JP2008027781A - Diamond electron emitting element, and its manufacturing method - Google Patents

Diamond electron emitting element, and its manufacturing method Download PDF

Info

Publication number
JP2008027781A
JP2008027781A JP2006200157A JP2006200157A JP2008027781A JP 2008027781 A JP2008027781 A JP 2008027781A JP 2006200157 A JP2006200157 A JP 2006200157A JP 2006200157 A JP2006200157 A JP 2006200157A JP 2008027781 A JP2008027781 A JP 2008027781A
Authority
JP
Japan
Prior art keywords
electron
emitting device
diamond
electron supply
supply portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006200157A
Other languages
Japanese (ja)
Inventor
Natsuo Tatsumi
夏生 辰巳
Yoshiki Nishibayashi
良樹 西林
Takahiro Imai
貴浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006200157A priority Critical patent/JP2008027781A/en
Publication of JP2008027781A publication Critical patent/JP2008027781A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron emitting element using diamond having excellent characteristics as an electron emitting material which has an excellent electron emitting capacity in high output operation. <P>SOLUTION: The electron emitting element 1 has an electron emitting part 10 consisting of a projected diamond and a gate electrode 20 to impress electric field on the electron emitting part provided on an insulating layer 21. An electron supply part 11 to supply electrons is installed at the side on the surface of the projected electron emitting part 10, and at least the surface of the electron supply part is made of a material which is not etched by hydrofluoric acid. The electron supply part is made of at least two layers and the layer of the side near the electron emitting part is made of a layer with better adhesion with diamond, and the layer with better adhesion may be covered with a second electron supply part made of a material which is hardly etched by hydrofluoric acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイヤモンドからなる電子放出素子およびその製造方法に関する。   The present invention relates to an electron-emitting device made of diamond and a method for manufacturing the same.

近年、電子放出素子として、冷陰極の開発が進められている。冷陰極等の電子放出素子は、例えば、モリブデン、カーボンナノチューブ又はダイヤモンドからなる電子放出部を有する。特に、ダイヤモンドを電子放出部とする電子放出素子は負の電子親和力を有すること、化学的に極めて安定性であること、高い熱伝導率を有することなどから大電流・低電圧・長寿命の電子源として注目を集めている。   In recent years, cold cathodes have been developed as electron-emitting devices. An electron-emitting device such as a cold cathode has an electron-emitting portion made of, for example, molybdenum, carbon nanotube, or diamond. In particular, an electron-emitting device having diamond as an electron-emitting portion has a negative electron affinity, is extremely chemically stable, has a high thermal conductivity, etc. Has attracted attention as a source.

ダイヤモンドを電子源として使用する場合、キャリアとして電子が多いn型の方が低電圧から電子放出が起こるなど、電子放出特性が良いことが知られている。しかし、これらは電流がμAオーダーでの話であり、合計電流が大きくなるとn型電子放出素子よりp型電子放出素子の方が低電圧で動作する。これはn型ダイヤモンドがこれまで数百Ωcm程度の低効率の高いものしか得られなかったためである。
特開2001−266736号公報 特開2004−119018号公報
In the case of using diamond as an electron source, it is known that the n-type having many electrons as carriers has better electron emission characteristics such as electron emission from a low voltage. However, these are stories in which the current is on the order of μA. When the total current increases, the p-type electron-emitting device operates at a lower voltage than the n-type electron-emitting device. This is because n-type diamond has so far only been obtained with a low efficiency of about several hundred Ωcm.
JP 2001-266736 A JP 2004-1119018 A

本発明は、電子放出材料として優れた特性を有するダイヤモンドを用いた電子放出素子において、高出力動作において優れた電子放出能力を持つ電子放出素子を提供することを目的とする。   An object of the present invention is to provide an electron-emitting device using diamond having excellent characteristics as an electron-emitting material and having an excellent electron-emitting capability in high output operation.

上記課題を解決するために、本発明の電子放出素子は、図1を参照して、突起状のダイヤモンドからなる電子放出部10と、電子放出部に電界を印加するゲート電極20を絶縁層21上に備える電子放出素子1において、電子を供給する電子供給部11が、前記突起状電子放出部10の表面の側面に設けられており、前記電子供給部の少なくとも表面が弗酸でエッチングされない材料からなることを特徴とする。   In order to solve the above problems, an electron-emitting device according to the present invention has an electron-emitting portion 10 made of protruding diamond and a gate electrode 20 for applying an electric field to the electron-emitting portion with an insulating layer 21 with reference to FIG. In the electron-emitting device 1 provided above, an electron supply portion 11 that supplies electrons is provided on a side surface of the surface of the protruding electron emission portion 10, and at least the surface of the electron supply portion is not etched with hydrofluoric acid It is characterized by comprising.

このような構造を有する電子放出素子は、鋭い先端を有するため電界集中により低電圧で電子放出を引き出せると共に、鋭くすることによって増加したダイヤモンドの直列抵抗を電子供給部により減少させ、大電流領域までダイヤモンドの高い電子放出能力を維持することができる。さらにこのような電子供給部を設けた場合、ゲート等の電極構造を形成するのは困難であった。しかし電子供給部の少なくとも表面が弗酸でエッチングされない材料とすることによって、周辺に形成するゲート電極、絶縁層等とのエッチングの選択比を高くすることができ、生産性の高いウェットエッチングで本発明の電子放出素子を形成することができる。   Since the electron-emitting device having such a structure has a sharp tip, electron emission can be extracted at a low voltage due to electric field concentration, and the series resistance of diamond increased by sharpening can be reduced by the electron supply unit, so that a large current region can be obtained. The high electron emission ability of diamond can be maintained. Further, when such an electron supply unit is provided, it is difficult to form an electrode structure such as a gate. However, by using a material in which at least the surface of the electron supply portion is not etched with hydrofluoric acid, the etching selectivity with the gate electrode, insulating layer, etc. formed in the periphery can be increased. The electron-emitting device of the invention can be formed.

また、図2に示すように、前記電子供給部が少なくとも2層11、12からなり、電子放出部に近い側がダイヤモンドと密着性の良い層12からなり、前記密着性の良い層が弗酸でエッチングされない材料からなる第2電子供給部11に被覆されていてもよい。   In addition, as shown in FIG. 2, the electron supply part is composed of at least two layers 11 and 12, the side close to the electron emission part is composed of a layer 12 having good adhesion to diamond, and the layer having good adhesion is made of hydrofluoric acid. You may coat | cover with the 2nd electron supply part 11 which consists of material which is not etched.

ダイヤモンドは化学的に安定なため金属等の他材料、特に弗酸でエッチングされないMoやSi等との密着性は必ずしも良くない。特に電子放出素子では熱や印加電圧などが厳しい環境で変化するため、密着性が弱いと容易に素子の破壊に繋がる。そこで、このような電子供給部表面層とダイヤモンドとの間にダイヤモンドとの密着性の良い層を挟むことによって、高い密着性を維持し、安定したダイヤモンド電子放出素子を得ることができる。このような材料として、Ti、Zr、Hf、V、Nb,Ta等を挙げることはできる。また、炭化物を形成する材料、例えばWなども高い密着性を維持することができる。   Since diamond is chemically stable, adhesion to other materials such as metals, particularly Mo and Si that are not etched with hydrofluoric acid, is not necessarily good. In particular, in an electron-emitting device, heat, applied voltage, and the like change in a harsh environment. If the adhesion is weak, the device can easily be destroyed. Therefore, by sandwiching a layer having good adhesion with diamond between the surface layer of such an electron supply section and diamond, high adhesion can be maintained and a stable diamond electron-emitting device can be obtained. Examples of such materials include Ti, Zr, Hf, V, Nb, and Ta. In addition, the material forming the carbide, such as W, can maintain high adhesion.

更に、図3(a)に示すように、前記電子供給部が少なくとも2層からなり、絶縁層21と接する側が絶縁層と密着性の良い材料13であってもよい。また、図3(b)に示すように、絶縁層と密着性のよい材料は、前記ダイヤモンドと密着性のよい材料12であってもよい。   Furthermore, as shown in FIG. 3A, the electron supply section may be composed of at least two layers, and the side in contact with the insulating layer 21 may be a material 13 having good adhesion to the insulating layer. Further, as shown in FIG. 3B, the material having good adhesion to the insulating layer may be the material 12 having good adhesion to the diamond.

表面が弗酸にエッチングされない材料、たとえばMoなどは必ずしも絶縁層との密着性は良くなく、例えばSiOなどの酸化物の絶縁層との密着性は悪い。そこで、絶縁層との接触部分を別構造として絶縁層と密着性の良い材料を形成することによって、寿命の長いダイヤモンド電子放出素子を得ることができる。このような材料として、Ti、Zr、Hf、V、Nb,Ta等を挙げることができる。 A material whose surface is not etched by hydrofluoric acid, such as Mo, does not necessarily have good adhesion to the insulating layer, and poor adhesion to an oxide insulating layer such as SiO 2 . Therefore, a diamond electron-emitting device with a long lifetime can be obtained by forming a material having good adhesion to the insulating layer with a separate contact portion with the insulating layer. Examples of such materials include Ti, Zr, Hf, V, Nb, and Ta.

また、前記電子供給部11が、前記突起状電子放出部の先端から500nm以下の距離まで前記突起状電子放出部10を被覆していることが好ましい。突起状のダイヤモンドは細長い形状であるため直列抵抗が高く、電子供給部の端が電子放出部の先端から遠いと抵抗が高くなるため、大電流が得られなくなる。高電圧を印加した場合に電子が散乱を受けずに移動することのできる500nm以下の距離まで電子供給部を形成することが望ましい。望ましくは、より電子の散乱が少ない200nm以下の距離が良い。   Moreover, it is preferable that the electron supply unit 11 covers the protruding electron emission unit 10 to a distance of 500 nm or less from the tip of the protruding electron emission unit. Since the protruding diamond has an elongated shape, the series resistance is high, and when the end of the electron supply portion is far from the tip of the electron emission portion, the resistance becomes high, so that a large current cannot be obtained. It is desirable to form the electron supply part to a distance of 500 nm or less that allows electrons to move without being scattered when a high voltage is applied. Desirably, a distance of 200 nm or less with less electron scattering is preferable.

また、図4に示すように、前記電子放出部10の先端の曲率半径をr、前記電子供給部の膜厚をd、前記電子放出部の先端から前記電子供給部の端までの距離をLとしたとき、L>2rかつL>2dであることが好ましい。直列抵抗を減らすため、電子供給部は電子放出部先端になるべく近いほうが望ましいが、近すぎるとゲート電極がかける電界がブロックされ、高い放出電流が得られなくなることが分かった。電子供給部に最適な構造として、電子放出部の曲率半径rと比べ、2r以上離れ、かつ電子供給部の膜厚dと比べ2d以上離れることで、効果的にゲート電極の電界が電子放出部先端に印加され、高い電子放出電流を得ることができる。   Further, as shown in FIG. 4, the radius of curvature of the tip of the electron emission unit 10 is r, the film thickness of the electron supply unit is d, and the distance from the tip of the electron emission unit to the end of the electron supply unit is L. It is preferable that L> 2r and L> 2d. In order to reduce the series resistance, it is desirable that the electron supply portion be as close as possible to the tip of the electron emission portion. However, if it is too close, the electric field applied to the gate electrode is blocked, and it is found that a high emission current cannot be obtained. As an optimum structure for the electron supply portion, the electric field of the gate electrode is effectively reduced by 2 r or more apart from the radius of curvature r of the electron emission portion and 2 d or more than the film thickness d of the electron supply portion. Applied to the tip, a high electron emission current can be obtained.

ダイヤモンドはn型であることが好ましい。p型ダイヤモンドも高い電子放出能力を持っているが、上記の電子供給部を形成することでn型の課題であった直列抵抗を低減することができ、実効的に高い電子放出能力を持つ電子放出素子を得ることができる。   The diamond is preferably n-type. Although p-type diamond also has a high electron emission capability, the series resistance, which was an n-type problem, can be reduced by forming the above-described electron supply portion, and an electron having an effectively high electron emission capability. An emission element can be obtained.

ダイヤモンド表面は酸素で終端されていることが好ましい。ダイヤモンドは酸素で終端した方が他材料との密着性が高くなり、本発明の構造の電子放出素子として長寿命で安定した電子放出素子を得ることができる。また特にn型ダイヤモンドの場合、表面を水素で終端すると表面のp型伝導層により電子放出部中のキャリアが減少する。そのため酸素終端することにより、n型ダイヤモンドは高い電子放出能力を発揮することができる。   The diamond surface is preferably terminated with oxygen. When diamond is terminated with oxygen, the adhesion with other materials becomes higher, and a long-life and stable electron-emitting device can be obtained as an electron-emitting device having the structure of the present invention. In particular, in the case of n-type diamond, when the surface is terminated with hydrogen, carriers in the electron emission portion are reduced by the p-type conductive layer on the surface. Therefore, by terminating oxygen, n-type diamond can exhibit a high electron emission capability.

本発明の電子放出素子の製造方法は、突起状のダイヤモンドを準備する工程と、前記突起状ダイヤモンドに電子供給部を成膜する工程と、前記突起状ダイヤモンドにフォトレジストをコーティングする工程と、前記突起状ダイヤモンドをエッチング液に浸して突起先端の電子供給部をエッチングする工程からなる。このような工程にすることで、コーティングするフォトレジストの膜厚を変化させることで電子供給部と電子放出部先端までの距離を任意に制御することが可能となり、本発明に最適な構造を形成することができる。   The method for manufacturing an electron-emitting device of the present invention includes a step of preparing a protruding diamond, a step of forming an electron supply portion on the protruding diamond, a step of coating a photoresist on the protruding diamond, It consists of a step of immersing the protruding diamond in an etching solution to etch the electron supply part at the tip of the protrusion. By adopting such a process, it becomes possible to arbitrarily control the distance between the electron supply part and the electron emission part tip by changing the film thickness of the photoresist to be coated, thereby forming an optimum structure for the present invention. can do.

また、上記製造方法により、第1の電子供給部を形成した後、第2もしくはそれ以上の電子供給部を成膜する工程と、前記突起状ダイヤモンドにフォトレジストをコーティングする工程と、前記突起状ダイヤモンドをエッチング液に浸して突起先端の電子供給部をエッチングし、かつ第1の電子供給部を露出させない製造方法であることが好ましい。このような工程にすることで、2層以上からなる電子供給部の位置を前述のように任意に制御することが可能になり、前記密着性の良い層を、弗酸でエッチングされない表面層で確実に被覆して本発明の電子放出素子を得ることができる。   In addition, after forming the first electron supply portion by the manufacturing method, forming a second or more electron supply portion, coating the photoresist on the protruding diamond, and the protruding shape It is preferable that the manufacturing method does not expose the first electron supply part by immersing diamond in an etching solution to etch the electron supply part at the tip of the protrusion. By adopting such a process, it becomes possible to arbitrarily control the position of the electron supply unit consisting of two or more layers as described above, and the layer having good adhesion is a surface layer that is not etched with hydrofluoric acid. The electron-emitting device of the present invention can be obtained by reliably coating.

また、本発明の電子放出素子を安定化する処理方法は、真空中で200℃以上600℃以下で30分以上加熱することを特徴とする。本発明の製造方法により、電子放出部の先端にエッチング液等の残渣などが残るが、真空中で200℃以上に加熱することによりこれらの物質を除去し、安定した放出電流を得ることができる。また600℃以下に温度を限定することにより、積層した電子供給部の金属の拡散等を防ぐことができ、電子放出素子の損傷を防ぐことができる。   The processing method for stabilizing the electron-emitting device of the present invention is characterized by heating in a vacuum at 200 ° C. to 600 ° C. for 30 minutes or more. According to the manufacturing method of the present invention, residues such as an etching solution remain at the tip of the electron emission portion, but these substances can be removed by heating to 200 ° C. or higher in vacuum to obtain a stable emission current. . Further, by limiting the temperature to 600 ° C. or lower, it is possible to prevent the diffusion of the metal in the stacked electron supply section, and to prevent damage to the electron-emitting device.

また、電子放出素子の安定化する処理方法は、ゲート電極にパルス状の電圧を印加することであってもよい。電子放出素子の本格的な動作の前の事前処理としてこのような電圧印加をすることで、本発明の製造工程を通して電子放出部先端の残渣等が放出電子による熱的な脱離や電界蒸発等により効果的に除去され、放出電子が増加すると共に安定した放出電流を得ることができる。このとき、パルス幅は5msec以下であることが望ましく、デューティー比は10%以下が望ましい。このようにすることで、アーク放電等を防ぎながら効果的に電子放出素子の安定化処理を行うことができる。またこのとき電子放出部先端にかかる電界は20V/μm以上が望ましい。このような電界にすることで、安定化処理を加速して早期に安定な電子放出素子を得ることができる。   Further, the processing method for stabilizing the electron-emitting device may be to apply a pulsed voltage to the gate electrode. By applying such a voltage as a pre-process before the full-scale operation of the electron-emitting device, the residue at the tip of the electron-emitting portion is thermally desorbed by the emitted electrons, electric field evaporation, etc. through the manufacturing process of the present invention. As a result, the emission electrons are increased and a stable emission current can be obtained. At this time, the pulse width is desirably 5 msec or less, and the duty ratio is desirably 10% or less. By doing in this way, the stabilization process of an electron-emitting device can be performed effectively, preventing arc discharge etc. At this time, the electric field applied to the tip of the electron emission portion is preferably 20 V / μm or more. By using such an electric field, the stabilization process can be accelerated and a stable electron-emitting device can be obtained at an early stage.

電子放出材料として優れた性質を持つダイヤモンドに電子供給部を形成することで、従来の電子放出素子より高出力動作において優れた電子放出能力を得ることができる。このような電界放射型電子源は、進行波管やクライストロンなどのマイクロ波管、高周波増幅素子やSEMや電子線露光機などの電子ビーム機器、FEDなどの発光素子などの性能を向上させることができる。   By forming the electron supply portion in diamond having excellent properties as an electron emission material, it is possible to obtain an electron emission capability superior to that of a conventional electron emission device in a high output operation. Such a field emission type electron source can improve the performance of microwave tubes such as traveling wave tubes and klystrons, high-frequency amplification elements, electron beam equipment such as SEMs and electron beam exposure machines, and light-emitting elements such as FEDs. it can.

本発明を実施するための形態を、実施例により具体的に説明するが、本発明の範囲はこの実施例により限定されるものではない。   Although the form for implementing this invention is demonstrated concretely by an Example, the scope of the present invention is not limited by this Example.

高圧合成Ib(111)単結晶ダイヤモンド基板上に、マイクロ波プラズマCVDを用いてリンドープダイヤモンドを形成した。水素(H)流量200sccm、メタン/水素(CH/H)濃度は0.05%、ホスフィン/メタン(PH/CH)濃度は20%、圧力13.3kPa、基板温度870℃、膜厚は5μmとした。 Phosphorus-doped diamond was formed on a high-pressure synthetic Ib (111) single crystal diamond substrate using microwave plasma CVD. Hydrogen (H 2 ) flow rate 200 sccm, methane / hydrogen (CH 4 / H 2 ) concentration 0.05%, phosphine / methane (PH 3 / CH 4 ) concentration 20%, pressure 13.3 kPa, substrate temperature 870 ° C. The film thickness was 5 μm.

次にリンドープダイヤモンドの上に、ICP−CVD法でSiOを成膜し、フォトリソグラフィーで直径1.5μmのドットを形成した。これをRIE法でエッチングし、円形のSiOマスクを形成した。RIEの反応条件は、CF流量20sccm、圧力1.3Pa、RFパワー100Wとした。次にSiOマスクを用いてダイヤモンドをエッチングし、突起形状の電子放出部を有するダイヤモンドを形成した。RIEの反応条件は酸素流量50sccm、CF/O濃度2%、圧力2Pa、RFパワー250Wとした。形成した突起の高さは2μmである。 Next, SiO 2 was deposited on the phosphorus-doped diamond by ICP-CVD, and dots having a diameter of 1.5 μm were formed by photolithography. This was etched by the RIE method to form a circular SiO 2 mask. The RIE reaction conditions were a CF 4 flow rate of 20 sccm, a pressure of 1.3 Pa, and an RF power of 100 W. Next, the diamond was etched using a SiO 2 mask to form a diamond having a protruding electron emission portion. RIE reaction conditions were an oxygen flow rate of 50 sccm, a CF 4 / O 2 concentration of 2%, a pressure of 2 Pa, and an RF power of 250 W. The height of the formed protrusion is 2 μm.

この突起形状を有するダイヤモンドを弗酸に浸したのち、硝酸と硫酸を1:3に混合した溶液に入れ200℃で30分加熱して表面を酸素終端にした。次に電子供給部としてダイヤモンドと密着性のよい層を形成するため、突起のある側にスパッタ法を用いてTiを50nm成膜した。これにフォトレジストをダイヤモンド表面にスピン塗布した。これをバッファード弗酸に入れ、突起先端から1μmの距離まで露出させた。次にフッ酸でエッチングされない電子供給部を形成するため、スパッタ法でMoを50nm成膜した。同様にフォトレジストをスピン塗布し、王水で突起先端から200nmの距離まで露出させた。次に絶縁層と密着性のよい層を形成するため、電子供給部に厚さ3μmのレジストを塗布して露光を行い、蒸着法によりTiを50nm成膜してリフトオフを行った。   After immersing the diamond having the projection shape in hydrofluoric acid, it was put into a solution in which nitric acid and sulfuric acid were mixed at 1: 3 and heated at 200 ° C. for 30 minutes to terminate the surface with oxygen. Next, in order to form a layer having good adhesion with diamond as an electron supply portion, a Ti film having a thickness of 50 nm was formed on the side having the protrusions by sputtering. A photoresist was spin-coated on the diamond surface. This was put into buffered hydrofluoric acid and exposed to a distance of 1 μm from the tip of the protrusion. Next, in order to form an electron supply portion that is not etched with hydrofluoric acid, a 50 nm-thick Mo film was formed by sputtering. Similarly, a photoresist was spin-coated and exposed to a distance of 200 nm from the tip of the protrusion with aqua regia. Next, in order to form a layer having good adhesion to the insulating layer, a resist having a thickness of 3 μm was applied to the electron supply portion and exposed, and Ti was deposited to a thickness of 50 nm by a vapor deposition method and lift-off was performed.

次にゲート構造を形成するため、絶縁層としてICP−CVD法を用いてSiOを2μm成膜し、ゲート電極としてスパッタ法を用いてMoを200nm成膜した。これにフォトレジストをスピン塗布し、王水とバッファード弗酸を用いて電子放出部の周囲に直径2μmのゲート構造を形成した。さらにフォトレジストを塗布して露光を行い、エッチングによりゲート電極分離を行った。 Next, in order to form a gate structure, 2 μm of SiO 2 was formed as an insulating layer using an ICP-CVD method, and 200 nm of Mo was formed as a gate electrode using a sputtering method. A photoresist was spin-coated on this, and a gate structure having a diameter of 2 μm was formed around the electron emission portion using aqua regia and buffered hydrofluoric acid. Further, a photoresist was applied and exposed, and gate electrode separation was performed by etching.

この電子放出素子にアノード電極を設置し、真空チャンバーに入れて10−7Paまで真空引きしたのち、300℃で1時間加熱して脱ガスなど素子の動作を損傷する残留物を除去した。次にゲート電極に電圧150V、パルス幅2msec、周波数10Hz、の電圧パルスを4000回印加した。このときの放出電流の推移を図5に示す。 An anode electrode was placed on the electron-emitting device, put in a vacuum chamber and evacuated to 10 −7 Pa, and then heated at 300 ° C. for 1 hour to remove residues such as degassing that damaged the operation of the device. Next, a voltage pulse having a voltage of 150 V, a pulse width of 2 msec, and a frequency of 10 Hz was applied 4000 times to the gate electrode. The transition of the emission current at this time is shown in FIG.

以上のように形成した本発明の電子放出素子と、電子供給部が無いことの他はまったく同じ構造の電子放出素子との放出電流の比較を図6に示す。このように本発明の電子放出素子が優れた特性を持っていることがわかる。   FIG. 6 shows a comparison of emission current between the electron-emitting device of the present invention formed as described above and an electron-emitting device having the same structure except that there is no electron supply portion. Thus, it can be seen that the electron-emitting device of the present invention has excellent characteristics.

以上のように、本発明の電子放出素子は、電子放出材料として優れた性質を持つダイヤモンドに電子供給部を形成することで、従来の電子放出素子より高出力動作において優れた電子放出能力を得ることができる。このような電界放射型電子源は、進行波管やクライストロンなどのマイクロ波管、高周波増幅素子やSEMや電子線露光機などの電子ビーム機器、FEDなどの発光素子などの性能を向上させることができる。   As described above, the electron-emitting device of the present invention has an electron-emitting capability superior to that of the conventional electron-emitting device by forming an electron supply portion in diamond having excellent properties as an electron-emitting material. be able to. Such a field emission type electron source can improve the performance of microwave tubes such as traveling wave tubes and klystrons, high-frequency amplification elements, electron beam equipment such as SEMs and electron beam exposure machines, and light-emitting elements such as FEDs. it can.

本発明の電子放出素子の断面図を示す。FIG. 3 shows a cross-sectional view of the electron-emitting device of the present invention. 本発明の電子放出素子の他の断面図を示す。FIG. 6 shows another cross-sectional view of the electron-emitting device of the present invention. 本発明の電子放出素子の他の断面図を示す。FIG. 6 shows another cross-sectional view of the electron-emitting device of the present invention. 本発明の電子放出部の拡大図を示す。The enlarged view of the electron emission part of this invention is shown. 実施例の放出電流の推移を示す。The transition of the emission current of an example is shown. 実施例の放出電流の比較を示す。The comparison of the emission current of an Example is shown.

符号の説明Explanation of symbols

1 電子放出素子
10 電子放出部
11 電子供給部
12 ダイヤモンドと密着性のよい層
13 絶縁層と密着性のよい層
20 ゲート電極
21 絶縁層
DESCRIPTION OF SYMBOLS 1 Electron emission element 10 Electron emission part 11 Electron supply part 12 Layer with good adhesiveness with diamond 13 Layer with good adhesiveness with insulating layer 20 Gate electrode 21 Insulating layer

Claims (15)

突起状のダイヤモンドからなる電子放出部と、電子放出部に電界を印加するゲート電極を絶縁層上に備える電子放出素子において、電子を供給する電子供給部が前記突起状電子放出部表面の側面に設けられており、前記電子供給部の少なくとも表面が弗酸でエッチングされない材料からなることを特徴とする電子放出素子。   In an electron-emitting device including an electron emission portion made of protruding diamond and a gate electrode for applying an electric field to the electron emission portion on an insulating layer, an electron supply portion for supplying electrons is formed on a side surface of the surface of the protruding electron emission portion. An electron-emitting device which is provided and is made of a material which is not etched with hydrofluoric acid at least on the surface of the electron supply portion. 前記電子供給部が少なくとも2層からなり、電子放出部に近い側がダイヤモンドと密着性の良い層からなり、前記密着性の良い層が弗酸でエッチングされない材料からなる第2電子供給部に被覆されていることを特徴とする請求項1に記載の電子放出素子。   The electron supply section is composed of at least two layers, the side close to the electron emission section is formed of a layer having good adhesion to diamond, and the good adhesion layer is covered with a second electron supply section made of a material that is not etched with hydrofluoric acid. The electron-emitting device according to claim 1. 前記電子供給部が少なくとも2層からなり、絶縁層と接する側が絶縁層と密着性の良い材料からなることを特徴とする請求項1または2に記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the electron supply unit includes at least two layers, and a side in contact with the insulating layer is formed of a material having good adhesion to the insulating layer. 前記電子供給部が前記電子放出部の先端から500nm以下の距離まで前記電子放出部を被覆していることを特徴とする請求項1〜3のいずれかに記載の電子放出素子。   4. The electron-emitting device according to claim 1, wherein the electron supply unit covers the electron emission unit to a distance of 500 nm or less from a tip of the electron emission unit. 前記電子放出部の先端の曲率半径をr、前記電子供給部の膜厚をd、前記電子放出部の先端から前記電子供給部の端までの距離をLとしたとき、L>2rかつL>2dであることを特徴とする請求項1〜4のいずれかに記載の電子放出素子。   L> 2r and L>, where r is the radius of curvature of the tip of the electron emission portion, d is the thickness of the electron supply portion, and L is the distance from the tip of the electron emission portion to the end of the electron supply portion. The electron-emitting device according to claim 1, wherein the electron-emitting device is 2d. 前記電子供給部の弗酸にエッチングされない材料がMo、Siのいずれかからなることを特徴とする請求項1〜5のいずれかに記載の電子放出素子   6. The electron-emitting device according to claim 1, wherein the material that is not etched by hydrofluoric acid in the electron supply portion is made of either Mo or Si. 前記電子放出部のダイヤモンドと密着性の良い層が、Ti、Zr、Hf、V、Nb,Taのいずれかからなることを特徴とする請求項1〜6のいずれかに記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the layer having good adhesion to diamond in the electron-emitting portion is made of any one of Ti, Zr, Hf, V, Nb, and Ta. 前記電子放出部のダイヤモンドと密着性の良い層が、炭化物を形成する材料であることを特徴とする請求項1〜8のいずれかに記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the layer having good adhesion to diamond in the electron-emitting portion is a material that forms carbide. 前記絶縁層が酸化物絶縁体であり、かつ前記絶縁層と密着性の良い電子供給部がTi、Zr、Hf、V、Nb,Taのいずれかからなることを特徴とする請求項1〜8のいずれかに記載の電子放出素子。   The insulating layer is an oxide insulator, and the electron supply portion having good adhesion to the insulating layer is made of any one of Ti, Zr, Hf, V, Nb, and Ta. The electron-emitting device according to any one of the above. 前記ダイヤモンドがn型であることを特徴とする請求項1〜9のいずれかに記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the diamond is n-type. 前記ダイヤモンド電子放出部の表面が酸素で終端されていることを特徴とする請求項1〜10のいずれかに記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the surface of the diamond electron-emitting portion is terminated with oxygen. 突起状のダイヤモンドを準備する工程と、前記突起状ダイヤモンドに電子供給部を成膜する工程と、前記突起状ダイヤモンドにフォトレジストをコーティングする工程と、前記突起状ダイヤモンドをエッチング液に浸して突起先端の電子供給部をエッチングする工程からなる電子放出素子の製造方法。   A step of preparing a protruding diamond, a step of forming an electron supply portion on the protruding diamond, a step of coating the protruding diamond with a photoresist, and a step of immersing the protruding diamond in an etching solution The manufacturing method of the electron-emitting device which consists of the process of etching the electron supply part. 前記電子供給部(第1の電子供給部)を形成した後、第2もしくはそれ以上の電子供給部を成膜する工程と、前記突起状ダイヤモンドにフォトレジストをコーティングする工程と、前記突起状ダイヤモンドをエッチング液に浸して突起先端の電子供給部をエッチングし、かつ第1の電子供給部を露出させないことを特徴とする請求項12に記載の電子放出素子の製造方法。   Forming the second or more electron supply portions after forming the electron supply portion (first electron supply portion), coating the photoresist on the protruding diamond, and the protruding diamond; 13. The method of manufacturing an electron-emitting device according to claim 12, wherein the electron supply portion at the tip of the protrusion is etched by immersing the substrate in an etching solution and the first electron supply portion is not exposed. 前記電子供給部を備えた電子放出素子を真空中で200℃以上600℃以下の温度で30分以上加熱することを特徴とする電子放出素子の処理方法。   A method for processing an electron-emitting device, comprising: heating an electron-emitting device including the electron supply unit in a vacuum at a temperature of 200 ° C. or higher and 600 ° C. or lower for 30 minutes or more. 前記電子供給部を備えた電子放出素子において、ゲート電極にパルス状の電圧を印加することを特徴とする電子放出素子の処理方法。





An electron-emitting device including the electron supply unit, wherein a pulse voltage is applied to a gate electrode.





JP2006200157A 2006-07-24 2006-07-24 Diamond electron emitting element, and its manufacturing method Pending JP2008027781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200157A JP2008027781A (en) 2006-07-24 2006-07-24 Diamond electron emitting element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200157A JP2008027781A (en) 2006-07-24 2006-07-24 Diamond electron emitting element, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008027781A true JP2008027781A (en) 2008-02-07

Family

ID=39118198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200157A Pending JP2008027781A (en) 2006-07-24 2006-07-24 Diamond electron emitting element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008027781A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532915A (en) * 2008-06-30 2010-10-14 韓国科学技術院 Field emission array having carbon microstructures and method of manufacturing the same
CN105161389A (en) * 2015-10-19 2015-12-16 电子科技大学 Microwave-modulated cold cathode micro radiation source and implementing method thereof
CN105304437A (en) * 2015-10-19 2016-02-03 电子科技大学 Microwave-modulated cold cathode miniature array-type radiation source and implementation method thereof
TWI667364B (en) * 2016-12-20 2019-08-01 韓商韓國東海炭素股份有限公司 A part for semiconductor manufacturing with sic deposition layer and manufacturing method the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192604A (en) * 1993-12-27 1995-07-28 Toshiba Corp Field emission type electron emitter
JP2001185018A (en) * 1999-12-24 2001-07-06 Toshiba Corp Electron emission element and method of manufacturing the same
JP2001283715A (en) * 2000-03-31 2001-10-12 Akio Hiraki Electron-emission cathode and its manufacturing method
JP2004119018A (en) * 2002-09-20 2004-04-15 Japan Fine Ceramics Center Electron emission element
WO2005034164A1 (en) * 2003-09-30 2005-04-14 Sumitomo Electric Industries, Ltd. Electron emitter
JP2005108634A (en) * 2003-09-30 2005-04-21 Sumitomo Electric Ind Ltd Electron device
JP2005310724A (en) * 2003-05-12 2005-11-04 Sumitomo Electric Ind Ltd Field emission type electron source and manufacturing method for it
JP2006054087A (en) * 2004-08-11 2006-02-23 Sony Corp Conditioning method of cathode panel and cold-cathode field electron emission display device, and manufacturing method of cold cathode field electron dmission display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192604A (en) * 1993-12-27 1995-07-28 Toshiba Corp Field emission type electron emitter
JP2001185018A (en) * 1999-12-24 2001-07-06 Toshiba Corp Electron emission element and method of manufacturing the same
JP2001283715A (en) * 2000-03-31 2001-10-12 Akio Hiraki Electron-emission cathode and its manufacturing method
JP2004119018A (en) * 2002-09-20 2004-04-15 Japan Fine Ceramics Center Electron emission element
JP2005310724A (en) * 2003-05-12 2005-11-04 Sumitomo Electric Ind Ltd Field emission type electron source and manufacturing method for it
WO2005034164A1 (en) * 2003-09-30 2005-04-14 Sumitomo Electric Industries, Ltd. Electron emitter
JP2005108634A (en) * 2003-09-30 2005-04-21 Sumitomo Electric Ind Ltd Electron device
JP2006054087A (en) * 2004-08-11 2006-02-23 Sony Corp Conditioning method of cathode panel and cold-cathode field electron emission display device, and manufacturing method of cold cathode field electron dmission display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532915A (en) * 2008-06-30 2010-10-14 韓国科学技術院 Field emission array having carbon microstructures and method of manufacturing the same
CN105161389A (en) * 2015-10-19 2015-12-16 电子科技大学 Microwave-modulated cold cathode micro radiation source and implementing method thereof
CN105304437A (en) * 2015-10-19 2016-02-03 电子科技大学 Microwave-modulated cold cathode miniature array-type radiation source and implementation method thereof
TWI667364B (en) * 2016-12-20 2019-08-01 韓商韓國東海炭素股份有限公司 A part for semiconductor manufacturing with sic deposition layer and manufacturing method the same

Similar Documents

Publication Publication Date Title
KR100480773B1 (en) Method for fabricating triode-structure carbon nanotube field emitter array
US6780075B2 (en) Method of fabricating nano-tube, method of manufacturing field-emission type cold cathode, and method of manufacturing display device
US6670629B1 (en) Insulated gate field emitter array
US20030059968A1 (en) Method of producing field emission display
JP3250719B2 (en) Cathode for vacuum tube and field emission display
KR100449071B1 (en) Cathode for field emission device
JP2008027781A (en) Diamond electron emitting element, and its manufacturing method
US8159119B2 (en) Vacuum channel transistor and manufacturing method thereof
KR19990022055A (en) Electron-emitting device and manufacturing method thereof
JP3264483B2 (en) Electron emitting device and method of manufacturing the same
JP2004119018A (en) Electron emission element
JP2006294387A (en) Nanocarbon emitter and its manufacturing method
JP2005310724A (en) Field emission type electron source and manufacturing method for it
KR20010058663A (en) Field emitter array using carbon nanotube and Manufacturing method thereof
US6777169B2 (en) Method of forming emitter tips for use in a field emission display
JPH09265892A (en) Electron emitter and its manufacture
JP7145200B2 (en) Device for controlling electron flow and method of manufacturing same
JP2004288547A (en) Field emission type electron source, its manufacturing method, and image display device
KR100762590B1 (en) FED using carbon nanotube and manufacturing method thereof
JP4590631B2 (en) Field emitter array and manufacturing method thereof
CN113675057B (en) Self-aligned graphene field emission grid structure and preparation method thereof
RU2678192C1 (en) Method of manufacturing of a field emission element
US6664721B1 (en) Gated electron field emitter having an interlayer
JPH11149858A (en) Field emission type cold cathode and manufacture thereof
JPH11162326A (en) Field electron-emission element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424