JP2008027614A - Incident angle monitor element of charged particle - Google Patents

Incident angle monitor element of charged particle Download PDF

Info

Publication number
JP2008027614A
JP2008027614A JP2006195713A JP2006195713A JP2008027614A JP 2008027614 A JP2008027614 A JP 2008027614A JP 2006195713 A JP2006195713 A JP 2006195713A JP 2006195713 A JP2006195713 A JP 2006195713A JP 2008027614 A JP2008027614 A JP 2008027614A
Authority
JP
Japan
Prior art keywords
incident angle
pattern
monitor element
angle monitor
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195713A
Other languages
Japanese (ja)
Other versions
JP4984704B2 (en
Inventor
Yasuhiro Endo
康浩 遠藤
Kazunori Maruyama
和範 丸山
Yoshitaka Oshima
美隆 大嶋
Shinichi Wakana
伸一 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006195713A priority Critical patent/JP4984704B2/en
Publication of JP2008027614A publication Critical patent/JP2008027614A/en
Application granted granted Critical
Publication of JP4984704B2 publication Critical patent/JP4984704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an incident angle monitor element of charged particles in an ion beam device using a silicon plate with an opening formed and a silicon plate with a line-space pattern formed. <P>SOLUTION: The incident angle monitor element is composed of a member having an opening for passing the charged particles and a member having a face to irradiate charged particles forming a pattern structure for measuring a size, and has these arranged through a gap. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気ディスクヘッドなどのデバイス製造装置における装置の状態を評価するための評価センサに関する。   The present invention relates to an evaluation sensor for evaluating the state of an apparatus in a device manufacturing apparatus such as a magnetic disk head.

高密度化が進む磁気ディスクヘッドの製造工程では、プロセス装置には高い加工精度が要求され、装置の状態を常に把握し良好な状態を維持する必要がある。とくに、イオンビーム加工装置では、ビーム拡がりによる加工寸法誤差が問題となり、製品の歩留まり低下をもたらすことが知られている。装置状態は時間とともに変化するため、従来は、製造工程において適宜実ウェハの検査を実施し、その加工形状や特性検査結果から装置の状態を把握し、装置状態の管理にフィードバックする手法をとるのが一般的であった。   In the manufacturing process of a magnetic disk head whose density is increasing, a process apparatus is required to have high processing accuracy, and it is necessary to always grasp the state of the apparatus and maintain a good state. In particular, in an ion beam processing apparatus, it is known that a processing dimensional error due to beam expansion becomes a problem, resulting in a decrease in product yield. Since the device status changes with time, the conventional method is to inspect the actual wafer as appropriate in the manufacturing process, grasp the device status from the processing shape and characteristic inspection results, and feed back to the device status management. Was common.

ところが、従来の方法では、実サンプルを使うことから不良が発生した場合には大きなコストがかかることや、フィードバックまでに時間がかかることが問題となっている。またテスト用に専用サンプルを用いたとしても、同様のコストと時間を要することが問題である。   However, in the conventional method, there is a problem that when a defect occurs because an actual sample is used, a large cost is required and it takes time until feedback. Moreover, even if a dedicated sample is used for testing, the same cost and time are problems.

これを解決するため、イオンビームの状態を検出する手法として、ビーム通過用微小孔と導体などから構成されるビームセンサを試料位置に配置することによりイオンビーム電流の分布を検出する方法(特許文献1参照)や、シャープなエッジと遮断部を有する形状測定装置をビームと直行する方向に移動させながら通過する荷電粒子を検出することによりビーム形状を高精度に測定する方法(特許文献2参照)が考案されている。
特開平6−162975号公報 特開2003−14347号公報
In order to solve this, as a method for detecting the state of the ion beam, a method of detecting the ion beam current distribution by arranging a beam sensor composed of a beam passing microhole and a conductor at the sample position (Patent Document) 1) and a method of measuring a beam shape with high accuracy by detecting a charged particle passing through a shape measuring apparatus having a sharp edge and a blocking portion while moving in a direction perpendicular to the beam (see Patent Document 2). Has been devised.
JP-A-6-162975 JP 2003-14347 A

しかしながら、特許文献1によるイオンビームの状態検出方法では、問題としているビームの拡がりを測定することは困難であると共に、ウェハ全面を加工するような製造装置には適用が困難である。また、特許文献2では、ビーム径がミクロンオーダー以下の小さなビームの計測にのみ適用可能であり、やはりウェハ全面を加工するような製造装置には適用出来ない。また、例え測定が可能であったとしても、いずれも測定用の構造体を装置内に組み込む必要があるため、製造装置との整合性が悪いのが問題である。   However, the ion beam state detection method disclosed in Patent Document 1 is difficult to measure the problem of beam spread and is difficult to apply to a manufacturing apparatus that processes the entire wafer surface. Further, Patent Document 2 is applicable only to measurement of a small beam having a beam diameter of the order of microns or less, and is not applicable to a manufacturing apparatus that processes the entire wafer surface. In addition, even if measurement is possible, since it is necessary to incorporate a measurement structure into the apparatus, there is a problem that the consistency with the manufacturing apparatus is poor.

そこで、本発明では、イオンビーム装置におけるイオンビームの拡がりを装置に変更を加えることなく、直接測定できる評価素子を提供する。   Therefore, the present invention provides an evaluation element that can directly measure the spread of an ion beam in an ion beam apparatus without changing the apparatus.

第一の発明は、荷電粒子を用いた加工装置における荷電粒子の拡がり量をモニタする入射角モニタ素子であって、前記荷電粒子を通過させるための開口部を有する第一の部材と、前記荷電粒子の拡がり寸法を計測するパターンが形成された前記荷電粒子を照射させる面を持つ第二の部材とから構成され、前記第一の部材と前記第二の部材とが空隙を介して配設されたことを特徴とする入射角モニタ素子に関する。   A first invention is an incident angle monitor element for monitoring a spread amount of charged particles in a processing apparatus using charged particles, the first member having an opening for allowing the charged particles to pass through, and the charged A second member having a surface for irradiating the charged particles on which a pattern for measuring the spreading dimension of the particles is formed, and the first member and the second member are disposed with a gap interposed therebetween. The present invention relates to an incident angle monitor element.

すなわち、第一の発明によれば、入射角モニタ素子は、荷電粒子を通過させる開口部が設けられた第一の部材と、荷電粒子の拡がり量を計測するパターンが設けられた第二の部材とを上下に空隙を介して張り合わせた構成とすることによって、上部の開口部を通過した荷電粒子が下部のパターン部分に照射され、装置に投入後、取り出してその照射パターン部の加工痕を監察することにより荷電粒子のビーム拡がりを簡単に知ることができ、荷電粒子を用いた加工装置において発射される荷電粒子の状態を、プロセス現場にて直接監視することが可能となる。   That is, according to the first invention, the incident angle monitor element includes a first member provided with an opening for allowing charged particles to pass through, and a second member provided with a pattern for measuring the amount of spread of the charged particles. The upper and lower surfaces are bonded to each other via a gap so that the charged particles that pass through the upper opening are irradiated onto the lower pattern, and after being put into the device, they are taken out and monitored for processing traces on the irradiated pattern. By doing so, the beam spread of the charged particles can be easily known, and the state of the charged particles emitted in the processing apparatus using the charged particles can be directly monitored at the process site.

第二の発明は、前記第一の部材および前記第二の部材の少なくとも一方は、シリコンを材料として用いることを特徴とする上記第一の発明に記載の入射角モニタ素子に関する。   The second invention relates to the incident angle monitoring element according to the first invention, wherein at least one of the first member and the second member uses silicon as a material.

すなわち、第二の発明によれば、シリコン基板上への微細加工を適用することによって、機械加工では実現困難なミクロンオーダーの加工精度を確保することができるため、同様の測定精度が実現される。また、2つの部材の組み合わせによる位置精度も機械加工部品の組み合わせでは実現できないレベルの位置合わせが可能となることから、開口部に対する加工パターンの位置シフト量も正確に観測できる。   That is, according to the second invention, by applying microfabrication on a silicon substrate, it is possible to secure micron-order machining accuracy that is difficult to achieve by machining, so that the same measurement accuracy is realized. . Further, since the positional accuracy by the combination of the two members can be achieved at a level that cannot be realized by the combination of the machined parts, the position shift amount of the machining pattern with respect to the opening can be accurately observed.

第三の発明は、前記第二の部材に形成されるパターンは、ライン・スペース状、もしくは同心円状の所定ピッチになる繰り返しパターンを含むことを特徴とする上記第一または第二の発明に記載の入射角モニタ素子に関する。   According to a third aspect of the present invention, the pattern formed on the second member includes a repetitive pattern having a predetermined pitch of a line space or a concentric shape. The present invention relates to an incident angle monitor element.

すなわち、第三の発明によれば、第二の部材に形成するビーム拡がり量を計測するためのパターンは、例えば、同心円状、格子状、またはライン・スペース等の形状による、所定ピッチの連続的な繰り返しパターンとし、単位パターン寸法を明確にする構成とすることによって、装置投入後に荷電粒子の照射によって加工される形状の寸法が、目視にて容易に確認でき、イオンビーム装置の作業者に大きな利便性を与えることとなる。   That is, according to the third invention, the pattern for measuring the amount of beam expansion formed on the second member is a continuous pattern having a predetermined pitch, for example, a concentric circle shape, a lattice shape, or a line / space shape. By adopting a structure in which the unit pattern dimensions are clarified by using a repetitive pattern, the dimensions of the shape processed by charged particle irradiation after the introduction of the apparatus can be easily confirmed visually, which is large for the operator of the ion beam apparatus. It will give convenience.

第四の発明は、前記第一の部材において開口部を形成している基板の一部が除去可能な構造であることを特徴とする上記第一乃至第三の発明のいずれかに記載の入射角モニタ素子に関する。   According to a fourth aspect of the present invention, there is provided the structure according to any one of the first to third aspects, wherein the first member has a structure capable of removing a part of the substrate forming the opening. The present invention relates to a corner monitor element.

すなわち、第四の発明によれば、上部に配置される開口部を形成している基板の一部に切り欠き等を入れ、開口部を形成している部分を容易に削除できる構成をとっているため、装置に投入後、第一の部材に設けた切り欠き部分でその一部を取り除いて、荷電粒子が照射されたパターン部分を露出させることができ、当該パターン部分における照射痕の観測が極めて容易となる。   That is, according to the fourth aspect of the present invention, a configuration is adopted in which a notch or the like is made in a part of the substrate forming the opening disposed at the upper portion, and the part forming the opening can be easily deleted. Therefore, after being put into the apparatus, a part of the cutout provided in the first member can be removed to expose the pattern part irradiated with the charged particles, and irradiation traces in the pattern part can be observed. It becomes extremely easy.

第五の発明は、前記入射角モニタ素子が複数個形成されており、かつ一体として使用されることを特徴とする上記第一乃至第四の発明のいずれかに記載の入射角モニタ素子に関する。   A fifth invention relates to the incident angle monitor element according to any one of the first to fourth inventions, wherein a plurality of the incident angle monitor elements are formed and used as a single unit.

すなわち、第五の発明によれば、シリコンウェハ等同一基板面内に多数の入射角モニタ素子が形成されるため、基板面内における分布の測定が可能となる。また、シリコンのプロセス技術を用いることで上部の第一の部材と下部の第二の部材との位置合わせを正確に行うことができ、開口部とライン及びスペースなどのパターン形成部との相対位置を正確に配置できることからビームのシフト量の評価を行うことができる。   That is, according to the fifth invention, since a large number of incident angle monitoring elements are formed in the same substrate surface such as a silicon wafer, distribution in the substrate surface can be measured. Also, by using silicon process technology, the upper first member and the lower second member can be accurately aligned, and the relative position between the opening and the pattern forming part such as a line and a space. Can be accurately arranged, the beam shift amount can be evaluated.

以上、本発明により、イオンビーム加工装置などの製造装置状態を安価に直接観測することが可能となるため、装置の条件確立や装置の状態管理に関する評価工数が大幅に短縮し、コストダウンにつながると共に、歩留まり向上が可能となる。   As described above, according to the present invention, it is possible to directly observe the state of a manufacturing apparatus such as an ion beam processing apparatus at a low cost, thereby greatly reducing the number of evaluation steps related to establishment of apparatus conditions and apparatus state management, leading to cost reduction. At the same time, the yield can be improved.

以下、図面にもとづいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態になる荷電粒子の入射角モニタ素子の一基本構造例を示す。実施例は、荷電粒子を利用したイオンビーム装置の使用時における状態をモニタするために当該装置に入れ込んで、測定試料に照射する荷電粒子のビーム拡がりをチェックする入射角モニタ素子の構造例を示したものである。図1(a)は、入射角モニタ素子の上面図、図1(b)は、開口部付近を通る面における断面図を示している。   FIG. 1 shows an example of a basic structure of an incident angle monitor element for charged particles according to an embodiment of the present invention. The embodiment is an example of the structure of an incident angle monitor element that is inserted into the ion beam apparatus using charged particles to monitor the state of the ion beam apparatus and checks the beam spread of the charged particles irradiated to the measurement sample. It is shown. 1A is a top view of the incident angle monitor element, and FIG. 1B is a cross-sectional view of a plane passing through the vicinity of the opening.

本発明の入射角モニタ素子は、薄いメンブレン部11に荷電粒子を通過させる開口部12が形成された第一の部材1と、当該荷電粒子のビーム拡がりを評価するためのパターン形成部21を備えた第二の部材2とが上下に接合された構成となっている。なお、本実施例では、第一の部材1および第二の部材2は、ともに、シリコンを材料として適用した例について示したが、本発明はこれに限定されるものではなく、所望の構造を実現させる上で加工性に優れた材料であれば何でもよい。   The incident angle monitoring element of the present invention includes a first member 1 in which an opening 12 for allowing charged particles to pass through a thin membrane portion 11 and a pattern forming portion 21 for evaluating beam spread of the charged particles. The second member 2 is joined to the top and bottom. In the present embodiment, the first member 1 and the second member 2 are both shown as examples in which silicon is used as a material. However, the present invention is not limited to this, and a desired structure is used. Any material can be used as long as it is excellent in workability in realizing it.

さらに、上部にある第一の部材1には、荷電粒子を通過させるためのいくつかの開口部12が形成され、この場合、イオンビーム装置に投入した後に破砕して監察に供するため切り欠き13が設けられている。開口部12が形成されている領域(メンブレン部11)は、厚さが、例えば、20μmと薄く形成されている。下部にある第二の部材2には、パターン形成部21において、ライン及びスペース構造からなるパターンがX方向とY方向にそれぞれ形成されており、これらのライン及びスペース構造は、上部にある第一の部材1の開口部12の直下に配置されている。   Furthermore, several openings 12 for allowing charged particles to pass therethrough are formed in the first member 1 at the top. In this case, notches 13 are provided for crushing after introduction into the ion beam device and for monitoring. Is provided. The region where the opening 12 is formed (membrane portion 11) has a thickness as thin as 20 μm, for example. In the second member 2 in the lower part, a pattern composed of a line and a space structure is formed in the X direction and the Y direction in the pattern forming part 21, respectively. It is arranged directly under the opening 12 of the member 1.

なお、入射角モニタ素子の寸法は、例えば、開口部12の寸法はφ100μm、開口部12と下部の第二の部材2の表面との距離は450μmとしており、下部の第二の部材2のライン及びスペース形状は5μm幅で形成してある。   The incident angle monitor element has, for example, a dimension of the opening 12 of φ100 μm, a distance between the opening 12 and the surface of the lower second member 2 of 450 μm, and a line of the lower second member 2. The space shape is 5 μm wide.

図2は、本発明の実施の形態になる荷電粒子の入射角モニタ素子におけるビーム入射角度と拡がり量の関係を示す。実施例は、荷電粒子が下部の第二の部材2におけるパターン形成部21に入射されたときの入射角(第二の部材2の表面に対する垂直軸からの拡がり角)に対するビーム直径の拡がり量を示している。但し、上部の第一の部材1のメンブレン部11下面と第二の部材2表面間の距離は450μmの場合の例を示している。この設計寸法の場合、ビーム入射角の検出感度は、0.5度以下が確保できる。もちろん、それ以上の検出感度を必要とする場合には、ライン及びスペース間隔をより小さくすることで対応が可能となる。   FIG. 2 shows the relationship between the beam incident angle and the spread amount in the incident angle monitor element for charged particles according to the embodiment of the present invention. In the embodiment, the amount of spread of the beam diameter with respect to the incident angle (expansion angle from the vertical axis with respect to the surface of the second member 2) when the charged particles are incident on the pattern forming portion 21 in the second member 2 below. Show. However, an example is shown in which the distance between the lower surface of the membrane portion 11 of the upper first member 1 and the surface of the second member 2 is 450 μm. In the case of this design dimension, the detection sensitivity of the beam incident angle can be ensured to be 0.5 degrees or less. Of course, when higher detection sensitivity is required, it is possible to cope with this by making the line and space intervals smaller.

図3は、本発明の実施の形態になる荷電粒子の入射角モニタ素子用ウエーハの形状例を示す。また、図4に、本発明の実施の形態になる入射角モニタ素子において装置投入後にメンブレンを剥ぎ取った場合の照射状況を示す。本入射角モニタ素子は、図3に示すようにシリコンウェハ内に多数形成されている。このシリコンウェハを評価対象となる装置に投入し、ビームの照射処理を行うことによって当該センサが加工される。装置投入後のウェハを取り出し、図4に示すように、入射角モニタ素子上面の切り欠き13に沿って薄いメンブレン部11を切り取り、開口部12直下において荷電粒子が照射されたライン及びスペースの形状を光学顕微鏡などの手段によって直接観察することができる。これによって、あらかじめ加工されているライン及びスペースパターンを基準に加工領域の寸法を簡単に実測することが可能となる。   FIG. 3 shows an example of the shape of a charged particle incident angle monitor element wafer according to an embodiment of the present invention. Further, FIG. 4 shows an irradiation state when the membrane is peeled off after the device is introduced in the incident angle monitor element according to the embodiment of the present invention. A large number of the incident angle monitoring elements are formed in the silicon wafer as shown in FIG. The sensor is processed by putting this silicon wafer into an apparatus to be evaluated and performing a beam irradiation process. The wafer after the introduction of the apparatus is taken out, and as shown in FIG. 4, the thin membrane portion 11 is cut along the notch 13 on the upper surface of the incident angle monitor element, and the shape of the line and space irradiated with the charged particles immediately below the opening portion 12 Can be directly observed by means such as an optical microscope. As a result, it is possible to easily measure the dimensions of the processing region based on the pre-processed line and space pattern.

また、上部の第一の部材1にはシリコンを材料として用いているため、赤外顕微鏡を用いれば、第一の部材1の切り欠き13を除去することなく、直接、加工寸法を測定することが可能となる。さらに、ライン及びスペースパターン近傍に寸法値や、入射角に換算した角度値を記載しておけば、より簡単に作業者が装置特性の評価を行うことができる。   In addition, since silicon is used as the material for the upper first member 1, if an infrared microscope is used, the processing dimension can be directly measured without removing the notch 13 of the first member 1. Is possible. Furthermore, if the dimension value and the angle value converted into the incident angle are described in the vicinity of the line and space pattern, the operator can more easily evaluate the apparatus characteristics.

また、図3に示すようにウェハ面内に多数の入射角モニタ素子が形成されるため、ウェハ面内における分布の測定が可能となる他、シリコンのプロセス技術を用いることで上部の第一の部材1と下部の第二の部材2との位置合わせが正確に行うことができ、開口部12とライン及びスペースなどのパターン形成部21との相対位置を正確に配置できることから、ビームのシフト量の評価が行えることも本発明の特徴の一つである。   In addition, since a large number of incident angle monitoring elements are formed in the wafer surface as shown in FIG. 3, it is possible to measure the distribution in the wafer surface and use the silicon process technology to achieve the first The alignment between the member 1 and the second member 2 below can be performed accurately, and the relative position between the opening 12 and the pattern forming unit 21 such as a line and a space can be accurately positioned. It is also one of the features of the present invention that the evaluation can be performed.

以下に、上記してきた荷電粒子の入射角モニタ素子の作製方法について図5〜図7を用いて説明する。   Below, the manufacturing method of the incident angle monitor element of the charged particle mentioned above is demonstrated using FIGS.

図5は、本発明の実施の形態になる入射角モニタ素子における第一の部材層の作製手順を示す。本実施例は、第一の部材層の基板としてシリコンを適用した例について扱う。
プロセス1:厚さ625μmの6インチシリコン基板を用意する。なお、SOI(Silicon on Insulator)基板を用いることも可能である。
プロセス2:上記シリコン基板表面にレジストパターンを形成し、SF6ガスを用いたドライエッチングにより、円形状の開口部12用パターンと切り欠き13用パターンを形成する。深さは20μmとする。
プロセス3:上記シリコン表面のパターンに合わせて裏面側のウェハ周辺部に凸形状用パターンを露光し、TMAH(Tetra-Methyl-Ammonium-Hydroxide )によるウェットエッチングにて位置合せ凸部14を形成する。凸形状高さは150μm程度とする。さらに、凸パターン領域を酸化膜などで保護した状態で凸パターンに合わせて裏面に裏面開口部15の形状パターンを露光し、TMAHによるウェットエッチングによって裏面開口部15をエッチングし、これにより、上部の第一の部材1が完成する。
FIG. 5 shows a procedure for producing the first member layer in the incident angle monitor element according to the embodiment of the present invention. The present embodiment deals with an example in which silicon is applied as the substrate of the first member layer.
Process 1: A 6-inch silicon substrate having a thickness of 625 μm is prepared. It is also possible to use an SOI (Silicon on Insulator) substrate.
Process 2: A resist pattern is formed on the surface of the silicon substrate, and a circular opening 12 pattern and a notch 13 pattern are formed by dry etching using SF 6 gas. The depth is 20 μm.
Process 3: A convex pattern is exposed on the periphery of the wafer on the back side in accordance with the pattern on the silicon surface, and the alignment convex part 14 is formed by wet etching using TMAH (Tetra-Methyl-Ammonium-Hydroxide). The height of the convex shape is about 150 μm. Further, the shape pattern of the back surface opening 15 is exposed on the back surface in accordance with the convex pattern in a state where the convex pattern region is protected with an oxide film, etc., and the back surface opening portion 15 is etched by wet etching with TMAH, thereby The first member 1 is completed.

図6は、本発明の実施の形態になる入射角モニタ素子における第二の部材層の作製手順を示す。本実施例も、同様に、第二の部材層の基板としてシリコンを適用した例について扱う。
プロセス1:厚さ625μmの6インチシリコン基板を用意する。
プロセス2:5μmピッチのライン及びスペースパターンを露光し、SF6によるドライエッチングによりライン及びスペースパターン形状を形成する。深さは、1μm程度とする。
プロセス3:ライン及びスペースパターンに合わせてウェハ周辺部に凹パターンを露光し、TMAHによるウェットエッチングにて位置合せ凹部22形状を形成する。凹形状高さは150μm程度とする。このとき、既に形成されたパターン領域は酸化膜などで保護しておく。これにより下部の第二の部材2が完成する。
FIG. 6 shows a procedure for producing the second member layer in the incident angle monitor element according to the embodiment of the present invention. Similarly, this embodiment deals with an example in which silicon is applied as the substrate of the second member layer.
Process 1: A 6-inch silicon substrate having a thickness of 625 μm is prepared.
Process 2: A line and space pattern with a pitch of 5 μm is exposed, and a line and space pattern shape is formed by dry etching with SF6. The depth is about 1 μm.
Process 3: A concave pattern is exposed on the periphery of the wafer in accordance with the line and space patterns, and the shape of the alignment concave portion 22 is formed by wet etching using TMAH. The height of the concave shape is about 150 μm. At this time, the already formed pattern region is protected with an oxide film or the like. Thereby, the lower second member 2 is completed.

図7は、本発明の実施の形態になる第一の部材と第二の部材を上下に組み合わせた入射角モニタ素子を示す。図7に示すように、作製した上部の第一の部材1と下部の第二の部材2を組み合わせ、シリコンの直接接合や、Au(金)もしくはAl(アルミニウム)を介在させた共晶接合により両部材を接合する。こうして、上部部材の凸構造(位置合せ凸部14)と下部部材の凹構造(位置合せ凹部22)とを組み合わせることによって簡単で正確な位置合わせが可能となる。   FIG. 7 shows an incident angle monitor element in which the first member and the second member according to the embodiment of the present invention are combined vertically. As shown in FIG. 7, the upper first member 1 and the lower second member 2 are combined and bonded by direct silicon bonding or eutectic bonding with Au (gold) or Al (aluminum) interposed. Join both members together. Thus, simple and accurate alignment is possible by combining the convex structure of the upper member (alignment convex part 14) and the concave structure of the lower member (alignment concave part 22).

以上の手順により、荷電粒子の入射角モニタ素子のウェハが完成する。   With the above procedure, a wafer of charged particle incident angle monitoring elements is completed.

完成した入射角モニタ素子のウェハは、そのままウェハ状態で使用することが可能である他、ダイシングによって素子を分離し、小さな素子単位で、例えば、他のウェハや部品に組込み、装置内に投入して評価することも可能である。   The completed incident angle monitor element wafer can be used as it is, and the elements are separated by dicing, and are incorporated into other wafers and parts, for example, in small elements and put into the apparatus. Can also be evaluated.

なお、上部の第一の部材1は、シリコン材料に限らず、マイクロマシニングプロセスに整合する、例えば、ガラス材料を使うことも可能である。   Note that the upper first member 1 is not limited to a silicon material, and it is also possible to use, for example, a glass material that is compatible with a micromachining process.

図8は、本発明の実施の形態になる入射角モニタ素子の第二の部材に形成する繰り返しパターン例を示す。パターン1は同心円パターンが繰り返し形成された例を、また、パターン2は格子状に矩形パターンが繰り返された例を、さらに、パターン3は幅の異なるライン及びスペースが繰り返された例を示している。これらのパターンは、いずれも単位パターン寸法が明確になっているため、装置投入後に荷電粒子の照射によって加工される形状の寸法が、目視にて容易に確認できる。もちろん、パターン形状は、上記した例に限らず、寸法が目視にて確認できるものであればよいことは言うまでもない。   FIG. 8 shows a repetitive pattern example formed on the second member of the incident angle monitor element according to the embodiment of the present invention. Pattern 1 shows an example in which concentric circular patterns are repeatedly formed, pattern 2 shows an example in which rectangular patterns are repeated in a lattice pattern, and pattern 3 shows an example in which lines and spaces having different widths are repeated. . Since all of these patterns have clear unit pattern dimensions, the dimensions of the shape processed by irradiation of charged particles after the introduction of the apparatus can be easily confirmed visually. Of course, the pattern shape is not limited to the above-described example, and needless to say, the pattern shape may be any pattern that can be visually confirmed.

本発明の実施の形態になる荷電粒子の入射角モニタ素子の一基本構造例を示す図である。It is a figure which shows the example of 1 basic structure of the incident angle monitor element of the charged particle which becomes embodiment of this invention. 本発明の実施の形態になる荷電粒子の入射角モニタ素子におけるビーム入射角度と拡がり量の関係を示す図である。It is a figure which shows the relationship between the beam incident angle and the amount of spread in the incident angle monitor element of the charged particle which becomes embodiment of this invention. 本発明の実施の形態になる荷電粒子の入射角モニタ素子用ウエーハの形状例を示す図である。It is a figure which shows the example of a shape of the wafer for incident angle monitor elements of the charged particle which becomes embodiment of this invention. 本発明の実施の形態になる入射角モニタ素子において装置投入後にメンブレンを剥ぎ取った場合の照射状況を示す図である。It is a figure which shows the irradiation condition at the time of peeling off a membrane after apparatus introduction in the incident angle monitor element which becomes embodiment of this invention. 本発明の実施の形態になる入射角モニタ素子における第一の部材層の作製手順を示す図である。It is a figure which shows the preparation procedures of the 1st member layer in the incident angle monitor element which becomes embodiment of this invention. 本発明の実施の形態になる入射角モニタ素子における第二の部材層の作製手順を示す図である。It is a figure which shows the preparation procedures of the 2nd member layer in the incident angle monitor element which becomes embodiment of this invention. 本発明の実施の形態になる第一の部材と第二の部材を上下に組み合わせた入射角モニタ素子を示す図である。It is a figure which shows the incident angle monitor element which combined the 1st member and 2nd member which become embodiment of this invention up and down. 本発明の実施の形態になる入射角モニタ素子の第二の部材に形成される繰り返しパターン例を示す図である。It is a figure which shows the example of a repeating pattern formed in the 2nd member of the incident angle monitor element which becomes embodiment of this invention.

符号の説明Explanation of symbols

1 第一の部材
2 第二の部材
11 メンブレン部
12 開口部
13 切り欠き
14 位置合せ凸部
15 裏面開口部
21 パターン形成部
22 位置合せ凹部
DESCRIPTION OF SYMBOLS 1 1st member 2 2nd member 11 Membrane part 12 Opening part 13 Notch 14 Alignment convex part 15 Back surface opening part 21 Pattern formation part 22 Alignment concave part

Claims (5)

荷電粒子を用いた加工装置における荷電粒子の拡がり量をモニタする入射角モニタ素子であって、
前記荷電粒子を通過させるための開口部を有する第一の部材と、
前記荷電粒子の拡がり寸法を計測するパターンが形成された前記荷電粒子を照射させる面を持つ第二の部材とから構成され、
前記第一の部材と前記第二の部材とが空隙を介して配設されたことを特徴とする入射角モニタ素子。
An incident angle monitor element for monitoring the amount of spread of charged particles in a processing apparatus using charged particles,
A first member having an opening for passing the charged particles;
A second member having a surface for irradiating the charged particles on which a pattern for measuring the spread dimension of the charged particles is formed;
An incident angle monitor element, wherein the first member and the second member are disposed with a gap.
前記第一の部材および前記第二の部材の少なくとも一方は、シリコンを材料として用いることを特徴とする請求項1に記載の入射角モニタ素子。   The incident angle monitor element according to claim 1, wherein at least one of the first member and the second member uses silicon as a material. 前記第二の部材に形成されるパターンは、ライン・スペース状、もしくは同心円状の所定ピッチになる繰り返しパターンを含むことを特徴とする請求項1または2に記載の入射角モニタ素子。   The incident angle monitor element according to claim 1, wherein the pattern formed on the second member includes a repetitive pattern having a predetermined pitch of a line space shape or a concentric shape. 前記第一の部材において開口部を形成している基板の一部が除去可能な構造であることを特徴とする請求項1乃至3のいずれかに記載の入射角モニタ素子。   4. The incident angle monitoring element according to claim 1, wherein a part of the substrate forming the opening in the first member is removable. 前記入射角モニタ素子が複数個形成されており、かつ一体として使用されることを特徴とする請求項1乃至4のいずれかに記載の入射角モニタ素子。   The incident angle monitor element according to any one of claims 1 to 4, wherein a plurality of the incident angle monitor elements are formed and used integrally.
JP2006195713A 2006-07-18 2006-07-18 Charged particle incident angle monitor element Expired - Fee Related JP4984704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195713A JP4984704B2 (en) 2006-07-18 2006-07-18 Charged particle incident angle monitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195713A JP4984704B2 (en) 2006-07-18 2006-07-18 Charged particle incident angle monitor element

Publications (2)

Publication Number Publication Date
JP2008027614A true JP2008027614A (en) 2008-02-07
JP4984704B2 JP4984704B2 (en) 2012-07-25

Family

ID=39118062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195713A Expired - Fee Related JP4984704B2 (en) 2006-07-18 2006-07-18 Charged particle incident angle monitor element

Country Status (1)

Country Link
JP (1) JP4984704B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222288A (en) * 1987-03-11 1988-09-16 Mitsubishi Electric Corp Phosphor plate monitoring
JPH0268844A (en) * 1988-09-02 1990-03-08 Kobe Steel Ltd Instrument for measuring position and shape of charged particle beam
JPH03122589A (en) * 1989-10-04 1991-05-24 Japan Atom Energy Res Inst Apparatus for measuring particle beam
JPH04171837A (en) * 1990-11-05 1992-06-19 Nec Yamagata Ltd Ion beam shape measurement device
JP2002162475A (en) * 2000-11-28 2002-06-07 Mitsubishi Electric Corp Fluorescent beam monitor and its manufacturing method, and charged particle accelerator provided with fluorescent beam monitor
JP2005063874A (en) * 2003-08-19 2005-03-10 Nissin Electric Co Ltd Ion implanter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222288A (en) * 1987-03-11 1988-09-16 Mitsubishi Electric Corp Phosphor plate monitoring
JPH0268844A (en) * 1988-09-02 1990-03-08 Kobe Steel Ltd Instrument for measuring position and shape of charged particle beam
JPH03122589A (en) * 1989-10-04 1991-05-24 Japan Atom Energy Res Inst Apparatus for measuring particle beam
JPH04171837A (en) * 1990-11-05 1992-06-19 Nec Yamagata Ltd Ion beam shape measurement device
JP2002162475A (en) * 2000-11-28 2002-06-07 Mitsubishi Electric Corp Fluorescent beam monitor and its manufacturing method, and charged particle accelerator provided with fluorescent beam monitor
JP2005063874A (en) * 2003-08-19 2005-03-10 Nissin Electric Co Ltd Ion implanter

Also Published As

Publication number Publication date
JP4984704B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
KR101463245B1 (en) Focused ion beam apparatus and sample section forming and thin-piece sample preparing methods
JP6598684B2 (en) Reference mark design for tilt or glancing angle milling operations using charged particle beams
JP3755228B2 (en) Charged particle beam exposure system
CN103675358A (en) System and method for ex situ analysis of substrate
KR20170083583A (en) Height measurement device and charged particle beam device
TWI416091B (en) Electron microscope specimen and method for preparing the same and method for forming 3d images
CN101246132B (en) Focused ion beam equipment and focused ion beam detecting method
US11199401B1 (en) End-point detection for similar adjacent materials
JP4984704B2 (en) Charged particle incident angle monitor element
JP4091060B2 (en) Wafer inspection processing apparatus and wafer inspection processing method
JP5996674B2 (en) Apparatus for spot size measurement at the wafer level using a knife edge and method for manufacturing such an apparatus
JP3353051B2 (en) Line width measurement of integrated circuit structures
CN103280440B (en) The semiconductor structure of preparation TEM sample and method
JP5101563B2 (en) Manufacturing method of micro sample stage
KR20080102877A (en) Method for manufacturing a test sample for transmission electron microscope
JP2009025127A (en) Sample preparing method
JP2007033461A (en) Wafer inspection device
KR100620728B1 (en) Method for Manufacturing Specimen for Analyzing by Transmission Electron Microscope
KR20040031279A (en) method for manufacturing Transmission Electron Microscope of Specimen for Analyzing
KR20060078915A (en) Manufacturing method of sample for tem analysis
WO2022033158A1 (en) Wafer level failure analysis sample production method
JP2011038888A (en) Sample, sample preparing method and sample preparing device
JP2009110978A (en) Ion beam device
JP2002318178A (en) Defect evaluation method for semiconductor crystal
JP5298230B2 (en) Micro sample table, substrate for preparing micro sample table, and analysis method using micro sample table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees