JP2006306634A - Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure - Google Patents

Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure Download PDF

Info

Publication number
JP2006306634A
JP2006306634A JP2005127506A JP2005127506A JP2006306634A JP 2006306634 A JP2006306634 A JP 2006306634A JP 2005127506 A JP2005127506 A JP 2005127506A JP 2005127506 A JP2005127506 A JP 2005127506A JP 2006306634 A JP2006306634 A JP 2006306634A
Authority
JP
Japan
Prior art keywords
modified sulfur
mass
porous
civil engineering
solidified body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005127506A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ota
義高 太田
Hideyuki Horii
秀之 堀井
Minoru Kurakake
稔 倉掛
Masaaki Chatani
正明 茶谷
Junichi Tsushima
潤一 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005127506A priority Critical patent/JP2006306634A/en
Publication of JP2006306634A publication Critical patent/JP2006306634A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous modified sulfur solidified body composed mainly of a shell pulverized product, which is expected to utilize a large quantity of waste shells, provides workability and strength equivalent to concrete, and can be utilized as a civil engineering/building structure excellent in gathering and adhesion effect of underwater creatures, a material for the same and the like. <P>SOLUTION: The porous modified sulfur solidified body comprises >20 mass% and ≤33 mass% of a modified sulfur material comprising 100 pts.mass of a fine aggregate having a particle size of 5 mm or less and 30-400 pts.mass of a modified sulfur, and ≥67 mass% and <80 mass% of a pulverized shell product having a particle size of 3-10 mm. The porous modified sulfur solidified body has continuous voids exhibiting water permeability and a percentage of void of 10-40 vol%. The civil engineering/building structure comprises the above porous modified sulfur solidified body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、廃棄物として処理されることが多い貝殻を高配合でき、その大量利用が期待できると共に、水中生物の蝟集や着生作用に優れ、各種ブロック、漁礁、藻礁、護岸用構造物等の土木・建設用構造物、該構造物の材料等として利用できる貝殻粉砕物を主成分とする多孔質改質硫黄固化体に関する。   The present invention can be highly blended with shells that are often treated as waste, and can be expected to be used in large quantities, and is excellent in the collection and settlement of aquatic organisms. Various blocks, fishing reefs, algae reefs, structures for revetment The present invention relates to a porous modified sulfur solidified body mainly composed of a ground shell material that can be used as a civil engineering / construction structure, etc., and a material of the structure.

近年、カキやホタテを中心に貝類の養殖が盛んに行われ、これに伴い発生する貝殻の処理が深刻化している。例えば、廃棄貝殻の一部は、土壌肥料や飼料等に使用されているが、漁業地域においては大半が周辺に野積みされ、悪臭発生等の周辺環境への影響が懸念されている。特に、カキ殻やホタテ殻は、年間数万トン以上発生するためその有効利用が要望されている。
最近、このような廃棄貝殻の有効利用について種々研究がなされており、例えば、特許文献1〜4には、防波堤基礎の地盤改良材、漁礁、藻礁、各種ブロック等のセメントを利用した土木・建築用構造物に廃棄貝殻を配合する技術が数多く提案されている。
しかし、セメントを利用した各種土木・建築用構造物に廃棄貝殻を利用する場合、貝殻の臭気除去作業が煩雑となり、しかもセメントを利用した場合、十分な貝殻の臭気除去が困難である。また、土木・建築用構造物として用いるためにある程度の強度を保持するには、塩を多く含み、それ自体低強度である貝殻をセメントに混合するに際してその配合割合を少なくする必要があり、通常、多くても構造物全量に対して30質量%程度の配合が期待されるに過ぎない。従って、廃棄貝殻の大量使用という点からはその利用率が十分でなく、しかも貝殻の臭気対策等にも課題が残されている。
In recent years, shellfish have been actively cultivated mainly in oysters and scallops, and the treatment of shells generated with this has become serious. For example, some of the discarded shells are used for soil fertilizers, feeds, etc., but most of them are piled up in the vicinity in the fishing area, and there are concerns about the impact on the surrounding environment such as the generation of odors. In particular, oyster shells and scallop shells are generated more than tens of thousands of tons per year, and their effective use is desired.
Recently, various studies have been made on the effective use of such discarded shells. For example, Patent Documents 1 to 4 include civil engineering / cement improvement materials such as ground improvement materials for breakwater foundations, fishing reefs, algae reefs, and various blocks. Many techniques have been proposed for blending waste shells into building structures.
However, when waste shells are used for various civil engineering and building structures using cement, the odor removal operation of the shells becomes complicated, and when cement is used, it is difficult to remove sufficient shell odors. Also, in order to maintain a certain level of strength for use as a civil engineering / building structure, it is necessary to reduce the blending ratio when mixing shellfish, which contains a large amount of salt and itself has low strength, with cement. At most, only about 30% by mass of the total amount of the structure is expected. Therefore, the utilization rate is not sufficient from the viewpoint of large-scale use of discarded shells, and there are still problems in measures against odors of shells.

そこで、特許文献5には、粒径5mm以上の貝殻粉砕物と粒径5mm未満の貝殻粉砕物を、溶融状態の改質硫黄等と混練して固化した透水性を有していない材料を用いた土木・建築用構造物が提案されている。このような構造物においては、廃棄貝殻を高配合した場合であっても高強度を得ることが可能であるが、水中生物の蝟集や着生作用が必ずしも十分であるとは言えない。
一方、特許文献6には、硫黄材料と骨材とを含み、透水性を示す連続空隙を有し、空隙率が5〜40容量%である多孔質硫黄資材が提案されている。
しかし、この文献には、骨材として貝殻粉砕物を使用する場合に、硫黄材料として、特定の細骨材と改質硫黄との混合物を用いること、更には貝殻粉砕物を用いて、高強度で、水中生物の蝟集や着生作用に優れる構造物が得られる構成については教示されていない。
特開平11−246277号公報 特開2002−136242号公報 特開2002−241165号公報 特開2002−238398号公報 特開2004−323314号公報 特開2004−189538号公報
Therefore, Patent Document 5 uses a material having no water permeability obtained by kneading a crushed shell having a particle size of 5 mm or more and a crushed shell having a particle size of less than 5 mm with a modified sulfur in a molten state and solidifying. Civil engineering / architectural structures have been proposed. In such a structure, it is possible to obtain high strength even when a high amount of waste shells is blended, but it cannot be said that the collection and settlement of aquatic organisms are necessarily sufficient.
On the other hand, Patent Document 6 proposes a porous sulfur material that includes a sulfur material and an aggregate, has continuous voids that show water permeability, and has a porosity of 5 to 40% by volume.
However, in this document, when using a shell pulverized product as an aggregate, it is necessary to use a mixture of a specific fine aggregate and modified sulfur as a sulfur material. However, there is no teaching about a structure that can obtain a structure excellent in collecting and setting up underwater organisms.
JP 11-246277 A JP 2002-136242 A JP 2002-241165 A JP 2002-238398 A JP 2004-323314 A JP 2004-189538 A

本発明の課題は、大量に廃棄されている貝殻を高配合でき、その大量利用が期待され、しかもコンクリート並みの施工性及び強度が得られ、水中生物の蝟集や着生作用に優れる土木・建設用構造物、並びに該構造物の材料等として利用できる貝殻粉砕物を主成分とする多孔質改質硫黄固化体を提供することにある。   The subject of the present invention is a civil engineering / construction that can contain a high amount of shells that are discarded in large quantities, is expected to be used in large quantities, and has the same workability and strength as concrete, and is excellent in collecting and setting up underwater organisms. Another object of the present invention is to provide a porous modified sulfur solidified body mainly composed of a crushed shell and can be used as a material for the structure and a material for the structure.

すなわち本発明によれば、粒径5mm以下の細骨材100質量部及び改質硫黄30〜400質量部とを含む改質硫黄資材20質量%を超え33質量%以下と、粒径3〜10mmの貝殻粉砕物67質量%以上80質量%未満とを含み、透水性を示す連続空隙を有し、且つ空隙率が10〜40容量%であることを特徴とする貝殻粉砕物を主成分とする多孔質改質硫黄固化体が提供される。
また本発明によれば、上記多孔質改質硫黄固化体を備える土木・建築用構造物が提供される。
In other words, according to the present invention, the modified sulfur material including 20 parts by mass of fine aggregate having a particle size of 5 mm or less and 100 parts by mass of modified sulfur and 30 to 400 parts by mass of modified sulfur exceeds 33% by mass, and the particle diameter of 3 to 10 mm. The main component is a crushed shell material characterized in that it contains 67 mass% or more and less than 80 mass% of the crushed shell material, has continuous voids showing water permeability, and has a porosity of 10 to 40% by volume. A porous modified sulfur solidified body is provided.
Moreover, according to this invention, the structure for civil engineering and building provided with the said porous modified sulfur solidified body is provided.

本発明の多孔質改質硫黄固化体は、特定の細骨材及び改質硫黄を特定割合で含む改質硫黄資材と、特定粒径範囲の貝殻粉砕物とを該貝殻粉砕物を高割合とする特定割合で含む多孔質体であるので、廃棄貝殻の大量利用が期待でき、しかもコンクリート並みの施工性及び強度が得られると共に、水中生物の蝟集や着生作用に優れる。従って、本発明の多孔質改質硫黄固化体は、各種ブロック、漁礁、藻礁、護岸用構造物等の土木・建設用構造物に有用である。   The porous modified sulfur solidified body of the present invention is a modified sulfur material containing a specific fine aggregate and modified sulfur in a specific ratio, and a shell pulverized product having a specific particle size range. Therefore, it is possible to expect a large amount of waste shells to be used, and it is possible to obtain workability and strength similar to concrete, and to excel the aquatic organism collection and settlement. Therefore, the porous modified sulfur solidified body of the present invention is useful for civil engineering and construction structures such as various blocks, fishing reefs, algae reefs, and revetment structures.

以下、本発明を更に詳細に説明する。
本発明の多孔質改質硫黄固化体は、粒径5mm以下の細骨材及び改質硫黄を特定割合で含む改質硫黄資材と、特定粒径範囲の貝殻粉砕物とを特定割合で含む。ここで、改質硫黄資材は、好ましくは小ガス炎着火試験によって検定される非危険物であることを充足する。
前記改質硫黄は、通常の硫黄、例えば、天然産又は、石油や天然ガスの脱硫によって生成した硫黄等を硫黄変性剤により重合したものであって、硫黄と硫黄変性剤との反応物である。
硫黄変性剤としては、例えば、ジシクロペンタジエン(DCPD)、テトラハイドロインデン(THI)、若しくはDCPDと、シクロペンタジエンのオリゴマー(2〜5量体混合物)、ジペンテン、ビニルトルエン、ジシクロペンテン等のオレフィン化合物類の1種又は2種以上との混合物が挙げられる。
前記DCPDとしては、DCPDの単体の他に、シクロペンタジエンの2〜5量体を主体に構成される混合物を用いることもできる。該混合物としては、DCPDの含有量が70質量%以上、好ましくは85質量%以上のものが挙げられ、また、いわゆるジシクロペンタジエンと称する市販品の多くを使用することができる。
前記THIとしては、THIの単体の他に、THIと、DCPDの単体、シクロペンタジエンとブタンジエンとの重合物、及びシクロペンタジエンの2〜5量体からなる群より選択される1種又は2種以上を主体に構成されるものとの混合物を用いることもできる。該混合物中のTHIの含有量は、通常50質量%以上、好ましくは65質量%以上である。該混合物としては、いわゆるテトラハイドロインデンと称する市販品やエチルノルボルネンの製造プラントから排出される副生成油の多くが使用できる。
Hereinafter, the present invention will be described in more detail.
The porous modified sulfur solidified body of the present invention contains a fine aggregate having a particle diameter of 5 mm or less and a modified sulfur material containing modified sulfur in a specific ratio and a shell pulverized product having a specific particle diameter range in a specific ratio. Here, it is satisfied that the modified sulfur material is preferably a non-hazardous material that is verified by a small gas flame ignition test.
The modified sulfur is obtained by polymerizing normal sulfur, for example, sulfur produced naturally or by desulfurization of petroleum or natural gas with a sulfur modifier, and is a reaction product of sulfur and the sulfur modifier. .
Examples of the sulfur modifier include olefin compounds such as dicyclopentadiene (DCPD), tetrahydroindene (THI), or DCPD and cyclopentadiene oligomer (2 to 5 mer mixture), dipentene, vinyltoluene, and dicyclopentene. The mixture with 1 type, or 2 or more types of a kind is mentioned.
As the DCPD, in addition to the simple substance of DCPD, a mixture mainly composed of 2-5 pentamers of cyclopentadiene can be used. Examples of the mixture include those having a content of DCPD of 70% by mass or more, preferably 85% by mass or more, and many commercially available products called dicyclopentadiene can be used.
As the THI, in addition to THI alone, one or more selected from the group consisting of THI, DCPD alone, a polymer of cyclopentadiene and butanediene, and a cyclopentadiene dimer to pentamer. It is also possible to use a mixture of those composed mainly of The THI content in the mixture is usually 50% by mass or more, preferably 65% by mass or more. As the mixture, many commercially available products called tetrahydroindene and by-product oil discharged from an ethyl norbornene production plant can be used.

前記改質硫黄は、硫黄と硫黄変性剤とを溶融混合することにより得ることができる。この際、硫黄変性剤の使用割合は、硫黄と硫黄変性剤との合計量に対して、通常0.1〜30質量%、特に、1.0〜20質量%の割合が好ましい。
前記溶融混合は、例えば、インターナルミキサー、ロールミル、ドラムミキサー、ポニーミキサー、リボンミキサー、ホモミキサー、スタティックミキサー等を用いて行うことができる。
前記改質硫黄の調製にあたり、溶融混合条件は、例えば、硫黄と硫黄変性剤とを120〜160℃の範囲、硫黄が効率よく変性するように好ましくは130〜155℃、より好ましくは140〜155℃の範囲で溶融混合し、140℃における粘度が0.05〜3.0Pa・sになるまで滞留させる条件が望ましい。
The modified sulfur can be obtained by melt-mixing sulfur and a sulfur modifier. Under the present circumstances, the usage-amount of a sulfur modifier is 0.1-30 mass% normally with respect to the total amount of sulfur and a sulfur modifier, and the ratio of 1.0-20 mass% is especially preferable.
The melt mixing can be performed using, for example, an internal mixer, a roll mill, a drum mixer, a pony mixer, a ribbon mixer, a homomixer, a static mixer, or the like.
In preparing the modified sulfur, the melt mixing conditions are, for example, a range of 120 to 160 ° C. for sulfur and a sulfur modifier, preferably 130 to 155 ° C., more preferably 140 to 155 so that sulfur is efficiently modified. Desirable is a condition in which the mixture is melt-mixed in the range of ° C and retained until the viscosity at 140 ° C becomes 0.05 to 3.0 Pa · s.

前記改質硫黄資材において、前記改質硫黄の含有割合は、後述する細骨材100質量部に対して、通常30〜400質量部、好ましくは30〜300質量部である。30質量部未満では、細骨材との均一混練が十分でなく、400質量部を超えると、改質硫黄と細骨材とが分離して均一な改質硫黄資材が得られ難いおそれがある。   In the modified sulfur material, the content ratio of the modified sulfur is usually 30 to 400 parts by mass, preferably 30 to 300 parts by mass with respect to 100 parts by mass of the fine aggregate described later. If it is less than 30 parts by mass, uniform kneading with the fine aggregate is not sufficient, and if it exceeds 400 parts by mass, the modified sulfur and the fine aggregate may be separated and it may be difficult to obtain a uniform modified sulfur material. .

前記細骨材は、粒径5mm以下、好ましくは1mm以下の細骨材である。前記細骨材の粒径が5mmを超えると再溶融が速やかにできない。このような細骨材の粒径調整は公知技術が利用でき、例えば、篩等で調整することができる。粒径はJIS標準ふるいを使用して規定できる。
細骨材としては、上記特定粒度を有するものであれば特に限定されないが、例えば、粒経分布の調整が容易で均一なものを大量に入手しやすい点で、石炭灰、珪砂、シリカヒューム、石英粉、砂、ガラス粉末及び電気集塵灰からなる群より選択される1種又は2種以上が好ましく挙げられる。
The fine aggregate is a fine aggregate having a particle size of 5 mm or less, preferably 1 mm or less. When the particle size of the fine aggregate exceeds 5 mm, remelting cannot be performed quickly. A known technique can be used to adjust the particle size of such fine aggregate, and for example, it can be adjusted with a sieve or the like. The particle size can be defined using a JIS standard sieve.
The fine aggregate is not particularly limited as long as it has the above-mentioned specific particle size, for example, coal ash, silica sand, silica fume, One type or two or more types selected from the group consisting of quartz powder, sand, glass powder, and electrostatic dust ash are preferred.

前記改質硫黄資材は、改質硫黄の溶融物と細骨材とを混合することにより得ることができる。改質硫黄が溶融状態である場合には、そのまま後述する貝殻粉砕物と混合固化することができる他、。改質硫黄資材を固化させた場合には、再溶融してから貝殻粉砕物と混合固化することができる。   The modified sulfur material can be obtained by mixing a melt of modified sulfur and fine aggregate. When the modified sulfur is in a molten state, it can be mixed and solidified with the shell crushed material described later. When the modified sulfur material is solidified, it can be re-melted and then mixed and solidified with the crushed shell.

前記貝殻粉砕物は、特に限定されないが、大量消費が期待されている、例えば、ホタテ貝殻粉砕物、カキ貝殻粉砕物及びホッキ貝殻粉砕物等からなる群より選択される1種又は2種以上の貝殻粉砕物の使用が好ましい。
貝殻粉砕物の粒径は、1〜20mm、好ましくは3〜10mmの範囲である。粒径3mm未満の貝殻粉砕物を含んでいても良いが、その割合が多くなると得られる多孔質改質硫黄固化体における所望の空隙率が得られない恐れがあるので粒径3mm未満の貝殻粉砕物はなるべく含まないことが好ましい。一方、粒径10mmを超える貝殻粉砕物を含んでいても良いが、その割合が多くなると得られる多孔質改質硫黄固化体における圧縮強度が低下する恐れがあるので粒径10mmを超える貝殻粉砕物はなるべく含まないことが好ましい。この際、貝殻粉砕物の嵩密度は、得られる所望の材料の強度を高くするために、通常0.8〜1.80g/cm3、特に1.0〜1.80g/cm3が好ましい。
The shell pulverized product is not particularly limited, and is expected to be consumed in large quantities. For example, one or more kinds selected from the group consisting of scallop shell pulverized product, oyster shell pulverized product, and oyster shell crushed product etc. Use of ground shells is preferred.
The particle size of the crushed shell is in the range of 1 to 20 mm, preferably 3 to 10 mm. Although crushed shells with a particle size of less than 3 mm may be included, if the ratio increases, the desired porosity in the resulting porous modified sulfur solidified product may not be obtained, so crushed shells with a particle size of less than 3 mm It is preferable that a thing is not included as much as possible. On the other hand, crushed shells with a particle size of more than 10 mm may be included, but crushed shells with a particle size of more than 10 mm because the compressive strength of the resulting porous modified sulfur solidified product may decrease if the ratio increases. Is preferably not contained as much as possible. In this case, the bulk density of the shell ground product, in order to increase the strength of the desired material obtained, typically 0.8~1.80g / cm 3, in particular 1.0~1.80g / cm 3 preferred.

前記貝殻粉砕物の調製は、例えば、廃棄貝殻を、所望により洗浄、粗粉砕、乾燥等を行った後、ハンマークラッシャー方式、石臼式、ジョークラッシャー等の粉砕方法により所定粒度に粉砕し、粒度調整する方法等により得ることができる。
前記貝殻粉砕物の調製は、上記予め行う他、所望により廃棄貝殻の洗浄、粗粉砕、乾燥等を行った後、後述する改質硫黄資材との混練の際に行うこともできる。
Preparation of the shell pulverized product is, for example, waste shells are washed, coarsely pulverized, dried, etc. if desired, and then pulverized to a predetermined particle size by a pulverization method such as a hammer crusher method, a stone mortar method, a jaw crusher, etc. It can obtain by the method of doing.
In addition to the above-mentioned preparation of the shell pulverized product, it may be carried out at the time of kneading with a modified sulfur material, which will be described later, after washing, roughly pulverizing, drying, etc., if desired.

本発明の多孔質改質硫黄固化体は、前記必須成分である改質硫黄資材と貝殻粉砕物以外に、本発明の所望の効果等を損なわない範囲で必要により他の骨材等を含んでいても良い。   The porous modified sulfur solidified body of the present invention contains other aggregates and the like as necessary as long as the desired effects of the present invention are not impaired, in addition to the modified sulfur material and shell pulverized material which are the essential components. May be.

本発明の多孔質改質硫黄固化体において、前記改質硫黄資材と貝殻粉砕物との配合割合は、改質硫黄資材が20質量%を超え33質量%以下、好ましくは25〜30質量%であり、貝殻粉砕物が67質量%以上80質量%未満、好ましくは70〜75質量%である。
改質硫黄資材の配合割合が20質量%以下、即ち、貝殻粉砕物の配合割合が80質量%以上では、得られる多孔質改質硫黄固化体の圧縮強度にばらつきが生じる恐れがある。一方、改質硫黄資材の配合割合が33質量%を超える場合、即ち、貝殻粉砕物の配合割合が67質量%未満では、得られる多孔質改質硫黄固化体における所望の空隙率が得られず、藻類の着生や魚等の蝟集効果が低下する恐れがある。
In the porous modified sulfur solidified body of the present invention, the blending ratio of the modified sulfur material and the shell pulverized product is more than 20 mass% and not more than 33 mass%, preferably 25 to 30 mass%. Yes, the crushed shell is 67 mass% or more and less than 80 mass%, preferably 70 to 75 mass%.
When the blending ratio of the modified sulfur material is 20% by mass or less, that is, when the blending ratio of the shell shell pulverized product is 80% by mass or more, there is a possibility that the compressive strength of the resulting porous modified sulfur solidified material varies. On the other hand, when the blending ratio of the modified sulfur material exceeds 33% by mass, that is, when the blending ratio of the shell pulverized product is less than 67% by mass, a desired porosity in the obtained porous modified sulfur solidified product cannot be obtained. There is a risk that the effect of collecting algae and collecting fish will decrease.

本発明の多孔質改質硫黄固化体は、透水性を示す連続空隙を有し、且つ空隙率が10〜40容量%、好ましくは25〜35容量%である。ここで、透水性を示す連続空隙の有無は、水が通過するか否かで判断する。また、空隙率は、成型体の密度と材料(改質硫黄と細骨材等)それぞれ単身の密度を基にして算出した値である。
前記透水性を示す連続空隙を有さない場合、若しくは前記空隙率が10容量%未満の場合には、水中生物の蝟集や着生作用が低下する恐れがある。一方、前記空隙率が40容量%を超える場合には、所望の圧縮強度が得られない恐れがある。
本発明の多孔質改質硫黄固化体は、通常、20N/mm2以上の平均圧縮強度を発揮することができる。
本発明の多孔質改質硫黄固化体は、通常、1.5g/cm3以上、好ましくは1.7〜1.8g/cm3の比重を有することが好ましい。比重が1.5g/cm3未満の場合には、例えば、海中等に設置する土木・建築用構造物とした際に、波等により構造物が移動する恐れが生じる。
The porous modified sulfur solidified body of the present invention has continuous voids exhibiting water permeability and has a porosity of 10 to 40% by volume, preferably 25 to 35% by volume. Here, the presence or absence of continuous voids indicating water permeability is determined by whether or not water passes. The porosity is a value calculated on the basis of the density of the molded body and the material (modified sulfur, fine aggregate, etc.) of each individual.
When there is no continuous void showing the water permeability, or when the porosity is less than 10% by volume, there is a possibility that the collection and settlement action of aquatic organisms may be reduced. On the other hand, when the porosity exceeds 40% by volume, a desired compressive strength may not be obtained.
The porous modified sulfur solidified body of the present invention can usually exhibit an average compressive strength of 20 N / mm 2 or more.
The porous modified sulfur concrete substance of the present invention is usually, 1.5 g / cm 3 or higher, preferably have a specific gravity of 1.7~1.8g / cm 3. When the specific gravity is less than 1.5 g / cm 3 , for example, when a civil engineering / architectural structure is installed in the sea, the structure may move due to waves or the like.

本発明の多孔質改質硫黄固化体を調製するには、例えば、改質硫黄が溶融状態の改質硫黄資材を、通常120〜160℃、好ましくは130〜140℃の温度で、前記貝殻粉砕物、必要により他の骨材と混練し、所望形状に固化することにより得ることができる。
前記混練にあたっては、混練時の温度低下を避けるために貝殻粉砕物等を120〜155℃程度に予熱し、混合機も120〜155℃の温度に予熱しておくことが好ましい。
混練時間は、改質硫黄の重合による高粘度化、更には硬化を避けるため製造物の性状が許す範囲で極力短時間の方が望ましい。
但し、混合時間が短かすぎると十分混合されず、得られる多孔質改質硫黄固化体が連続相とならず、均一なポーラス状とならない恐れがある。従って、得られる多孔質改質硫黄固化体が、好ましくは完全な連続相となり均一なポーラス状となるように、混合時間を適宜決定することが好ましい。
前記混練に使用する混合機は、混練が十分に行えるものであれば特に限定されず、好ましくは固液撹拌用が使用できる。例えば、インターナルミキサー、ロールミル、ボールミル、ドラムミキサー、スクリュー押出し機、パグミル、ポニーミキサー、リボンミキサー、ニーダー等が使用できる。
前記固化は、前記混練物を所望の型枠等に導入して冷却固化することにより行うことができる。この冷却固化時の成型には、適宜振動を加えたり、超音波を照射しながら成型してもよい。
In order to prepare the porous modified sulfur solidified body of the present invention, for example, the modified sulfur material in which the modified sulfur is in a molten state is usually crushed at a temperature of 120 to 160 ° C., preferably 130 to 140 ° C. If necessary, it can be obtained by kneading with other aggregates and solidifying to a desired shape.
In the kneading, it is preferable to preheat crushed shells and the like to about 120 to 155 ° C. and to preheat the mixer to a temperature of 120 to 155 ° C. in order to avoid temperature drop during kneading.
The kneading time is preferably as short as possible within the range allowed by the properties of the product in order to increase the viscosity by polymerization of the modified sulfur and to avoid curing.
However, if the mixing time is too short, the mixture is not sufficiently mixed, and the resulting porous modified sulfur solidified body may not be a continuous phase and may not be in a uniform porous shape. Therefore, it is preferable to appropriately determine the mixing time so that the obtained porous modified sulfur solidified body is preferably a complete continuous phase and has a uniform porous shape.
The mixer used for the kneading is not particularly limited as long as kneading can be sufficiently performed, and preferably used for solid-liquid stirring. For example, an internal mixer, roll mill, ball mill, drum mixer, screw extruder, pug mill, pony mixer, ribbon mixer, kneader and the like can be used.
The solidification can be performed by introducing the kneaded material into a desired formwork or the like and cooling and solidifying. The molding at the time of cooling and solidification may be performed while appropriately applying vibration or irradiating ultrasonic waves.

本発明の土木・建築用構造物は、本発明の多孔質改質硫黄固化体を備えておれば良く、該構造物の一部若しくは全部が本発明の多孔質改質硫黄固化体により構成される。
本発明の土木・建築用構造物は、例えば、根固めブロック、消波ブロック、被覆ブロック、人工リーフ等の各種ブロック類、漁礁、藻礁、護岸用構造物等が好ましく挙げられるが、その他、ヒューム管、マンホール等管状成形物、ボックスカルバート、パネル材、タイル等であっても良い。
The civil engineering / architecture structure of the present invention may be provided with the porous modified sulfur solidified body of the present invention, and a part or all of the structure is composed of the porous modified sulfur solidified body of the present invention. The
The civil engineering / architecture structure of the present invention preferably includes, for example, various types of blocks such as rooting blocks, wave-dissipating blocks, covering blocks, artificial reefs, fishing reefs, algae reefs, structures for revetment, etc. It may be a tubular molded product such as a fume tube or a manhole, a box culvert, a panel material, or a tile.

以下、実施例及び比較例によって具体的に説明するが、本発明はこれらの例に限定されない。
実施例1〜2及び比較例1〜3
密閉式撹拌混合槽中に、固体硫黄95kgを入れ、120℃で加温して溶解後、130℃に保持した。続いて、約50℃に加熱溶解したジシクロペンタジエン5kgをゆっくりと添加し、約10分間静かに撹拌して、初期反応による温度上昇が収束することを確認してから、140℃まで昇温した。反応が開始され、次第に粘度が上昇し、約1時間で粘度が0.1Pa・sに達したところで直ちに加熱を停止し、適当な型又は容器に流し込んで室温で冷却し、改質硫黄を得た。
次いで、140℃に予熱した粒径1mm以下の石炭灰20kgと、前記改質硫黄40kgを130℃に再加熱して溶解した溶解物とを、140℃に保った混練機(プローシェアーミキサー)内にほぼ同時に投入した。続いて10分間混練した後冷却し、100mm以下に破砕して改質硫黄資材を調製した。
一方、ホタテ貝殻を洗浄後、ジョークラッシャーにより粗粉砕し、恒温器により4時間乾燥した。次いで、ハンマークラッシャーにより粉砕及びJISふるいを用いて粒度調整した粒径3〜10mmの貝殻粉砕物を調製した。
バッチ式撹拌混合槽中に、上記改質硫黄資材を表1に示す割合となるように導入し、120℃で加温して溶解後、130℃に保持した。続いて、調製した貝殻粉砕物を130℃に予熱した状態で表1に示す割合となるように導入し、130℃で10分間混練した。
得られた混練物を、所定の型枠に入れ、1時間自然冷却して直径5cm、高さ10cmの円柱試験体を得た。
得られた試験体について、空隙率を試験体の密度と材料(改質硫黄と細骨材と貝殻粉砕物)それぞれ単身の密度を基にして算出した。また、透水性を有する連続空隙の有無を、水が試験体を通過するか否かで判断した。更に試験体の圧縮強度をJIS A1108により、比重をJIS A1161により測定した。結果を表1に示す。
Hereinafter, although an example and a comparative example explain concretely, the present invention is not limited to these examples.
Examples 1-2 and Comparative Examples 1-3
95 kg of solid sulfur was placed in a closed stirring and mixing vessel, heated at 120 ° C. and dissolved, and then maintained at 130 ° C. Subsequently, 5 kg of dicyclopentadiene heated and dissolved at about 50 ° C. was slowly added and stirred gently for about 10 minutes. After confirming that the temperature increase due to the initial reaction had converged, the temperature was raised to 140 ° C. . The reaction starts, the viscosity gradually increases, and when the viscosity reaches 0.1 Pa · s in about 1 hour, the heating is stopped immediately, poured into an appropriate mold or container and cooled at room temperature to obtain modified sulfur. It was.
Next, 20 kg of coal ash having a particle diameter of 1 mm or less preheated to 140 ° C. and a melt obtained by reheating 40 kg of the modified sulfur to 130 ° C. in a kneader (Pro-Sharer mixer) maintained at 140 ° C. Almost simultaneously. Subsequently, the mixture was kneaded for 10 minutes, cooled, and crushed to 100 mm or less to prepare a modified sulfur material.
On the other hand, the scallop shell was washed, coarsely pulverized with a jaw crusher, and dried for 4 hours with a thermostatic chamber. Next, crushed shellfish with a particle size of 3 to 10 mm, which was pulverized with a hammer crusher and adjusted in particle size using a JIS sieve, was prepared.
The modified sulfur material was introduced into the batch type stirring and mixing tank so as to have the ratio shown in Table 1, heated at 120 ° C and dissolved, and then maintained at 130 ° C. Subsequently, the prepared shell crushed material was introduced so as to have the ratio shown in Table 1 in a state preheated to 130 ° C., and kneaded at 130 ° C. for 10 minutes.
The obtained kneaded material was put into a predetermined mold and naturally cooled for 1 hour to obtain a cylindrical test body having a diameter of 5 cm and a height of 10 cm.
With respect to the obtained specimen, the porosity was calculated based on the density of the specimen and the material (modified sulfur, fine aggregate, and crushed shell), respectively. Moreover, the presence or absence of the continuous space | gap which has water permeability was judged by whether water passed a test body. Further, the compressive strength of the specimen was measured according to JIS A1108, and the specific gravity was measured according to JIS A1161. The results are shown in Table 1.

上記で調製した試験体と同様に、1m×1m×0.45mのブロックを調製し、それぞれを海中に設置した。また、セメントコンクリートにより同様に調製したブロックも同海中に設置した。
60日後、ブロック表面に着生した藻類の面積率を測定し、また魚の蝟集効果を観察した。魚の蝟集効果は目視で観察し、良いものを3点、普通を2点、悪いものを1点とした。更に、ブロックの波による設置位置からの移動を観察し、移動していないものを3点、若干の移動があったものを2点、移動が激しいものを1点とした。結果を表2に示す。
Similar to the specimen prepared above, 1 m × 1 m × 0.45 m blocks were prepared and each was installed in the sea. A block prepared in the same way with cement concrete was also installed in the sea.
After 60 days, the area ratio of algae grown on the block surface was measured, and the effect of collecting fish was observed. The fish collection effect was visually observed, with 3 being good, 2 being normal, and 1 being bad. Furthermore, the movement from the installation position by the wave of the block was observed, and 3 points were not moved, 2 points were slightly moved, and 1 point was fast moving. The results are shown in Table 2.

Figure 2006306634
表1より、改質硫黄資材の割合が20質量%である比較例1では、透水性及び空隙率は十分であったが、圧縮強度にばらつきが見られ、平均圧縮率も低いものであった。改質硫黄資材の割合が35質量%である比較例2では、圧縮強度はばらつきが見られず、平均圧縮率も高いものであったが、透水性及び空隙率が十分でなかった。一方、改質硫黄資材の割合が25質量%及び30質量%である実施例1及び2では、透水性、空隙率及び圧縮強度のいずれも十分なものであった。
Figure 2006306634
From Table 1, in Comparative Example 1 in which the ratio of the modified sulfur material was 20% by mass, the water permeability and the porosity were sufficient, but the compressive strength was uneven and the average compressibility was low. . In Comparative Example 2 in which the proportion of the modified sulfur material was 35% by mass, the compressive strength did not vary and the average compressibility was high, but the water permeability and porosity were not sufficient. On the other hand, in Examples 1 and 2 in which the ratio of the modified sulfur material was 25% by mass and 30% by mass, all of water permeability, porosity and compressive strength were sufficient.

Figure 2006306634
表2より、改質硫黄資材の割合が20質量%である比較例1及び25質量%である実施例1では、藻類の着生及び魚の蝟集効果は良好であった。また、波による移動も若干なものであった。改質硫黄資材の割合が35質量%である比較例2及びセメントコンクリートを用いた比較例3では、波による移動は認められなかったが、藻類の着生及び魚の蝟集効果は実施例1及び2に比較して劣るものであった。改質硫黄資材の割合が30質量%である実施例2では、波による移動が認められず、藻類の着生及び魚の蝟集効果も十分なものであった。

Figure 2006306634
From Table 2, in Comparative Example 1 in which the ratio of the modified sulfur material is 20% by mass and Example 1 in which it is 25% by mass, the algae settlement and the fish collection effect were good. In addition, the movement by waves was slight. In Comparative Example 2 where the proportion of the modified sulfur material is 35% by mass and Comparative Example 3 using cement concrete, no movement due to waves was observed, but the effects of algae growth and fish collection were the same as in Examples 1 and 2. It was inferior to In Example 2 in which the proportion of the modified sulfur material was 30% by mass, no movement due to waves was observed, and the effects of algae growth and fish collection were sufficient.

Claims (6)

粒径5mm以下の細骨材100質量部及び改質硫黄30〜400質量部とを含む改質硫黄資材20質量%を超え33質量%以下と、粒径3〜10mmの貝殻粉砕物67質量%以上80質量%未満とを含み、透水性を示す連続空隙を有し、且つ空隙率が10〜40容量%であることを特徴とする貝殻粉砕物を主成分とする多孔質改質硫黄固化体。   More than 20% by mass of the modified sulfur material including 100 parts by mass of fine aggregate having a particle size of 5 mm or less and 30 to 400 parts by mass of modified sulfur, and 33% by mass or less, and 67% by mass of crushed shells having a particle size of 3 to 10 mm. The porous modified sulfur-solidified product comprising a crushed shell as a main component, characterized in that it has continuous voids that show water permeability and has a porosity of 10 to 40% by volume. . 前記細骨材が、石炭灰、珪砂、シリカヒューム、石英粉、砂、ガラス粉末及び電気集塵灰からなる群より選択される1種又は2種以上であり、且つ前記貝殻粉砕物が、ホタテ貝殻粉砕物、カキ貝殻粉砕物及びホッキ貝殻粉砕物からなる群より選択される1種又は2種以上の貝殻粉砕物である請求項1記載の多孔質改質硫黄固化体。   The fine aggregate is one or more selected from the group consisting of coal ash, silica sand, silica fume, quartz powder, sand, glass powder and electrostatic dust ash, and the shell pulverized product is scallop The porous modified sulfur solidified material according to claim 1, which is one or more kinds of crushed shells selected from the group consisting of crushed shells, oyster shells and crushed shellfish shells. 平均圧縮強度が20N/mm2以上である請求項1又は2記載の多孔質改質硫黄固化体。 The porous modified sulfur solidified body according to claim 1 or 2, having an average compressive strength of 20 N / mm 2 or more. 比重が1.5g/cm3以上である請求項1〜3のいずれか1項記載の多孔質硫黄固化体。 The porous solidified solid body according to any one of claims 1 to 3, wherein the specific gravity is 1.5 g / cm 3 or more. 請求項1〜4のいずれか1項記載の多孔質改質硫黄固化体を備える土木・建築用構造物。   A civil engineering / building structure comprising the porous modified sulfur solidified body according to any one of claims 1 to 4. 前記土木・建築用構造物が、ブロック、漁礁、藻礁、護岸用構造物である請求項5記載の土木・建築用構造物。
The civil engineering / architecture structure according to claim 5, wherein the civil engineering / architecture structure is a block, fishing reef, algae reef, or a revetment structure.
JP2005127506A 2005-04-26 2005-04-26 Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure Pending JP2006306634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127506A JP2006306634A (en) 2005-04-26 2005-04-26 Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127506A JP2006306634A (en) 2005-04-26 2005-04-26 Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure

Publications (1)

Publication Number Publication Date
JP2006306634A true JP2006306634A (en) 2006-11-09

Family

ID=37473956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127506A Pending JP2006306634A (en) 2005-04-26 2005-04-26 Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure

Country Status (1)

Country Link
JP (1) JP2006306634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067315A1 (en) * 2010-11-17 2012-05-24 지에스칼텍스 주식회사 Composite sulfur polymer
CN105645862A (en) * 2015-12-31 2016-06-08 福州皇家地坪有限公司 Ecological concrete for water purification
KR102392632B1 (en) * 2021-07-15 2022-04-28 윤영식 Aggregate using oyster shell and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140520A (en) * 1994-11-25 1996-06-04 Kenichi Oka Block used for fish gathering bank or the like
JP2002045078A (en) * 2000-05-22 2002-02-12 Akinori Oki Block produced by using waste of coal ash and others, and byproduct, group of gathering banks for fish, construction system for the same, and method for proliferating fishery resource
JP2004189538A (en) * 2002-12-11 2004-07-08 Nippon Oil Corp Porous sulfur material, its production method, and block and structure using the material
JP2005082475A (en) * 2003-09-11 2005-03-31 Nippon Oil Corp Intermediate sulfur material, sulfur material and its producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140520A (en) * 1994-11-25 1996-06-04 Kenichi Oka Block used for fish gathering bank or the like
JP2002045078A (en) * 2000-05-22 2002-02-12 Akinori Oki Block produced by using waste of coal ash and others, and byproduct, group of gathering banks for fish, construction system for the same, and method for proliferating fishery resource
JP2004189538A (en) * 2002-12-11 2004-07-08 Nippon Oil Corp Porous sulfur material, its production method, and block and structure using the material
JP2005082475A (en) * 2003-09-11 2005-03-31 Nippon Oil Corp Intermediate sulfur material, sulfur material and its producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067315A1 (en) * 2010-11-17 2012-05-24 지에스칼텍스 주식회사 Composite sulfur polymer
CN105645862A (en) * 2015-12-31 2016-06-08 福州皇家地坪有限公司 Ecological concrete for water purification
KR102392632B1 (en) * 2021-07-15 2022-04-28 윤영식 Aggregate using oyster shell and its manufacturing method

Similar Documents

Publication Publication Date Title
WO2015104466A1 (en) Hydraulic cements based on cement or on cement clinker or on lime, on calcium sulphate, and on a pozzolanic component; process for the manufacture thereof and uses thereof
Razali et al. Preliminary studies on calcinated chicken eggshells as fine aggregates replacement in conventional concrete
JP2008247728A (en) Method for producing water-retentive block
JP5744387B2 (en) Method for producing mud-containing solidified body
JP6065720B2 (en) Method for producing hydrated solid body
EA009098B1 (en) Sulfur intermediate material, sulfur material and process for producing the same
JP2006306634A (en) Porous modified sulfur solidified body composed mainly of shell pulverized product and civil engineering/building structure
JP5907246B2 (en) Manufacturing method of solidified body
JPWO2007055351A1 (en) Modified sulfur-containing binder and method for producing modified sulfur-containing material
JP2007001825A (en) Warm-colored porous reformed sulfur solid body containing crushed shell as major ingredient, civil engineering/building structures, and shaped article for trapping octopus
JP2004155636A (en) Construction or building material using slag or fly ash as main material
JP4231727B2 (en) Manufacturing methods for civil engineering and building materials using shells
JP2004292244A (en) Concrete-like colored solid body and its manufacture method
JP6315063B2 (en) Method for producing hydrated solid body
JP6893431B2 (en) Manufacturing method of expandable filler
JP2004189538A (en) Porous sulfur material, its production method, and block and structure using the material
JP2005314156A (en) Granule and its manufacturing process
JP4553244B2 (en) Method for producing sulfur-containing material moldings
JP2011093751A (en) Mud-containing solidified matter and method for manufacturing the same
KR102370546B1 (en) Composition for building or civil engineering materials used for manufacturing fish reef and so on, wchich comprises waste shells, aggregates, Masato, soil hardener and sodium alginate and a construction or civil structure manufacturing method using the sam
JP2008050481A (en) Roadbed improving material formed of mixture of pulverized refuse molten slag and slaked lime
JP2004245351A (en) Cement-based heat insulation material
Bagwan et al. A Study of Characteristic and Use of Pond Ash for Construction
JP2009209283A (en) Solidification material for soil improvement
JP2007320825A (en) Block using soil generated through water purification and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221