JP2008030963A - Civil engineering/building material having high void content and drain material for dam body - Google Patents

Civil engineering/building material having high void content and drain material for dam body Download PDF

Info

Publication number
JP2008030963A
JP2008030963A JP2006202754A JP2006202754A JP2008030963A JP 2008030963 A JP2008030963 A JP 2008030963A JP 2006202754 A JP2006202754 A JP 2006202754A JP 2006202754 A JP2006202754 A JP 2006202754A JP 2008030963 A JP2008030963 A JP 2008030963A
Authority
JP
Japan
Prior art keywords
mass
coal ash
parts
modified sulfur
civil engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006202754A
Other languages
Japanese (ja)
Other versions
JP4965178B2 (en
Inventor
Yuichi Nakano
裕一 中野
Atsushi Uehara
淳 上原
Masaaki Chatani
正明 茶谷
Junichi Tsushima
潤一 津島
Kohei Yoshida
幸平 吉田
Sumio Horiuchi
澄夫 堀内
Yuichi Tanimoto
祐一 谷本
Masato Kawaguchi
正人 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Eneos Corp
Original Assignee
Shimizu Construction Co Ltd
Nippon Oil Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Nippon Oil Corp, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006202754A priority Critical patent/JP4965178B2/en
Publication of JP2008030963A publication Critical patent/JP2008030963A/en
Application granted granted Critical
Publication of JP4965178B2 publication Critical patent/JP4965178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/36Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing sulfur, sulfides or selenium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Revetment (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a civil engineering/building material having a high void content which is applicable to a civil engineering/building structure that needs a high void content so as to exhibit excellent water permeability and needs durability such as high compressive strength or the like by utilizing reformed sulphur and a specific coal ash particulate material having a generally spherical shape, and to provide a drain material for a dam body having a high void content that enables to rapidly drain penetrated water from sea, rivers, etc. to the dam body and also excellent in durability such as acid resistance, high compression strength or the like. <P>SOLUTION: The inventive civil engineering/building material having a high void content or the drain material for a dam body is a material which has a void content of 25-50% and is obtained by coating, bonding and solidifying each of a coal ash particulate material having a diameter of 2-50 mm which contains 100 mass% of a coal ash and 10-100 mass% of an electric furnace reduction slag with a fluid material having a particle diameter of at most 1 mm and containing reformed sulphur which contains 100 mass% of fine powder and 30-400 mass% of reformed sulphur. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、改質硫黄と特定の粒状骨材を利用した、高空隙率を有する土木・建築材料及び河川の堤防等に使用することが可能な堤体用ドレーン材料に関する。   The present invention relates to a civil engineering / building material having a high porosity and a drainage material for a levee body that can be used for a bank of a river using modified sulfur and a specific granular aggregate.

従来から、防波堤基礎の地盤改良材、漁礁、藻礁、各種ブロック等に利用可能な多孔性コンクリートを利用した土木・建築用構造物が、例えば特許文献1等を含め数多く提案されている。
一方、近年、コンクリートに代わる土木・建築材料として、耐酸性、機械的強度、遮水性等に優れる硫黄含有材料が多数提案され、利用されはじめている。
このような硫黄含有材料は、該材料中の硫黄又は改質硫黄の溶融温度が通常120℃以上であるため、120〜160℃程度に保持した溶融硫黄含有物を、所定の型枠に流し込み成型固化させることにより製造されている。また、硫黄含有材料を利用した多孔体として、特許文献2には、硫黄材料と骨材とを含み、透水性を示す連続空隙を有し、空隙率が5〜40容量%である多孔質硫黄材料が提案されている。
ところで、特許文献3には、下層路盤材や盛土材等の地盤材料として有用な石炭灰に特定割合の電炉還元スラグやベントナイトを添加した混合体に水分を加えて混練し、粒状体に加工した石炭灰粒状材が記載されている。
しかし、このような石炭灰粒状材と改質硫黄とを利用した空隙率に優れた土木・建築材料は従来知られていない。
特開平5−85851号公報 特開2004−189538号公報 特開2001−48633号公報
Conventionally, many civil engineering and architectural structures using porous concrete that can be used for ground improvement materials for breakwater foundations, fishing reefs, algae reefs, various blocks, etc. have been proposed.
On the other hand, in recent years, many sulfur-containing materials excellent in acid resistance, mechanical strength, water barrier properties, etc. have been proposed and used as civil engineering and building materials to replace concrete.
Since such a sulfur-containing material usually has a melting temperature of sulfur or modified sulfur of 120 ° C. or higher, the molten sulfur-containing material maintained at about 120 to 160 ° C. is poured into a predetermined mold. Manufactured by solidifying. Further, as a porous body using a sulfur-containing material, Patent Document 2 includes porous sulfur containing a sulfur material and an aggregate, having continuous voids showing water permeability, and a porosity of 5 to 40% by volume. Materials have been proposed.
By the way, in Patent Document 3, water is added to a mixture obtained by adding a specific ratio of electric furnace reducing slag or bentonite to coal ash useful as a ground material such as a lower layer roadbed material or embankment material, and the mixture is kneaded and processed into a granular material. Coal ash particulate material is described.
However, a civil engineering / building material excellent in porosity using such granular coal ash and modified sulfur has not been known.
Japanese Patent Laid-Open No. 5-85851 JP 2004-189538 A JP 2001-48633 A

本発明の課題は、改質硫黄と略球状の特定な石炭灰粒状材を利用した、優れた透水性を発揮しうる高空隙率や、高圧縮強度等の耐久性を必要とする、土木・建築構造物に利用可能な、高空隙率土木・建築材料を提供することにある。
本発明の別の課題は、改質硫黄と略球状の特定な石炭灰粒状材を利用した、河川等の堤体への浸透水を速やかに排水することが可能な高空隙率を有し、且つ高圧縮強度等の耐久性にも優れた堤体用ドレーン材を提供することにある。
An object of the present invention is to use modified sulfur and a specific spherical ash granular material that has a high porosity capable of exhibiting excellent water permeability and durability such as high compressive strength. The object is to provide high porosity civil engineering and building materials that can be used for building structures.
Another problem of the present invention is that it uses a modified sulfur and a specific spherical ash granular material, and has a high porosity capable of quickly draining the permeated water to a bank such as a river, Another object of the present invention is to provide a drainage body drainage material having excellent durability such as high compressive strength.

本発明によれば、石炭灰100質量部と、電炉還元スラグ10〜100質量部とを含む、直径2〜50mmの石炭灰粒状材の各々を、粒径1mm以下の微粉末100質量部及び改質硫黄30〜400質量部を含む改質硫黄含有流動材料によって、被覆、接着固化した、空隙率25〜50%である高空隙率土木・建築材料又は堤体用ドレーン材料が提供される。   According to the present invention, each of the coal ash granular materials having a diameter of 2 to 50 mm including 100 parts by mass of coal ash and 10 to 100 parts by mass of the electric furnace reducing slag is converted into 100 parts by mass of fine powder having a particle size of 1 mm or less and the modification. A high-porosity civil engineering / building material having a porosity of 25 to 50%, or a drainage material for a dam body, which is covered and adhered and solidified by a modified sulfur-containing fluid material containing 30 to 400 parts by mass of sulfur, is provided.

本発明の高空隙率土木・建築材料又は堤体用ドレーン材料は、略球状である特定の石炭灰粒状材の各々を、特定の改質硫黄含有流動材料によって、被覆、接着固化した高空隙率の構造を有するので、優れた透水性を発揮しうる高空隙率や、高圧縮強度等の耐久性を必要とする、土木・建築構造物に利用可能であり、特に、河川等の堤体への浸透水を速やかに排水することが可能な堤体用ドレーン材として使用することができる。   The high porosity civil engineering / building material or the drainage material for levee bodies of the present invention is a high porosity obtained by coating and bonding and solidifying each of the specific spherical ash granular materials with a specific modified sulfur-containing fluid material. Therefore, it can be used for civil engineering and building structures that require high porosity that can exhibit excellent water permeability and durability such as high compressive strength. It can be used as a drainage material for a bank body that can quickly drain the permeated water.

以下、本発明を更に詳細に説明する。
本発明の高空隙率土木・建築材料又は堤体用ドレーン材料(以下、本発明の材料と総称する)は、特定の石炭灰粒状材の各々を、特定の改質硫黄含有流動材料によって、被覆、接着固化した、空隙率25〜50%、好ましくは30〜45%の構造体である。
本発明の材料に用いる特定の石炭灰粒状材は、石炭灰及び電気還元スラグを含む材料を、直径2〜50mm、好ましくは5〜30mmの略球状に成形した成形物である。特に、本発明のドレーン材料の場合には、石炭灰粒状材の直径は、5〜30mmがドレーン材料としての機能が発揮し易く好ましい。
本発明の材料において、各々の石炭灰粒状材の粒径は、空隙率を高くするためには略同程度の粒径とすることが好ましい。
Hereinafter, the present invention will be described in more detail.
The high porosity civil engineering / building material or the drainage drainage material of the present invention (hereinafter collectively referred to as the material of the present invention) covers each specific coal ash granular material with a specific modified sulfur-containing fluid material. And a solidified structure having a porosity of 25 to 50%, preferably 30 to 45%.
The specific coal ash granular material used for the material of the present invention is a molded product obtained by molding a material containing coal ash and electroreduction slag into a substantially spherical shape having a diameter of 2 to 50 mm, preferably 5 to 30 mm. In particular, in the case of the drain material of the present invention, the diameter of the coal ash granular material is preferably 5 to 30 mm because the function as the drain material is easily exhibited.
In the material of the present invention, it is preferable that the particle diameter of each coal ash granular material is approximately the same in order to increase the porosity.

石炭灰粒状材に含まれる電炉還元スラグは、電炉操業時に発生する粉体品をそのまま利用できる。しかし、石炭灰との混合により充分な強度発現効果を得るために、また、石炭灰との粒状化に際して、該粒状化を容易にするために、電炉還元スラグの粒径を、石炭灰の粒径と同程度に調整することが好ましい。従って、塊状の電炉還元スラグは、粉化し、好ましくは石炭灰の粒径と同程度の粒径となるように粉化することが好ましい。
電炉還元スラグは、石炭灰粒状材の製造に際して、脱水処理した状態で用いることができる他、各成分のバインダー機能を発揮させるために、電炉還元スラグ調製時に脱水処理した廃棄汚泥と共に用いることもできる。
石炭灰粒状材は、前記石炭灰、電炉還元スラグの他に、石炭灰粒状材の製造時における各成分の接着性を向上させるためにベントナイト等を含有させることもできる。
As the electric furnace reducing slag contained in the coal ash granular material, powder products generated during electric furnace operation can be used as they are. However, in order to obtain a sufficient strength development effect by mixing with coal ash, and in order to facilitate the granulation when granulating with coal ash, the particle size of the electric furnace reducing slag is changed to the particle size of coal ash. It is preferable to adjust to the same degree as the diameter. Therefore, it is preferable that the bulk electric furnace reducing slag is pulverized, and preferably pulverized so as to have a particle size comparable to that of coal ash.
Electric furnace reduced slag can be used in a dehydrated state during the production of coal ash granular material, and can also be used with waste sludge dehydrated during preparation of electric furnace reduced slag in order to exhibit the binder function of each component. .
In addition to the coal ash and the electric furnace reducing slag, the coal ash granular material may contain bentonite or the like in order to improve the adhesion of each component during the production of the coal ash granular material.

石炭灰粒状材において、電炉還元スラグの含有割合は、石炭灰100質量部に対して、10〜100質量部、好ましくは25〜75質量部である。電炉還元スラグの含有割合が、石炭灰100質量部に対して10質量部未満では、得られる石炭灰粒状材の強度が低下する。一方、電炉還元スラグの含有割合が、石炭灰100質量部に対して100質量部を超える場合には、石炭灰粒状材を調製する際の粒状化が困難である。
石炭灰粒状材において、前記ベントナイトを用いる場合の含有割合は、石炭灰100質量部に対して、通常1〜5質量部である。ベントナイトの含有割合が、石炭灰100質量部に対して1質量部未満では、ベントナイトの接着性作用が充分得られない恐れがある。一方、ベントナイトの含有割合が、石炭灰100質量部に対して5質量部を超える場合には、得られる石炭灰粒状材の強度が低下するおそれがある。
In the coal ash granular material, the content ratio of the electric furnace reducing slag is 10 to 100 parts by mass, preferably 25 to 75 parts by mass with respect to 100 parts by mass of the coal ash. When the content ratio of the electric furnace reducing slag is less than 10 parts by mass with respect to 100 parts by mass of coal ash, the strength of the obtained coal ash granular material is lowered. On the other hand, when the content rate of electric furnace reduction slag exceeds 100 mass parts with respect to 100 mass parts of coal ash, granulation at the time of preparing a coal ash granular material is difficult.
In the coal ash granular material, the content ratio when using the bentonite is usually 1 to 5 parts by mass with respect to 100 parts by mass of coal ash. When the content ratio of bentonite is less than 1 part by mass with respect to 100 parts by mass of coal ash, the adhesive action of bentonite may not be sufficiently obtained. On the other hand, when the content rate of bentonite exceeds 5 mass parts with respect to 100 mass parts of coal ash, there exists a possibility that the intensity | strength of the obtained coal ash granular material may fall.

石炭灰粒状材の製造は、前記特許文献3を参照して得ることができる。基本的には、石炭灰と、電炉還元スラグと、必要によりベントナイトとを、混合・混練機で混合した混合体を、パンペレタイザー等のパン型造粒機等を用いて、加湿のために散水しながら所望の大きさに造粒し、乾燥する方法等により得ることができる。   Manufacture of a coal ash granular material can be obtained with reference to the said patent document 3. FIG. Basically, a mixture obtained by mixing coal ash, electric furnace reducing slag, and bentonite if necessary with a mixing and kneading machine is sprinkled for humidification using a pan granulator such as a pan pelletizer. While being granulated to a desired size, it can be obtained by a method of drying.

本発明の材料に用いる改質硫黄含有流動材料は、粒径1mm以下の微粉末及び改質硫黄とを特定割合で含む。
前記改質硫黄は、通常の硫黄、例えば、天然産又は、石油や天然ガスの脱硫によって生成した硫黄等を硫黄改質剤により重合したものであって、硫黄と硫黄改質剤との反応物である。
The modified sulfur-containing fluid material used for the material of the present invention contains fine powder having a particle diameter of 1 mm or less and modified sulfur in a specific ratio.
The modified sulfur is obtained by polymerizing normal sulfur, for example, sulfur produced by natural or petroleum or natural gas desulfurization with a sulfur modifier, and a reaction product of sulfur and the sulfur modifier. It is.

硫黄改質剤としては、例えば炭素数4〜20のオレフィン系炭化水素又はジオレフィン系炭化水素、具体的には、リモネン、ピネン等の環状オレフィン系炭化水素、スチレン、ビニルトルエン、メチルスチレン等の芳香族炭化水素、ジシクロペンタジエン及びそのオリゴマー、シクロペンタジエン、テトラヒドロインデン、ビニルシクロヘキセン、ビニルノルボルネン、エチリデンノルボルネン、シクロオクタジエン等のジエン系炭化水素等の1種又は2種以上の混合物が挙げられる。
前記改質硫黄は、硫黄と硫黄改質剤とを溶融混合することにより得ることができる。この際、硫黄改質剤の使用割合は、硫黄と硫黄改質剤との合計量に対して、通常0.1〜30質量%、特に、1.0〜20質量%の割合が好ましい。
Examples of the sulfur modifier include olefinic hydrocarbons or diolefinic hydrocarbons having 4 to 20 carbon atoms, specifically, cyclic olefinic hydrocarbons such as limonene and pinene, styrene, vinyltoluene, and methylstyrene. Examples thereof include aromatic hydrocarbons, dicyclopentadiene and oligomers thereof, cyclopentadiene, tetrahydroindene, vinylcyclohexene, vinyl norbornene, ethylidene norbornene, and diene hydrocarbons such as cyclooctadiene.
The modified sulfur can be obtained by melt-mixing sulfur and a sulfur modifier. Under the present circumstances, the usage-amount of a sulfur modifier is 0.1-30 mass% normally with respect to the total amount of sulfur and a sulfur modifier, Especially the ratio of 1.0-20 mass% is preferable.

前記溶融混合は、例えば、インターナルミキサー、ロールミル、ドラムミキサー、ポニーミキサー、リボンミキサー、ホモミキサー、スタティックミキサー等を用いて行うことができる。
前記改質硫黄の調製にあたり、溶融混合方法は、例えば、硫黄と硫黄改質剤とを120〜160℃の範囲、硫黄が効率よく改質するように好ましくは130〜155℃、より好ましくは140〜155℃の範囲で溶融混合し、140℃における粘度が0.05〜3.0Pa・sになるまで滞留させる方法等により行うことができる。
The melt mixing can be performed using, for example, an internal mixer, a roll mill, a drum mixer, a pony mixer, a ribbon mixer, a homomixer, a static mixer, or the like.
In preparing the modified sulfur, the melt mixing method is, for example, a range of 120 to 160 ° C., preferably 130 to 155 ° C., more preferably 140 so that sulfur and sulfur are reformed efficiently. It can be carried out by a method of melting and mixing in the range of ˜155 ° C. and retaining until the viscosity at 140 ° C. becomes 0.05 to 3.0 Pa · s.

前記改質硫黄含有流動材料において、前記改質硫黄の含有割合は、後述する微粉末100質量部に対して、通常30〜400質量部、好ましくは50〜300質量部である。30質量部未満では、微粉末との均一混合が十分でなく、400質量部を超えると、改質硫黄と微粉末とが分離して均一な改質硫黄含有流動材料が得られ難い。   In the modified sulfur-containing fluid material, the content ratio of the modified sulfur is usually 30 to 400 parts by mass, preferably 50 to 300 parts by mass with respect to 100 parts by mass of the fine powder described later. If it is less than 30 parts by mass, uniform mixing with the fine powder is not sufficient, and if it exceeds 400 parts by mass, the modified sulfur and fine powder are separated and it is difficult to obtain a uniform modified sulfur-containing fluid material.

前記改質硫黄含有流動材料に用いる微粉末は、粒径1mm以下、好ましくは100μm以下の微粉末である。前記微粉末の粒径が1mmを超えると改質硫黄含有流動材料の流動状態の維持が困難である。このような微粉末の粒径調整は公知技術が利用でき、例えば、ふるい等で調整することができる。粒径はJIS標準ふるいを使用して規定できる。
微粉末としては、上記特定粒度を有するものであれば特に限定されないが、例えば、粒経分布の調整が容易で均一なものを大量に入手しやすい点で、石炭灰、硅砂、シリカヒューム、石英粉、砂、ガラス粉末、前記石炭灰粒状材及び電気集塵灰からなる群より選択される1種又は2種以上が好ましく挙げられる。
The fine powder used for the modified sulfur-containing fluidized material is a fine powder having a particle size of 1 mm or less, preferably 100 μm or less. When the particle size of the fine powder exceeds 1 mm, it is difficult to maintain the fluidized state of the modified sulfur-containing fluid material. A known technique can be used to adjust the particle size of such fine powder, and for example, it can be adjusted with a sieve or the like. The particle size can be defined using a JIS standard sieve.
The fine powder is not particularly limited as long as it has the above specific particle size. For example, coal ash, cinnabar sand, silica fume, quartz can be easily obtained in a large amount with easy adjustment of the particle size distribution and uniformity. One or more types selected from the group consisting of powder, sand, glass powder, the coal ash particulate material, and electrostatic dust collection ash are preferred.

前記改質硫黄含有流動材料は、流動状態の改質硫黄、即ち、改質硫黄溶融物と微粉末とを混合し、該改質硫黄の溶融状態を維持することにより得ることができる。この際、予め、改質硫黄溶融物と微粉末とを混合し、適当な大きさ、形態に固化したものを、使用時に溶融状態とし、改質硫黄含有流動材料とすることもできる。ここで、改質硫黄含有流動材料が、前記微粉末を含有しない場合には、最終的に得られる本発明の材料の機械的強度が著しく低下する恐れがある。   The modified sulfur-containing fluid material can be obtained by mixing a modified sulfur in a fluid state, that is, a modified sulfur melt and fine powder, and maintaining the molten state of the modified sulfur. At this time, the reformed sulfur melt and fine powder are mixed in advance and solidified to an appropriate size and shape can be made into a molten state at the time of use to obtain a modified sulfur-containing fluid material. Here, when the modified sulfur-containing fluid material does not contain the fine powder, the mechanical strength of the finally obtained material of the present invention may be significantly reduced.

本発明の材料を製造するには、まず、一方の開口が前記石炭灰粒状材及び前記改質硫黄含有流動材料の両方が通過しうる開口であり、他方の開口が、前記改質硫黄含有流動材料が通過し、前記石炭灰粒状材が通過しない開口である、両端に開口を有する型枠を準備する。該型枠は、通常、改質硫黄含有流動材料の流動状態を維持しうる加温装置を備える。次いで、該型枠に、両方の材料が通過しうる開口から所望量の前記石炭灰粒状材を充填した後、前記改質硫黄含有流動材料を同じ開口から型枠内に導入することにより、充填された石炭灰粒状体に充分に接触、被覆させて、他方の開口から余剰分を流出させる。続いて、型枠内の改質硫黄含有流動材料を冷却して固化させ、脱型する方法により得ることができる。また、前記型枠に、予め、前記石炭灰粒状材及び前記改質硫黄含有流動材料の両方を混合してから、両方の材料が通過しうる開口から型枠内に導入し、他方の開口から改質硫黄含有流動材料の余剰分を流出させた後、冷却固化する方法を採用することもできる。   To produce the material of the present invention, first, one opening is an opening through which both the coal ash granular material and the modified sulfur-containing fluid material can pass, and the other opening is the modified sulfur-containing fluid. A mold having openings at both ends, which is an opening through which the material passes and the coal ash granular material does not pass through, is prepared. The mold usually includes a heating device that can maintain the flow state of the modified sulfur-containing fluid material. Next, the mold is filled with a desired amount of the coal ash granular material from an opening through which both materials can pass, and then the modified sulfur-containing fluid material is introduced into the mold from the same opening. The coated coal ash granule is sufficiently brought into contact with and covered, and the excess is discharged from the other opening. Subsequently, the modified sulfur-containing fluid material in the mold can be cooled, solidified, and demolded. Moreover, after mixing both the coal ash granular material and the modified sulfur-containing fluid material into the mold in advance, it is introduced into the mold from an opening through which both materials can pass, and from the other opening. A method of cooling and solidifying after surplus of the modified sulfur-containing fluidized material is allowed to flow out can also be employed.

前記型枠の形態は特に限定されず、例えば、円柱、角柱、平板、ブロック状等が挙げられ、その大きさや容量は最終的に得られる本発明の材料の用途や所望する性能等に応じて適宜選択することができる。
前記型枠の加熱装置は、熱源としては、例えば、型枠の周囲を被覆しうる被覆体内部に熱線ヒーター、面状発熱体、熱媒体流通機構を有するものが挙げられるがこれに限定されない。
前記冷却固化は、型枠全体の自然冷却又は強制冷却により行うことができる。この際、型枠内の改質硫黄が急激な冷却により表面等における不具合な収縮が生じないように、前記型枠が備える加熱装置を利用してその温度を段階的に徐々に下げることが好ましい。このような熱履歴は、型枠の容量、形態等に応じて適宜決定することができる。このような操作を行うことにより、目的とする本発明の材料を最終的に脱型して製造した場合の該材料の外表面を滑らかに仕上げることができる。
The form of the mold is not particularly limited, and examples thereof include a cylinder, a prism, a flat plate, a block, and the like. It can be selected appropriately.
Examples of the heat source of the mold heating apparatus include, but are not limited to, a heat source having a heat ray heater, a planar heating element, and a heat medium circulation mechanism inside a covering that can cover the periphery of the mold.
The cooling and solidification can be performed by natural cooling or forced cooling of the entire mold. At this time, it is preferable to gradually lower the temperature stepwise by using a heating device provided in the mold so that the modified sulfur in the mold does not cause a troubled shrinkage on the surface or the like due to rapid cooling. . Such a thermal history can be appropriately determined according to the capacity, form, etc. of the formwork. By performing such an operation, the outer surface of the target material of the present invention can be finished smoothly when it is finally demolded and manufactured.

本発明の材料は、前述の製造方法等を採用することにより、石炭灰粒状材の各々により形成される空隙を最大限維持して、改質硫黄含有流動材料により石炭灰粒状材を被覆、接着させることができるので、高空隙率を示すと共に、改質硫黄による耐酸性等の耐久性を有し、更には、特定の改質硫黄含有流動材料を用いることにより、優れた圧縮強度も有する。   By adopting the above-described manufacturing method, the material of the present invention maintains the voids formed by each of the coal ash particulate materials to the maximum, and covers and bonds the coal ash particulate material with the modified sulfur-containing fluid material. Therefore, it has high porosity, durability such as acid resistance due to modified sulfur, and excellent compressive strength by using a specific modified sulfur-containing fluid material.

本発明の堤体用ドレーン材料は、河川等の提体のドレーン工法に用いるドレーン材料として用いることができる。本発明の堤体用ドレーン材料は、上述の高空隙率及び圧縮強度を有するので、堤体の川裏のり尻の透水性を向上させ、堤体内の浸潤面の上昇を抑制し、堤体のせん断抵抗力の低下を充分抑制することができる。
本発明の堤体用ドレーン材料は、新たな堤体の建設のみならず、堤体の改修にも利用することができる。
The drainage body drain material of the present invention can be used as a drain material used in a drainage construction method for a levee such as a river. Since the drainage body drainage material of the present invention has the above-described high porosity and compressive strength, it improves the water permeability of the bottom of the riverbank of the bank, suppresses the rise of the infiltrating surface in the bank, A decrease in shear resistance can be sufficiently suppressed.
The drainage body drain material of the present invention can be used not only for the construction of a new bank body but also for the repair of the bank body.

以下、本発明を実施例及び比較例により更に詳細に説明するが本発明はこれらに限定されない。
実施例1
(石炭灰粒状材の調製)
200メッシュ以下の石炭灰100質量部に、粉状化した電炉還元スラグ50質量部を添加し、更に、ベントナイト1.5質量部を混合して、直径約30mmの球形の成形物を1月自然乾燥させ、石炭灰粒状材を調製した。
(改質硫黄含有流動材料の調製)
密閉式撹拌混合槽中に、固体硫黄4.8kgを入れ、120℃で加温して溶解後130℃に保持した。続いて、常温のテトラヒドロインデン0.2kgをゆっくりと添加し、約10分間静かに撹拌して、温度が安定したことを確認してから、140℃まで昇温した。反応が開始され、次第に粘度が上昇し、約1時間で粘度が0.1Pa・sに達したところで硫黄改質を終了した。
次いで、得られた改質硫黄に、140℃に予熱した粒径50μm以下の石炭灰2.5kgを投入・攪拌して改質硫黄含有流動材料を調製した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these.
Example 1
(Preparation of coal ash granular material)
50 parts by mass of powdered electric furnace reducing slag is added to 100 parts by mass of coal ash of 200 mesh or less, and 1.5 parts by mass of bentonite is further mixed to form a spherical shaped product having a diameter of about 30 mm in January. It was made to dry and the coal ash granular material was prepared.
(Preparation of modified sulfur-containing fluid material)
4.8 kg of solid sulfur was put into a closed stirring and mixing tank, heated at 120 ° C. and dissolved, and maintained at 130 ° C. Subsequently, 0.2 kg of room temperature tetrahydroindene was slowly added and gently stirred for about 10 minutes to confirm that the temperature was stable, and then the temperature was raised to 140 ° C. The reaction started, the viscosity gradually increased, and when the viscosity reached 0.1 Pa · s in about 1 hour, the sulfur reforming was finished.
Next, 2.5 kg of coal ash having a particle size of 50 μm or less preheated to 140 ° C. was added to and stirred in the obtained modified sulfur to prepare a modified sulfur-containing fluid material.

(本発明の材料の調製)
前記改質硫黄含有流動材料を130℃に保持した状態の中に、前記石炭灰粒状材10kgを投入し、該流動材料により各石炭灰粒状材を被覆するように1分間混合した。この作業は、改質硫黄含有流動材料が冷えないように、130℃に加温した恒温槽中で行った。続いて、底面が、余剰の改質硫黄含有流動材料のみを排出しうる5mmメッシュの金網で形成された、直径10cm、高さ20cmの円柱状の型枠2本を、予め100℃に加温し、振動をかけながら、前記改質硫黄含有流動材料で被覆した石炭灰粒状材を流し込んだ。この際、余剰の改質硫黄含有流動材料が、底面のメッシュから流れ出た。
型枠内に詰め込めずに上部に余った石炭灰粒状材は、型枠の上部開口の面一になるだけを残して破壊した。その後、放置して室温まで徐々に冷却して改質硫黄を冷却固化して直径10cm、高さ20cmの本発明の材料に係る検体を2本調製した。
得られた2本の検体(検体1及び2とする)材料について、空隙率を水量法により実測し、更に固化体の両端面を改質硫黄でキャッピングした後、一軸圧縮強さをJIS A1108に従って測定した。これらの結果を検体の見かけ比重と共に表1に示す。
(Preparation of the material of the present invention)
In a state where the modified sulfur-containing fluid material was maintained at 130 ° C., 10 kg of the coal ash particulate material was charged and mixed for 1 minute so as to cover each coal ash particulate material with the fluid material. This operation was performed in a thermostatic chamber heated to 130 ° C. so that the modified sulfur-containing fluid material did not cool. Subsequently, two columnar molds having a diameter of 10 cm and a height of 20 cm, each having a bottom surface formed of a 5 mm mesh wire net capable of discharging only surplus modified sulfur-containing fluid material, are heated to 100 ° C. in advance. Then, while applying vibration, the coal ash granular material coated with the modified sulfur-containing fluid material was poured. At this time, surplus modified sulfur-containing fluid material flowed out of the bottom mesh.
The coal ash granular material remaining in the upper part without being packed in the mold was destroyed leaving only the upper opening of the mold to be flush. Thereafter, the sample was allowed to cool to room temperature, and the modified sulfur was cooled and solidified to prepare two specimens according to the material of the present invention having a diameter of 10 cm and a height of 20 cm.
For the obtained two specimen materials (specimens 1 and 2), the porosity was measured by the water method, and both ends of the solidified body were capped with modified sulfur, and the uniaxial compressive strength was determined according to JIS A1108. It was measured. These results are shown in Table 1 together with the apparent specific gravity of the specimen.

比較例1
実施例1における改質硫黄含有流動材料の代わりにセメントモルタルを用いて、ポーラスセメントコンクリートを調製した。即ち、セメントモルタル5kgに、実施例1と同様の石炭灰粒状材10kgを投入し、該流動材料により各石炭灰粒状材を被覆するように1分間混合した。続いて、底面が、余剰のセメントモルタルのみを排出しうる5mmメッシュの金網で形成された、直径10cm、高さ20cmの円柱状の型枠2本に、振動をかけながら、前記セメントモルタルで被覆した石炭灰粒状材を流し込んだ。この際、余剰のセメントモルタルが、底面のメッシュから流れ出た。
型枠内に詰め込めずに上部に余った石炭灰粒状材は、型枠の上部開口の面一になるだけを残して破壊した。その後、充分湿った環境下において7日間放置して、直径10cm、高さ20cmのポーラスセメントコンクリートの検体を2本を調製した。
得られた2本の検体(検体3及び4とする)について、空隙率を水量法により実測し、更に両端面を改質硫黄でキャッピングした後、一軸圧縮強さをJIS A1108に従って測定した。これらの結果を検体の見かけ比重と共に表1に示す。
Comparative Example 1
Porous cement concrete was prepared using cement mortar instead of the modified sulfur-containing fluid material in Example 1. That is, 10 kg of the same coal ash granular material as in Example 1 was put into 5 kg of cement mortar, and mixed for 1 minute so as to cover each coal ash granular material with the fluid material. Subsequently, the bottom surface is coated with the cement mortar while applying vibration to two cylindrical molds having a diameter of 10 cm and a height of 20 cm, which are formed of a 5 mm mesh wire net capable of discharging only excess cement mortar. The cast coal ash granular material was poured. At this time, excess cement mortar flowed out from the mesh on the bottom surface.
The coal ash granular material remaining in the upper part without being packed in the mold was destroyed leaving only the upper opening of the mold to be flush. Thereafter, the sample was left for 7 days in a sufficiently moist environment to prepare two specimens of porous cement concrete having a diameter of 10 cm and a height of 20 cm.
For the two obtained specimens (specimens 3 and 4), the porosity was measured by the water amount method, and both end faces were capped with modified sulfur, and then the uniaxial compressive strength was measured according to JIS A1108. These results are shown in Table 1 together with the apparent specific gravity of the specimen.

Figure 2008030963
Figure 2008030963

Claims (3)

石炭灰100質量部と、電炉還元スラグ10〜100質量部とを含む、直径2〜50mmの石炭灰粒状材の各々を、粒径1mm以下の微粉末100質量部及び改質硫黄30〜400質量部を含む改質硫黄含有流動材料によって、被覆、接着固化した、空隙率25〜50%である高空隙率土木・建築材料。   Each of the coal ash granular materials having a diameter of 2 to 50 mm including 100 parts by mass of coal ash and 10 to 100 parts by mass of the electric furnace reducing slag is composed of 100 parts by mass of fine powder having a particle size of 1 mm or less and 30 to 400 parts by mass of modified sulfur. A high porosity civil engineering / building material having a porosity of 25 to 50%, which is covered and adhered and solidified with a modified sulfur-containing fluid material including a part. 石炭灰粒状材が、ベントナイトを1〜5質量部含む請求項1記載の土木・建築材料。   The civil engineering / building material according to claim 1, wherein the coal ash granular material contains 1 to 5 parts by mass of bentonite. 石炭灰100質量部と、電炉還元スラグ10〜100質量部とを含む、直径2〜50mmの石炭灰粒状材の各々を、粒径1mm以下の微粉末100質量部及び改質硫黄30〜400質量部を含む改質硫黄含有流動材料によって、被覆、接着固化した、空隙率25〜50%である堤体用ドレーン材料。   Each of the coal ash granular materials having a diameter of 2 to 50 mm including 100 parts by mass of coal ash and 10 to 100 parts by mass of the electric furnace reducing slag, 100 parts by mass of fine powder having a particle diameter of 1 mm or less and 30 to 400 parts by mass of modified sulfur. Drainage drainage material having a porosity of 25 to 50%, which is covered and adhered and solidified by a modified sulfur-containing fluid material including a portion.
JP2006202754A 2006-07-26 2006-07-26 High porosity civil engineering / building materials and drainage drainage materials Expired - Fee Related JP4965178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202754A JP4965178B2 (en) 2006-07-26 2006-07-26 High porosity civil engineering / building materials and drainage drainage materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202754A JP4965178B2 (en) 2006-07-26 2006-07-26 High porosity civil engineering / building materials and drainage drainage materials

Publications (2)

Publication Number Publication Date
JP2008030963A true JP2008030963A (en) 2008-02-14
JP4965178B2 JP4965178B2 (en) 2012-07-04

Family

ID=39120790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202754A Expired - Fee Related JP4965178B2 (en) 2006-07-26 2006-07-26 High porosity civil engineering / building materials and drainage drainage materials

Country Status (1)

Country Link
JP (1) JP4965178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006630A (en) * 2008-06-26 2010-01-14 Nippon Oil Corp Modified sulfur-containing material and method of producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113777A (en) * 1994-10-18 1996-05-07 Taisei Corp Method for utilizing solidified coal ash
JP2001048633A (en) * 1999-07-29 2001-02-20 Joban Kyodo Karyoku Kk Production of coal ash granulated material
JP2004189538A (en) * 2002-12-11 2004-07-08 Nippon Oil Corp Porous sulfur material, its production method, and block and structure using the material
JP2005231947A (en) * 2004-02-19 2005-09-02 Nippon Magnetic Dressing Co Ltd Method of treating steel slag to make aggregate
JP2006137634A (en) * 2004-11-11 2006-06-01 Tokyo Metropolis Corrosion protective material, and molded article such as buried frame and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113777A (en) * 1994-10-18 1996-05-07 Taisei Corp Method for utilizing solidified coal ash
JP2001048633A (en) * 1999-07-29 2001-02-20 Joban Kyodo Karyoku Kk Production of coal ash granulated material
JP2004189538A (en) * 2002-12-11 2004-07-08 Nippon Oil Corp Porous sulfur material, its production method, and block and structure using the material
JP2005231947A (en) * 2004-02-19 2005-09-02 Nippon Magnetic Dressing Co Ltd Method of treating steel slag to make aggregate
JP2006137634A (en) * 2004-11-11 2006-06-01 Tokyo Metropolis Corrosion protective material, and molded article such as buried frame and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006630A (en) * 2008-06-26 2010-01-14 Nippon Oil Corp Modified sulfur-containing material and method of producing the same

Also Published As

Publication number Publication date
JP4965178B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
Atmaca et al. Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete
Mun Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete
Snehal et al. Influence of integration of phase change materials on hydration and microstructure properties of nanosilica admixed cementitious mortar
Cyr et al. Reduction of ASR-expansion using powders ground from various sources of reactive aggregates
JP4540656B2 (en) Composition for porous ceramics, porous ceramics using the same, and method for producing the same
Chen et al. Use of reservoir sludge as a partial replacement of metakaolin in the production of geopolymers
JP5435255B2 (en) Geopolymer solidified product using sewage sludge molten slag as active filler and method for producing the same
JP6119278B2 (en) High water retention block and method for producing high water retention block
JP2011136864A (en) Admixture for porous concrete and porous concrete
JP4965178B2 (en) High porosity civil engineering / building materials and drainage drainage materials
JP4383386B2 (en) Method for producing coarse aggregate for porous concrete, method for producing porous concrete, and porous concrete
JPH0225861B2 (en)
JP4255802B2 (en) Pavement
JP2007203486A (en) Method and apparatus for manufacturing lightweight reforming sulfur-containing solidified object
JPH03252375A (en) Production of water-penetrable construction material containing coal ash
JP2004189538A (en) Porous sulfur material, its production method, and block and structure using the material
JP6893801B2 (en) Water-retaining porous concrete and heat-resistant structures
KR101333051B1 (en) product method of SPB concrete manufacture
JP2003012361A (en) Instant stripping porous concrete compact
JP3216034B2 (en) Porous sintered body and method for producing the same
JP2006306634A (en) Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure
Mahanna et al. Recycling water treatment sludge into a novel eco-friendly core–shell lightweight aggregate and its application
JP6545576B2 (en) Method of producing hardened cement body
JP2007204287A (en) Method of manufacturing modified sulfur-containing porous solidified body
Kumar et al. Research on the Effects of Fly Ash and Silica Fume as Partial Replacements in Self-Compacting Concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees