JP2008030123A - Mold for continuously casting steel difficult to develop heat crack at meniscus part - Google Patents

Mold for continuously casting steel difficult to develop heat crack at meniscus part Download PDF

Info

Publication number
JP2008030123A
JP2008030123A JP2007271888A JP2007271888A JP2008030123A JP 2008030123 A JP2008030123 A JP 2008030123A JP 2007271888 A JP2007271888 A JP 2007271888A JP 2007271888 A JP2007271888 A JP 2007271888A JP 2008030123 A JP2008030123 A JP 2008030123A
Authority
JP
Japan
Prior art keywords
mold
copper
plating
heat
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271888A
Other languages
Japanese (ja)
Inventor
Keiji Nakai
啓治 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Plating Co Ltd
Original Assignee
Nomura Plating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Plating Co Ltd filed Critical Nomura Plating Co Ltd
Priority to JP2007271888A priority Critical patent/JP2008030123A/en
Publication of JP2008030123A publication Critical patent/JP2008030123A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold for continuously casting steel composed of a copper alloy, which can restrain erosion or alloying phenomenon caused by low melting point metal elements having melting points of not more than 700°C represented by impurities originated from molten steel such as zinc, aluminum, tin, lead, and cadmium, without damaging high-temperature strength of a copper material for the mold, and can prevent the occurrence of heat cracks at a meniscus part. <P>SOLUTION: The mold for continuously casting steel, which is composed of a copper alloy and is provided with an electromagnetic stirring device, is characterized in that the upper front surface or a part thereof in the inner part of the mold, directly contacting with the molten steel, is coated with copper plating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉄鋼の連続鋳造用の鋳型に関するものであり、更に詳しくは電磁攪拌方式を採用した鉄鋼連続鋳造鋳型に関する。   The present invention relates to a mold for continuous casting of steel, and more particularly to a steel continuous casting mold that employs an electromagnetic stirring method.

主として凝固しつつある溶鋼(鋳造片)が鋳造鋳型内表面を連続して擦る為に、鋳型銅材の下部の摩損対策として、従来から銅及び銅合金製の鉄鋼連続鋳造鋳型に何らかの被覆材料を被覆する手段が用いられている。そして鋳型銅材への各種表面被覆材料の適用は、銅材の保護と寿命延長に効果的であり、表面被覆材料の耐摩耗性や耐食性の良否が鋳型の補修サイクルを律速しているのが実情である。そして今日に至っても、鋳型に被覆する材料の耐熱性・耐食性・耐摩耗性の要求は止まるところがない。例えば、鋳型への被覆材料として、過去の一時期にはクロムめっきが用いられた経緯があるが、これが意外に短寿命で、クロムめっきよりも長寿命を達成しうる3〜5mmの厚いニッケルめっき(例えば特許文献1参照)に転換された経緯がある。以降はさらに長寿命を求めて、各種諸々の表面被覆材料、例えばニッケル−鉄合金めっき(例えば特許文献2参照)、合金比率の異なるコバルトとニッケルとの合金めっき(例えば特許文献3又は4参照)、めっきとは根本的に手法は異なるが、ニッケル−クロム自溶性合金溶射皮膜(例えば特許文献5又は6参照)、更にはニッケル−ホウ素合金めっき(例えば特許文献7参照)等が出現した。   In order to continuously rub the inner surface of the casting mold with the molten steel (casting piece) that is mainly solidified, as a countermeasure against wear of the lower part of the mold copper material, some coating material has been conventionally applied to the steel and continuous casting mold made of copper and copper alloy. A means for coating is used. The application of various surface coating materials to the mold copper material is effective in protecting the copper material and extending the life, and the quality of wear and corrosion resistance of the surface coating material determines the mold repair cycle. It is a fact. Even today, the demand for heat resistance, corrosion resistance, and wear resistance of the material coated on the mold has not stopped. For example, as a coating material for a mold, there has been a history of using chrome plating in the past period, but this is surprisingly short life, and 3-5 mm thick nickel plating (which can achieve longer life than chrome plating) For example, there is a history of conversion to Patent Document 1). Thereafter, in order to obtain a longer life, various surface coating materials such as nickel-iron alloy plating (see, for example, Patent Document 2), and alloy plating of cobalt and nickel having different alloy ratios (see, for example, Patent Document 3 or 4). Although the method is fundamentally different from plating, a nickel-chromium self-fluxing alloy sprayed coating (see, for example, Patent Document 5 or 6), nickel-boron alloy plating (see, for example, Patent Document 7), and the like have appeared.

また要求目的に応じて、これらの皮膜を組み合わせて多層構成、例えば下層から上層に向かって、ニッケルめっき/ニッケル−りん合金めっき/クロムめっきの仕様や、同一表面上に、例えば上部ニッケルめっき、下部ニッケル−クロム自溶性合金溶射の組合せとしたものもある。これらの一部は、現在においても被覆材料の主流として採用されている。しかしながら鉄鋼連続鋳造鋳型においては、溶鋼の注入される鋳型上部と凝固殻(セル)が成長しつつある鋳造片の出口側(下半分)とでは根本的に要求される特性が異なっており、上述の被覆材料を鋳造鋳型内壁の全てに適用すると、鋳型上部では抜熱効果を阻害する結果、熱疲労により鋳型の表面にヒートクラックを発生し、鋳型銅材にまでクラックの伝播を生じる。   Depending on the required purpose, these coatings can be combined to form a multilayer structure, for example, nickel plating / nickel-phosphorus alloy plating / chromium plating from the lower layer to the upper layer, for example, upper nickel plating, lower layer on the same surface There is also a combination of nickel-chromium self-fluxing alloy spraying. Some of these are still used as the mainstream of coating materials. However, in the steel continuous casting mold, the fundamentally required characteristics are different between the upper part of the mold where molten steel is poured and the outlet side (lower half) of the cast piece where the solidified shell (cell) is growing. When the coating material is applied to all of the inner walls of the casting mold, the heat removal effect is hindered at the upper part of the casting mold. As a result, heat cracks are generated on the mold surface due to thermal fatigue, and the cracks propagate to the casting copper material.

銅合金へのヒートクラックの伝播は、鋳型銅材の表面の再生加工時に切削・除去する銅材の量の増加をもたらし、銅材自体の再生可能回数の減少に繋がる。よって、結局耐食性、耐摩耗性を必要とする鋳造鋳型の下半分に、上述の被覆材料を適用することが主体となっている例も多い。つまり鋳型の上半分においては、溶鋼の凝固も未だ進行しておらず、耐摩耗性よりもむしろ抜熱効果を期待して鋳型を構成する銅ないし銅合金が露出したままの状態で使用したり、公知の被覆材料を適用するときには、ヒートクラックの発生を回避するために、鋳造鋳型の上部と下部とで被覆材料の厚みを意図的に違えることもある。過去には、また鋳造鋳型の下半分に被覆する耐食・耐摩耗皮膜の厚みに合わせて鋳型上部を銅めっきで被覆した事例もあるが、鋳造時に銅めっき層の層間膨れのトラブルが解消されず、実用には至っていないという経緯がある(例えば非特許文献1、特許文献8又は特許文献9参照)。   Propagation of heat cracks to the copper alloy results in an increase in the amount of copper material to be cut and removed during the reclaiming process of the surface of the mold copper material, leading to a reduction in the number of times the copper material itself can be regenerated. Therefore, in many cases, the above-described coating material is mainly applied to the lower half of the casting mold that eventually requires corrosion resistance and wear resistance. In other words, in the upper half of the mold, the solidification of the molten steel has not yet progressed, and the copper or copper alloy constituting the mold is used in an exposed state with the expectation of a heat removal effect rather than wear resistance. When a known coating material is applied, the thickness of the coating material may be intentionally different between the upper part and the lower part of the casting mold in order to avoid the occurrence of heat cracks. In the past, there was also a case where the upper part of the mold was coated with copper plating according to the thickness of the corrosion / abrasion-resistant film that coats the lower half of the casting mold, but the problem of interlayer swelling of the copper plating layer was not solved during casting. However, it has not been put into practical use (for example, see Non-Patent Document 1, Patent Document 8, or Patent Document 9).

ところで、近年の鉄鋼連続鋳造の問題点がかなり明確となっており、鋳造片品質向上の為に溶鋼中に必然的に混入するガスや不純物によるブローホール、非金属介在物の偏析を抑制し、鋳造片の均一凝固を目的として、電磁攪拌方式の鋳造鋳型の導入例が多くなりつつある。一方、電磁攪拌装置は鋳造鋳型の外側に配置されるが、透磁力を向上させて溶鋼の攪拌効果を高めるために、鋳型銅材の薄肉化を図ると同時に熱伝導度を意図的に低下させた銅合金を利用する傾向にある。しかしながら鋳型銅材の熱伝導度の低下は、鋳型上部の表面温度の上昇を招き、鋳型のヒートクラックの発生等に繋がるため、短期間の使用で鋳型の再生を余儀なくされる。即ち、電磁攪拌装置の積極的な利用が、この技術分野に新たな課題をもたらした。   By the way, the problem of recent steel continuous casting has become quite clear, to suppress the segregation of blowholes and non-metallic inclusions due to gas and impurities inevitably mixed in the molten steel to improve the quality of the cast piece, For the purpose of uniform solidification of cast pieces, there are increasing examples of introducing electromagnetic stirring type casting molds. On the other hand, the electromagnetic stirrer is placed outside the casting mold, but in order to improve the permeability and increase the stirring effect of the molten steel, the thickness of the mold copper material is reduced and the thermal conductivity is intentionally reduced. Tend to use copper alloys. However, a decrease in the thermal conductivity of the mold copper material causes an increase in the surface temperature of the upper part of the mold, leading to the occurrence of heat cracks in the mold, and the mold must be regenerated after a short period of use. In other words, the active use of electromagnetic stirrers has brought new challenges to this technical field.

更に詳しくは、電磁攪拌を実施しつつ溶鋼の鋳造を行うと、熱伝導度の低い銅合金と電磁攪拌に伴う溶鋼の流動運動の作用で、鋳型の被る熱量が相対的に高くなり、熱影響はメニスカス部近傍において顕著に現れる。つまり電磁攪拌によるかき混ぜ効果によって、溶鋼中のガス成分や不純物は強制的に上部へと浮上して行くが、不純物中には溶鋼由来の亜鉛、アルミニウム、スズ、鉛、カドミウム等の融点700℃以下の低融点の不純物金属元素も微量混入しており、鋳造鋳型には新たな溶鋼が四六時中注ぎ込まれるので、結局メニスカス近傍において、これらの不純物金属元素が濃縮されることになる。そしてこれらの低融点の不純物金属元素は、電磁攪拌力で鋳型表面に半ば強制的に吹き付けられるので、メニスカス近傍の特定部位の鋳型銅材の表面が、あるいは銅以外の保護皮膜が被覆している時にはその表面が、これら低融点の不純物金属元素のアタックを受けて合金層を形成し、鋳込み回数の増加に伴い、その合金層の成長が促進される。この状態に至ると、抜熱効果が一層損なわれるので、メニスカス部近傍の温度は更に上昇することとなる。   More specifically, when molten steel is cast while performing electromagnetic stirring, the amount of heat applied to the mold is relatively high due to the flow motion of the copper alloy having low thermal conductivity and the molten steel associated with electromagnetic stirring, and the heat effect. Appears prominently in the vicinity of the meniscus portion. In other words, the gas components and impurities in the molten steel are forced to rise to the top due to the stirring effect by electromagnetic stirring, but in the impurities, the melting point of molten steel such as zinc, aluminum, tin, lead, cadmium, etc. 700 ° C or less A small amount of the impurity metal element having a low melting point is also mixed, and new molten steel is poured into the casting mold all the time, so that the impurity metal element is concentrated in the vicinity of the meniscus. And since these low melting point impurity metal elements are forcibly sprayed on the mold surface by electromagnetic stirring force, the surface of the mold copper material in a specific part near the meniscus or a protective film other than copper is coated. Sometimes, the surface receives an attack of these low melting point impurity metal elements to form an alloy layer, and the growth of the alloy layer is promoted as the number of castings increases. When this state is reached, the heat removal effect is further impaired, and the temperature in the vicinity of the meniscus portion further increases.

低融点の不純物金属元素は伸びが低く、銅よりも融点の低い合金層を形成するので、耐熱疲労性を悪化させる方向に作用する。これらの複合要因が合わさって、早期に鋳造鋳型にヒートクラックが発生する。一旦クラックが発生すると、銅材の内部にむかってどんどん銅材を合金化し、侵食して行くこととなる。このように電磁攪拌用鋳型のヒートクラック発生のメカニズムは、何点もの使用済み鋳型の詳細調査を通じて分かったことであるが、ヒートクラックの発生は、鋳造鋳型の使用チャージ数の低減と再生可能回数の低減に繋がり、新規銅板の製作回数の増加の原因となって、鉄鋼鋳造コストが大幅に増加する。   Since the low melting point impurity metal element has a low elongation and forms an alloy layer having a lower melting point than copper, it acts in the direction of worsening the heat fatigue resistance. These combined factors combine to cause heat cracks in the casting mold at an early stage. Once a crack occurs, the copper material is gradually alloyed and eroded toward the inside of the copper material. As described above, the mechanism of heat crack generation in the electromagnetic stirring mold was found through detailed investigation of several used molds. However, heat cracks are generated by reducing the number of rechargeable casting molds and the number of times they can be regenerated. As a result, the cost of steel casting increases significantly due to an increase in the number of times of production of new copper plates.

特公昭48−28255Japanese Patent Publication 48-28255 特公昭60−34639Shoko 60-34639 特公昭61−17581Shoko 61-17581 特公昭60−59999JP-B 60-59999 特公昭61−15782JP-B 61-15758 特開昭60−206552JP-A-60-206552 特公平4−59064Japanese Patent Publication 4-59064 特公平1−44425Japanese Patent Publication 1-44425 特公昭58−13257Shoko 58-13257 特公平4−23374-2337 日本鉄鋼協会第96回公演大会公演概要集160ページJapan Iron and Steel Institute 96th Performance Convention Performance Summary 160 pages

亜鉛を不純物として含有する溶鋼に対して、コバルトないしコバルトを10%以上含むニッケル合金を10〜1,000μm被覆すると、顕著な亜鉛拡散防止効果があるという技術が開示されている(例えば特許文献10参照)。しかし溶鋼中の不純物は、必ずしも亜鉛に限定される訳でもなく、亜鉛以外にもスズ、アルミニウム、鉛、カドミウム等の微量の低融点金属元素も含有されている。事実、使用済みの電磁攪拌用鋳型のヒートクラックを生じたメニスカス近傍から採取した試料には、鋳造鋳型を構成する元素に加えて、常に亜鉛、アルミニウム、カドミウム等の元素が検出される。なお、電磁攪拌される連続鋳造鋳型にあっては、素材よりも熱伝導度と耐熱疲労性(伸び)に劣る異種金属を被覆するという従来からの公知技術をそのまま適用すると、抜熱効果が低減し、湯面(メニスカス)近傍の温度上昇に結びつく。加えて亜鉛のみならず上述の低融点の不純物金属元素との合金化が起こるので、亜鉛拡散防止機能よりも伸びの低下が律速となり、ヒートクラックの発生が優先することも分かってきた。そしてまた、一旦クラックを生ずるとそれを起点として鋳型銅材内部に向かって諸々の低融点の不純物金属元素の侵食(合金化)が進行して行くので、単純にコバルトないしコバルト−ニッケル合金を被覆して、亜鉛を含む低融点の不純物金属元素の拡散を防止すれば良いと言うものでもないことを見出した。   A technique is disclosed in which, when a molten steel containing zinc as an impurity is coated with 10 to 1,000 μm of cobalt or a nickel alloy containing 10% or more of cobalt, there is a remarkable zinc diffusion preventing effect (for example, Patent Document 10). reference). However, impurities in the molten steel are not necessarily limited to zinc, and a trace amount of low melting point metal elements such as tin, aluminum, lead, cadmium and the like are contained in addition to zinc. In fact, elements such as zinc, aluminum, cadmium, etc. are always detected in addition to the elements constituting the casting mold in the sample collected from the vicinity of the meniscus where the heat crack of the used electromagnetic stirring mold has occurred. In addition, in continuous casting molds that are electromagnetically stirred, the heat removal effect can be reduced by applying the conventional technology of coating different types of metals that are inferior in heat conductivity and heat fatigue resistance (elongation) to the raw material. As a result, the temperature rises near the hot water surface (meniscus). In addition, since alloying with not only zinc but also the above-described low melting point impurity metal element occurs, it has been found that the decrease in elongation becomes rate-determining rather than the function of preventing zinc diffusion, and the occurrence of heat cracks has priority. Moreover, once cracks occur, erosion (alloying) of various low melting point impurity metal elements proceeds toward the inside of the mold copper material starting from the cracks, so that cobalt or cobalt-nickel alloy is simply coated. The present inventors have found that it is not necessary to prevent diffusion of a low melting point impurity metal element containing zinc.

即ち上述したように、連続鋳造鋳型における電磁攪拌装置の採用によって、メニスカス部における温度上昇が増大し、それとともに溶鋼に含まれる亜鉛、スズ、アルミニウム、鉛、カドミウム等の微量の低融点の不純物金属元素が、鋳型銅材の表面のみならず内部を攻撃し、その結果鋳型の寿命が短くなっている。この課題に対して本発明者は、鋭意検討を重ね、本発明を完成するに至った。   That is, as described above, the use of an electromagnetic stirrer in a continuous casting mold increases the temperature rise in the meniscus portion, and at the same time, a trace amount of low melting point impurities such as zinc, tin, aluminum, lead, cadmium, etc. contained in molten steel. The elements attack not only the surface of the mold copper material but also the inside, resulting in a shortened mold life. The present inventor has intensively studied on this problem and has completed the present invention.

以上のように電磁攪拌方式の鋳型においては、透磁率改善の為に薄肉で熱伝導度のやや劣る銅合金を利用する傾向があり、不純物・ガス等を除去して均一凝固を目的とする強制的な溶鋼のかき混ぜによって、通常の鋳型と異なってメニスカス近傍の温度上昇を伴うこと、特に、メニスカス近傍の鋳型上部表面には攪拌された溶鋼熱流が直接当り、温度上昇の著しい特異点を生じ、この特異点にヒートクラックが集中して発生することを本発明者は発見した。更に本発明者は、例えば下記する試験例及び実施例を含む膨大なトライアンドエラーによる研究の結果、下記する手段によって従来技術の課題が一挙に解決されることを見出した。   As described above, electromagnetic stirring molds tend to use thin copper alloys with slightly inferior thermal conductivity in order to improve permeability. Forced solidification by removing impurities and gases The stir of the molten steel is accompanied by a temperature rise near the meniscus, unlike a normal mold, and in particular, the agitated molten steel heat flow directly hits the upper surface of the mold near the meniscus, resulting in a marked singular point of temperature rise, The present inventor has discovered that heat cracks are concentrated on this singular point. Furthermore, the present inventor has found that the problems of the prior art can be solved at once by the means described below as a result of extensive trial and error studies including the following test examples and examples.

即ち本発明は、
(1) 銅合金からなる電磁攪拌装置付き鉄鋼連続鋳造鋳型において、溶鋼と直接的に接触する鋳型内部の上部全面若しくはその一部分が銅めっきで被覆されていることを特徴とする連続鋳造鋳型、
(2) 鋳型内部の上部が、鋳型の上端から下方に向けて少なくとも300mmの範囲であることを特徴とする前記(1)に記載の連続鋳造鋳型、
(3) 銅めっきの純度が99.5%以上であって、銅めっきの厚みが0.3〜10mmの範囲であることを特徴とする前記(1)又は(2)に記載の連続鋳造鋳型、
(4) 銅めっき表面の全面又はその一部分が、更にクロム、ニッケル若しくはコバルト又はそれら金属からなる合金で被覆されていることを特徴とする前記(1)〜(3)のいずれかに記載の連続鋳造鋳型、
に関する。
That is, the present invention
(1) In a continuous casting mold for steel with an electromagnetic stirrer made of a copper alloy, a continuous casting mold characterized in that the entire upper surface inside the mold or a part thereof in direct contact with molten steel is coated with copper plating,
(2) The continuous casting mold according to the above (1), wherein the upper part inside the mold is in a range of at least 300 mm downward from the upper end of the mold,
(3) The continuous casting mold according to (1) or (2), wherein the purity of the copper plating is 99.5% or more and the thickness of the copper plating is in the range of 0.3 to 10 mm. ,
(4) The continuous surface according to any one of (1) to (3) above, wherein the entire surface of the copper plating surface or a part thereof is further coated with chromium, nickel, cobalt, or an alloy made of these metals. Casting mold,
About.

以上、言及した如く、高純度銅めっきをヒートクラックの発生しやすい電磁攪拌用の連続鋳造鋳型内面上部に適用すれば、その高い熱伝導度、伸びの作用により、溶鋼中の低融点金属元素のアタックが著しく緩慢となり、従来の鋳型と比べると3倍以上の寿命を示し、鉄鋼鋳造コストの大幅なコストダウンを示すという多大な経済効果がある。   As mentioned above, if high-purity copper plating is applied to the upper surface of the inner surface of a continuous casting mold for electromagnetic stirring, where heat cracks are likely to occur, the high thermal conductivity and the effect of elongation cause the low melting point metal element in the molten steel. The attack is remarkably slow, has a lifespan more than three times that of the conventional mold, and has a great economic effect that shows a significant cost reduction of the steel casting cost.

本発明の鋳型に用いられる銅合金は、特に限定されず、従来この技術分野で使用されているものが適宜使用される。例えばクロム・ジルコニウム添加析出硬化型鋳型用銅材(好ましくはCr:0.5〜1.5重量%、Zr:0.08〜0.30重量%)、電磁攪拌用クロム・ジルコニウム・アルミニウム添加鋳型用銅材(好ましくはCr:0.50〜1.50重量%、Zr:0.08〜0.30重量%、Al:0.7〜1.1重量%)等が挙げられる。   The copper alloy used in the mold of the present invention is not particularly limited, and those conventionally used in this technical field are appropriately used. For example, a copper material for chromium-zirconium-added precipitation hardening mold (preferably Cr: 0.5 to 1.5% by weight, Zr: 0.08 to 0.30% by weight), a chromium / zirconium / aluminum-added mold for electromagnetic stirring Copper materials (preferably Cr: 0.50 to 1.50% by weight, Zr: 0.08 to 0.30% by weight, Al: 0.7 to 1.1% by weight) and the like.

上記の銅合金からなる鋳型母材の上部内面を保護する銅めっきは、この技術分野で使用される銅めっきであってよい。銅めっきにおける銅の純度は、通常のもので良いが、高純度であることが特に好ましい。高純度とは、通常99.5重量%以上、好ましくは99.9重量%以上である。また、めっきによる皮膜厚は、通常0.3〜10mm、好ましくは1〜7mmの範囲である。   The copper plating for protecting the upper inner surface of the mold base material made of the copper alloy may be a copper plating used in this technical field. The copper purity in copper plating may be a normal one, but is particularly preferably high purity. The high purity is usually 99.5% by weight or more, preferably 99.9% by weight or more. Moreover, the film thickness by plating is 0.3-10 mm normally, Preferably it is the range of 1-7 mm.

つまり高純度銅めっきの被覆は、低融点の不純物金属元素のアタックによる合金化の程度が低いと言えども、2,000チャージ以上に及ぶ連続使用に於いて、多少なりとも合金化することを回避できず、結果として熱疲労によって微細なクラックが入ることもある。また、その高い熱伝導特性も、膜厚が薄すぎると低熱伝導度の鋳型母材の熱伝導度の影響が支配的となり、抜熱効果が低減する。かような理由で0.3mm以下の厚みは不適当であり、反対に厚すぎれば、鋳型強度、透磁性の低下を招き、別な意味で好ましいものではない。   In other words, the coating of high-purity copper plating avoids alloying to some extent in continuous use over 2,000 charges even though the degree of alloying due to attack of low melting point impurity metal elements is low. As a result, fine cracks may occur due to thermal fatigue. In addition, when the film thickness is too thin, the influence of the thermal conductivity of the mold base material having a low thermal conductivity becomes dominant and the heat removal effect is reduced. For this reason, a thickness of 0.3 mm or less is inappropriate. On the other hand, if the thickness is too large, the mold strength and magnetic permeability are lowered, which is not preferable in another sense.

また高純度銅めっきの被覆範囲は、鋳造鋳型が上下にオッシレーションするのでメニスカス部が変動すること、低融点金属元素を含む溶鋼中の不純物、ガス等がメニスカス部の特異点に集中することなどを勘案すれば、鋳型の上部上端から引き抜き側に向かって約300mm以下の範囲であれば十分であるが、耐摩耗性等に支障が無ければ鋳型の全高の1/2程度(約半分)としても良い。また溶鋼熱流の集中する特異点が明確となっていれば、局所的に被覆しても良い。   In addition, the coating range of high-purity copper plating is that the meniscus part fluctuates because the casting mold oscillates up and down, and impurities, gases, etc. in molten steel containing low melting point metal elements concentrate on singular points of the meniscus part, etc. In consideration of the above, it is sufficient if it is in the range of about 300 mm or less from the upper upper end of the mold toward the drawing side. However, if there is no problem in wear resistance, etc., it is about 1/2 (about half) of the total height of the mold. Also good. If the singular point where the molten steel heat flow concentrates is clear, it may be covered locally.

鋳型の上部内面表面を銅めっきするためのめっき液としては、公知のもの、例えば硫酸銅浴、ピロリン酸銅浴、シアン化銅浴が全て利用できるが、加熱が不要で低公害性の硫酸銅浴が特に好ましい。ただいずれの浴でも平滑面、光沢面を得ることを目的として、平滑効果の得られる有機系添加剤を併用するのが一般的である。しかしながら添加剤を併用することで、銅めっき皮膜にこれらの分解生成物が取り込まれ熱伝導度と伸びの低下に繋がることもあり、斯かる場合は添加剤の併用は好ましくない。
添加剤は、銅めっきに用いられる添加剤が適宜使用できるが、例えばポリアクリルアミド、ニカワ、ゼラチン、チオ尿素、トリエタノールアミン等、市販品ではエパックH(奥野製薬工業株式会社製)、カパランド300(日本シェリング株式会社製)等が挙げられる。
As the plating solution for copper plating the upper inner surface of the mold, known ones such as a copper sulfate bath, a copper pyrophosphate bath, and a copper cyanide bath can be used, but heating is unnecessary and low pollution copper sulfate. A bath is particularly preferred. However, in order to obtain a smooth surface and a glossy surface in any bath, it is common to use an organic additive that can provide a smoothing effect. However, when an additive is used in combination, these decomposition products may be taken into the copper plating film, leading to a decrease in thermal conductivity and elongation. In such a case, the combined use of the additive is not preferable.
As the additive, additives used for copper plating can be appropriately used. For example, commercially available products such as polyacrylamide, glue, gelatin, thiourea, triethanolamine and the like are Epac H (Okuno Pharmaceutical Co., Ltd.), Kapaland 300 ( Nippon Schering Co., Ltd.).

めっきの為の電解方式は、通常の電解方式であっても良いが、周期的に陽極と陰極とが切り替わるPR電解が、特にめっき皮膜の銅の高純度性と表面平滑性を得るには好ましいことも分かった。表1に、本発明の高純度銅めっき被覆鋳型を得るのに特に好ましい銅めっきの条件を示すが、高純度、高熱伝導度、良好な伸びを得られる浴やめっき条件であれば、必ずしもこれに限定されるものではない。   The electrolysis method for plating may be a normal electrolysis method, but PR electrolysis in which the anode and the cathode are periodically switched is particularly preferable for obtaining high purity and surface smoothness of copper in the plating film. I also understood that. Table 1 shows particularly preferable copper plating conditions for obtaining the high-purity copper plating-coated mold of the present invention. If the bath and plating conditions provide high purity, high thermal conductivity, and good elongation, this is not necessarily true. It is not limited to.

Figure 2008030123
Figure 2008030123

尚、鋳型上部以外の残余の部分である下部の内面表面については、従来通り耐食性・耐摩耗性のある公知の皮膜、例えばニッケル−鉄合金めっき、コバルト−ニッケル合金めっき、ニッケル−クロム自溶性合金溶射皮膜等を適宜選択すれば良い。   As for the inner surface of the lower part, which is the remaining part other than the upper part of the mold, a known coating having corrosion resistance and wear resistance as in the past, such as nickel-iron alloy plating, cobalt-nickel alloy plating, nickel-chromium self-fluxing alloy What is necessary is just to select a sprayed coating etc. suitably.

本発明の連続鋳造鋳型の高純度銅めっきによる被覆形態の例を、図2の(a)〜(e)に示すが、必ずしもこれに限定されるものではない。さらに本発明の鋳造鋳型は、必ずしも電磁攪拌用の鋳造鋳型に限定される訳でもなく、低融点金属元素の付着とその侵食によるヒートクラック発生の多発する鋳造鋳型全般に適用し得ることは言うまでもない。   Although the example of the coating form by the high purity copper plating of the continuous casting mold of this invention is shown to (a)-(e) of FIG. 2, it is not necessarily limited to this. Furthermore, the casting mold of the present invention is not necessarily limited to a casting mold for electromagnetic stirring, and it goes without saying that it can be applied to all casting molds that frequently generate heat cracks due to adhesion and erosion of low melting point metal elements. .

(試験例1) 本発明者は、鋳型銅材の透磁率と高温強度を損なうことなく、熱伝導性と耐熱疲労性に優れ、尚且つ低融点金属との合金化を生じ難い被覆材料について、まず手始めに主要材料の抜熱効果に関与する熱伝導度や耐熱疲労性に影響する材料を見出すべく主要材料の熱伝導度と伸びを調査した。その予備試験−1の結果を表2に示すが、熱伝導度は銀添加鋳型銅材、添加剤添加銅めっき、高純度銅めっきが、また耐熱疲労に関与する伸びの特性は、銀添加鋳型銅材、高純度銅めっき等が特に優れていることが分かった。   (Test Example 1) The inventor of the present invention provides a coating material that is excellent in thermal conductivity and heat fatigue resistance without impairing the magnetic permeability and high-temperature strength of the mold copper material, and that hardly forms an alloy with a low-melting-point metal. First of all, we investigated the thermal conductivity and elongation of the main materials to find out the thermal conductivity involved in the heat removal effect of the main materials and the materials that affect the thermal fatigue resistance. The results of Preliminary Test-1 are shown in Table 2. The thermal conductivity is a silver-added mold copper material, additive-added copper plating, high-purity copper plating, and the elongation characteristics related to heat fatigue is a silver-added mold. Copper materials, high-purity copper plating, etc. were found to be particularly excellent.

Figure 2008030123
Figure 2008030123

しかし銅の熱伝導の改善が、結果的に亜鉛、アルミニウムを始めとする低融点金属元素に対してどのように振舞うのかは予測が付かない。そこで亜鉛の付着性や侵食性を比較評価する為に、80mm角×15mm板厚のクロム・ジルコニウム添加鋳型銅材、銀添加鋳型銅材、電磁攪拌用クロム・ジルコニウム・アルミニウム添加銅材を準備して試験片とした。また、クロム・ジルコニウム・アルミニウム添加銅材については、板厚を14mmとしたものを別途準備し、この片側面にニッケルめっき、コバルト−10%ニッケル合金めっき、ニッケル−5%鉄合金めっき、添加剤併用銅めっき、高純度銅めっきをそれぞれ1mm厚に被覆して、合計板厚を15mmとしたものを試験片とした。   However, it is unpredictable how the improvement in copper thermal conductivity will eventually behave against low melting point metal elements such as zinc and aluminum. Therefore, in order to compare and evaluate the adhesion and erosion of zinc, we prepared 80 mm sq. X 15 mm plate thickness chromium / zirconium-added cast copper material, silver-added cast copper material, and electromagnetic stirring chrome / zirconium / aluminum-added copper material. A test piece was obtained. In addition, as for the chromium, zirconium, and aluminum-added copper material, a sheet having a thickness of 14 mm is separately prepared, and nickel plating, cobalt-10% nickel alloy plating, nickel-5% iron alloy plating, additive are added on one side. The combined copper plating and high-purity copper plating were each coated to a thickness of 1 mm to obtain a test piece having a total plate thickness of 15 mm.

これらの試験片を予備試験―2として、図1の要領で通水冷却しつつ、低融点金属として亜鉛を選定し、600℃までルツボで加熱溶融させたもの約500mlを試験面に注入し、室温に冷却するまで放置した後、凝固した後の亜鉛の試験面に対する剥離性の良否を定性的に評価すると同時に、試験片の断面から亜鉛との合金層の形成程度をEPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザー)で確認した。なおいずれの試験片についても、溶融亜鉛注入面は、表面粗さを1〜2μmに揃えると同時にアルカリ脱脂、電解清浄化してクリーンな状態として置いた。結果を表3に示すが、素材単体では熱伝導度の優れる銀添加鋳型銅材が、また電磁攪拌用クロム・ジルコニウム・アルミニウム添加銅材に高純度銅めっきを被覆したものが、亜鉛付着性と合金層の形成程度のいずれを取っても良好な結果を示した。この結果は、熱伝導度に優れるものがヒートクラック発生防止にも有効であることを実験的に示唆している。   These test specimens were preliminarily tested-2, cooling with water in the manner shown in FIG. 1, selecting zinc as a low melting point metal, and injecting about 500 ml of heat-melted with a crucible to 600 ° C. into the test surface, After leaving to cool to room temperature, qualitatively assessing whether the solidified zinc is peelable from the test surface, and at the same time, the degree of formation of an alloy layer with zinc from the cross-section of the specimen is measured by EPMA (Electron Probe Micro Analyzer : Electron beam microanalyzer). In any of the test pieces, the molten zinc injection surface was placed in a clean state by aligning the surface roughness to 1 to 2 μm and simultaneously performing alkaline degreasing and electrolytic cleaning. The results are shown in Table 3, but the silver-added mold copper material having excellent thermal conductivity with the material alone, and the high-purity copper plating coated on the chrome / zirconium / aluminum-added copper material for electromagnetic stirring, Good results were obtained regardless of the degree of formation of the alloy layer. This result experimentally suggests that a material having excellent thermal conductivity is effective in preventing the occurrence of heat cracks.

Figure 2008030123
Figure 2008030123

表3の結果より、銀添加鋳型用銅材の結果の良好なことは、実際の鋳造鋳型銅材をこれに転換すれば良いことになるけれども、電磁攪拌効果のためには透磁率の問題が控えており、熱伝導度つまり電気伝導度も良いことになり、透磁率にとっては好ましくない。さらにメニスカス近傍の温度上昇は、高温強度が低く、熱変形しやすいという点でも当材料は、好ましいものではない。掛かる観点から、低融点の不純物金属元素のアタックによる合金化防止、電磁攪拌効率、通常よりも薄肉化された鋳型での高温熱間強度の確保が必須要件となり、鋳型として高温強度を保持しつつ、ヒートクラック発生防止という目的を達成するためには高純度銅めっきの被覆がもっとも好ましいという本発明の結論となる。   From the results of Table 3, the good result of the copper material for the silver-added mold is that the actual cast mold copper material can be converted to this, but there is a problem of permeability for the electromagnetic stirring effect. The thermal conductivity, that is, the electrical conductivity is good, which is not preferable for the magnetic permeability. Furthermore, the temperature rise in the vicinity of the meniscus is not preferable in that the high-temperature strength is low and the material is easily deformed by heat. From the standpoint, it is essential to prevent alloying by attack of low melting point impurity metal elements, electromagnetic stirring efficiency, and to ensure high temperature hot strength in a mold thinner than usual, while maintaining high temperature strength as a mold In order to achieve the purpose of preventing the occurrence of heat cracks, the conclusion of the present invention is that the coating of high-purity copper plating is most preferable.

(試験例2)またスラブ用の鋳造鋳型では、長辺2枚が短辺2枚の側面を挟み込む形となり、スラブ幅に応じて鋳込中に短辺を前後(内外)に移動させている。つまり、短辺の側面が長辺の表面を摺動するので、しばしば短辺移動量に相応する範囲に摺動疵を発生し、鋳造片の噛み込みが起こりブレークアウトに繋がることがある。そこで、摺動疵発生の防止を目的として、時に鋳型上部も素材のままの状態ではなく、銅以外の異種金属、例えばニッケルやニッケル合金、クロムめっき等で薄肉被覆することも多い。本発明の鋳造鋳型の場合でも同じように適用可能である。つまり、短辺の摺動範囲は限定的で、電磁攪拌方式の鋳型であっても、通常溶鋼の熱流束の影響を直接被る範囲を外れているので、低融点の不純物金属元素のアタックによる合金化・侵食が比較的起こり難く、ヒートクラックの発生も殆ど見られない。その一方で、本発明の高純度銅めっきを被覆した鋳型の銅被覆部は、基本的に銅が露出したままの状態の方が好ましいが、高純度銅めっきの抜熱効果を阻害しない程度の薄膜仕様とすれば、銅以外の異種金属、例えばコバルトないしコバルトを主成分とする亜鉛拡散防止用皮膜を被覆してもそれなりに機能させ得る。   (Test Example 2) In the casting mold for slab, the two long sides sandwich the side surfaces of the two short sides, and the short side is moved back and forth (inside and outside) during casting according to the slab width. . That is, since the side surface of the short side slides on the surface of the long side, a sliding flaw is often generated in a range corresponding to the moving amount of the short side, and the cast piece may be bitten and lead to a breakout. Therefore, for the purpose of preventing the occurrence of sliding wrinkles, sometimes the upper part of the mold is not left as it is, and is often thinly coated with a different metal other than copper, such as nickel, nickel alloy, chrome plating or the like. The same applies to the casting mold of the present invention. In other words, the sliding range of the short side is limited, and even an electromagnetic stirrer mold is usually outside the range directly affected by the heat flux of molten steel. Formation and erosion are relatively difficult to occur, and almost no heat cracks are observed. On the other hand, the copper-coated portion of the mold coated with the high-purity copper plating of the present invention is basically preferably in a state where the copper is exposed, but it does not hinder the heat removal effect of the high-purity copper plating. If it is a thin film specification, even if it coat | covers the dissimilar metal other than copper, for example, the zinc diffusion prevention film which has cobalt or cobalt as a main component, it can function as it is.

高純度銅めっきの効能を実際の連続鋳造鋳型で試すべく、電磁攪拌鋳造鋳型用のクロム・ジルコニウム・アルミニウム添加銅材(Cr:1.0%、Zr:0.2%、Al:0.8%)からなる長辺サイズ銅板、2,000mm幅×900mm高さ×約30mm板厚を都合4セット準備し、下記条件でめっきを行い、得られた表4の仕様のめっき品を連続鋳造機に搭載した。結果を表5に示したが、本発明による高純度銅めっきを被覆した電磁攪拌用鋳型の耐ヒートクラック効果は絶大で、従来の鋳型の3倍以上の耐久性を示すことが分かった。めっき条件を表6に示す。   In order to test the effectiveness of high-purity copper plating with an actual continuous casting mold, a chromium-zirconium-aluminum-added copper material for an electromagnetic stirring casting mold (Cr: 1.0%, Zr: 0.2%, Al: 0.8 %)), Prepared 4 sets of 2,000mm width x 900mm height x about 30mm thickness, and plated under the following conditions. Mounted on. The results are shown in Table 5, and it was found that the heat cracking resistance of the electromagnetic stirring mold coated with high-purity copper plating according to the present invention was tremendous and showed durability more than 3 times that of the conventional mold. The plating conditions are shown in Table 6.

Figure 2008030123
*1)高純度銅めっきが被覆されていない部分は、鋳型銅材が露出している。
*2)高純度銅以外のめっきは、公知方法に従って行った。
Figure 2008030123
* 1) The mold copper material is exposed in the part that is not coated with high-purity copper plating.
* 2) Plating other than high-purity copper was performed according to a known method.

Figure 2008030123
Figure 2008030123

Figure 2008030123
Figure 2008030123

予備試験で用いた試験片及び注入した溶融亜鉛を横側面から見た図である。It is the figure which looked at the test piece used by the preliminary test, and the inject | poured molten zinc from the side surface. 本発明の連続鋳造鋳型内面の銅めっきによる被覆パターンを示す図である。It is a figure which shows the coating pattern by copper plating of the continuous casting mold inner surface of this invention.

符号の説明Explanation of symbols

1. 注入した溶融亜鉛
2. SUS304製溶融亜鉛流出防止枠
3. 通水路
4. 冷却水
5. 試験片
6. 高純度銅めっき被覆部
7. 公知の耐食・耐摩耗性皮膜被覆部
8. 母材銅露出部
9. ニッケルめっき被覆部
1. 1. Injected molten zinc 2. SUS304 molten zinc outflow prevention frame Waterway 4. 4. Cooling water Test piece 6. 6. High purity copper plating coating part 7. Well-known corrosion / abrasion-resistant coating covering part 8. Base metal copper exposed portion Nickel plating coating

Claims (2)

ヒートクラックが発生した経歴がなく銅合金からなる電磁攪拌装置付き鉄鋼連続鋳造鋳型の溶鋼と直接的に接触する鋳型内部の上部を、鋳型の上端から下方に向けてすくなくとも300mmの範囲において純度99.5%以上の銅めっきでめっきの厚さが1〜7mmとなるよう被覆することを特徴とする連続鋳造鋳型のヒートクラック発生を抑制する方法。 The upper part of the mold that is in direct contact with the molten steel of the steel continuous casting mold with an electromagnetic stirrer that has no history of heat cracking and is made of a copper alloy has a purity of 99.000 in the range of at least 300 mm from the upper end of the mold downward. A method for suppressing the occurrence of heat cracks in a continuous casting mold, characterized in that the thickness of the plating is 1 to 7 mm with 5% or more copper plating. 銅めっき表面の全面又はその一部分を更にクロム、ニッケル若しくはコバルト又はそれら金属からなる合金で被覆することを特徴とする請求項1に記載の連続鋳造鋳型のヒートクラック発生を抑制する方法。 2. The method for suppressing the occurrence of heat cracks in a continuous casting mold according to claim 1, wherein the entire surface of the copper plating surface or a part thereof is further coated with chromium, nickel, cobalt, or an alloy thereof.
JP2007271888A 2003-01-23 2007-10-19 Mold for continuously casting steel difficult to develop heat crack at meniscus part Pending JP2008030123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271888A JP2008030123A (en) 2003-01-23 2007-10-19 Mold for continuously casting steel difficult to develop heat crack at meniscus part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003015387 2003-01-23
JP2007271888A JP2008030123A (en) 2003-01-23 2007-10-19 Mold for continuously casting steel difficult to develop heat crack at meniscus part

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003027535A Division JP4294336B2 (en) 2003-01-23 2003-02-04 Continuous casting mold for steel that does not easily cause heat cracks in the meniscus

Publications (1)

Publication Number Publication Date
JP2008030123A true JP2008030123A (en) 2008-02-14

Family

ID=39120070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271888A Pending JP2008030123A (en) 2003-01-23 2007-10-19 Mold for continuously casting steel difficult to develop heat crack at meniscus part

Country Status (1)

Country Link
JP (1) JP2008030123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585461A (en) * 2019-10-24 2022-06-03 杰富意钢铁株式会社 Method for manufacturing continuous casting mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823538A (en) * 1981-08-03 1983-02-12 Kawasaki Steel Corp Mold for continuous casting
JPS63174759A (en) * 1987-01-14 1988-07-19 Nomura Tokin:Kk Mold for continuous casting
JPH10305351A (en) * 1997-05-08 1998-11-17 Nkk Corp Mending method of continuous casting mold
JP4294336B2 (en) * 2003-01-23 2009-07-08 株式会社野村鍍金 Continuous casting mold for steel that does not easily cause heat cracks in the meniscus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823538A (en) * 1981-08-03 1983-02-12 Kawasaki Steel Corp Mold for continuous casting
JPS63174759A (en) * 1987-01-14 1988-07-19 Nomura Tokin:Kk Mold for continuous casting
JPH10305351A (en) * 1997-05-08 1998-11-17 Nkk Corp Mending method of continuous casting mold
JP4294336B2 (en) * 2003-01-23 2009-07-08 株式会社野村鍍金 Continuous casting mold for steel that does not easily cause heat cracks in the meniscus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585461A (en) * 2019-10-24 2022-06-03 杰富意钢铁株式会社 Method for manufacturing continuous casting mold

Similar Documents

Publication Publication Date Title
CN105603266B (en) It is a kind of for aluminum alloy cylinder sleeve of automobile engine and preparation method thereof
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
CN101775525A (en) Laser cladding cobalt-base alloy coating material of continuous casting crystallizer copperplate and process
KR102420968B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
CN103614751A (en) Copper-plate nickel-manganese-alloy electroplated layer of continuous-casting crystallizer and preparation process thereof
CN103614750A (en) Preparation process for copper-plate electroplated nickel tungsten electroplated layer of continuous-casting crystallizer
CN103614724A (en) Preparation technique of continuous casting crystallizer copper plate surface cermet coating
JP5458019B2 (en) Cast roll of twin roll type thin plate casting machine and surface treatment method thereof
KR20010013319A (en) Amorphous or Glassy Alloy Surfaced Rolls for the Continuous Casting of Metal Stip
JP4294336B2 (en) Continuous casting mold for steel that does not easily cause heat cracks in the meniscus
KR101568474B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING-RESISTANCE AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE SAME
JP4548483B2 (en) Casting method for molten alloy
JP2008030123A (en) Mold for continuously casting steel difficult to develop heat crack at meniscus part
JP4816411B2 (en) How to prevent clogging of spray nozzles for water cooling
CN105478693B (en) A kind of preparation method of continuous casting roll-type crystallizer
JP2019171435A (en) Method of continuous casting
Shankar et al. Die soldering: Effect of process parameters and alloy characteristics on soldering in the pressure die casting process
JP2019130578A (en) Mold for continuous casting and method for producing the same
JP2000218346A (en) Continuous casting mold for steel and its manufacturing method
JP4579706B2 (en) Articles with improved zinc erosion resistance
JP6781922B2 (en) How to regenerate the mold
JP7265217B2 (en) Galvanized steel sheet for hot stamping
JP2963428B1 (en) Billet continuous casting mold
JP6796243B2 (en) Mechanical parts coated with copper-nickel alloy material
CN105543551B (en) A kind of continuous casting roll-type crystallizer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20100216

Free format text: JAPANESE INTERMEDIATE CODE: A132

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720