539A - Microwave carburizing furnace and carburizing method - Google Patents

Microwave carburizing furnace and carburizing method Download PDF

Info

Publication number
JP2008031539A
JP2008031539A JP2006208142A JP2006208142A JP2008031539A JP 2008031539 A JP2008031539 A JP 2008031539A JP 2006208142 A JP2006208142 A JP 2006208142A JP 2006208142 A JP2006208142 A JP 2006208142A JP 2008031539 A JP2008031539 A JP 2008031539A
Authority
JP
Japan
Prior art keywords
microwave
carburizing
furnace
gas
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208142A
Other languages
Japanese (ja)
Other versions
JP4247916B2 (en
Inventor
Masamitsu Taguchi
真実 田口
Noboru Baba
馬場  昇
Motoyasu Sato
元泰 佐藤
Akihiro Matsubara
章浩 松原
Sadaji Takayama
定次 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Natural Sciences
Original Assignee
Hitachi Ltd
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, National Institute of Natural Sciences filed Critical Hitachi Ltd
Priority to JP2006208142A priority Critical patent/JP4247916B2/en
Priority to US11/829,986 priority patent/US20080023109A1/en
Publication of JP2008031539A publication Critical patent/JP2008031539A/en
Application granted granted Critical
Publication of JP4247916B2 publication Critical patent/JP4247916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave carburizing furnace with which the microwave is used and the carburization is performed under non-electrode and atmospheric pressure, and the carburizing treatment method for iron and steel material by using this carburizing furnace. <P>SOLUTION: In a microwave irradiation chamber for introducing the microwave, an atmospheric gas supplying mechanism for supplying the atmospheric gas containing at least Ar and O<SB>2</SB>and a rapid-cooling mechanism for cooling a material to be treated after carburizing with cooling medium, are provided so that the treating material composed of the iron and steel material and carbon source needed to the carburization, are prepared in the microwave irradiation chamber. The carbon source is supplied with the solid or the gas. The microwave is irradiated under a state that the material to be treated, the carbon source and the atmospheric gas containing Ar and O<SB>2</SB>exist, and Ar plasma is generated with the reaction of the carbon source and the oxygen and , the generation of CO accompanied with the reaction and excitation, carbon ion is generated to carburize the material to be treated. Thereafter, the material to be treated is rapidly cooled with a cooling medium to apply the quenching. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ波を加熱源とする浸炭炉に係り、また、その浸炭炉を用いて鉄鋼材料を浸炭処理する方法に関する。   The present invention relates to a carburizing furnace using a microwave as a heating source, and also relates to a method of carburizing a steel material using the carburizing furnace.

現在、マイクロ波は食品の加熱、乾燥及び殺菌等に用いられるほか、高分子材料の固化やセラミックスの焼成などに用いられている。マイクロ波とは、一般に周波数が300MHz〜300GHzの電磁波のことをいう。食品に含まれる水などの極性分子、高分子、セラミックスなどのいわゆる誘電体の加熱の場合、マイクロ波の電界が大きな役割を果している。他方、ごく最近、マイクロ波が金属粉末あるいは金属塊を加熱できることが報告されている。   At present, microwaves are used for heating, drying and sterilizing foods, and for solidifying polymer materials and firing ceramics. A microwave generally refers to an electromagnetic wave having a frequency of 300 MHz to 300 GHz. In heating of so-called dielectrics such as water, polar molecules such as water, polymers and ceramics, the electric field of the microwave plays a major role. On the other hand, very recently it has been reported that microwaves can heat metal powders or metal masses.

マイクロ波を金属材料に照射する研究は1990年代頃から着手されている。特にマイクロ波による表面改質処理に関する研究は活発である。マイクロ波を利用して、表面改質する技術として特許文献1〜4がある。これらは、主としてマイクロ波によりプラズマを発生させるための装置に関する発明である。マイクロ波によりプラズマを発生させる手法は、主として電極を設ける手法がとられており、装置の構成自体が極めて重要な技術的因子となる。無電極プラズマ発生に関しては特許文献5があるが、やはり装置自体は複雑な構成となる。また、マイクロ波による表面改質処理は窒化や成膜への応用が主であり、特殊な温度パターンを必要とする浸炭・焼入れプロセスをカバーしていない。   Research on irradiating metal materials with microwaves has been underway since the 1990s. Research on surface modification using microwaves is particularly active. There are Patent Documents 1 to 4 as techniques for surface modification using microwaves. These are inventions related to an apparatus for generating plasma mainly by microwaves. The method of generating plasma by microwaves is mainly a method of providing electrodes, and the configuration of the apparatus itself is an extremely important technical factor. Although there is Patent Document 5 regarding generation of electrodeless plasma, the apparatus itself has a complicated configuration. In addition, microwave surface modification is mainly applied to nitriding and film formation, and does not cover carburizing / quenching processes that require special temperature patterns.

従来の浸炭プロセスは、主に固体浸炭、ガス浸炭、プラズマ浸炭などである。これらの中で、プラズマ浸炭法は他のプロセスに比べて処理時間が速い。但し、その雰囲気は、プラズマが発生しやすい減圧雰囲気にする必要があり、プロセス及び設備が複雑となりがちである。また、従来のプラズマ浸炭法は、加熱自体は従来どおりのヒータ加熱となるため、プロセス時間の大きな割合を占める昇温プロセスに関して、その他の手法と比較して時間的優位差がない。   Conventional carburizing processes are mainly solid carburizing, gas carburizing, plasma carburizing and the like. Among these, the plasma carburizing method has a faster processing time than other processes. However, the atmosphere needs to be a reduced pressure atmosphere in which plasma is easily generated, and the process and equipment tend to be complicated. Further, in the conventional plasma carburizing method, since the heating itself is the same as the conventional heater heating, there is no temporal advantage difference with respect to the temperature rising process that occupies a large proportion of the process time as compared with other methods.

特開2005−235464号公報JP 2005-235464 A 特開平9−235686号公報JP-A-9-235686 特開2004−14631号公報JP 2004-14631 A 特開2003−62452号公報JP 2003-62452 A 特開2005−196980号公報JP 2005-196980 A

前述のように、従来のマイクロ波による表面改質処理は浸炭処理をカバーしていない。   As described above, the conventional surface modification treatment by microwave does not cover the carburization treatment.

本発明の目的は、マイクロ波を用い、無電極且つ大気圧下で浸炭を行えるようにしたマイクロ波浸炭炉と、その浸炭炉による鉄鋼材料の浸炭処理方法を提供することにある。   An object of the present invention is to provide a microwave carburizing furnace that can perform carburization under an electrodeless and atmospheric pressure using a microwave, and a carburizing method of a steel material using the carburizing furnace.

本発明は、マイクロ波を加熱源とし、無電極かつ大気圧でプラズマを発生させて浸炭処理を行うマイクロ波浸炭炉であって、マイクロ波が導入されるマイクロ波照射室と、前記マイクロ波照射室に少なくともArとOを含む雰囲気ガスを供給する雰囲気ガス供給機構と、浸炭後の被処理物を冷却媒体により冷却するための急冷機構とを備え、前記マイクロ波照射室に鉄鋼材料よりなる被処理物と浸炭に必要な炭素源が配備されることを特徴とするマイクロ波浸炭炉にある。 The present invention relates to a microwave carburizing furnace that uses a microwave as a heat source and generates a plasma at an atmospheric pressure and generates a plasma at an atmospheric pressure, and performs a carburizing process, the microwave irradiation chamber into which the microwave is introduced, and the microwave irradiation An atmosphere gas supply mechanism for supplying an atmosphere gas containing at least Ar and O 2 to the chamber; and a quenching mechanism for cooling the workpiece after carburization with a cooling medium, and the microwave irradiation chamber is made of a steel material. The microwave carburizing furnace is characterized in that a carbon source necessary for the workpiece and carburizing is provided.

また、本発明は、マイクロ波を加熱源に用いて、鉄鋼材料よりなる被処理物に浸炭処理を施す方法であって、被処理物と炭素源及びArとOを含む雰囲気ガスの存在下でマイクロ波を照射し、炭素源と酸素の反応とそれに伴うCOの発生及び励起によりArプラズマを発生させ、炭素イオンを生成させて被処理物を浸炭し、その後、冷却媒体により被処理物を急冷して焼入れを行うことを特徴とするマイクロ波浸炭方法にある。 Further, the present invention is a method for carburizing a workpiece made of a steel material using a microwave as a heating source, in the presence of an atmosphere gas containing the workpiece, a carbon source, and Ar and O 2. Irradiate microwaves to generate Ar plasma by the reaction of the carbon source and oxygen and the accompanying generation and excitation of CO, to generate carbon ions to carburize the workpiece, and then to cool the workpiece with a cooling medium. A microwave carburizing method characterized by quenching and quenching.

本発明により、マイクロ波を加熱源に用いて、無電極かつ大気圧で浸炭を行う浸炭炉と、その浸炭炉を用いて鉄鋼材料を浸炭処理する方法が提供できた。   According to the present invention, it is possible to provide a carburizing furnace that uses a microwave as a heating source and performs carburizing at no pressure and at atmospheric pressure, and a method for carburizing a steel material using the carburizing furnace.

本発明の浸炭炉は極めて単純な作りであり、炉にプラズマを発生させるための電極を用いない。プラズマの発生は主として、マイクロ波照射下における化学反応とガスの励起により生じる。   The carburizing furnace of the present invention is extremely simple and does not use electrodes for generating plasma in the furnace. The generation of plasma is mainly caused by chemical reaction and gas excitation under microwave irradiation.

従来のマイクロ波照射設備は、浸炭処理を目的とするものではないため、浸炭焼入れ処理を施すために必要な急冷機構を具備していない。本発明は、マイクロ波浸炭炉に焼入れ処理を目的とした急冷機構を備えている。本発明の浸炭炉と浸炭方法を用いることにより、従来法に比べ、その処理時間を飛躍的に速めることが可能である。また、マイクロ波特有の選択加熱性により、基材の温度上昇を抑えながら浸炭することができる。本発明では、温度に対して組織変化が激しい超微細結晶組織材料を、結晶組織の変化を殆んど生じさせることなく浸炭処理することができる。   Since the conventional microwave irradiation equipment is not intended for carburizing, it does not have a quenching mechanism necessary for performing carburizing and quenching. The present invention includes a quenching mechanism for the purpose of quenching in a microwave carburizing furnace. By using the carburizing furnace and the carburizing method of the present invention, it is possible to dramatically increase the processing time compared to the conventional method. Moreover, carburization can be performed while suppressing the temperature rise of the substrate due to the selective heating property unique to microwaves. In the present invention, an ultrafine crystal structure material whose structure changes rapidly with respect to temperature can be carburized without causing almost any change in crystal structure.

本発明は、鉄鋼材料の浸炭処理に適用される。鉄鋼材料の浸炭処理品は、一般に耐摩耗性を付与することを目的とし、電力・化学などのプラント構成部品、電力設備構成部品、鉄道・船舶・陸運・航空・宇宙などの運輸に関る機械構成部品、家電製品用部品、建設機械用部品、金型、工作機械用部品、機械締結部品、医療用部品などに使用されている。本発明は、従来の浸炭処理品が適用される技術分野全体に適用することができる。   The present invention is applied to carburizing treatment of steel materials. In general, carburized products of steel materials are intended to provide wear resistance. Plant components such as electric power and chemistry, power equipment components, and machinery related to transportation such as railways, ships, land transportation, aviation, and space. Used for components, home appliance parts, construction machine parts, molds, machine tool parts, machine fastening parts, medical parts, etc. The present invention can be applied to the entire technical field to which conventional carburized products are applied.

マイクロ波加熱は、従来のプラズマ浸炭法に比べ局所的な加熱が可能であり,エネルギーを対象物に集中できるため、極めて高速に昇温をすることができる。また、マイクロ波の照射によって発生するプラズマは、浸炭処理を行う時に表面のクリーニングおよび炭素イオンの生成など、極めて有用である。従来のプラズマ浸炭は、減圧雰囲気において電極を用いてプラズマを発生させる。本発明では、マイクロ波を照射し、電極を用いず、代わりに雰囲気を制御することによって、大気圧下でプラズマを発生させることができる。前述の通り、マイクロ波によって大気圧下でプラズマを発生させる表面処理装置には特許文献1等がある。これらの従来装置と比べ、本発明の浸炭炉は、マイクロ波を加熱源とすること、電極を用いないこと、浸炭専用の設備であり浸炭後直ぐに焼入れするための急冷設備が備えられている点に特徴がある。   Microwave heating can be heated locally compared to the conventional plasma carburizing method, and energy can be concentrated on the object, so that the temperature can be raised extremely rapidly. In addition, plasma generated by microwave irradiation is extremely useful for surface cleaning and generation of carbon ions during carburizing treatment. Conventional plasma carburizing generates plasma using electrodes in a reduced pressure atmosphere. In the present invention, plasma can be generated under atmospheric pressure by irradiating microwaves and using no electrode, but instead controlling the atmosphere. As described above, there is Patent Document 1 or the like as a surface treatment apparatus that generates plasma under atmospheric pressure by using a microwave. Compared with these conventional devices, the carburizing furnace of the present invention uses a microwave as a heating source, does not use an electrode, is equipped with a quenching facility for quenching immediately after carburizing, which is a dedicated carburizing facility. There is a feature.

マイクロ波によって金属を加熱することができる。マイクロ波の磁場がその効果に大きな役割を担うと考えられ、金属材料でも磁性材料はその効果が顕著である。鉄鋼材料は磁性材料であり、マイクロ波によって加熱されやすい。他方、浸炭される炭素原子は電場に強く励起される。すなわち、鉄とカーボンは位相の異なる波、すなわち、電場と磁場によって揺さぶられる。この作用により、マイクロ波照射下における鉄中のカーボンの拡散速度は、従来のヒータ加熱に比べて速くなり、浸炭処理時間を従来よりも短縮することができる。   The metal can be heated by microwaves. The magnetic field of microwaves is considered to play a large role in the effect, and the effect is remarkable in the magnetic material even with the metal material. Steel materials are magnetic materials and are easily heated by microwaves. On the other hand, carburized carbon atoms are strongly excited by an electric field. That is, iron and carbon are shaken by waves with different phases, that is, an electric field and a magnetic field. By this action, the diffusion rate of carbon in iron under microwave irradiation becomes faster than conventional heater heating, and the carburizing time can be shortened compared to the conventional case.

更に、マイクロ波加熱の場合、試料以外の炉壁などは加熱されていないため、急峻に試料を冷却することができる。また、マイクロ波浸炭炉では、昇温,浸炭,冷却のいずれの工程も、従来と比較し時間を短縮することができる。   Furthermore, in the case of microwave heating, since the furnace wall other than the sample is not heated, the sample can be rapidly cooled. Further, in the microwave carburizing furnace, the time for heating, carburizing, and cooling can be reduced as compared with the conventional method.

マイクロ波は、一般に普及しているマグネトロンによる2.45GHzの周波数で、充分に鉄鋼の加熱および浸炭を行うことができる。但し、マイクロ波の照射モードをシングルモードとした場合は、浸炭する試料の大きさなどから周波数を1GHz程度とした方が、電磁界領域が広くなり好ましい。照射モードをシングルモードとした場合には、エネルギーを小領域に集中することができるため、高速加熱に有利である。対象物が小型かつ少量である場合には、シングルモード炉によって処理することにより、更にプロセスを高速化することができ、対象物のサイズおよび生産量によっては極めて高い生産性を実現することができ、大きな利点がある。   Microwaves can sufficiently heat and carburize steel at a frequency of 2.45 GHz by a magnetron that is widely used. However, when the microwave irradiation mode is set to the single mode, it is preferable to set the frequency to about 1 GHz because of the size of the sample to be carburized, because the electromagnetic field region becomes wider. When the irradiation mode is a single mode, energy can be concentrated in a small area, which is advantageous for high-speed heating. If the object is small and small, the process can be further speeded up by processing with a single-mode furnace, and extremely high productivity can be realized depending on the size and production volume of the object. Have great advantages.

一方、周波数を30GHz程度とした場合には、金属材料の高温酸化が抑制される効果がある。浸炭処理では、試料の結晶粒界の酸化が大きな課題でもあり、高温酸化が抑制されることにより、極めて高品質な浸炭処理が可能となる。上記の理由から、マイクロ波の周波数は1GHz〜30GHzの範囲が好ましい。   On the other hand, when the frequency is about 30 GHz, there is an effect of suppressing high-temperature oxidation of the metal material. In the carburizing process, oxidation of the crystal grain boundaries of the sample is also a major issue, and extremely high-quality carburizing can be performed by suppressing high-temperature oxidation. For the above reasons, the microwave frequency is preferably in the range of 1 GHz to 30 GHz.

浸炭処理を行った試料は、浸炭処理後に焼入れを行わなければならない。焼入れは鉄のマルテンサイト変態を利用した硬化処理であり、γ変態温度に加熱した鉄鋼を一定以上の冷却速度で冷却することにより焼入れを行うことができる。焼きが入ったか否かの判断は、処理後の硬さが処理前の硬さの2倍以上になっているか否かで判断される。通常のプラズマ浸炭あるいはガス浸炭などでは、冷却は、加圧されたHeなどの不活性ガスを炉内に導入することによって行うことが多い。本発明のマイクロ波浸炭炉では、加熱されているのが試料近傍のみであり、炉壁などは加熱されず、かつ大気圧で処理されるため、加熱後直ぐに炉を開放して試料をハンドリングすることが可能である。炉に隣接して、冷却室を設けることで油冷による焼入れなど行うこともできる。更に、冷却媒体が水の場合、水を直接炉内に導入して冷却することも可能である。炉内が水に濡れても、マイクロ波を照射することにより、水を直ちに蒸発させることが可能であり、次ぎの処理に支障の無い状態に直ちに復元することができる。   Samples that have been carburized must be quenched after carburizing. Quenching is a hardening treatment using martensitic transformation of iron, and quenching can be performed by cooling steel heated to a γ transformation temperature at a cooling rate of a certain level or higher. Judgment as to whether or not baking has been performed is made based on whether or not the hardness after processing is more than twice the hardness before processing. In normal plasma carburizing or gas carburizing, cooling is often performed by introducing an inert gas such as pressurized He into the furnace. In the microwave carburizing furnace of the present invention, only the vicinity of the sample is heated, and the furnace wall and the like are not heated and are processed at atmospheric pressure. Therefore, the furnace is opened immediately after heating to handle the sample. It is possible. Quenching by oil cooling can be performed by providing a cooling chamber adjacent to the furnace. Further, when the cooling medium is water, it is also possible to cool by introducing water directly into the furnace. Even if the inside of the furnace gets wet, it is possible to immediately evaporate the water by irradiating it with microwaves, and it is possible to immediately restore the state in which there is no hindrance to the next processing.

本発明のマイクロ波浸炭炉は、マイクロ波の照射に起因した雰囲気ガスの化学反応と、ガスの励起によりプラズマを発生させる。従って、炉内に電極を設置する必要はない。   The microwave carburizing furnace of the present invention generates a plasma by a chemical reaction of an atmospheric gas caused by microwave irradiation and gas excitation. Therefore, there is no need to install an electrode in the furnace.

本発明の浸炭方法は、炉内に炭素源と被処理物の鉄鋼材料があり、雰囲気にAr及び酸素の混合ガスを用いることで実現できる。この状態でマイクロ波を照射することにより、大気圧下においても容易にプラズマが発生する。酸素は炭素と反応しCOを生成する。COは極性分子であり、マイクロ波が照射されることで励起される。炭素源と酸素による反応と、それに伴うCOの発生と当該ガスの励起により、Arプラズマの発生が誘発される。Arはプラズマとなったときに、鉄鋼試料表面をスパッタして金属活性面を露出させる効果がある他、炭素イオンを生成する効果がある。炭素イオンが金属活性面に接触することで浸炭が生じる。   The carburizing method of the present invention can be realized by using a carbon source and a steel material to be processed in the furnace and using a mixed gas of Ar and oxygen in the atmosphere. By irradiating microwaves in this state, plasma is easily generated even under atmospheric pressure. Oxygen reacts with carbon to produce CO. CO is a polar molecule and is excited when irradiated with microwaves. The generation of Ar plasma is induced by the reaction of the carbon source and oxygen, the accompanying generation of CO, and the excitation of the gas. When Ar becomes plasma, it has the effect of sputtering the surface of the steel sample to expose the metal active surface and also generating carbon ions. Carburization occurs when carbon ions come into contact with the metal active surface.

COは試料表面の還元と、試料表面に炭素を供給する役割も担う。炭素源と酸素の反応により発生するCOの量が微量である場合には、雰囲気ガスに外部からCOガス或いは/及び炭化水素系ガスを導入すると、浸炭の効率が良くなり、浸炭処理速度を更に速めることができる。また、雰囲気にHを加えることにより、極めて迅速に表面酸化膜の還元が進み、プロセス時間を短縮することができる。従って、浸炭方法の雰囲気はArとOの混合ガスあるいは、これにCOと炭化水素系ガス及びHの少なくとも一種を混合した雰囲気にすることが望ましい。但し、Hと炭化水素系ガスを用いる場合、Oガスは爆発限界以下の低濃度に抑える必要があり、扱いが難しくなるため、可能な限りAr,O,COのみで処理することが好ましい。 CO also plays a role in reducing the sample surface and supplying carbon to the sample surface. When the amount of CO generated by the reaction between the carbon source and oxygen is very small, the introduction of CO gas and / or hydrocarbon gas from the outside to the atmospheric gas improves the carburizing efficiency and further increases the carburizing speed. You can speed up. Further, by adding H 2 to the atmosphere, the reduction of the surface oxide film proceeds very rapidly, and the process time can be shortened. Accordingly, the atmosphere of the carburizing method is desirably a mixed gas of Ar and O 2 or an atmosphere in which at least one of CO, a hydrocarbon-based gas, and H 2 is mixed. However, when H 2 and hydrocarbon gas are used, O 2 gas needs to be kept at a low concentration below the explosion limit and becomes difficult to handle. Therefore, it can be treated only with Ar, O 2 and CO as much as possible. preferable.

炭素源は、固体又はガスにて供給される。固体の炭素源の場合は、例えばカーボン粉末を鉄鋼試料にコーティング或いはスプレーによって密着あるいは接触させることが望ましい。ガスを炭素源として用いる場合は、COと炭化水素系ガスの少なくとも一方を雰囲気ガスに含有させることが望ましい。   The carbon source is supplied as a solid or a gas. In the case of a solid carbon source, for example, it is desirable that the carbon powder is brought into close contact or contact with the steel sample by coating or spraying. When using a gas as a carbon source, it is desirable to include at least one of CO and hydrocarbon gas in the atmospheric gas.

炭素源を鉄鋼試料の表面に密着或いは接触させた場合、Cの供給を迅速に進めることができる。これは、炭素源と酸素の反応により発生するCOガスが効率的に試料表面に供給されること、および炭素源と試料表面の直接接触により原子拡散が進行するためである。特に、マイクロ波照射下では、炭素源の方が、試料よりも加熱されやすいため、試料温度を低く抑えたままで炭素源側が優先的に加熱され、鉄鋼試料側の温度を低く抑えることができる。この時、鉄鋼試料側を冷却しながら処理を行えば、鉄鋼試料内部の温度上昇を極めて低い水準に抑制することが可能であり、たとえば熱的な組織変化あるいは劣化が生じやすい超微細結晶鉄鋼材料の浸炭処理を行う上で有用である。ここで、超微細結晶鉄鋼材料とは結晶粒径が1μm以下の鉄鋼材料である。結晶粒径が1μm以下の超微細結晶鉄鋼材料では、結晶粒微細化強化により、靭性を損なうことなく1000MPa以上に高強度化することも可能である。但し、超微細結晶鉄鋼材料は、γ変態する領域に加熱すると急激に結晶成長が生じ、普通の鋼に戻る。本発明では、基材の温度を低く抑えたまま、かつ短時間で浸炭処理を施すことができるので、超微細結晶鉄鋼材料の結晶粒粗大化を抑制し、基材の機械的特性を損なうことなく表面処理ができる。   When the carbon source is brought into close contact with or in contact with the surface of the steel sample, the supply of C can be rapidly advanced. This is because CO gas generated by the reaction between the carbon source and oxygen is efficiently supplied to the sample surface, and atomic diffusion proceeds by direct contact between the carbon source and the sample surface. In particular, under microwave irradiation, the carbon source is more easily heated than the sample, so that the carbon source side is preferentially heated while the sample temperature is kept low, and the temperature on the steel sample side can be kept low. At this time, if the treatment is performed while cooling the steel sample side, the temperature rise inside the steel sample can be suppressed to a very low level, for example, an ultrafine crystal steel material that is likely to undergo thermal structural change or deterioration. It is useful for carburizing treatment. Here, the ultrafine crystal steel material is a steel material having a crystal grain size of 1 μm or less. In the ultrafine crystal steel material having a crystal grain size of 1 μm or less, it is possible to increase the strength to 1000 MPa or more without impairing the toughness by strengthening the grain refinement. However, when the ultrafine crystal steel material is heated to a region where it undergoes γ transformation, crystal growth occurs abruptly and returns to ordinary steel. In the present invention, since the carburizing treatment can be performed in a short time while keeping the temperature of the base material low, the coarsening of crystal grains of the ultrafine crystal steel material is suppressed and the mechanical properties of the base material are impaired. Surface treatment is possible.

本発明によるマイクロ波浸炭炉の一実施例としてマルチモード炉を図1に示す。図1の浸炭炉は、マイクロ波照射機能が内蔵されたマイクロ波照射炉100を備え、その炉にArとOを含む雰囲気ガスを供給する雰囲気ガス供給管101と、冷却ガス供給管102が設置されている。マイクロ波照射炉100の内部には、マイクロ拡散用ファン103と、サセプター104と、サセプターのマニピュレート用ロッド105と、冷媒噴霧ノズル106が設置されている。マイクロ波照射炉の炉壁の一部には温度測定用窓107が設けられている。また、マイクロ波照射炉に隣接して冷却室108が併設されており、マイクロ波照射炉と冷却室はゲート109で繋がっている。このゲートの動作はマイクロ波の出力系と連動する構成であり、ゲートが開く前にマイクロ波の出力はオフになる。従って、冷却室108には任意の液体を入れることが可能である。また、冷媒噴霧時にもマイクロ波の出力がオフになる構成となっている。浸炭後に焼入れを行うための急冷機構としては、冷却ガス供給手段と冷却室のどちらか一方を設けるだけで十分であるが、本実施例では両方を備えて任意に選択できるようにしている。 A multimode furnace is shown in FIG. 1 as an embodiment of the microwave carburizing furnace according to the present invention. The carburizing furnace of FIG. 1 includes a microwave irradiation furnace 100 with a built-in microwave irradiation function, and an atmosphere gas supply pipe 101 for supplying an atmosphere gas containing Ar and O 2 to the furnace, and a cooling gas supply pipe 102. is set up. Inside the microwave irradiation furnace 100, a micro diffusion fan 103, a susceptor 104, a susceptor manipulating rod 105, and a refrigerant spray nozzle 106 are installed. A temperature measurement window 107 is provided in a part of the wall of the microwave irradiation furnace. In addition, a cooling chamber 108 is provided adjacent to the microwave irradiation furnace, and the microwave irradiation furnace and the cooling chamber are connected by a gate 109. The operation of the gate is linked to the microwave output system, and the microwave output is turned off before the gate is opened. Therefore, any liquid can be placed in the cooling chamber 108. In addition, the microwave output is turned off even when the refrigerant is sprayed. As a quenching mechanism for quenching after carburizing, it is sufficient to provide only one of the cooling gas supply means and the cooling chamber, but in this embodiment, both can be arbitrarily selected.

図1に示す構成の浸炭炉を用いて、浸炭実験を行った。照射するマイクロ波の波長は2.45GHzとした。浸炭処理を行う試料150はISO:18CrMo4に類似する成分組成の鉄鋼材料SCM415とし、SCM415の表面にカーボン粉末を塗布した。また、カーボンをサセプター104として試料を覆うように設置した。マイクロ波の一部はカーボンを励起し、発熱したカーボンの輻射熱が試料の昇温をアシストしている。炉内には90%Arと10%Oの混合ガスをフローさせた。浸炭処理条件は温度900℃、保持時間3分とした。 Carburizing experiments were performed using the carburizing furnace having the configuration shown in FIG. The wavelength of the microwave to be irradiated was 2.45 GHz. A sample 150 to be carburized was an steel material SCM415 having a component composition similar to ISO: 18CrMo4, and carbon powder was applied to the surface of the SCM415. Carbon was used as a susceptor 104 so as to cover the sample. Part of the microwave excites carbon, and the radiant heat of the generated carbon assists the temperature rise of the sample. A mixed gas of 90% Ar and 10% O 2 was flowed into the furnace. The carburizing conditions were a temperature of 900 ° C. and a holding time of 3 minutes.

当該セッティングで最大6kWのマイクロ波を照射した。目標温度には10分で到達した。マイクロ波照射中は、炉内全体にプラズマの発生が認められた。目標温度に達した後、所定の時間保持し、その後、直ちに冷却室108に試料150を落下させた。ここでは試料を冷却室に落下させたが、落下させずに、冷媒噴霧ノズル106からHeガスを吹付けて焼入れ処理を行ってもよい。なお、冷媒噴霧ノズルから冷媒を吹付けるときは、サセプターを移動して、冷媒が直接試料に当たるようにするとよい。   With this setting, a maximum of 6 kW of microwave was irradiated. The target temperature was reached in 10 minutes. During microwave irradiation, plasma was observed throughout the furnace. After reaching the target temperature, the sample 150 was held for a predetermined time, and then the sample 150 was immediately dropped into the cooling chamber 108. Although the sample is dropped in the cooling chamber here, the quenching process may be performed by blowing He gas from the refrigerant spray nozzle 106 without dropping. In addition, when spraying the coolant from the coolant spray nozzle, it is preferable to move the susceptor so that the coolant directly hits the sample.

焼入れ処理後の表面近傍の硬さ分布を表1に示す。僅か3分の処理でも表面から約200μmまで硬さの向上が認められ、浸炭焼入れが施されていることが分かった。本プロセスにおいて、試料をセットしてから取り出すまでの所要時間は約15分であった。通常のプラズマ浸炭あるいはガス浸炭では、試料をセットしてから取り出すまでに数時間を要するのに対し、本発明では極めて短時間に浸炭処理を行うことができた。   Table 1 shows the hardness distribution in the vicinity of the surface after the quenching treatment. Even in a treatment of only 3 minutes, an improvement in hardness was recognized from the surface to about 200 μm, and it was found that carburizing and quenching was performed. In this process, the time required from setting the sample to taking it out was about 15 minutes. In normal plasma carburizing or gas carburizing, it takes several hours to set and take out a sample, but in the present invention, carburizing treatment can be performed in a very short time.

Figure 2008031539
Figure 2008031539

本発明の別の実施例として、シングルモード浸炭炉の例を図2に示す。図2の浸炭炉は、雰囲気ガスの供給前に真空排気することが可能な容器200を備え、その容器にArとOを含む雰囲気ガスを供給する雰囲気ガス供給管201と、ガス冷媒供給管202、液冷媒供給管203が設置されている。容器の一部にはマイクロ波(MW)導入用のアルミナ製の窓204が設けられている。また、容器200に隣接して冷却室205が併設されており、容器と冷却室はゲート206で繋がっている。シングルモードの場合、マルチモード炉とは異なり、マイクロ拡散用ファンを省略できる。ガス冷媒供給管と液冷媒供給管の両方を備えたのは、どちらかを任意に選択できるようにするためである。本実施例の装置の場合、マルチモード炉に比べ、容積が小さく、強電磁界領域を作れることから、より高速の加熱が可能である。図3にサセプターを入れずに強磁場中でSCM415を加熱した時の温度とマイクロ波照射時間との関係を示した。マイクロ波の出力は2kWとした。サセプターが無くても100℃/分以上の加熱速度を実現できていることがわかる。シングルモード炉では、サセプター等を用いれば、3kWの出力でも、鉄基材料を約900℃まで5分以内に加熱することが可能である。 FIG. 2 shows an example of a single mode carburizing furnace as another embodiment of the present invention. The carburizing furnace of FIG. 2 includes a container 200 that can be evacuated before supplying atmospheric gas, an atmospheric gas supply pipe 201 that supplies atmospheric gas containing Ar and O 2 to the container, and a gas refrigerant supply pipe. 202, a liquid refrigerant supply pipe 203 is installed. A part of the container is provided with an alumina window 204 for introducing a microwave (MW). In addition, a cooling chamber 205 is provided adjacent to the container 200, and the container and the cooling chamber are connected by a gate 206. In the single mode, unlike the multimode furnace, the micro diffusion fan can be omitted. The reason why both the gas refrigerant supply pipe and the liquid refrigerant supply pipe are provided is to allow any one to be selected arbitrarily. In the case of the apparatus of this embodiment, the volume is smaller than that of the multi-mode furnace and a strong electromagnetic field region can be created, so that higher-speed heating is possible. FIG. 3 shows the relationship between the temperature and the microwave irradiation time when the SCM 415 is heated in a strong magnetic field without inserting a susceptor. The output of the microwave was 2 kW. It can be seen that a heating rate of 100 ° C./min or more can be realized without a susceptor. In a single mode furnace, if a susceptor or the like is used, the iron-based material can be heated to about 900 ° C. within 5 minutes even at a power of 3 kW.

超微細結晶フェライト鋼の浸炭焼入れを、図2のシングルモード炉を用いて行った。超微細結晶フェライト鋼の結晶粒径と硬さの関係を図4に示す。この試料の結晶粒径と強度の関係はホールペッチの関係で表すことができ、超微細結晶フェライト鋼の硬さは結晶粒微細化強化により発現されている。浸炭処理に用いた超微細結晶フェライト鋼の硬さは、約400HVである。   Carburizing and quenching of ultrafine crystal ferritic steel was performed using the single mode furnace of FIG. FIG. 4 shows the relationship between the crystal grain size and hardness of the ultrafine crystal ferritic steel. The relationship between the crystal grain size and the strength of this sample can be expressed by the Hall Petch relationship, and the hardness of the ultrafine crystal ferritic steel is expressed by strengthening the crystal grain refinement. The hardness of the ultrafine crystal ferritic steel used for the carburizing process is about 400 HV.

試料のセッティング状況を図5に示す。試料にはサセプター兼炭素源を接触させた。また、試料の背面側は、Cu製の試料ホルダを介して液体窒素を満たした容器壁面に密着させ、試料温度の上昇を防止するようにした。雰囲気は90%Ar−10%O混合ガスとし、浸炭処理条件は900℃,20分とした。目標温度に達した後、所定の時間保持し、その後、マイクロ波の出力を落とした。焼入れは、Cu製の試料ホルダを介した液体窒素による冷却で行った。 The setting condition of the sample is shown in FIG. The sample was contacted with a susceptor and carbon source. Further, the back side of the sample was brought into close contact with a vessel wall surface filled with liquid nitrogen through a Cu sample holder to prevent an increase in the sample temperature. The atmosphere was 90% Ar-10% O 2 mixed gas, and the carburizing conditions were 900 ° C. and 20 minutes. After reaching the target temperature, it was held for a predetermined time, and then the microwave output was reduced. Quenching was performed by cooling with liquid nitrogen through a Cu sample holder.

焼入れ処理後の表面近傍の硬さ分布を表2に示す。表面から約500μmの深さまで、硬さの向上が認められ、浸炭焼入れができていることが分かった。また、超微細結晶フェライト鋼の基材における硬さは、処理前に比べ殆んど低下することなく、基材内部は結晶粒の粗大化が抑制されていることがわかった。   Table 2 shows the hardness distribution near the surface after quenching. From the surface to the depth of about 500 micrometers, the improvement of hardness was recognized and it turned out that carburizing and quenching has been performed. In addition, it was found that the hardness of the ultrafine crystal ferritic steel in the base material is hardly reduced as compared with that before the treatment, and the coarsening of crystal grains is suppressed in the base material.

Figure 2008031539
Figure 2008031539

本発明の一実施例を示すマルチモード浸炭炉の概略構成図。The schematic block diagram of the multi-mode carburizing furnace which shows one Example of this invention. 本発明の他の実施例を示すシングルモード浸炭炉の概略構成図。The schematic block diagram of the single mode carburizing furnace which shows the other Example of this invention. 図2の装置を用い、サセプターを入れずに強磁場中でSCM415を加熱した時の温度とマイクロ波照射時間との関係を示す線図。The diagram which shows the relationship between the temperature when SCM415 is heated in a strong magnetic field without putting a susceptor using the apparatus of FIG. 2, and microwave irradiation time. 超微細結晶フェライト鋼の結晶粒径と硬さの関係を示す線図。The diagram which shows the relationship between the crystal grain size and hardness of ultra-fine crystal ferritic steel. 図2の装置における試料のセッティング状況を示す概略図。Schematic which shows the setting condition of the sample in the apparatus of FIG.

符号の説明Explanation of symbols

100…マイクロ波照射炉、101…雰囲気ガス供給管、102…冷却ガス供給管、103…マイクロ拡散用ファン、104…サセプター、105…マニピュレート用ロッド、106…冷媒噴霧ノズル、107…温度測定用窓、108…冷却室、109…ゲート、150…試料、200…容器、201…雰囲気ガス供給管、202…ガス冷媒供給管、203…液冷媒供給管、204…窓、205…冷却室、206…ゲート。   DESCRIPTION OF SYMBOLS 100 ... Microwave irradiation furnace, 101 ... Atmospheric gas supply pipe, 102 ... Cooling gas supply pipe, 103 ... Micro diffusion fan, 104 ... Susceptor, 105 ... Manipulation rod, 106 ... Refrigerant spray nozzle, 107 ... Temperature measurement window , 108 ... cooling chamber, 109 ... gate, 150 ... sample, 200 ... container, 201 ... atmospheric gas supply pipe, 202 ... gas refrigerant supply pipe, 203 ... liquid refrigerant supply pipe, 204 ... window, 205 ... cooling chamber, 206 ... Gate.

Claims (19)

マイクロ波を加熱源とし、無電極かつ大気圧でプラズマを発生させて浸炭処理を行うマイクロ波浸炭炉であって、マイクロ波が導入されるマイクロ波照射室と、前記マイクロ波照射室にArとOを含む雰囲気ガスを供給する雰囲気ガス供給機構と、浸炭後の被処理物を冷却媒体により冷却するための急冷機構とを備え、前記マイクロ波照射室に鉄鋼材料よりなる被処理物と浸炭に必要な炭素源が配備されることを特徴とするマイクロ波浸炭炉。 A microwave carburizing furnace using a microwave as a heating source and generating a plasma at an atmospheric pressure and without an electrode, and performing a carburizing process, a microwave irradiation chamber into which a microwave is introduced, and Ar and An atmosphere gas supply mechanism for supplying an atmosphere gas containing O 2 and a quenching mechanism for cooling the object to be processed after carburizing with a cooling medium, and the object to be processed and carburized of steel material in the microwave irradiation chamber A microwave carburizing furnace, which is equipped with the necessary carbon source. 請求項1において、前記急冷機構として前記マイクロ波照射室に隣接して冷却室を備えたことを特徴とするマイクロ波浸炭炉。   2. The microwave carburizing furnace according to claim 1, further comprising a cooling chamber adjacent to the microwave irradiation chamber as the quenching mechanism. 請求項1において、前記急冷機構として前記マイクロ波照射室にガス状の冷却媒体を供給する冷却ガス供給機構を備えたことを特徴とするマイクロ波浸炭炉。   The microwave carburizing furnace according to claim 1, further comprising a cooling gas supply mechanism that supplies a gaseous cooling medium to the microwave irradiation chamber as the quenching mechanism. 請求項1において、前記雰囲気ガス供給機構からArとOに加えてCOと炭化水素系ガスの少なくとも一方が供給されるようにしたことを特徴とするマイクロ波浸炭炉。 2. The microwave carburizing furnace according to claim 1, wherein at least one of CO and hydrocarbon gas is supplied from the atmospheric gas supply mechanism in addition to Ar and O 2 . 請求項1において、前記雰囲気ガス供給機構からArとOに加えてHが供給されるようにしたことを特徴とするマイクロ波浸炭炉。 2. The microwave carburizing furnace according to claim 1, wherein H 2 is supplied from the atmospheric gas supply mechanism in addition to Ar and O 2 . 請求項4において、前記雰囲気ガス供給機構から更にHが供給されるようにしたことを特徴とするマイクロ波浸炭炉。 The microwave carburizing furnace according to claim 4, wherein H 2 is further supplied from the atmospheric gas supply mechanism. 請求項1において、前記マイクロ波照射室に固体の炭素源を表面部分に備えた被処理物が配備されることを特徴とするマイクロ波浸炭炉。   2. The microwave carburizing furnace according to claim 1, wherein an object to be processed having a solid carbon source on a surface portion is disposed in the microwave irradiation chamber. 請求項1において、前記マイクロ波の周波数が1GHz以上、30GHz以下であることを特徴とするマイクロ波浸炭炉。   The microwave carburizing furnace according to claim 1, wherein the frequency of the microwave is 1 GHz or more and 30 GHz or less. 請求項1において、前記マイクロ波照射室としてマイクロ波照射機構が内蔵されたマイクロ波照射炉を備えたことを特徴とするマイクロ波浸炭炉。   The microwave carburizing furnace according to claim 1, further comprising a microwave irradiation furnace having a built-in microwave irradiation mechanism as the microwave irradiation chamber. 請求項9において、前記マイクロ波照射炉の炉内にマイクロ波拡散用ファンを備えたことを特徴とするマイクロ波浸炭炉。   The microwave carburizing furnace according to claim 9, wherein a microwave diffusion fan is provided in the furnace of the microwave irradiation furnace. 請求項9において、前記マイクロ波照射炉の内部にサセプターを備えたことを特徴とするマイクロ波浸炭炉。   The microwave carburizing furnace according to claim 9, wherein a susceptor is provided inside the microwave irradiation furnace. 請求項1において、前記マイクロ波照射室の一部にマイクロ波導入窓を有することを特徴とするマイクロ波浸炭炉。   The microwave carburizing furnace according to claim 1, wherein a microwave introduction window is provided in a part of the microwave irradiation chamber. マイクロ波を加熱源に用いて、鉄鋼材料よりなる被処理物を浸炭処理する方法であって、被処理物と炭素源及びArとOを含む雰囲気ガスの存在下でマイクロ波を照射し、炭素源と酸素の反応とそれに伴うCOの発生及び励起によりArプラズマを発生させ、炭素イオンを生成させて被処理物を浸炭し、その後、冷却媒体により被処理物を急冷して焼入れを行うことを特徴とするマイクロ波浸炭方法。 A method of carburizing a workpiece made of a steel material using a microwave as a heating source, and irradiating the microwave in the presence of a workpiece, a carbon source, and an atmosphere gas containing Ar and O 2 , Ar plasma is generated by the reaction between the carbon source and oxygen and the accompanying generation and excitation of CO, and carbon ions are generated to carburize the object to be processed, and then the object to be processed is quenched with a cooling medium and quenched. A microwave carburizing method characterized by 請求項13において、前記雰囲気ガスとしてArとO及び、COと炭化水素系ガスの少なくとも一方を含むことを特徴とするマイクロ波浸炭方法。 The microwave carburizing method according to claim 13, wherein the atmosphere gas includes at least one of Ar and O 2 , CO, and a hydrocarbon-based gas. 請求項13において、前記雰囲気ガスとしてArとO及びHを含むことを特徴とするマイクロ波浸炭方法。 The microwave carburizing method according to claim 13, wherein the atmosphere gas includes Ar, O 2, and H 2 . 請求項14において、前記雰囲気ガスとして更にHを含むことを特徴とするマイクロ波浸炭方法。 The microwave carburizing method according to claim 14, further comprising H 2 as the atmospheric gas. 請求項13において、前記炭素源が固体又はガスであり、固体がカーボン粉末、ガスがCO又は炭化水素系ガスよりなることを特徴とするマイクロ波浸炭方法。   14. The microwave carburizing method according to claim 13, wherein the carbon source is a solid or a gas, the solid is a carbon powder, and the gas is a CO or hydrocarbon gas. 請求項13において、前記被処理物が結晶粒径1μm以下で引張強度1000MPa以上の鉄鋼材料よりなることを特徴とするマイクロ波浸炭方法。   The microwave carburizing method according to claim 13, wherein the workpiece is made of a steel material having a crystal grain size of 1 μm or less and a tensile strength of 1000 MPa or more. 請求項13において、前記マイクロ波の周波数が1GHz以上、30GHz以下であることを特徴とするマイクロ波浸炭方法。   The microwave carburizing method according to claim 13, wherein the frequency of the microwave is 1 GHz or more and 30 GHz or less.
JP2006208142A 2006-07-31 2006-07-31 Microwave carburizing furnace and carburizing method Active JP4247916B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006208142A JP4247916B2 (en) 2006-07-31 2006-07-31 Microwave carburizing furnace and carburizing method
US11/829,986 US20080023109A1 (en) 2006-07-31 2007-07-30 Microwave carburizing furnace and carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208142A JP4247916B2 (en) 2006-07-31 2006-07-31 Microwave carburizing furnace and carburizing method

Publications (2)

Publication Number Publication Date
JP2008031539A true JP2008031539A (en) 2008-02-14
JP4247916B2 JP4247916B2 (en) 2009-04-02

Family

ID=38984941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208142A Active JP4247916B2 (en) 2006-07-31 2006-07-31 Microwave carburizing furnace and carburizing method

Country Status (2)

Country Link
US (1) US20080023109A1 (en)
JP (1) JP4247916B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563572C1 (en) * 2014-06-11 2015-09-20 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка" (ФГБНУ ГОСНИТИ) Steel articles surface hardening
JP2019112688A (en) * 2017-12-25 2019-07-11 Ntn株式会社 Heat treatment method of work and heat treatment apparatus
JP2019150805A (en) * 2018-03-06 2019-09-12 有限会社ヤマダ化成 Organic compound decomposition device and organic compound decomposition method
RU2717443C1 (en) * 2019-11-25 2020-03-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening cutting part of working tools
RU2718521C1 (en) * 2019-11-25 2020-04-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening of blades of working elements
RU2726051C1 (en) * 2019-12-16 2020-07-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening of working tools blades of implements for tillage
RU2740548C1 (en) * 2019-11-26 2021-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of reinforcing sheet from iron-based alloy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716637B2 (en) * 2009-06-18 2014-05-06 Babcock & Wilcox Technical Services Y-12, Llc Fluidized bed heat treating system
FR3054472B1 (en) 2016-07-26 2019-07-19 Cera Tsc METHOD FOR MAKING A CAR SEAT MAILING OF A MOTOR VEHICLE
CN113186537A (en) * 2021-04-29 2021-07-30 王鸿翔 High-temperature solid carburizing process for titanium alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850000580B1 (en) * 1983-12-31 1985-04-29 주식회사 금성사 Uniformity heating device for oven
US4943345A (en) * 1989-03-23 1990-07-24 Board Of Trustees Operating Michigan State University Plasma reactor apparatus and method for treating a substrate
US5869816A (en) * 1995-09-29 1999-02-09 Ontario Hydro Apparatus and method for continuous processing of granular materials using microwaves
US20060062930A1 (en) * 2002-05-08 2006-03-23 Devendra Kumar Plasma-assisted carburizing
US7161126B2 (en) * 2004-11-10 2007-01-09 Bwxt Y-12, Llc Microwave heat treating of manufactured components

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563572C1 (en) * 2014-06-11 2015-09-20 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский технологический институт ремонта и эксплуатации машинно-тракторного парка" (ФГБНУ ГОСНИТИ) Steel articles surface hardening
JP2019112688A (en) * 2017-12-25 2019-07-11 Ntn株式会社 Heat treatment method of work and heat treatment apparatus
JP2019150805A (en) * 2018-03-06 2019-09-12 有限会社ヤマダ化成 Organic compound decomposition device and organic compound decomposition method
RU2717443C1 (en) * 2019-11-25 2020-03-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening cutting part of working tools
RU2718521C1 (en) * 2019-11-25 2020-04-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening of blades of working elements
RU2740548C1 (en) * 2019-11-26 2021-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of reinforcing sheet from iron-based alloy
RU2726051C1 (en) * 2019-12-16 2020-07-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening of working tools blades of implements for tillage

Also Published As

Publication number Publication date
JP4247916B2 (en) 2009-04-02
US20080023109A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4247916B2 (en) Microwave carburizing furnace and carburizing method
Bataev et al. Surface hardening of steels with carbon by non-vacuum electron-beam processing
Collins et al. Ion-assisted surface modification by plasma immersion ion implantation
JP6241839B2 (en) Hardening method for low alloy steel
Belkin et al. Plasma electrolytic hardening of steels
Ichiki et al. Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure
Edenhofer et al. Carburizing of steels
JP5645398B2 (en) Surface treatment apparatus and surface treatment method
Wang et al. Study on pressurized gas nitriding characteristics for steel 38CrMoAlA
Winter et al. Process technologies for thermochemical surface engineering
JP6194057B2 (en) Surface treatment agent for steel and surface treatment method for steel
JPH09104960A (en) Method and apparatus for forming corrosionproof and wearproof layer on iron-based material
Dong et al. Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge
WO2020189195A1 (en) Plasma nitridization method
Collins et al. Plasma immersion ion implantation—the role of diffusion
Özbek et al. Surface properties of M2 steel treated by pulse plasma technique
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
Pogrebnjak et al. Mass transfer and doping during electrolyte-plasma treatment of cast iron
Roliński et al. Controlling plasma nitriding of ferrous alloys
Cherenda et al. Cleaning of steel surface from scale by compression plasma flows
JP5798463B2 (en) Carburizing method and carburizing apparatus
Yamamoto et al. Effect of the Atmosphere for Heat Treatment on Carbon Flux in Ultra-Rapid Carburizing
RU2478141C2 (en) Modification method of material surface by plasma treatment
Li et al. Carburising of steel AISI 1010 by using a cathode arc plasma process
RU2532779C1 (en) Method and device for accelerated nitration of machined parts by electromagnetic field pulses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4247916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350