JP2004245351A - Cement-based heat insulation material - Google Patents

Cement-based heat insulation material Download PDF

Info

Publication number
JP2004245351A
JP2004245351A JP2003036763A JP2003036763A JP2004245351A JP 2004245351 A JP2004245351 A JP 2004245351A JP 2003036763 A JP2003036763 A JP 2003036763A JP 2003036763 A JP2003036763 A JP 2003036763A JP 2004245351 A JP2004245351 A JP 2004245351A
Authority
JP
Japan
Prior art keywords
cement
foam glass
based heat
heat insulating
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036763A
Other languages
Japanese (ja)
Other versions
JP4225798B2 (en
Inventor
Ryoji Nishio
西尾良治
Eiji Suzuki
鈴木英治
Shuichi Okamoto
岡本修一
Yutaka Hasegawa
長谷川豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Chubu Electric Power Co Inc
Original Assignee
Taisei Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Chubu Electric Power Co Inc filed Critical Taisei Corp
Priority to JP2003036763A priority Critical patent/JP4225798B2/en
Publication of JP2004245351A publication Critical patent/JP2004245351A/en
Application granted granted Critical
Publication of JP4225798B2 publication Critical patent/JP4225798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Insulation (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide cement-based heat insulation material that is usable in mass quantity using removed trash of coal ash and foam glass-based heat insulation material that have conventionally been processed as industrial waste for material. <P>SOLUTION: This cement-based heat insulation material comprises cement, coal ash discharged from coal burning facilities, crushed foam glass material as crushed material of used foam glass-based heat insulation material mixed as necessary, and EPS aggregates generated from used foam styrene. The ratio of the coal ash is set as 10-40 wt% to weight of the cement and the coal ash. The volume ratio of the foam glass crushed material to the EPS aggregates is set as 0:100-30:70. Especially, it is preferable that weight of the coal ash, the crushed foam glass material, and the EPS aggregates is 30-65 wt% to total weight of the cement-based heat insulation material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セメントと、発泡スチロールから生成したEPS骨材とを原料にしたセメント系断熱材に関するものである。本発明のセメント系断熱材は、EPS骨材や石炭灰などの廃棄物として処理される材料を有効に再利用するものである。
【0002】
【従来の技術】
低温液化ガス貯蔵槽施設の周囲には、液化ガスが漏出した場合に備えて防液堤が構築されている。この防液堤の内面には、漏出した液化ガスが地表面又は堤面からの入熱によって急速に初期蒸発することを抑制するために断熱材を敷設している(特許文献1参照)。
この断熱材として、従来から泡ガラス系断熱材が適用されているが、その断熱材の劣化が著しく補修時期を迎えているものも多い。従来の補修方法としては、劣化した断熱材を全て撤去し、新たなセメント系断熱材を構築する方法が多く採用されているが、補修時に撤去した多量の泡ガラス系断熱材の撤去屑が発生し、それを産業廃棄物として処理せざるを得ない状況にある。
一方、発泡スチロールの再利用技術の一つに、粉砕した発泡スチロールの表面に対して遠赤外線処理あるいは温風処理等を行ない、建設系の材料として利用する技術があり、吸音材、断熱材、軽量盛土などの材料として使用されている。
また、近年の環境問題への関心が高まるなか、企業には廃棄物の排出量の削減が求められ、廃棄物の再生・再利用の必要性がますます高まってきている。特に、火力発電所などの石炭燃焼施設においては、大量の燃料炭の燃焼灰(石炭灰)が発生し、その有効利用が重要な課題の一つになっており、これまでのコンクリート混和材(フライアッシュ)や土壌改良材としての利用法に加え、それ以外の用途に関し多くの検討が進められているのが現状である。
【0003】
【特許文献1】
特開平10−338562号公報(第2頁、第1図)
【0004】
【発明が解決しようとする課題】
前記した従来のセメント系断熱材にあっては、次のような問題点がある。
<イ>泡ガラス系断熱材の撤去屑を新たな補修用セメント系断熱材に混合して再利用しようとする場合、泡ガラス系断熱材の撤去屑をある程度の大きさまでに粉砕する必要がある。しかし、粉砕品は、粉砕作業により必然的に比重が大きくなり、また吸水率も高くなるので、それを使用した断熱材の見掛けの比重増加や、施工性の低減という欠点がでてくる。
<ロ>再生した発泡スチロールを断熱材の材料として使用した場合、断熱性能を確保するために多量の発泡スチロール再生骨材を用いると、断熱材の比重が非常に小さくなり強度が極端に低下するという問題が生じる。
<ハ>再生材料の多くは、コストを抑えるためにバージン材料製造時のような厳しい品質管理等の手間をかけられないのが現状であり、再利用の際に材料の品質変動が再利用品の品質変動に大きく影響を及ぼし問題となる場合が多い。
【0005】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、石炭灰や泡ガラス系断熱材の撤去屑などの従来産業廃棄物として処理されていたものを、原料として多量に使用できるセメント系断熱材を提供することを目的とする。
また、再利用品の品質に影響を受けにくく、安定した品質を確保できるセメント系断熱材を提供することを目的とする。
さらに、所定の強度を確保でき、比重の調整が可能なセメント系断熱材を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0006】
【課題を解決するための手段】
上記のような目的を達成するために、本発明のセメント系断熱材は、セメントと、石炭燃焼施設より排出される石炭灰と、必要に応じて混入する使用済みの泡ガラス系断熱材の粉砕材である泡ガラス粉砕材と、使用済みの発泡スチロールから生成したEPS骨材と、からなり、前記セメントと前記石炭灰を足し合わせた重量に対する前記石炭灰の割合を10〜40重量%とし、前記泡ガラス粉砕材と前記EPS骨材の容積比率を0:100〜30:70としたことを特徴とするものである。特に、前記石炭灰と前記泡ガラス粉砕材と前記EPS骨材を足し合わせた重量が、セメント系断熱材の全重量の30〜65重量%となるように配合するのが好ましい。
また、前記セメントとして廃棄物の焼却灰を主原料として製造したエコセメントを使用することができる。
さらに、微細気泡を全容積の20〜40容積%混入するのが好ましい。
【0007】
また、本発明のセメント系断熱材は、セメントと、石炭燃焼施設より排出される石炭灰と、使用済みの泡ガラス系断熱材の粉砕材である泡ガラス粉砕材と、使用済みの発泡スチロールから生成したEPS骨材と、からなり、前記セメント100重量部に対して、前記石炭灰を11〜67重量部、前記泡ガラス粉砕材を25〜65重量部及び前記EPS骨材を10〜30重量部を混練し、微細気泡を全容積の20〜40%混入したことを特徴としたものである。
【0008】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0009】
<イ>セメント系断熱材
セメントと、石炭燃焼施設より排出される石炭灰と、使用済みの発泡スチロールから生成したEPS骨材(発泡スチロール骨材)を主成分とする。また、必要に応じて使用済みの泡ガラス系断熱材の粉砕材である泡ガラス粉砕材を混入する。
本発明のセメント系断熱材の特徴は、従来の再生したEPS骨材を有効利用した断熱材の配合を基に説明すると、EPS骨材の一部を後述する泡ガラス粉砕材に置き換え、セメントの一部を石炭灰に置き換えた点にある(図1参照)。以下、セメント系断熱材を構成する各材料について説明する。
【0010】
<ロ>セメント
セメントは、公知の普通ポルトランドセメント、エコセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、高炉セメント、シリカセメント、低発熱型セメントなどが使用できる。
ここで、エコセメントとは、都市ゴミなどの廃棄物を焼却した灰を主原料に製造したセメントをいう。エコセメントは、都市部などで発生する廃棄物のうち主たる廃棄物である都市ごみを焼却した際に発生する焼却灰を主とし、必要に応じて下水汚泥などの廃棄物を従としてエコセメントクリンカーの主原料に用いて製造される資源リサイクル型のセメントの一種である。ゴミを資源として有効利用する有力な方法として注目されている。
【0011】
<ハ>石炭灰
石炭灰は、火力発電所などの石炭燃焼施設において燃料炭を燃焼することによって大量に発生する燃焼灰である。
石炭灰の中でも、微粉炭を燃焼する際の発煙中から集塵機で捕集した微粉末は、フライアッシュとしてセメントと置換することができる。フライアッシュをポルトランドセメントに混合したものが公知のフライアッシュセメントであり、強度の発現性がよい、乾燥収縮が小さい、水和熱が低い、化学抵抗性が強いなどの利点を有する。
また、フライアッシュの比重は、一般に2.2〜2.6程度とポルトランドセメントの比重(3.15程度)に比べて小さいので、ポルトランドセメントと置換することで、使用した断熱材の見掛けの比重を小さくすることが可能となり、断熱性能を改善できる利点を有する。
【0012】
<ニ>泡ガラス粉砕材
泡ガラス粉砕材は、使用済みの泡ガラス系断熱材を粉砕して製造する。
泡ガラスは、ガラス原料粉末に発泡剤を混合して成形し、得られた成形体を所定の温度に焼成することによって製造する。泡ガラスのガラス原料には、板ガラスやガラス瓶を粉砕した再利用品が使用できる。また、発泡剤には、炭素、ドロマイト、窒化ホウ素、石灰石粉等が使用できる。
こうして製造される泡ガラスは、その多孔質の構造により、優れた耐熱性、吸音性を発揮するため、建設用の泡ガラス系断熱材として使用される。低温液化ガス貯蔵槽施設の周囲に構築する防液堤の内面には、従来からこの泡ガラス系断熱材が使用されている。このため、泡ガラス粉砕材の原料となる使用済みの泡ガラス系断熱材は、防液堤の補修時には容易に得ることができるうえに、産業廃棄物として使用済みの泡ガラス系断熱材を処理する必要をなくす、又は削減することができる。
セメント系断熱材に泡ガラス粉砕材を混入することで強度を改善することができる。
泡ガラス粉砕材として、劣化したセローム(商品名)の粉砕品等を使用することができる。
【0013】
<ホ>EPS骨材
EPS骨材は、粉砕した発泡スチロールから製造する破砕粒子である。
例えば使用済みの発泡スチロールを15mm以下の大きさに粉砕し、その表面に遠赤外線を照射したり、温風を当てたりして、粒子の外形を整形したり、強度を向上させたりする。
【0014】
<ヘ>気泡
本発明のセメント系断熱材には、所要の量の微細な気泡を混入させる。
泡ガラス粉砕材の吸水率が大きい影響や、石炭灰の品質変動の影響によって、練り上りのセメント系断熱材のワーカビリティ(練り上り時のスランプ)が大きく変動する。この問題を解決するために、本発明においては微細な気泡をセメント系断熱材の全容積の20〜40容積%程度、混入する。こうすることで施工性が確保できるとともに使用材料の品質変動による影響を低減し、セメント系断熱材の品質安定性を確保することが可能となる。
また、泡ガラス粉砕材の混入によってセメント系断熱材の比重が大きくなることを、微細な気泡を混入することで調整することができる。
【0015】
<ト>添加剤
セメント系断熱材には、上記した材料に加えて必要に応じて添加剤を添加する。
添加剤には、公知の起泡剤、安定剤、コンクリート減水剤などがある。
起泡剤は気泡の作用により充填性を改善したり、重量を調整したりする添加剤であり、コンクリートの混和剤として使用される公知の材料が使用できる。例えば、アルキルオレフィンスルホン酸塩系起泡剤、アニオン系、ノニオン系又は蛋白系の起泡剤等が使用できる。
安定剤は、水に分散又は溶解し、あるいは吸水に粘性を高め、断熱材に使用する材料が混練後に分離することを抑制し、均一性を保つことが可能な公知の材料が使用できる。例えば、ホルマイト鉱物の水砕粉末、ベントナイト、カオリン等の無機系増粘材、メチルセルロース等のセルロース誘導体その他各種の合成高分子化合物や吸水性ポリマー等が使用できる。
コンクリート減水剤は、セメント粒子を分散させることにより、コンクリート等の所要のワーカビリティを得るのに必要な単位水量を減らすことが可能な公知の混和剤である。減水剤にはAE減水剤のように空気(気泡)連行効果を有するものがある。減水剤としては、アルキルナフタリンスルホン酸塩、メラミンのスルホン化結合物塩などのアニオン系減水剤、あるいはポリカルボン酸塩に代表されるノニオン系減水剤等が使用できる。
【0016】
【実施例】
<イ>配合の基本的な考え方
従来のEPS骨材を使用した断熱材の配合の基本的な考え方は、単位体積中に可能な限りEPS骨材を充填し、残りの空間をセメントペーストと微細気泡で補い固化体とするというものである。
これを踏まえて本発明のセメント系断熱材の配合を検討する。上述したように粉体であり潜在的水硬性を有するフライアッシュ(石炭灰の実施例)はセメントの一部と置換でき、固体であり断熱性能の改善がある程度期待できる劣化した泡ガラス粉砕材(例えばセローム粉砕品)はEPS骨材の一部と置換できる。
【0017】
配合を検討するにあたり、泡ガラス粉砕材とフライアッシュの基本物性を考慮すると、EPS骨材を泡ガラス粉砕材に置換する場合と、セメントをフライアッシュに置換する場合とで、出来上がるセメント系断熱材の物性値は大略、図2に示すような影響を受ける。
すなわち、同一配合条件(水・粉体比、気泡量が同じ)のもと、EPS骨材より密度が大きく粒径の小さい泡ガラス粉砕材の置換率を上げていくと、スランプは小さく、密度は大きく、強度は大きく、熱伝導率は大きくなる傾向を示すと考えられる。一方、セメントより密度が小さく粒径の小さいフライアッシュの置換率を上げていくと、スランプは小さく、密度は小さく、強度は小さく、熱伝導率は小さくなる傾向を示すと考えられる。
【0018】
<ロ>配合選定
今回、配合選定用に実験をおこなった配合ケースを表1に示す。なお、配合を検討するにあたってのセメント系断熱材の特性の目標値は、熱伝導率0.10〜0.12(kcal/mh℃)、絶乾密度0.50〜0.70(g/cm)程度(練り上り密度で0.60〜0.80(g/cm))、圧縮強度2〜3(N/mm)以上、スランプ10〜15(cm)程度以上とする。
【0019】
【表1】

Figure 2004245351
【0020】
表1に示した配合により練り上げたセメント系断熱材の測定結果を表2に示す。なお、表2中のFAは単位体積あたりに含まれるフライアッシュの重量を、Cは単位体積あたりに含まれるセメントの重量を示す。
【0021】
【表2】
Figure 2004245351
【0022】
<ハ>フライアッシュの置換量に関する考察
図3にフライアッシュの置換率と、練り上りのスランプとの関係を示す。
図3においては、フライアッシュ置換率が増加するのに伴いスランプが低下する傾向がみられる。特に、泡ガラス粉砕材置換率がゼロの場合(図3(a))には、40%を超えるとスランプの低下が顕著になる。また、フライアッシュ置換率が50%の場合(配合No.5,9)は、打設翌日に型枠を撤去する際に供試体の一部が壊れる状況であった。
これらの練り上りの性状や強度発現性から考えると、フライアッシュの置換率は40%程度までが上限と考えられる。
【0023】
<ニ>泡ガラス粉砕材の置換量に関する考察
図4(a)に泡ガラス粉砕材置換率と練り上り密度の関係を示した。この図から密度の大きい泡ガラス粉砕材の置換量が30容積%を超えると練り上り密度が急激に大きくなることがわかる。密度が大きくなると断熱性能が低下するため断熱材の特性としては好ましくない。
また、図4(b)には、練り上り密度と気泡量の関係を示した。ここで、EPS骨材のみを使用した配合No.1〜5を黒丸(●)で記し、泡ガラス粉砕材を混入した配合No.6〜12を白丸(○)で記した。この図から、まず、今回目標とした練り上り密度0.6〜0.8(g/cm)を満足させるには、全般的に見て気泡量を20〜50%程度の範囲で設定する必要があることがわかる。特に、EPS骨材の一部を泡ガラス粉砕材で置換すると固体部分の質量が重くなり、同程度の密度を確保するにはEPS骨材のみを使用した場合より多くの気泡が必要となることがわかる。従って、同程度の密度のセメント系断熱材では、相対的に強度は低めとなる傾向にある。
一方、図5に示した気泡量と圧縮強度の関係から、材齢28日時点で目標の2.0〜3.0(N/mm)以上の圧縮強度を確保するには、気泡量を40容積%程度以下に抑える必要があることがわかる。
以上の結果より、気泡量を40容積%程度以下に抑えたうえで、泡ガラス粉砕材の置換量の上限を30%とするのが妥当と思われる。
【0024】
<ホ>選択された配合
以上の検討結果より、本発明のセメント系断熱材として好ましいと考えられる配合を選択した結果を表3に示す。表3は、上段に単位量(kg/m)を、下段にセメントの重量を100重量部としたセメントの重量との比を示した。また、配合No. Eには、エコセメントを使用した。
【0025】
【表3】
Figure 2004245351
【0026】
表3に示した配合により製造したセメント系断熱材の特性を表4に示す。なお、比較のために従来品の特性も記載した。
【0027】
【表4】
Figure 2004245351
【0028】
表4に示すように、圧縮強度が同程度の従来品1のセメント系断熱材と比較して、同程度の熱伝導率を確保していることがわかる。また、絶乾密度が同程度の従来品2と比較して、熱伝導率が約50%と小さくなり、断熱性能に優れていることがわかる。このように、主材料に再生材を利用しても、充分に使用可能なセメント系断熱材とすることができる。
従って、表3の配合から、セメント100重量部に対して、石炭灰を11〜67重量部、泡ガラス粉砕材を25〜65重量部及び前記EPS骨材を10〜30重量部を混練したセメント系断熱材が好ましい配合であるといえる。
また、表3の石炭灰と泡ガラス粉砕材とEPS骨材を足し合わせた重量は、セメント系断熱材の全重量の30〜65重量%となり、従来廃棄物とされていたものを原料として有効に再利用しているといえる。
【0029】
【発明の効果】
本発明のセメント系断熱材は、以上説明したようになるから次のような効果を得ることができる。
<イ>石炭灰や泡ガラス系断熱材の撤去屑などの従来産業廃棄物として処理されていたものを、原料として多量に使用できる。このため、排出される廃棄物の総量を削減することができる。
<ロ>微細な気泡を全容積の20〜40容積%混入することで、再利用品の品質に影響を受けにくく、安定した品質を確保できるセメント系断熱材とすることができる。
<ハ>泡ガラス粉砕材を混入することで所定の強度を確保できる。また、セメント系断熱材の比重は気泡の混入量によって調整できる。
【図面の簡単な説明】
【図1】本発明のセメント系断熱材の配合の基本的な考え方の説明図
【図2】セメント系断熱材の物性値の大略を示す説明図
【図3】(a)泡ガラス粉砕材置換率が0容積%の配合におけるフライアッシュ置換率とスランプとの関係図(b)泡ガラス粉砕材置換率が30容積%の配合におけるフライアッシュ置換率とスランプとの関係図
【図4】(a)ライアッシュ置換率10重量%の配合における泡ガラス粉砕材置換率と練り上り密度の関係図(b)練り上り密度と気泡量の関係図
【図5】気泡量と圧縮強度の関係図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cement-based heat insulating material using cement and EPS aggregate generated from styrofoam as raw materials. INDUSTRIAL APPLICABILITY The cement heat insulating material of the present invention effectively reuses materials treated as waste, such as EPS aggregate and coal ash.
[0002]
[Prior art]
There is a dike built around the low-temperature liquefied gas storage tank facility in case liquefied gas leaks. A heat insulating material is laid on the inner surface of the dike to prevent the leaked liquefied gas from rapidly evaporating due to heat input from the ground surface or the dike surface (see Patent Document 1).
As this heat insulating material, a foam glass heat insulating material has been conventionally used, but many of the heat insulating materials have significantly deteriorated and have reached a repair time. As a conventional repair method, a method of removing all the deteriorated heat insulating material and constructing a new cement-based heat insulating material is often used, but a large amount of debris from the foam glass-based heat insulating material removed during the repair is generated. However, they have to be treated as industrial waste.
On the other hand, as one of the recycling techniques of Styrofoam, there is a technique in which the surface of pulverized Styrofoam is subjected to a far-infrared ray treatment or a hot air treatment to be used as a construction material. It is used as a material.
In addition, with an increasing interest in environmental issues in recent years, companies have been required to reduce the amount of waste generated, and the need for recycling and reuse of waste has been increasing. Particularly in coal-fired facilities such as thermal power plants, a large amount of combustion ash (coal ash) of fuel coal is generated, and its effective utilization is one of the important issues. At present, many studies are being conducted on uses other than fly ash) and soil improvement materials.
[0003]
[Patent Document 1]
JP-A-10-338562 (page 2, FIG. 1)
[0004]
[Problems to be solved by the invention]
The above-mentioned conventional cement-based heat insulating material has the following problems.
<B> When the scraps of foam glass insulation are mixed with new repair cement insulation for reuse, it is necessary to crush the scraps of foam glass insulation to a certain size. . However, the crushed product inevitably has a higher specific gravity and a higher water absorption rate due to the crushing operation, and thus has a drawback in that the apparent specific gravity of the heat insulating material using the crushed product increases and the workability is reduced.
<B> When regenerated styrofoam is used as a heat insulating material, if a large amount of styrofoam recycled aggregate is used to ensure heat insulation performance, the specific gravity of the heat insulating material becomes extremely small, and the strength is extremely reduced. Occurs.
<C> At present, most of the recycled materials do not require strict quality control such as in the production of virgin materials in order to reduce costs. In many cases, it has a significant effect on the quality variation of the
[0005]
[Object of the invention]
The present invention has been made in order to solve the above-mentioned conventional problems, and uses a large amount of raw materials which have been treated as industrial wastes such as coal ash and debris of foam glass-based heat insulating material. It is an object to provide a cement-based heat insulating material that can be used.
It is another object of the present invention to provide a cement-based heat insulating material that is hardly affected by the quality of a reused product and that can ensure stable quality.
It is another object of the present invention to provide a cement-based heat insulating material that can secure a predetermined strength and can adjust the specific gravity.
The present invention achieves at least one of these objects.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the cement-based heat insulating material of the present invention is a method for pulverizing cement, coal ash discharged from a coal combustion facility, and used foam glass-based heat insulating material mixed as necessary. A foam glass crushed material which is a material, and an EPS aggregate generated from used styrofoam, wherein the ratio of the coal ash to the total weight of the cement and the coal ash is 10 to 40% by weight, The volume ratio between the crushed foam glass material and the EPS aggregate is set to 0: 100 to 30:70. In particular, it is preferable that the weight of the coal ash, the crushed foam glass material, and the EPS aggregate be 30 to 65% by weight of the total weight of the cement-based heat insulating material.
Also, as the cement, ecocement manufactured using waste incineration ash as a main raw material can be used.
Further, it is preferable that fine bubbles are mixed in 20 to 40% by volume of the total volume.
[0007]
Further, the cement-based heat insulating material of the present invention is produced from cement, coal ash discharged from a coal combustion facility, foamed glass crushed material that is a crushed material of used foamed glass-based heat insulating material, and used styrofoam. Made of EPS aggregate, wherein the coal ash is 11 to 67 parts by weight, the foamed glass crushed material is 25 to 65 parts by weight, and the EPS aggregate is 10 to 30 parts by weight based on 100 parts by weight of the cement. , And 20 to 40% of the total volume of fine bubbles are mixed therein.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
<B> Cement-based heat insulating material The main components are cement, coal ash discharged from a coal combustion facility, and EPS aggregate (styrene foam aggregate) generated from used styrene foam. If necessary, a crushed foam glass, which is a crushed material of the used foam glass-based heat insulating material, is mixed.
The feature of the cement-based heat insulating material of the present invention is that, based on the formulation of the heat insulating material which makes effective use of the conventional regenerated EPS aggregate, a part of the EPS aggregate is replaced by a foam glass crushed material described later, It is partly replaced with coal ash (see Fig. 1). Hereinafter, each material constituting the cement-based heat insulating material will be described.
[0010]
<B> As the cement cement, well-known ordinary Portland cement, eco-cement, early-strength Portland cement, moderately heated Portland cement, blast furnace cement, silica cement, low heat type cement and the like can be used.
Here, the ecocement refers to a cement manufactured using ash obtained by incinerating waste such as municipal waste as a main raw material. Eco-cement mainly consists of incinerated ash generated from incineration of municipal solid waste, which is the main waste generated in urban areas.If necessary, eco-cement clinker is used mainly for waste such as sewage sludge. Is a kind of resource-recycling cement manufactured by using as the main raw material. It is attracting attention as an effective method for effectively using garbage as a resource.
[0011]
<C> Coal ash Coal ash is combustion ash generated in large quantities by burning fuel coal in coal combustion facilities such as thermal power plants.
Among the coal ash, fine powder collected by a dust collector from fumes generated when pulverized coal is burned can be replaced with cement as fly ash. A mixture of fly ash and Portland cement is a known fly ash cement, which has advantages such as good strength development, low drying shrinkage, low heat of hydration, and high chemical resistance.
The specific gravity of fly ash is generally 2.2 to 2.6, which is smaller than the specific gravity of Portland cement (about 3.15). Has the advantage that the heat insulation performance can be improved.
[0012]
<D> Crushed foam glass material The crushed foam glass material is manufactured by crushing a used foam glass-based heat insulating material.
Foam glass is produced by mixing a foaming agent with glass raw material powder, molding the mixture, and firing the obtained molded body at a predetermined temperature. As the glass raw material of the foam glass, a reused product obtained by pulverizing a plate glass or a glass bottle can be used. In addition, carbon, dolomite, boron nitride, limestone powder and the like can be used as the foaming agent.
The foam glass thus produced exhibits excellent heat resistance and sound absorption due to its porous structure, and is therefore used as a foam glass-based heat insulating material for construction. This foam glass-based heat insulating material has been conventionally used on the inner surface of a dike built around a low-temperature liquefied gas storage tank facility. For this reason, the used foam glass insulation, which is the raw material of the foam glass pulverized material, can be easily obtained when repairing the dike, and the used foam glass insulation is treated as industrial waste. Can be eliminated or reduced.
The strength can be improved by mixing the foam glass crushed material into the cement-based heat insulating material.
As the crushed foam glass material, a crushed product of deteriorated cellome (trade name) or the like can be used.
[0013]
<E> EPS aggregate EPS aggregate is crushed particles produced from pulverized styrene foam.
For example, used styrofoam is crushed to a size of 15 mm or less, and its surface is irradiated with far-infrared rays or blasted with warm air to shape the external shape of the particles or improve the strength.
[0014]
<F> Bubbles A required amount of fine bubbles is mixed into the cement-based heat insulating material of the present invention.
The workability (slump at the time of kneading) of the kneaded cement-based heat insulating material greatly fluctuates due to the influence of the high water absorption of the foamed glass material or the quality fluctuation of coal ash. In order to solve this problem, fine bubbles are mixed in the present invention in an amount of about 20 to 40% by volume of the total volume of the cement-based heat insulating material. By doing so, the workability can be ensured and the influence of the quality fluctuation of the used material can be reduced, and the quality stability of the cement-based heat insulating material can be ensured.
In addition, it is possible to adjust that the specific gravity of the cement-based heat insulating material increases due to the incorporation of the crushed foam glass material by incorporating fine bubbles.
[0015]
<G> Additives In addition to the above-mentioned materials, additives are added to the cement-based heat insulating material as needed.
Additives include known foaming agents, stabilizers, concrete water reducing agents, and the like.
The foaming agent is an additive that improves the filling property and adjusts the weight by the action of air bubbles, and a known material used as an admixture for concrete can be used. For example, an alkyl olefin sulfonate type foaming agent, an anionic type, a nonionic type or a protein type foaming agent can be used.
As the stabilizer, a known material capable of dispersing or dissolving in water or increasing the viscosity of water absorption, suppressing separation of the material used for the heat insulating material after kneading, and maintaining uniformity can be used. For example, granulated powder of formite minerals, inorganic thickeners such as bentonite and kaolin, cellulose derivatives such as methylcellulose, various synthetic polymer compounds, and water-absorbing polymers can be used.
The concrete water reducing agent is a known admixture capable of reducing a unit water amount required for obtaining required workability of concrete or the like by dispersing cement particles. Some water reducing agents, such as AE water reducing agents, have an air (bubble) entraining effect. As the water reducing agent, an anionic water reducing agent such as an alkyl naphthalene sulfonate, a sulfonated melamine salt, or a nonionic water reducing agent represented by a polycarboxylate can be used.
[0016]
【Example】
<B> Basic concept of compounding The basic concept of compounding heat-insulating materials using conventional EPS aggregate is to fill EPS aggregate as much as possible in a unit volume and fill the remaining space with cement paste. That is, the solidified body is supplemented with bubbles.
Based on this, the formulation of the cement-based heat insulating material of the present invention will be examined. As described above, fly ash which is a powder and has potential hydraulic property (an example of coal ash) can be replaced with a part of cement, and is a degraded foam glass crushed material which is solid and can be expected to have some improvement in heat insulation performance ( For example, crushed cellome) can be replaced with a part of the EPS aggregate.
[0017]
In considering the formulation, considering the basic physical properties of foam glass crushed material and fly ash, the cement-based insulation material that can be completed is replaced with the case where EPS aggregate is replaced with foam glass crushed material and the case where cement is replaced with fly ash. Are generally affected as shown in FIG.
That is, under the same blending conditions (water-powder ratio and the same amount of bubbles), as the replacement rate of the foamed glass crushed material having a larger density and a smaller particle size than the EPS aggregate is increased, the slump becomes smaller and the density becomes smaller. Is high, the strength is high, and the thermal conductivity tends to increase. On the other hand, when the replacement ratio of fly ash having a smaller density and a smaller particle size than cement is increased, it is considered that the slump is smaller, the density is smaller, the strength is smaller, and the thermal conductivity tends to be smaller.
[0018]
<B> Mixing selection Table 1 shows the mixing cases in which experiments were performed for the selection of the mixing. In addition, the target values of the properties of the cement-based heat insulating material in examining the composition are a thermal conductivity of 0.10 to 0.12 (kcal / mh ° C.) and an absolute dry density of 0.50 to 0.70 (g / cm). 3 ) about 0.60 to 0.80 (g / cm 3 in kneading density), compressive strength of 2 to 3 (N / mm 2 ) or more, and slump of about 10 to 15 (cm) or more.
[0019]
[Table 1]
Figure 2004245351
[0020]
Table 2 shows the measurement results of the cement-based heat insulating materials kneaded with the formulations shown in Table 1. In Table 2, FA indicates the weight of fly ash contained per unit volume, and C indicates the weight of cement contained per unit volume.
[0021]
[Table 2]
Figure 2004245351
[0022]
<C> Consideration on the replacement amount of fly ash FIG. 3 shows the relationship between the replacement ratio of fly ash and the slump after kneading.
In FIG. 3, the slump tends to decrease as the fly ash replacement rate increases. In particular, when the replacement ratio of the foam glass pulverized material is zero (FIG. 3A), if it exceeds 40%, the decrease in the slump becomes remarkable. In addition, when the fly ash replacement ratio was 50% (formulations Nos. 5 and 9), a part of the test piece was broken when the mold was removed on the day after the casting.
Considering the properties of the kneading and the strength development, the upper limit of the replacement ratio of fly ash is considered to be about 40%.
[0023]
<D> Consideration on replacement amount of foam glass pulverized material FIG. 4A shows the relationship between the replacement rate of foam glass pulverized material and the kneading density. From this figure, it can be seen that the kneading density sharply increases when the replacement amount of the high density foamed glass glass material exceeds 30% by volume. As the density increases, the heat insulating performance decreases, which is not preferable as the properties of the heat insulating material.
FIG. 4B shows the relationship between the kneading density and the amount of bubbles. Here, the composition No. using only the EPS aggregate was used. Nos. 1 to 5 are indicated by black circles (●), and No. 1 containing a crushed foam glass material. 6 to 12 are marked with open circles (○). From this figure, first, in order to satisfy the kneading density of 0.6 to 0.8 (g / cm 3 ) targeted this time, the bubble amount is set in a range of about 20 to 50% as a whole. It turns out that it is necessary. In particular, if a part of the EPS aggregate is replaced by the foam glass crushed material, the mass of the solid portion becomes heavy, and more air bubbles are required to secure the same density than when only the EPS aggregate is used. I understand. Therefore, the strength tends to be relatively low with cement-based heat insulating materials having the same density.
On the other hand, from the relationship between the bubble amount and the compressive strength shown in FIG. 5, in order to secure the target compressive strength of 2.0 to 3.0 (N / mm 2 ) or more at the age of 28 days, It is understood that it is necessary to suppress the volume to about 40% by volume or less.
From the above results, it is considered appropriate to set the upper limit of the replacement amount of the crushed foam glass to 30% while suppressing the bubble amount to about 40% by volume or less.
[0024]
<E> Selected blend Table 3 shows the results of selecting a blend that is considered to be preferable as the cement-based heat insulating material of the present invention based on the above examination results. Table 3 shows the unit amount (kg / m 3 ) in the upper row and the ratio to the weight of cement with the weight of cement being 100 parts by weight in the lower row. In addition, the formulation No. For E, ecocement was used.
[0025]
[Table 3]
Figure 2004245351
[0026]
Table 4 shows the properties of the cement-based heat insulating materials manufactured by the formulations shown in Table 3. The characteristics of the conventional product are also described for comparison.
[0027]
[Table 4]
Figure 2004245351
[0028]
As shown in Table 4, it can be seen that the same thermal conductivity as that of the conventional cement-based heat insulating material having the same compressive strength was secured. In addition, as compared with the conventional product 2 having the same absolute dry density, the thermal conductivity is reduced to about 50%, which indicates that the heat insulating performance is excellent. Thus, even if a recycled material is used as the main material, a sufficiently usable cement-based heat insulating material can be obtained.
Therefore, based on the composition shown in Table 3, a cement obtained by kneading 11 to 67 parts by weight of coal ash, 25 to 65 parts by weight of a crushed foam glass, and 10 to 30 parts by weight of the EPS aggregate with respect to 100 parts by weight of cement. It can be said that a heat insulating material is a preferable composition.
The total weight of coal ash, crushed foam glass, and EPS aggregate in Table 3 is 30 to 65% by weight of the total weight of the cement-based heat insulating material. It can be said that it is reused.
[0029]
【The invention's effect】
Since the cement heat insulating material of the present invention is as described above, the following effects can be obtained.
<A> A large amount of materials that have been conventionally treated as industrial waste, such as coal ash and debris removed from foam glass-based heat insulating materials, can be used as raw materials. For this reason, the total amount of discharged waste can be reduced.
<B> By mixing fine bubbles in an amount of 20 to 40% by volume of the total volume, it is possible to obtain a cement-based heat insulating material which is hardly affected by the quality of the reused product and can ensure stable quality.
<C> The predetermined strength can be ensured by mixing the crushed foam glass material. Further, the specific gravity of the cement-based heat insulating material can be adjusted by adjusting the amount of air bubbles.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of the basic concept of the blending of the cement-based heat insulating material of the present invention. FIG. 2 is an explanatory view schematically showing physical properties of the cement-based heat insulating material. Diagram showing the relationship between the fly ash replacement ratio and the slump in the composition having a ratio of 0% by volume (b) Relationship between the fly ash replacement ratio and the slump in a formulation having a foam glass crushed material replacement ratio of 30% by volume [FIG. ) Relational diagram of foam glass pulverized material replacement ratio and kneaded density in the case of blending with 10% by weight of lyash replacement ratio (b) Relationship diagram between kneaded density and bubble amount [FIG. 5] Relationship diagram between bubble amount and compressive strength

Claims (4)

セメントと、
石炭燃焼施設より排出される石炭灰と、
必要に応じて混入する使用済みの泡ガラス系断熱材の粉砕材である泡ガラス粉砕材と、
使用済みの発泡スチロールから生成したEPS骨材と、からなり、
前記セメントと前記石炭灰を足し合わせた重量に対する前記石炭灰の割合を10〜40重量%とし、
前記泡ガラス粉砕材と前記EPS骨材の容積比率を0:100〜30:70としたことを特徴とする、
セメント系断熱材。
With cement,
Coal ash discharged from coal combustion facilities,
A foam glass crushed material, which is a crushed material of used foam glass-based heat insulating material mixed as necessary,
And EPS aggregate generated from used styrofoam,
The ratio of the coal ash to the total weight of the cement and the coal ash is 10 to 40% by weight,
The volume ratio between the crushed foam glass material and the EPS aggregate is set to 0: 100 to 30:70,
Cement insulation.
前記セメントとして廃棄物の焼却灰を主原料として製造したエコセメントを使用することを特徴とする、請求項1記載のセメント系断熱材。The cement-based heat insulating material according to claim 1, wherein an eco-cement manufactured using waste incineration ash as a main raw material is used as the cement. 微細気泡を全容積の20〜40容積%混入したことを特徴とする、請求項1又は2記載のセメント系断熱材。The cement-based heat insulating material according to claim 1 or 2, wherein fine bubbles are mixed in an amount of 20 to 40% by volume of the total volume. セメントと、
石炭燃焼施設より排出される石炭灰と、
使用済みの泡ガラス系断熱材の粉砕材である泡ガラス粉砕材と、
使用済みの発泡スチロールから生成したEPS骨材と、からなり、
前記セメント100重量部に対して、前記石炭灰を11〜67重量部、前記泡ガラス粉砕材を25〜65重量部及び前記EPS骨材を10〜30重量部を混練し、微細気泡を全容積の20〜40%混入したことを特徴とする、
セメント系断熱材。
With cement,
Coal ash discharged from coal combustion facilities,
Foam glass crushed material, which is a crushed material of used foam glass-based heat insulating material,
And EPS aggregate generated from used styrofoam,
With respect to 100 parts by weight of the cement, 11 to 67 parts by weight of the coal ash, 25 to 65 parts by weight of the crushed foam glass and 10 to 30 parts by weight of the EPS aggregate are kneaded, and the fine bubbles are reduced to a total volume. Characterized by being mixed with 20 to 40% of
Cement insulation.
JP2003036763A 2003-02-14 2003-02-14 Cement-based insulation and repair method for breakwater Expired - Fee Related JP4225798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036763A JP4225798B2 (en) 2003-02-14 2003-02-14 Cement-based insulation and repair method for breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036763A JP4225798B2 (en) 2003-02-14 2003-02-14 Cement-based insulation and repair method for breakwater

Publications (2)

Publication Number Publication Date
JP2004245351A true JP2004245351A (en) 2004-09-02
JP4225798B2 JP4225798B2 (en) 2009-02-18

Family

ID=33021762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036763A Expired - Fee Related JP4225798B2 (en) 2003-02-14 2003-02-14 Cement-based insulation and repair method for breakwater

Country Status (1)

Country Link
JP (1) JP4225798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290946A (en) * 2006-03-28 2007-11-08 Oita Univ Heat insulating composition, method of manufacturing the same and method of constructing heat insulating structure
CN104446236A (en) * 2014-11-11 2015-03-25 黄美忠 Light environment-friendly heat-preservation mortar
CN112551938A (en) * 2020-12-08 2021-03-26 苏州启创新材料科技有限公司 Phase-change composite material for thermal insulation mortar and preparation method thereof
KR102428151B1 (en) * 2022-01-11 2022-08-05 김마리아 Method for Manufacturing Recycled Composite Product Comprising Recycled Polystyrene Resin and Recycled Foamed Glass, and Recycled Composite Product Manufactured thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290946A (en) * 2006-03-28 2007-11-08 Oita Univ Heat insulating composition, method of manufacturing the same and method of constructing heat insulating structure
CN104446236A (en) * 2014-11-11 2015-03-25 黄美忠 Light environment-friendly heat-preservation mortar
CN112551938A (en) * 2020-12-08 2021-03-26 苏州启创新材料科技有限公司 Phase-change composite material for thermal insulation mortar and preparation method thereof
KR102428151B1 (en) * 2022-01-11 2022-08-05 김마리아 Method for Manufacturing Recycled Composite Product Comprising Recycled Polystyrene Resin and Recycled Foamed Glass, and Recycled Composite Product Manufactured thereby

Also Published As

Publication number Publication date
JP4225798B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
Cheng Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars
Jayanthi et al. Innovative use of micronized biomass silica-GGBS as agro-industrial by-products for the production of a sustainable high-strength geopolymer concrete
JP4962915B2 (en) Manufacturing method of water retention block
JP6119278B2 (en) High water retention block and method for producing high water retention block
JP2007015893A (en) Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash
Gomes et al. Mechanical and durability properties of concrete produced with construction and demolition waste and rice husk ash
Rokiah et al. Effect of processed spent bleaching earth content on the compressive strength of foamed concrete
BR102018010193A2 (en) thermal insulating concrete
Williams et al. A study on the mechanical properties of green concrete
Dang et al. Role of recycled brick powder and alkaline solution on the properties of eco-friendly alkali-activated foam concrete
CN104860584A (en) Preparation method of garbage incineration power generation furnace slag concrete
JP2006272174A (en) Manufacturing method of sintered object
JP4225798B2 (en) Cement-based insulation and repair method for breakwater
JP2010180094A (en) Method for manufacturing water-retentive block
Colangelo et al. Lightweight concrete with polyolefins as aggregates
JP2004155636A (en) Construction or building material using slag or fly ash as main material
KR20030064572A (en) Concrete composition using of bottom ash as replacement of aggregate for concrete mixing
KR20140106215A (en) Composition of artificial aggregate and making method using inorganic sludge particle
González-Fonteboa et al. Use of coal bottom ash and other waste as fine aggregates in lightweight cement-based materials
JP2000044305A (en) Method for reclaiming and reutilizing scrapped poly(vinyl chloride)-based resins and other refuse
JPH08183639A (en) Artificial lightweight aggregate and its production
KR20170079661A (en) Composition of eco-friendly ready-mixed concrete using industrial wastes
JP2001146444A (en) Method for producing artificial lightweight aggregate
JP2002167288A (en) Method of manufacturing artificial lightweight aggregate
D’Alessandro et al. Innovative and sustainable concrete materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees