JP2008030028A - Multi-stage type cyclone apparatus and method for classifying and collecting particulate - Google Patents

Multi-stage type cyclone apparatus and method for classifying and collecting particulate Download PDF

Info

Publication number
JP2008030028A
JP2008030028A JP2007170847A JP2007170847A JP2008030028A JP 2008030028 A JP2008030028 A JP 2008030028A JP 2007170847 A JP2007170847 A JP 2007170847A JP 2007170847 A JP2007170847 A JP 2007170847A JP 2008030028 A JP2008030028 A JP 2008030028A
Authority
JP
Japan
Prior art keywords
cyclone
stage
blade
cyclones
stage cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007170847A
Other languages
Japanese (ja)
Inventor
Yu-Du Hsu
玉杜 徐
Hung-Min Chien
弘民 簡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2008030028A publication Critical patent/JP2008030028A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-stage type cyclone apparatus and a method for classifying and collecting nanoparticles. <P>SOLUTION: The apparatus and the method are provided for classifying and collecting nanoparticles containing various sizes of particulates. A stream containing a plurality of different sizes of particulates passes through at least a first stage cyclone of the multi-stage type cyclone apparatus. The first stage cyclone collects a first particulate group. The stream passes through at least a second stage cyclone of the multi-stage type cyclone apparatus. The second stage cyclone collects a second particulate group. The barometric pressure width of the multi-stage type cyclone apparatus is 20 to 760 torr. The first stage cyclone has a cut-off aerodynamic diameter of d<SB>pa 50,1, j</SB>, and the second stage cyclone has a cut-off aerodynamic diameter of d<SB>pa 50,2, j</SB>. The first stage cyclone and the second stage cyclone are connected in series. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多段式サイクロン装置と粒状物の分類収集方法に関するものである。   The present invention relates to a multistage cyclone apparatus and a granular material classification and collection method.

ナノ技術は未来のハイテク技術産業の重要な技術であり、化学、光学、電子、セラミック、および、生物技術等に産業に応用されて、産業層と競争力を強化すると共に、高付加価値を創造して、ハイテク産業の主力となっている。しかし、粒状物生産工程において、ナノレベルの微小物は一般の粒状物処理メカニズムでは収集できないので、本案の発明者は、台湾において、中華民国92年(2003年)10月9日に「サイクロンによりナノ粒子を収集する方法、および、サイクロンの設計方法」の発明案(出願番号092128213)を提出し、粒状物収集問題を解決している。   Nanotechnology is an important technology in the future high-tech industry, and is applied to industries such as chemistry, optics, electronics, ceramics, and biotechnology to strengthen the industrial layer and competitiveness and create high added value. It has become the mainstay of the high-tech industry. However, in the granular material production process, nano-level microscopic materials cannot be collected by a general granular material processing mechanism. Therefore, the inventor of the present plan in Taiwan on October 9, 1992 (2003) An invention proposal (Application No. 092128213) of “Method of collecting nanoparticles and method of designing cyclone” has been submitted to solve the problem of collecting particulate matter.

しかし、直接、サイクロンを使用して粒状物を収集するのは、大量、かつ、効果的に粒状物を粒径に応じて分類、収集するのが不可能であり、高経済価値の超細粒状物は、細粒状物や粗粒状物が混入し、低価格での販売することになる。公知のサイクロンを例とすると、10μm以上の粒状物しか収集できないので、各粒状物をどうやって効果的に分離収集するか、また、分類の方式により、超細粒状物の経済価値をどう向上させるかが、本案が解決する問題である。   However, it is impossible to classify and collect the granular materials according to the particle size effectively and to collect the granular materials directly using the cyclone, and it is very fine particles with high economic value. Items are mixed with fine and coarse particles and sold at low prices. Taking a known cyclone as an example, only granular materials of 10 μm or more can be collected, so how to effectively separate and collect each granular material, and how to improve the economic value of ultrafine granular materials by the classification method However, this is a problem that this plan solves.

上述の欠点を改善するため、本発明は、多段式サイクロン装置と粒状物分類収集の方法を提供することを目的とする。   In order to remedy the above-mentioned drawbacks, the present invention aims to provide a multistage cyclone apparatus and a method for collecting and collecting particulate matter.

本発明の多段式サイクロン装置は、少なくとも一つの第一段階サイクロンと少なくとも一つの第二段階サイクロンとからなり、第一段階サイクロンは、カットオフ空気動力学的直径dpa50,1,jを有し、第二段階サイクロンは、カットオフ空気動力学的直径dpa50,2,jを有する。第一段階サイクロンと第二段階サイクロンは直列接続であり、カットオフ空気動力学的直径dpa50,1,jは以下の方程式で求められる:

Figure 2008030028
The multistage cyclone apparatus of the present invention comprises at least one first stage cyclone and at least one second stage cyclone, the first stage cyclone having a cut-off aerodynamic diameter d pa50,1, j . The second stage cyclone has a cut-off aerodynamic diameter d pa50,2, j . The first stage cyclone and the second stage cyclone are connected in series, and the cut-off aerodynamic diameter d pa50,1, j is determined by the following equation:
Figure 2008030028

上述の1とjは第一段階の第j個のサイクロンを示す;μは気体粘度である;Nはブレード数;wはブレードの厚さ;Pはブレード間距離;nはブレードの旋転回数;rmax、および、rminはそれぞれブレードの外径と内径;Qは気体体積流率;ζは適合常数;Cは粒状物滑り補正係数;である。 1 and j above denote the jth cyclone in the first stage; μ is the gas viscosity; N is the number of blades; w is the thickness of the blade; P is the distance between the blades; n is the number of blade rotations; r max and r min are the outer diameter and inner diameter of the blade, respectively; Q is the gas volumetric flow rate; ζ is the fitting constant; C is the particulate matter slip correction factor.

カットオフ空気動力学的直径dpa50,2,jは以下の方程式で求められる:

Figure 2008030028
The cut-off aerodynamic diameter d pa50,2, j is determined by the following equation:
Figure 2008030028

上述の2とjは第二段階の第j個のサイクロンを示す;μは気体粘度である;Nはブレード数;wはブレードの厚さ;Pはブレード間距離;nはブレードの旋転回数;rmax、および、rminはそれぞれブレードの外径と内径;Qは気体体積流率;ζは適合常数;Cは粒状物滑り補正係数;である。 2 and j above represent the jth cyclone in the second stage; μ is the gas viscosity; N is the number of blades; w is the blade thickness; P is the distance between the blades; n is the number of blade rotations; r max and r min are the outer diameter and inner diameter of the blade, respectively; Q is the gas volumetric flow rate; ζ is the fitting constant; C is the particulate matter slip correction factor.

粒状物分類収集方法は、複数の異なる大きさの粒状物を含む気流が多段式サイクロン装置の少なくとも一つの第一段階サイクロンを通過する。第一段階サイクロンにより、第一粒状物群を収集する。第一段階サイクロンを通過した複数の異なる大きさの粒状物を含む気流は多段式サイクロン装置の少なくとも一つの第二段階サイクロンを通過する。第二段階サイクロンにより、第二粒状物群を収集する。第一段階サイクロン、および、第二段階サイクロン内の気圧は20〜760トールである。   In the particulate matter classification and collection method, an air flow including a plurality of particulates having different sizes passes through at least one first-stage cyclone of the multistage cyclone apparatus. The first granular material group is collected by the first stage cyclone. The airflow including a plurality of differently sized particles passing through the first stage cyclone passes through at least one second stage cyclone of the multistage cyclone device. The second group of particulates is collected by a second stage cyclone. The pressure in the first stage cyclone and the second stage cyclone is 20 to 760 Torr.

本発明の多段式サイクロン装置、および、粒状物の分類収集方法は、公知技術中の大量、かつ、効果的に粒状物を粒径によって分類収集できない問題を解決し、高経済価値の超細粒状物が細粒状物や粗粒状物が混入して低価格で販売することになるのを防止し、効果的に粒状物を粒径によって分類し、高経済価値を達成する。   The multistage cyclone apparatus and the granular material collection method of the present invention solve the problem that a large amount and a granular material in the known technology cannot be effectively classified and collected by the particle size, and have a high economic value of ultrafine particles. Prevents the product from being sold at a low price due to the mixing of fine and coarse particles, and effectively classifies the particles by particle size to achieve high economic value.

図1と図8は本発明の粒状物分類収集方法を示す図で、その工程は、a.複数の異なる大きさの粒状物を含む気流が少なくとも一つの第一段階サイクロン11を通過する。b.第一段階サイクロン11により、第一粒状物群を収集する。c.第一段階サイクロン11を通過した複数の異なる大きさの粒状物を含む気流は少なくとも一つの第二段階サイクロン12を通過する。d.第二段階サイクロン12により、第二粒状物群を収集する。第一段階サイクロン11、および、第二段階サイクロン12内の気圧幅は20〜760トールである。図1を参照すると、注意すべきことは、本発明の多段式サイクロン装置10は中度の真空(20トール)から常圧(760トール)の条件下で作用し、多段式サイクロン装置10は、複数の第一段階サイクロン11、および、第二段階サイクロン12を有し、第一段階サイクロン11は互いに並列され、第二段階サイクロン12も互いに並列され、かつ、第一段階サイクロン11と第二段階サイクロン12は対応し、直列接続である。図1は、粒状物収集の分類金型工場の設計で、複数の異なる大きさの粒状物を含む気流が、まず、供給機20により、公知のサイクロン21中に伝送され、公知のサイクロン21により、最大粒径の粒状物を収集する。気流は、さらに、多段式サイクロン装置10中に流れ、多段式サイクロン装置10に流入した気体は、複数の第一サイクロン11を通過し、これらの第一段階サイクロン11は、気流中の大粒径の粒状物(第一レベル粒状物群)を収集し、その後、気流は第二段階サイクロン12に流入し、第二段階サイクロン12は、小粒径の粒状物(第二レベル粒状物群)を収集し、続いて、第一段階サイクロン11中の大粒径粒状物(第一レベル粒状物群)は、第一収集器22に送られ、第二段階サイクロン12中の小粒径粒状物(第二レベル粒状物群)は第二収集器23中に送られる。最後に、多段式サイクロン10を経た気流は、フィルター24、および、送風機25を通過中に最後の処理が施される。注意すべきことは、本発明の多段式サイクロン10が袋式集塵設備(図示しない)、或いは、その他の収集設備に結合されて、粒状物を収集するのを助ける。本発明の多段式サイクロン装置10は、袋式集塵設備と結合することが出来る以外に、バッグハウス型(bag-house)、バッグフィルター(bag-filter)、HEPAフィルター(HEPA filter)、および、電気集塵装置(electrostatic precipitator)と結合し、粒状物の収集を助ける。また、気流が多段式サイクロン装置10を通過する前、気流はT型三通管(図示しない)を通過し、T型三通管により、粒径が10μm以上の粒状物をろ過して、気流が多段式サイクロン装置10を通過するときに、直接10μm以下の粒状物を収集することができる。   1 and 8 are diagrams showing the particulate matter classification and collection method of the present invention. An air stream containing a plurality of different sized particles passes through at least one first stage cyclone 11. b. The first granular material group is collected by the first-stage cyclone 11. c. The airflow including a plurality of particles having different sizes passing through the first stage cyclone 11 passes through at least one second stage cyclone 12. d. The second granular group is collected by the second stage cyclone 12. The pressure range in the first stage cyclone 11 and the second stage cyclone 12 is 20 to 760 Torr. Referring to FIG. 1, it should be noted that the multistage cyclone apparatus 10 of the present invention operates under conditions of moderate vacuum (20 torr) to atmospheric pressure (760 torr), and the multistage cyclone apparatus 10 is A plurality of first stage cyclones 11 and a second stage cyclone 12 are provided, the first stage cyclones 11 are arranged in parallel with each other, the second stage cyclones 12 are also arranged in parallel with each other, and the first stage cyclone 11 and the second stage cyclone are arranged in parallel. Cyclone 12 corresponds and is connected in series. FIG. 1 shows a design of a classification mold factory for collecting granular materials. An air flow including a plurality of different-sized granular materials is first transmitted by a feeder 20 into a known cyclone 21, and then by a known cyclone 21. Collect the granular material of maximum particle size. The airflow further flows into the multistage cyclone device 10, and the gas flowing into the multistage cyclone device 10 passes through the plurality of first cyclones 11, and these first stage cyclones 11 have a large particle size in the airflow. Of particles (first level granule group) are collected, and then the airflow flows into the second stage cyclone 12, where the second stage cyclone 12 collects small particle size particles (second level granule group). Then, the large particle size granule (first level granule group) in the first stage cyclone 11 is sent to the first collector 22 and the small particle size granule in the second stage cyclone 12 ( The second level particulate group) is sent into the second collector 23. Finally, the airflow that has passed through the multistage cyclone 10 is subjected to final processing while passing through the filter 24 and the blower 25. It should be noted that the multi-stage cyclone 10 of the present invention is coupled to a bag-type dust collection facility (not shown) or other collection facility to help collect particulate matter. The multi-stage cyclone device 10 of the present invention can be combined with a bag-type dust collecting equipment, a bag-house type, a bag-filter, a HEPA filter, and Combines with an electrostatic precipitator to help collect particulate matter. In addition, before the airflow passes through the multistage cyclone apparatus 10, the airflow passes through a T-type three-way pipe (not shown), and the particulate matter having a particle size of 10 μm or more is filtered by the T-type three-way pipe. Can pass through the multi-stage cyclone device 10 and directly collect particulates of 10 μm or less.

図2、図3で示されるように、本発明の第一段階サイクロン11、および、第二段階サイクロン12は皆軸翼型サイクロンで、キャビン111、および、サイクロン構造112、からなり、キャビン111は気流を導入する気流入口113、気流出口114、および、内壁115、を有し、キャビン構造112はキャビン111内に位置し、かつ、気流入口113と気流出口114の間を介し、サイクロン構造112とキャビン111の内壁115はチャンネル116を形成する。チャンネル116は気流がチャンネル116を通過するときに旋転を生成し、気流中の粒状物は遠心力により、キャビン111内の内壁115に衝突する。サイクロン構造112は、円柱体117と円柱体117の軸心を環繞し、かつ、円柱体117上に設置される螺旋型ブレード118を有し、チャンネル116は螺旋型ブレード118とブレード118に近接するキャビン111により定義される。注意すべきことは、本実施例中、気体入口113はキャビン111の上部に設置され、気流出口114はサイクロン構造112下方に設置され、キャビン111の径方向から延伸する。   As shown in FIGS. 2 and 3, the first stage cyclone 11 and the second stage cyclone 12 of the present invention are all axial wing type cyclones, and are composed of a cabin 111 and a cyclone structure 112. An air flow inlet 113 for introducing an air flow, an air flow outlet 114, and an inner wall 115, the cabin structure 112 is located in the cabin 111, and the cyclone structure 112 is interposed between the air flow inlet 113 and the air flow outlet 114. The inner wall 115 of the cabin 111 forms a channel 116. The channel 116 generates rotation when the airflow passes through the channel 116, and the particulate matter in the airflow collides with the inner wall 115 in the cabin 111 due to centrifugal force. The cyclone structure 112 has a cylindrical blade 117 and an axial center of the cylindrical body 117, and has a spiral blade 118 installed on the cylindrical body 117, and the channel 116 is close to the spiral blade 118 and the blade 118. Defined by cabin 111. It should be noted that in this embodiment, the gas inlet 113 is installed at the upper part of the cabin 111, and the airflow outlet 114 is installed below the cyclone structure 112, and extends from the radial direction of the cabin 111.

図4は、第一段階サイクロン11と第二段階サイクロン12のもう一つの実施例を示し、構造はほぼ同じであるが、異なるのは、本実施例の気体入口113aは、キャビン111の上部に設置され、気体入口113aの設計方向とキャビン111の切線方向は相同で、気流出口114aはサイクロン構造112下方に設置され、キャビン111の径方向に延伸する。   FIG. 4 shows another embodiment of the first stage cyclone 11 and the second stage cyclone 12. The structure is substantially the same, except that the gas inlet 113a of this embodiment is located above the cabin 111. The design direction of the gas inlet 113a and the cut line direction of the cabin 111 are similar, and the air flow outlet 114a is installed below the cyclone structure 112 and extends in the radial direction of the cabin 111.

図5は、本案の第一段階サイクロン11と第二段階サイクロン12のもう一つの実施例を示す図で、構造はほぼ同じであるが、異なるのは、本実施例の気体入口113bは、キャビン111の上部に設置され、気体入口113bの設計方向とキャビン111の切線方向は相同で、気流出口114bはサイクロン構造112上方に設置され、キャビン111の軸方向に延伸する。   FIG. 5 is a diagram showing another embodiment of the first-stage cyclone 11 and the second-stage cyclone 12 of the present plan, and the structure is almost the same, but the difference is that the gas inlet 113b of the present embodiment has a cabin. The design direction of the gas inlet 113b and the cut line direction of the cabin 111 are the same, and the air flow outlet 114b is installed above the cyclone structure 112 and extends in the axial direction of the cabin 111.

注意すべきことは、本発明のサイクロン(第一段階サイクロン11、および、第二段階サイクロン12)の構造と本案の発明者が提出した「サイクロンによりナノ粒子を収集する方法、および、サイクロンの設計方法」の発明案(申請番号092128213)のサイクロン構造とは異なり、異なるのは、本発明はさらに、図2、図4、図5の設計のように、多種のサイクロン中の気流入口、および、気流出口の設計位置を提供していることである。また、本案のサイクロンは多段式設計を採用し、故に、サイクロン中に適用する気圧は、20〜760トールで、本案の申請者が提出する前案の適用気圧(20トール以下)と明らかに異なり、適用気圧が異なる故、カットオフ空気動力学的直径を計算する理論方程式も伴って変化する。   It should be noted that the structure of the cyclone of the present invention (first-stage cyclone 11 and second-stage cyclone 12) and the inventor of the present proposal “the method of collecting nanoparticles by the cyclone and the design of the cyclone” Unlike the cyclone structure of the "Method" invention (application number 092128213), the present invention further differs from the cyclone structure in the various cyclones, such as the designs of FIGS. 2, 4, and 5, and The design position of the air flow outlet is provided. In addition, the cyclone of this plan adopts a multistage design, so the atmospheric pressure applied in the cyclone is 20 to 760 Torr, which is clearly different from the applicable atmospheric pressure (20 Torr or less) submitted by the applicant of this plan. Because the applied air pressure is different, the theoretical equation for calculating the cut-off aerodynamic diameter also varies.

本発明の第一段階サイクロン11、および、第二段階サイクロン12は、それぞれ、カットオフ空気動力学的直径(dpa50)を有し、カットオフ空気動力学的直径(dpa50)は以下の公式で算出され:

Figure 2008030028
The first stage cyclone 11 and the second stage cyclone 12 of the present invention each have a cut-off aerodynamic diameter (d pa50 ), and the cut-off aerodynamic diameter (d pa50 ) is Is calculated by:
Figure 2008030028

上述のiとjは第i段階の第j個のサイクロンを示す;μは気体粘度である;Nはブレード数;wはブレードの厚さ;Pはブレード間距離;nはブレードの旋転回数;rmax、および、rminはそれぞれブレードの外径と内径;Qは気体体積流率;ζは適合常数;Cは粒状物滑り補正係数;であり、理論効率と文献上実験データは符合し、第i段階の第j個のサイクロンの滑り補正係数Ci,jは以下の公式で算出される(Hinds, W.C., 1999, Aerosol Technology, 2nd Ed., Wiley & Sons, Inc., 99.49.):

Figure 2008030028
I and j above denote the jth cyclone in the i stage; μ is the gas viscosity; N is the number of blades; w is the thickness of the blade; P is the distance between the blades; n is the number of blade rotations; r max and r min are the outer diameter and inner diameter of the blade, respectively, Q is the gas volume flow rate, ζ is the fitting constant, C is the granular material slip correction coefficient, and the theoretical efficiency and experimental data in the literature agree with each other. slip correction factor C i of the j-number of cyclones of the i stage, j is calculated in the following formula (Hinds, WC, 1999, Aerosol Technology, 2 nd Ed., Wiley & Sons, Inc., 99.49.) :
Figure 2008030028

dpは粒径、λi,jは第i段階の第j個のサイクロン中の気体分子の自由平均路径長さで、その値と気体圧力は反比例し、気体温度と正比例する。 dp is the particle size, λ i, j is the free average path length of gas molecules in the j-th cyclone in the i-th stage, and its value and gas pressure are inversely proportional and directly proportional to the gas temperature.

本発明の粒状物を含む気体の生成工程に対し、圧力が中度の中空(20トール)から常圧(760トール)の条件下で、粒状物の分類収集装置と方法を設計すると共に、実験室の実験を実行し、第i段階の第j個のサイクロンの粒状物の収集効率は、以下の公式で計算される:

Figure 2008030028
Figure 2008030028
は正規化パラメータ(normalized parameter);Ψi,j,50=8*104(nm−lpm)は粒状物の収集効率ηi,j=0.5のときの正規化パラメータの値;dpi,j第i段階の第j個のサイクロン中の粒状物粒径;Qi,j第i段階の第j個のサイクロンの気体流量;ζ’は適合常数;であり、理論効率と文献上実験データは符合する。 In the process of producing a gas containing particulate matter according to the present invention, an apparatus and a method for classifying and collecting particulate matter are designed and tested under conditions of moderate hollow (20 torr) to normal pressure (760 torr). A laboratory experiment is performed, and the collection efficiency of the i-th jth cyclone granulate is calculated by the following formula:
Figure 2008030028
Figure 2008030028
Is the normalized parameter; Ψ i, j, 50 = 8 * 10 4 (nm−lpm) is the value of the normalized parameter when the particulate collection efficiency η i, j = 0.5; dp i , j Particle size in j- th cyclone in i-stage; Q i, j gas flow rate in j-th cyclone in i-stage; ζ ′ is a compatible constant; experimental efficiency and literature The data matches.

図6を参照すると、本発明の軸翼型サイクロンの正規化パラメータ:

Figure 2008030028
に対する粒状物収集効率テスト結果は、図から分かるように、正規化パラメータがΨi,j,50=8*104s(nm−lpm)のとき、粒状物の収集効率はηi,j=0.5(すなわち、50%)で、適当な流量と圧力下で操作するとき、粒径の大きさは100(nm)に達する。 Referring to FIG. 6, the normalization parameters of the axial cyclone of the present invention:
Figure 2008030028
As can be seen from the figure, when the normalization parameter is Ψ i, j, 50 = 8 * 10 4 s (nm−lpm), the collection efficiency of the granular material is η i, j = At 0.5 (ie 50%), the particle size reaches 100 (nm) when operating under appropriate flow rate and pressure.

上述から分かるように、ηi,jと粒状物の粒径dpは一定の関係があり、粒状物が緻密性(非多孔性)の場合、粒径dpは、BET比表面積分析方法により決定され、円球粒状物の比表面積Sと粒径dpの関係は下式で示される:

Figure 2008030028
As can be seen from the above, there is a fixed relationship between η i, j and the particle size dp of the granular material. When the granular material is dense (non-porous), the particle size dp is determined by the BET specific surface area analysis method. The relationship between the specific surface area S and the particle size dp of the spherical granular material is represented by the following formula:
Figure 2008030028

ρpは粒状物の密度、図7は粒状物の密度ρp=5.8g/cm3を例として生成された粒状物の粒径dpと比表面積Sの関係対照図である。例えば、比表面積Sが10.3m2/gである場合、このときの粒径は0.1μm(すなわち、100nm)で、注意すべきことは、本実施例はBET比表面積を利用して分析するとき、フィルター(図示しない)を使用し、フィルターに用いるフィルター布の空気体布比(m3/min/m2;単位フィルター布面積に流れる単位時間当たりの廃気量の比例)は約1.95で、粒状物の収集効率ηi,jを向上させる必要がある場合、空気体布比は1か1以下に下がる。 ρ p is the density of the granular material, and FIG. 7 is a graph showing the relationship between the particle diameter dp and the specific surface area S of the granular material generated by taking the density ρ p = 5.8 g / cm 3 of the granular material as an example. For example, when the specific surface area S is 10.3 m 2 / g, the particle size at this time is 0.1 μm (that is, 100 nm), and it should be noted that the present embodiment analyzes using the BET specific surface area. When using a filter (not shown), the ratio of air body cloth to the filter cloth used for the filter (m 3 / min / m 2 ; proportional to the amount of waste air per unit time flowing into the unit filter cloth area) is about 1 If the particulate collection efficiency η i, j needs to be improved at 0.95, the air body cloth ratio is reduced to 1 or 1 or less.

粒状物がその他の形状(円球形ではない)場合、比表面積Sと粒径dpの関係は、形状修正因子ζを加えて修正し、以下のように示される:

Figure 2008030028
When the granular material has another shape (not a spherical shape), the relationship between the specific surface area S and the particle size dp is corrected by adding the shape correction factor ζ, and is expressed as follows:
Figure 2008030028

本発明の多段式サイクロン装置、および、粒状物の分類収集方法は、公知技術中の大量、かつ、効果的に粒状物を粒径によって分類収集できない問題を解決し、高経済価値の超細粒状物が細粒状物や粗粒状物が混入して低価格で販売することになるのを防止する。本発明の多段式サイクロン装置、および、粒状物の分類収集方法は、効果的に粒状物を粒径によって分類し、高経済価値を達成する。   The multistage cyclone apparatus and the granular material collection method of the present invention solve the problem that a large amount and a granular material in the known technology cannot be effectively classified and collected by the particle size, and have a high economic value of ultrafine particles. Prevents products from being sold at a low price due to the inclusion of fine or coarse particles. The multistage cyclone apparatus and the granular material collection method of the present invention effectively classify granular materials according to particle size and achieve high economic value.

本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変動や潤色を加えることができ、したがって本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。   In the present invention, preferred embodiments have been disclosed as described above. However, the present invention is not limited to the present invention, and any person who is familiar with the technology can use various methods within the spirit and scope of the present invention. Variations and moist colors can be added, so the protection scope of the present invention is based on what is specified in the claims.

本発明の粒状物収集の分類金型工場の設計図である。It is a design drawing of the classification mold factory of the granular material collection of the present invention. 本発明のサイクロンを示す図である。It is a figure which shows the cyclone of this invention. 本発明のサイクロン構造図である。It is a cyclone structure figure of the present invention. 本考案のサイクロンのもう一つの実施例を示す図である。It is a figure which shows another Example of the cyclone of this invention. 本考案のサイクロンのもう一つの実施例を示す図である。It is a figure which shows another Example of the cyclone of this invention. 本考案の多段式サイクロン装置の収集粒状物対正規化パラメータと収集効率の関係図である。FIG. 3 is a relationship diagram between collected particulate matter normalization parameters and collection efficiency of the multistage cyclone device of the present invention. 粒状物の密度がρp=5.8g/cm3のとき、粒状物の粒径dpと比表面積Sの関係図である。When the density of the granular material is ρ p = 5.8 g / cm 3 , it is a relationship diagram between the particle diameter dp of the granular material and the specific surface area S. FIG. 本発明の粒状物分類収集方法の工程図である。It is process drawing of the granular material classification | category collection method of this invention.

符号の説明Explanation of symbols

10 多段式サイクロン装置
11 第一段階サイクロン
111 キャビン
112 サイクロン構造
113、113a、113b 気流入口
114、114a、114b 気流出口
115 内壁
116 チャンネル
117 円柱体
118 螺旋型ブレード
12 第二段階サイクロン
20 供給機
21 公知のサイクロン
22 第一収集器
23 第二収集器
24 フィルター
25 送風機
pa50 カットオフ空気動力学的直径
10 Multistage cyclone apparatus 11 First stage cyclone 111 Cabin 112 Cyclone structure 113, 113a, 113b Airflow inlet 114, 114a, 114b Airflow outlet 115 Inner wall 116 Channel 117 Cylindrical body 118 Spiral blade 12 Second stage cyclone 20 Feeder 21 Known Cyclone 22 first collector 23 second collector 24 filter 25 blower d pa50 cut-off aerodynamic diameter

Claims (11)

粒状物の分類収集方法であって、工程は、
複数の異なる大きさの粒状物を含む気流が少なくとも一つの第一段階サイクロンを通過する工程と、
前記第一段階サイクロンにより、第一粒状物群を収集する工程と、
前記第一段階サイクロンを通過した複数の異なる大きさの粒状物を含む気流は少なくとも一つの第二段階サイクロンを通過する工程と、
前記第二段階サイクロンにより、第二粒状物群を収集する工程と
を含み、
前記第一段階サイクロン、および、前記第二段階サイクロン内の気圧幅が20〜760トールである
ことを特徴とする方法。
A method for collecting and collecting particulate matter, the process comprising:
An air stream comprising a plurality of different sized particulates passes through at least one first stage cyclone;
Collecting the first granular material group by the first stage cyclone;
An air flow including a plurality of particles having different sizes that have passed through the first stage cyclone passes through at least one second stage cyclone;
Collecting the second granular group by the second stage cyclone,
The method according to claim 1, wherein a pressure width in the first stage cyclone and the second stage cyclone is 20 to 760 Torr.
前記第一段階サイクロンの数量が複数のとき、前記第一段階サイクロンは互いに並列設置され、前記第二段階サイクロンの数量が複数であるとき、前記第二段階サイクロンは互いに並列設置されることを特徴とする請求項1記載の方法。 When the number of the first stage cyclones is plural, the first stage cyclones are installed in parallel with each other, and when the number of the second stage cyclones is plural, the second stage cyclones are installed in parallel with each other. The method according to claim 1. 前記第一段階サイクロンと前記第二段階サイクロンは直列接続であることを特徴とする請求項1記載の方法。 The method of claim 1, wherein the first stage cyclone and the second stage cyclone are connected in series. 前記第一段階サイクロン、および、前記第二段階サイクロンは軸翼型サイクロンで、前記軸翼型サイクロンは、キャビンとサイクロン構造を有し、前記キャビンは、前記気流を導入する気流入口、気流出口、および、内壁を有し、前記サイクロン構造は前記キャビン内に位置し、かつ、前記気流入口と前記気流出口の間を介し、前記サイクロン構造の前記内壁はチャンネルを形成し、気流が前記チャンネルを通過するとき旋転を生成し、前記気流中の粒状物は遠心力により前記キャビンの内壁に衝突することを特徴とする請求項1記載の方法。 The first stage cyclone and the second stage cyclone are axial wing type cyclones, and the axial wing type cyclones have a cabin and a cyclone structure, and the cabin has an air flow inlet for introducing the air flow, an air flow outlet, And the inner wall of the cyclone structure is located between the airflow inlet and the airflow outlet, the inner wall of the cyclone structure forms a channel, and the airflow passes through the channel. The method according to claim 1, wherein a rotation is generated when the particulate matter in the airflow collides with an inner wall of the cabin by a centrifugal force. 前記サイクロン構造は、円柱体と前記円柱体を環繞し、かつ、前記円柱体上に設置される螺旋型ブレードを有し、前記チャンネルは螺旋型ブレードと前記ブレードに近接するキャビンにより定義されることを特徴とする請求項4記載の方法。 The cyclone structure includes a cylindrical body and a spiral blade installed on the cylindrical body, and the channel is defined by a spiral blade and a cabin adjacent to the blade. 5. The method of claim 4, wherein: 前記第一段階サイクロン、および、前記第二段階サイクロンは、それぞれ、カットオフ空気動力学的直径(dpa50)を有し、カットオフ空気動力学的直径(dpa50)は以下の式で算出され、
Figure 2008030028
上述のiとjは第i段階の第j個のサイクロン、μは気体粘度、Nはブレード数、wはブレードの厚さ、Pはブレード間距離、nはブレードの旋転回数;rmax、および、rminはそれぞれブレードの外径と内径、Qは気体体積流率、ζは適合常数、Cは粒状物滑り補正係数であることを特徴とする請求項5記載の方法。
The first stage cyclone and the second stage cyclone each have a cut-off aerodynamic diameter (d pa50 ), and the cut-off aerodynamic diameter (d pa50 ) is calculated by the following equation: ,
Figure 2008030028
Above i and j the j-number of cyclones in the i-th stage, mu is the gas viscosity, N is the number of blades, w is the blade thickness, P is the blade distance, n represents flipping number of blades; r max, and , R min are the outer diameter and inner diameter of the blade, Q is the gas volume flow rate, ζ is the adaptive constant, and C is the particulate slip correction factor.
前記第i段階の第j個のサイクロンの滑り補正係数Ci,jは以下の公式で算出され、
Figure 2008030028
dpは粒径、λi,jは第i段階の第j個のサイクロン中の気体分子の自由平均路径長さであることを特徴とする請求項6記載の方法。
The slip correction coefficient C i, j of the j-th cyclone in the i-th stage is calculated by the following formula:
Figure 2008030028
The method according to claim 6, wherein dp is a particle size, and λ i, j is a free average path length of gas molecules in the j-th cyclone in the i-th stage.
多段式サイクロン装置であって、
少なくとも一つのブレードとカットオフ空気動力学的直径dpa50,1,jを有し、前記ブレードが設けられる少なくとも一つの第一段階サイクロンと、
少なくとも一つのブレードとカットオフ空気動力学的直径dpa50,2,jを有し、前記ブレードが設けられる少なくとも一つの第二段階サイクロンと、
からなり、前記第一段階サイクロンと前記第二段階サイクロンは直列接続で、前記カットオフ空気動力学的直径dpa50,1,jは以下の方程式により求められ、
Figure 2008030028
上述の1とjは第一段階の第j個のサイクロン、μは気体粘度、Nはブレード数、wはブレードの厚さ、Pはブレード間距離、nはブレードの旋転回数、rmax、および、rminはそれぞれブレードの外径と内径、Qは気体体積流率、ζは適合常数、Cは粒状物滑り補正係数で、
前記カットオフ空気動力学的直径dpa50,2,jは以下の方程式で求められ、
Figure 2008030028
上述の2とjは第二段階の第j個のサイクロン、μは気体粘度、Nはブレード数、wはブレードの厚さ、Pはブレード間距離、nはブレードの旋転回数、rmax、および、rminはそれぞれブレードの外径と内径、Qは気体体積流率、ζは適合常数、Cは粒状物滑り補正係数であることを特徴とする多段式サイクロン装置。
A multistage cyclone device,
At least one first stage cyclone having at least one blade and a cut-off aerodynamic diameter d pa50,1, j provided with said blade;
At least one second stage cyclone having at least one blade and a cut-off aerodynamic diameter d pa50,2, j provided with said blade;
The first stage cyclone and the second stage cyclone are connected in series, and the cut-off aerodynamic diameter d pa50,1, j is obtained by the following equation:
Figure 2008030028
1 and j are the j-th cyclones in the first stage, μ is the gas viscosity, N is the number of blades, w is the thickness of the blade, P is the distance between the blades, n is the number of blade rotations, r max , and , R min are the outer diameter and inner diameter of the blade, Q is the gas volume flow rate, ζ is the adaptation constant, C is the granular material slip correction coefficient,
The cut-off aerodynamic diameter d pa50,2, j is determined by the following equation:
Figure 2008030028
2 and j above are the jth cyclone in the second stage, μ is the gas viscosity, N is the number of blades, w is the thickness of the blade, P is the distance between the blades, n is the number of blade rotations, r max , and , R min are the outer diameter and inner diameter of the blade, Q is the gas volume flow rate, ζ is a compatible constant, and C is a granular material slip correction coefficient.
前記第一段階サイクロンの数量が複数のとき、前記第一段階サイクロンは互いに並列設置され、前記第二段階サイクロンの数量が複数であるとき、前記第二段階サイクロンは互いに並列設置されることを特徴とする請求項8記載の多段式サイクロン装置。 When the number of the first stage cyclones is plural, the first stage cyclones are installed in parallel with each other, and when the number of the second stage cyclones is plural, the second stage cyclones are installed in parallel with each other. The multistage cyclone device according to claim 8. 前記第一段階サイクロン、および、前記第二段階サイクロンは軸翼型サイクロンで、前記軸翼型サイクロンは、キャビンとサイクロン構造を有し、前記キャビンは、前記気流を導入する気流入口、気流出口、および、内壁を有し、前記サイクロン構造は前記キャビン内に位置し、かつ、前記気流入口と前記気流出口の間を介し、前記サイクロン構造の前記内壁はチャンネルを形成し、気流が前記チャンネルを通過するとき旋転を生成し、前記気流中の粒状物は遠心力により前記キャビンの内壁に衝突することを特徴とする請求項8記載の多段式サイクロン装置。 The first stage cyclone and the second stage cyclone are axial wing type cyclones, and the axial wing type cyclones have a cabin and a cyclone structure, and the cabin has an air flow inlet for introducing the air flow, an air flow outlet, And the inner wall of the cyclone structure is located between the airflow inlet and the airflow outlet, the inner wall of the cyclone structure forms a channel, and the airflow passes through the channel. 9. The multistage cyclone apparatus according to claim 8, wherein a rotation is generated and the particulate matter in the airflow collides with an inner wall of the cabin by a centrifugal force. 前記サイクロン構造は、円柱体と前記円柱体を環繞し、かつ、前記円柱体上に設置される螺旋型ブレードを有し、前記チャンネルは螺旋型ブレードと前記ブレードに近接するキャビンにより定義されることを特徴とする請求項8記載の多段式サイクロン装置。 The cyclone structure includes a cylindrical body and a spiral blade installed on the cylindrical body, and the channel is defined by a spiral blade and a cabin adjacent to the blade. The multistage cyclone device according to claim 8.
JP2007170847A 2006-07-31 2007-06-28 Multi-stage type cyclone apparatus and method for classifying and collecting particulate Pending JP2008030028A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95127951A TWI293034B (en) 2006-07-31 2006-07-31 Multi-stage, multi-tube cyclone device and method for classifying and collecting nano-particles

Publications (1)

Publication Number Publication Date
JP2008030028A true JP2008030028A (en) 2008-02-14

Family

ID=39119993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170847A Pending JP2008030028A (en) 2006-07-31 2007-06-28 Multi-stage type cyclone apparatus and method for classifying and collecting particulate

Country Status (2)

Country Link
JP (1) JP2008030028A (en)
TW (1) TWI293034B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298063B1 (en) * 2013-04-04 2013-08-20 케이원에코텍 주식회사 A apparatus for algle removal
US20200289956A1 (en) * 2012-02-07 2020-09-17 Centre National De La Recherche Scientifique (C.N.R.S) Preparation of nanoparticles by flash evaporation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201347827A (en) * 2012-05-29 2013-12-01 Everinn Internat Co Ltd Array type flow channel separator
CN103566662A (en) * 2012-07-25 2014-02-12 加昌国际有限公司 Dust separator and array-type flow channel separation system with the dust separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843270A (en) * 1981-09-05 1983-03-12 吉森技研株式会社 Sorter
JPS6328144U (en) * 1986-08-08 1988-02-24
JPH01274882A (en) * 1988-04-26 1989-11-02 Onoda Cement Co Ltd Pneumatic classifier
JPH0663454A (en) * 1992-08-25 1994-03-08 Ishikawajima Harima Heavy Ind Co Ltd Cyclone separator
JPH11347454A (en) * 1998-06-12 1999-12-21 Hitachi Ltd Two-stage cyclone system
JP2005081134A (en) * 2003-09-08 2005-03-31 Samsung Kwangju Electronics Co Ltd Cyclone separator and vacuum cleaner provided with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843270A (en) * 1981-09-05 1983-03-12 吉森技研株式会社 Sorter
JPS6328144U (en) * 1986-08-08 1988-02-24
JPH01274882A (en) * 1988-04-26 1989-11-02 Onoda Cement Co Ltd Pneumatic classifier
JPH0663454A (en) * 1992-08-25 1994-03-08 Ishikawajima Harima Heavy Ind Co Ltd Cyclone separator
JPH11347454A (en) * 1998-06-12 1999-12-21 Hitachi Ltd Two-stage cyclone system
JP2005081134A (en) * 2003-09-08 2005-03-31 Samsung Kwangju Electronics Co Ltd Cyclone separator and vacuum cleaner provided with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200289956A1 (en) * 2012-02-07 2020-09-17 Centre National De La Recherche Scientifique (C.N.R.S) Preparation of nanoparticles by flash evaporation
KR101298063B1 (en) * 2013-04-04 2013-08-20 케이원에코텍 주식회사 A apparatus for algle removal

Also Published As

Publication number Publication date
TWI293034B (en) 2008-02-01
TW200806379A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
Lapple Gravity and centrifugal separation
CN102225396B (en) Narrow-sized level multi-stage vortex air classifier classification system
US20030047076A1 (en) Dynamic filtration method and apparatus for separating nano powders
EP1534436A2 (en) Apparatus and methods for separating particles
KR102476045B1 (en) Cyclone device and classification method
JP2008030028A (en) Multi-stage type cyclone apparatus and method for classifying and collecting particulate
US7951217B2 (en) Low pressure impact separator for separation, classification and collection of ultra-fine particles
EP2078488A3 (en) Device to remove dust from air full of dust, especially for use in a vacuum cleaner
US6270545B1 (en) Cyclone for measuring and controlling amount of suspended dust
US8083071B2 (en) Rotating cone classifier
JP7136192B2 (en) Separation and collection method
CN107123354B (en) Sort inhalator, respiratory tract and the lung model integration of equipments of flower-shape particulate carrier
US20050120880A1 (en) Method of collecting nanoparticles by using a cyclone and method of designing the cyclone
Gawali et al. Effect of design and the operating parameters on the performance of cyclone separator-a review
JP3501421B2 (en) Air flow classification device
CN106964235B (en) A kind of dedusting filter
JP6666206B2 (en) Cyclone device and classification method
JP2000237636A (en) Cyclone device for collecting powder, and producing device of toner
CN101125314B (en) Multi-step multi-tube type cyclone device and method for sizing collecting granule materials
JP2011230326A (en) Separation device
CN220125821U (en) Sedimentation filter cylinder dust collection device
JP4303852B2 (en) Powder classifier
JP5474465B2 (en) Classification device
KR100528173B1 (en) Core turbo classifier
TWI220652B (en) Method of collecting nanoparticles using a cyclone and method of designing said cyclone

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100602

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101102

A602 Written permission of extension of time

Effective date: 20101108

Free format text: JAPANESE INTERMEDIATE CODE: A602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02