JP2008026727A - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
JP2008026727A
JP2008026727A JP2006201023A JP2006201023A JP2008026727A JP 2008026727 A JP2008026727 A JP 2008026727A JP 2006201023 A JP2006201023 A JP 2006201023A JP 2006201023 A JP2006201023 A JP 2006201023A JP 2008026727 A JP2008026727 A JP 2008026727A
Authority
JP
Japan
Prior art keywords
optical film
dyes
dye
infrared absorbing
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006201023A
Other languages
Japanese (ja)
Inventor
Takeomi Miyako
強臣 宮古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006201023A priority Critical patent/JP2008026727A/en
Publication of JP2008026727A publication Critical patent/JP2008026727A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical film excellent in heat and moisture resistances and optical characteristics, in particular, excellent in moisture resistance even when a resin constituting a near-infrared absorption layer has a low glass transition temperature. <P>SOLUTION: The optical film has a near-infrared absorption layer containing a compound represented by formula (1) and a resin, wherein R<SP>1</SP>-R<SP>8</SP>are each an isobutyl group, X<SP>-</SP>is (R<SP>f</SP>SO<SB>2</SB>)<SB>3</SB>C<SP>-</SP>, and R<SP>f</SP>is a 1-4C fluoroalkyl group. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、近赤外線吸収能を有する光学フィルムに関する。   The present invention relates to an optical film having near infrared absorption ability.

プラズマディスプレイパネル(以下、PDPと記す。)の原理は、2枚の板状ガラスの間に封入した希ガス(ヘリウム、ネオン、アルゴン、キセノン等。)に電圧を加え、そのときに生じる紫外線を発光体に当てることで可視光線を発生させるというものである。
PDPからは、可視光線と同時に、近赤外線、電磁波等も放射される。たとえば、近赤外線は、家庭用テレビ、クーラー、ビデオデッキ等の家電製品用の近赤外線リモコンを誤作動させたり、通信機器を誤作動させてPOS(販売時点情報管理)システム等のデータ転送時に悪影響を及ぼしたりする。そのため、PDPの前面(視認側)には、近赤外線等を遮断する光学フィルタの設置が必要となっている。
The principle of a plasma display panel (hereinafter referred to as “PDP”) is that a voltage is applied to a rare gas (helium, neon, argon, xenon, etc.) sealed between two sheet glasses, and ultraviolet rays generated at that time are applied. Visible light is generated by being applied to a light emitter.
From the PDP, near-infrared rays, electromagnetic waves and the like are radiated simultaneously with visible rays. For example, near infrared rays have a negative effect when data is transferred to a point-of-sale (POS) system or the like by malfunctioning a near infrared remote control for home appliances such as a home TV, cooler, or video deck, or malfunctioning a communication device. Or Therefore, it is necessary to install an optical filter that blocks near-infrared rays on the front surface (viewing side) of the PDP.

光学フィルタとしては、800〜1000nmの波長の近赤外線を遮断する光学フィルムが提案されている。
光学フィルムとしては、たとえば、近赤外線を吸収する色素を透明樹脂に分散させた近赤外線吸収層を、ポリエチレンテレフタレート(PET)等からなる基材上に形成したものがある。近赤外線を吸収する色素としては、ポリメチン系色素、金属錯体系色素、スクアリウム系色素、シアニン系色素、インドアニリン系色素等の各種色素が知られている。
As an optical filter, an optical film that blocks near infrared rays having a wavelength of 800 to 1000 nm has been proposed.
As an optical film, for example, there is an optical film in which a near-infrared absorbing layer in which a pigment that absorbs near-infrared is dispersed in a transparent resin is formed on a substrate made of polyethylene terephthalate (PET) or the like. Various dyes such as polymethine dyes, metal complex dyes, squalium dyes, cyanine dyes and indoaniline dyes are known as dyes that absorb near infrared rays.

ジイモニウム系色素は、代表的な近赤外線を吸収する色素の1つであり、近赤外線フィルタ、断熱フィルム、サングラス等に用いられている。
しかし、ジイモニウム系色素は、光、熱、湿気等に弱く、劣化し易いという問題を有する。ジイモニウム系色素が劣化した場合、近赤外線吸収能を低下させるだけでなく、変色を生じ、視認透過率が低下して、色目が緑みを帯びてくる等、光学フィルムの光学特性を悪化させてしまう。
The diimonium dye is one of typical dyes that absorb near-infrared rays, and is used in near-infrared filters, heat insulating films, sunglasses, and the like.
However, diimonium dyes have a problem that they are weak against light, heat, moisture and the like, and easily deteriorate. When the dimonium dye deteriorates, it not only lowers the near-infrared absorptivity, but also causes discoloration, lowers the visible transmittance, and makes the eyes appear greenish. End up.

ジイモニウム系色素を透明樹脂中に配合した近赤外線吸収層を有する、耐熱性、耐湿性、光学特性に優れた光学フィルムが提案されている(特許文献1)。また、耐熱性、耐湿性、耐光性等を有するジイモニウム系色素としては、たとえば、N,N,N’,N’−テトラキス(p−ジアルキルアミノフェニル)−p−フェニレンジアミン・ビス(ビス(パーフルオロアルキルスルホニル)イミド酸)イモニウム塩などが知られている(特許文献2)。   An optical film having a near-infrared absorption layer in which a diimonium dye is blended in a transparent resin and having excellent heat resistance, moisture resistance, and optical properties has been proposed (Patent Document 1). Examples of the diimonium dye having heat resistance, moisture resistance, light resistance and the like include, for example, N, N, N ′, N′-tetrakis (p-dialkylaminophenyl) -p-phenylenediamine bis (bis (par Fluoroalkylsulfonyl) imidic acid) imonium salts and the like are known (Patent Document 2).

しかし、本発明者の検討では、特許文献1に記載の具体的なジイモニウム系色素については耐湿性が充分ではない場合があることが明らかとなった。耐湿性が充分でない場合は、光学フィルムが変色し、光学特性が悪くなる。同様に、特許文献2記載のジイモニウム系色素は、耐熱性は良好であるものの、耐湿性は充分ではない。
本発明者は、ジイモニウム系色素の耐湿性は樹脂のガラス転移温度(Tg)に関係することを見い出した。樹脂のガラス転移温度が充分高い場合には優れた耐湿性を有するものの、樹脂のガラス転移温度が低い場合には耐湿性が不充分となる。
However, the inventor's investigation revealed that the specific diimonium dye described in Patent Document 1 may not have sufficient moisture resistance. When the moisture resistance is not sufficient, the optical film is discolored and the optical properties are deteriorated. Similarly, although the diimonium dye described in Patent Document 2 has good heat resistance, the moisture resistance is not sufficient.
The present inventor has found that the moisture resistance of the diimonium dye is related to the glass transition temperature (Tg) of the resin. When the glass transition temperature of the resin is sufficiently high, the resin has excellent moisture resistance, but when the glass transition temperature of the resin is low, the moisture resistance is insufficient.

透明樹脂のガラス転移温度が制限されると、たとえば、以下のよう不具合が生じる。
(i)透明樹脂のガラス転移温度が高いと近赤外線吸収層が硬くなり、光学フィルムのハンドリング性、加工性が悪くなる。
(ii)ガラス転移温度が低い樹脂、たとえば粘着剤を近赤外線吸収層に用いることができず、粘着剤層の機能を兼ね備えた近赤外線吸収層を得ることができない。
特開2005−049848号公報 特開2005−336150号公報
When the glass transition temperature of the transparent resin is limited, for example, the following problems occur.
(I) When the glass transition temperature of the transparent resin is high, the near-infrared absorbing layer becomes hard, and the handling property and workability of the optical film are deteriorated.
(Ii) A resin having a low glass transition temperature, such as a pressure-sensitive adhesive, cannot be used in the near-infrared absorbing layer, and a near-infrared absorbing layer having the function of the pressure-sensitive adhesive layer cannot be obtained.
JP 2005-049848 A JP-A-2005-336150

本発明は、耐熱性、耐湿性および光学特性に優れ、特に、近赤外線吸収層を構成する樹脂のガラス転移温度が低い場合でも耐湿性に優れた光学フィルムを提供することを目的とする。   An object of the present invention is to provide an optical film which is excellent in heat resistance, moisture resistance and optical properties, and in particular, has excellent moisture resistance even when the glass transition temperature of the resin constituting the near infrared absorption layer is low.

本発明の光学フィルムは、下式(1)で表される化合物および樹脂を含有する近赤外線吸収層を有することを特徴とする。   The optical film of the present invention has a near-infrared absorbing layer containing a compound represented by the following formula (1) and a resin.

Figure 2008026727
Figure 2008026727

ただし、R〜Rは、イソブチルを表し、Xは、(RSOで表される陰イオンを表し、Rは炭素数1〜4のフルオロアルキル基を表す。 However, R 1 to R 8 is an isobutyl, X - is, (R f SO 2) 3 C - represents an anion represented by R f is represents a fluoroalkyl group having 1 to 4 carbon atoms.

前記フルオロアルキル基は、パーフルオロアルキル基であることが好ましい。
前記近赤外線吸収層は、さらに、最大吸収波長(λmax)が800〜1100nmの範囲にある、前記式(1)で表される化合物以外の近赤外線吸収色素を含有することが好ましい。
前記式(1)で表される化合物以外の近赤外線吸収色素は、アミニウム系色素およびシアニン系色素から選ばれる少なくとも1種の近赤外線吸収色素であることが好ましい。
前記樹脂のガラス転移温度(Tg)は、80℃以下であることが好ましい。
The fluoroalkyl group is preferably a perfluoroalkyl group.
It is preferable that the near-infrared absorbing layer further contains a near-infrared absorbing dye other than the compound represented by the formula (1) having a maximum absorption wavelength (λ max ) in the range of 800 to 1100 nm.
The near-infrared absorbing dye other than the compound represented by the formula (1) is preferably at least one near-infrared absorbing dye selected from an aminium dye and a cyanine dye.
The glass transition temperature (Tg) of the resin is preferably 80 ° C. or lower.

本発明の光学フィルムは、耐熱性、耐湿性および光学特性に優れ、特に、近赤外線吸収層を構成する樹脂のガラス転移温度が低い場合でも耐湿性に優れる。   The optical film of the present invention is excellent in heat resistance, moisture resistance and optical properties, and in particular, is excellent in moisture resistance even when the glass transition temperature of the resin constituting the near infrared absorption layer is low.

本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。   In the present specification, a compound represented by the formula (1) is referred to as a compound (1). The same applies to compounds represented by other formulas.

<光学フィルム>
本発明の光学フィルムは、化合物(1)および樹脂を含有する近赤外線吸収層を有するフィルムである。
本発明の光学フィルムは、近赤外線吸収層のみからなるフィルムであってもよく、支持フィルム上に近赤外線吸収層が形成されたフィルムであってもよい。
<Optical film>
The optical film of this invention is a film which has a near-infrared absorption layer containing a compound (1) and resin.
The optical film of the present invention may be a film composed only of a near-infrared absorbing layer or a film in which a near-infrared absorbing layer is formed on a support film.

光学フィルムは、通常、PDP等の視認側に配置されるため、無彩色のものが好ましい。JIS Z 8701−1999に従い計算されたC光源基準において、無彩色に対応する色度座標は、(x、y)=(0.310、0.316)であることから、本発明の光学フィルムとしては、(x、y)=(0.310±0.100、0.316±0.100)の範囲に色度座標を有するものが好ましい。該色度座標を有する光学フィルムとするためには、色素の種類および含有量を適宜選定すればよい。
本発明の光学フィルムは、視感平均透過率が45%以上のものが好ましく、上記色度座標の規定および視感平均透過率の規定を同時に満たすものが特に好ましい。
Since an optical film is normally arrange | positioned at visual recognition sides, such as PDP, the thing of an achromatic color is preferable. In the C light source standard calculated according to JIS Z 8701-1999, the chromaticity coordinates corresponding to the achromatic color are (x, y) = (0.310, 0.316). Preferably have chromaticity coordinates in the range of (x, y) = (0.310 ± 0.100, 0.316 ± 0.100). In order to obtain an optical film having the chromaticity coordinates, the type and content of the pigment may be appropriately selected.
The optical film of the present invention preferably has a luminous average transmittance of 45% or more, and particularly preferably satisfies the above chromaticity coordinate definition and the luminous average transmittance specification at the same time.

(近赤外線吸収層)
近赤外線吸収層は、化合物(1)および樹脂を含有する。
化合物(1)は、R〜Rがすべてイソブチル基{(CHCHCH−}であり、Xが(RSOであることを特徴とする。
(Near-infrared absorbing layer)
A near-infrared absorption layer contains a compound (1) and resin.
The compound (1) is characterized in that R 1 to R 8 are all isobutyl groups {(CH 3 ) 2 CHCH 2 —} and X is (R f SO 2 ) 3 C .

Figure 2008026727
Figure 2008026727

は、炭素数1〜4のフルオロアルキル基である。Rとしては、炭素数1〜2のフルオロアルキル基がより好ましく、炭素数1のフルオロアルキル基がさらに好ましい。炭素数が上記範囲内であると、耐熱性、耐湿性等の耐久性、および後述する有機溶剤への溶解性が良好となる。 R f is a fluoroalkyl group having 1 to 4 carbon atoms. R f is more preferably a fluoroalkyl group having 1 to 2 carbon atoms, and even more preferably a fluoroalkyl group having 1 carbon atom. When the carbon number is within the above range, durability such as heat resistance and moisture resistance and solubility in an organic solvent described later are good.

としては、たとえば、−CF、−C、−C、−C等のパーフルオロアルキル基、−CH、−CH、−CH等が挙げられる。
としては、耐湿性がさらに良好になることから、パーフルオロアルキル基が特に好ましく、トリフルオロメチル基が最も好ましい。
Examples of R f include perfluoroalkyl groups such as —CF 3 , —C 2 F 5 , —C 3 F 7 , —C 4 F 9 , —C 2 F 4 H, —C 3 F 6 H, — C 4 F 8 H, and the like.
R f is particularly preferably a perfluoroalkyl group, and most preferably a trifluoromethyl group, since moisture resistance is further improved.

化合物(1)の1000nm付近のモル吸光係数εは、0.8×10〜1.0×10であることが好ましい。モル吸光係数εは、以下のようにして測定される。
化合物(1)を、試料濃度が20mg/Lとなるようにクロロホルムで希釈し、試料溶液を作製する。この試料溶液の吸収スペクトルを、分光光度計を用いて、300〜1300nmの範囲で測定し、その最大吸収波長(λmax)を読み取り、該最大吸収波長(λmax)におけるモル吸光係数(ε)を下式から算出する。
ε=ε/(c・d)。
ただし、εは吸光係数であり、ε=−log(I/I)で算出され、Iは入射前の光強度であり、Iは入射後の光強度であり、εはモル吸光係数であり、cは試料濃度(mol/L)であり、dはセル長である。
The molar extinction coefficient ε m near 1000 nm of the compound (1) is preferably 0.8 × 10 4 to 1.0 × 10 6 . The molar extinction coefficient ε m is measured as follows.
Compound (1) is diluted with chloroform so that the sample concentration is 20 mg / L, and a sample solution is prepared. The absorption spectrum of this sample solution, using a spectrophotometer, measured in the range of 300~1300Nm, read the maximum absorption wavelength (lambda max), the molar extinction coefficient at said maximum absorption wavelength (λ max)m ) Is calculated from the following equation.
ε m = ε / (c · d).
Where ε is an extinction coefficient, calculated as ε = −log (I / I 0 ), I 0 is the light intensity before incidence, I is the light intensity after incidence, and ε m is the molar extinction coefficient. Where c is the sample concentration (mol / L) and d is the cell length.

化合物(1)は、光学フィルムの加工時の劣化を抑制し、光学フィルムとした後の実用的な耐久性を付与するために、98質量%以上の純度を有することが好ましい。
化合物(1)は、光学フィルムの加工時の劣化を抑制し、光学フィルムとした後の実用的な耐久性を付与するために、210℃以上の融点を有することが好ましい。
化合物(1)は、98質量%以上の純度を有し、かつ210℃以上の融点を有することが特に好ましい。
The compound (1) preferably has a purity of 98% by mass or more in order to suppress deterioration during processing of the optical film and to provide practical durability after forming the optical film.
The compound (1) preferably has a melting point of 210 ° C. or higher in order to suppress deterioration during processing of the optical film and to provide practical durability after forming the optical film.
It is particularly preferable that the compound (1) has a purity of 98% by mass or more and a melting point of 210 ° C. or more.

化合物(1)は、たとえば、以下のようにして合成できる。
p−フェニレンジアミンと1−クロロ−4−ニトロベンゼンとのウルマン反応生成物を還元することにより得られるN,N,N’,N’−テトラキス(p−アミノフェニル)−p−フェニレンジアミン2質量部をN,N−ジメチルホルムアミド16質量部に溶解し、これにBrCHCH(CH12質量部を加え、130℃で10時間反応させる。反応液を冷却した後、ろ過する。ろ液にメタノール40質量部を加え、5℃以下で1時間撹拌する。生成した結晶をろ過し、メタノールで洗浄した後、乾燥する。結晶1.0質量部をN,N−ジメチルホルムアミド14質量部に加え、60℃で溶解させた後、Xに相当する酸化剤(たとえば、トリス(トリフルオロメタンスルホニル)メチド酸銀塩の場合、0.91質量部。)をN,N−ジメチルホルムアミド14質量部に溶解した溶液を加え、30分間反応させる。冷却後、析出した銀をろ過し、ろ液に水20質量部をゆっくり滴下し、その後15分間撹拌する。生成した結晶をろ過し、50質量部の水で洗浄し、乾燥して化合物(1)を得る。
Compound (1) can be synthesized, for example, as follows.
2 parts by mass of N, N, N ′, N′-tetrakis (p-aminophenyl) -p-phenylenediamine obtained by reducing the Ullmann reaction product of p-phenylenediamine and 1-chloro-4-nitrobenzene Is dissolved in 16 parts by mass of N, N-dimethylformamide, and 12 parts by mass of BrCH 2 CH (CH 3 ) 2 is added thereto and reacted at 130 ° C. for 10 hours. The reaction solution is cooled and then filtered. 40 parts by mass of methanol is added to the filtrate and stirred at 5 ° C. or lower for 1 hour. The produced crystals are filtered, washed with methanol and dried. After adding 1.0 part by mass of crystals to 14 parts by mass of N, N-dimethylformamide and dissolving at 60 ° C., an oxidizing agent corresponding to X (for example, in the case of silver tris (trifluoromethanesulfonyl) methidoate, 0.91 parts by mass) is added to 14 parts by mass of N, N-dimethylformamide, and the mixture is allowed to react for 30 minutes. After cooling, the precipitated silver is filtered, and 20 parts by mass of water is slowly added dropwise to the filtrate, followed by stirring for 15 minutes. The produced crystals are filtered, washed with 50 parts by mass of water, and dried to obtain compound (1).

樹脂としては、可視光を透過できる透明樹脂または粘着剤が挙げられる。樹脂のガラス転移温度(Tg)は200℃以下が好ましく、150℃以下がより好ましく、80℃以下が特に好ましい。Tgが低い樹脂を用いる場合に、従来のジイモニウム系色素に比較して化合物(1)の特徴(耐湿性が優れていること。)が顕著となる。したがって、本発明の光学フィルムは、Tgの低い樹脂を用いる光学フィルムとして好適である。特に、低いTgを有する樹脂である粘着剤(Tgは通常0℃以下である。)にジイモニウム系色素を配合した光学フィルムにおいて、本発明の特徴が発揮される。なお、ガラス転移温度(Tg)は、示差走査熱量測定(JIS K−7121)から求めた温度をいう。   Examples of the resin include a transparent resin or an adhesive that can transmit visible light. The glass transition temperature (Tg) of the resin is preferably 200 ° C or lower, more preferably 150 ° C or lower, and particularly preferably 80 ° C or lower. When a resin having a low Tg is used, the characteristics of the compound (1) (excellent moisture resistance) are conspicuous as compared with conventional diimonium dyes. Therefore, the optical film of the present invention is suitable as an optical film using a resin having a low Tg. In particular, the characteristics of the present invention are exhibited in an optical film in which a diimonium dye is blended with a pressure-sensitive adhesive (Tg is usually 0 ° C. or lower) which is a resin having a low Tg. The glass transition temperature (Tg) is a temperature obtained from differential scanning calorimetry (JIS K-7121).

透明樹脂としては、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリシクロオレフィン系樹脂、ポリカーボネート系樹脂、ポリアクリル系樹脂等の熱可塑性樹脂が挙げられる。透明樹脂の市販品としては、鐘紡社製、商品名「O−PET」等のポリエステル系樹脂;JSR社製、商品名「ARTON」等のポリオレフィン系樹脂;日本ゼオン社製、商品名「ゼオネックス」等のポリシクロオレフィン系樹脂;三菱エンジニアリングプラスチック社製、商品名「ユーピロン」等のポリカーボネート系樹脂;日本触媒社製、商品名「ハルスハイブリッドIR−G204」等のポリアクリル系樹脂等が挙げられる。
粘着剤としては、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤およびブタジエン系粘着剤が挙げられる。
Examples of the transparent resin include thermoplastic resins such as polyester resins, polyolefin resins, polycycloolefin resins, polycarbonate resins, and polyacryl resins. Commercially available products of transparent resins include polyester resins such as Kanebo, trade name “O-PET”; polyolefin resins such as JSR, trade name “ARTON”; trade name “ZEONEX”, manufactured by Nippon Zeon. Polycycloolefin resins such as Mitsubishi Engineering Plastics, polycarbonate resin such as “Iupilon”, and polyacrylic resins such as Nippon Shokubai Co., Ltd., product name “Harus Hybrid IR-G204”.
Examples of the adhesive include acrylic adhesives, silicone adhesives, urethane adhesives, and butadiene adhesives.

近赤外線吸収層は、本発明の効果を損なわない範囲で、最大吸収波長(λmax)が800〜1100nmの範囲にある、化合物(1)以外の近赤外線吸収色素(以下、他の近赤外線吸収色素と記す。)を含有しもよい。
他の近赤外線吸収色素としては、無機系顔料、有機系顔料、有機系染料等が挙げられる。
The near-infrared absorbing layer is a near-infrared absorbing dye other than the compound (1) (hereinafter referred to as other near-infrared absorption) having a maximum absorption wavelength (λ max ) in the range of 800 to 1100 nm without impairing the effects of the present invention. May be included).
Examples of other near-infrared absorbing pigments include inorganic pigments, organic pigments, and organic dyes.

無機系顔料としては、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO系色素、ATO系色素等が挙げられる。
有機系顔料および有機系染料としては、化合物(1)以外のジイモニウム系色素、アンスラキノン系色素、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、イソインドリノン系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素、ジチオール系金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素等が挙げられる。
Inorganic pigments include cobalt dyes, iron dyes, chromium dyes, titanium dyes, vanadium dyes, zirconium dyes, molybdenum dyes, ruthenium dyes, platinum dyes, ITO dyes, ATO dyes, etc. Is mentioned.
Examples of organic pigments and organic dyes include diimonium dyes other than compound (1), anthraquinone dyes, aminium dyes, cyanine dyes, merocyanine dyes, croconium dyes, squalium dyes, azurenium dyes, and polymethines. Dyes, naphthoquinone dyes, pyrylium dyes, phthalocyanine dyes, naphthalocyanine dyes, naphtholactam dyes, azo dyes, condensed azo dyes, indigo dyes, perinone dyes, perylene dyes, dioxazine dyes, quinacridones Dyes, isoindolinone dyes, quinophthalone dyes, pyrrole dyes, thioindigo dyes, metal complex dyes, dithiol metal complex dyes, indolephenol dyes, triallylmethane dyes, and the like.

他の近赤外線吸収色素は、最大吸収波長(λmax)が800〜1100nmの範囲にある色素であり、最大吸収波長(λmax)が800〜900nmの範囲にある色素が特に好ましい。該色素を配合すると、化合物(1)の最大吸収波長(λmax)が1100nm付近にあることから、幅広い領域の近赤外線を効率よく吸収でき、全色素量(化合物(1)およびそれ以外の近赤外線吸収色素の合計量)を少なくできる。そのため、コストが低減できる、色素の劣化が生じにくくなる、近赤外線吸収層を形成する際に色素を有機溶媒に充分溶解させることができる等の利点がある。 Another near-infrared absorbing dye is a dye having a maximum absorption wavelength (λ max ) in the range of 800 to 1100 nm, and a dye having a maximum absorption wavelength (λ max ) in the range of 800 to 900 nm is particularly preferable. When the dye is blended, the maximum absorption wavelength (λ max ) of the compound (1) is in the vicinity of 1100 nm, so that it is possible to efficiently absorb a wide range of near infrared rays, and the total amount of the dye (compound (1) and other near-infrared rays) can be absorbed. (Total amount of infrared absorbing dye) can be reduced. Therefore, there are advantages that the cost can be reduced, the deterioration of the dye is less likely to occur, and the dye can be sufficiently dissolved in the organic solvent when forming the near infrared absorption layer.

他の近赤外線吸収色素としては、シアニン系色素、フタロシアニン系色素、ナフタロシアニン系色素、アミニウム系色素、金属錯体系色素、ピロール系色素、アンスラキノン系色素等が好ましく、最大吸収波長(λmax)が800〜900nmの範囲にある、シアニン系色素またはフタロシアニン系色素が特に好ましい。また、アミニウム系色素は、ラジカル捕捉性化合物(クエンチャー化合物)であるため、化合物(1)、シアニン系色素等のラジカル捕捉性化合物ではない色素と組み合わせて用いることにより、ラジカル捕捉性化合物ではない色素を用いた光学フィルムの耐久性向上に有効である。したがって、他の近赤外線吸収色素としては、アミニウム系色素およびシアニン系色素から選ばれる少なくとも1種の近赤外線吸収色素が好ましい。特に、化合物(1)とアミニウム系色素との組み合わせ、または化合物(1)とシアニン系色素とアミニウム系色素との組み合わせが好ましい。 As other near-infrared absorbing dyes, cyanine dyes, phthalocyanine dyes, naphthalocyanine dyes, aminium dyes, metal complex dyes, pyrrole dyes, anthraquinone dyes and the like are preferable, and the maximum absorption wavelength (λ max ) Are particularly preferred cyanine dyes or phthalocyanine dyes in the range of 800 to 900 nm. In addition, since the aminium dye is a radical scavenging compound (quencher compound), it is not a radical scavenging compound when used in combination with a dye that is not a radical scavenging compound such as compound (1) or a cyanine dye. This is effective for improving the durability of optical films using dyes. Accordingly, the other near infrared absorbing dye is preferably at least one near infrared absorbing dye selected from aminium dyes and cyanine dyes. In particular, a combination of the compound (1) and an aminium dye, or a combination of the compound (1), a cyanine dye and an aminium dye is preferable.

化合物(1)とシアニン系色素とアミニウム系色素とを組み合わせる場合、シアニン系色素の最大吸収波長(λmax)が800〜1100nmの範囲にあれば、アミニウム系色素の最大吸収波長(λmax)が800〜1100nmの範囲になくてもよい。
化合物(1)とシアニン系色素とアミニウム系色素とを組み合わせる場合、アミニウム系色素がクエンチャー化合物であるため、さらに近赤外線吸収層中に紫外線吸収剤を含ませたとしても紫外線吸収剤の影響による近赤外線吸収層の変色や退色等の劣化を防げるため好ましい。
When combined compound (1) and a cyanine dye and aminium dyes, if the maximum absorption wavelength of the cyanine dye (lambda max) within a range of 800 to 1100 nm, the maximum absorption wavelength of aminium dye (lambda max) is It may not be in the range of 800 to 1100 nm.
When combining the compound (1), the cyanine dye and the aminium dye, since the aminium dye is a quencher compound, even if an ultraviolet absorber is further included in the near infrared absorption layer, it is influenced by the ultraviolet absorber. This is preferable because deterioration of the near-infrared absorbing layer such as discoloration and fading can be prevented.

化合物(1)と他の近赤外線吸収色素との合計の配合量は、樹脂100質量部に対して、0.1〜20.0質量部が好ましく、1.0〜15.0質量部が特に好ましい。配合量を0.1質量部以上とすることで、充分な近赤外線吸収能が得られる。配合量を20.0質量部以下とすることで、色素間の相互作用が抑えられ、色素の安定性が良好となる。   0.1-20.0 mass parts is preferable with respect to 100 mass parts of resin, and, as for the total compounding quantity of a compound (1) and another near-infrared absorption pigment | dye, 1.0-15.0 mass parts is especially. preferable. When the blending amount is 0.1 parts by mass or more, sufficient near infrared absorption ability can be obtained. When the blending amount is 20.0 parts by mass or less, the interaction between the dyes is suppressed, and the dye stability is improved.

他の近赤外線吸収色素の量は、化合物(1)と他の近赤外線吸収色素との合計100質量%のうち、5〜50質量%が好ましい。他の近赤外線吸収色素の量を5質量%以上とすることで、全色素量を充分に低減できる。他の近赤外線吸収色素の量を50質量%以下とすることで、化合物(1)による効果が充分なものとなる。   The amount of the other near-infrared absorbing dye is preferably 5 to 50% by weight in a total of 100% by weight of the compound (1) and the other near-infrared absorbing dye. By setting the amount of other near infrared absorbing pigments to 5% by mass or more, the total pigment amount can be sufficiently reduced. By setting the amount of the other near infrared absorbing dye to 50% by mass or less, the effect of the compound (1) is sufficient.

近赤外線吸収層は、最大吸収波長が300〜800nmの範囲にある色調補正色素、レベリング剤、帯電防止剤、熱安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤、又は紫外線吸収剤等が含有してもよい。紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤が好ましい。   Near-infrared absorbing layer is a color correction dye, leveling agent, antistatic agent, thermal stabilizer, antioxidant, dispersant, flame retardant, lubricant, plasticizer, or ultraviolet absorption that has a maximum absorption wavelength in the range of 300 to 800 nm. An agent or the like may be contained. As the ultraviolet absorber, a benzotriazole-based ultraviolet absorber is preferable.

近赤外線吸収層は、たとえば、化合物(1)と、樹脂と、必要に応じて他の成分とを、有機溶剤に溶解させ、得られた塗工液を基材上に塗工し、乾燥させることにより形成できる。   A near-infrared absorption layer dissolves a compound (1), resin, and another component as needed in an organic solvent, for example, applies the obtained coating liquid on a base material, and dries. Can be formed.

有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、ジアセトンアルコール、エチルセロソルブ、メチルセロソルブ等のアルコール類;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル等のエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;クロロホルム、塩化メチレン、ジクロルエチレン、四塩化炭素、トリクロルエチレン等の脂肪族ハロゲン化炭化水素類;ベンゼン、トルエン、キシレン、モノクロルベンゼン、ジクロルベンゼン等の芳香族類;n−ヘキサン、シクロヘキサノリグロイン等の脂肪族炭化水素類;テトラフルオロプロピルアルコール、ペンタフルオロプロピルアルコール等のフッ素系溶剤等が挙げられる。   Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, diacetone alcohol, ethyl cellosolve, and methyl cellosolve; ketones such as acetone, methyl ethyl ketone, cyclopentanone, and cyclohexanone; N, N-dimethylformamide, N, N Amides such as dimethylacetamide; sulfoxides such as dimethyl sulfoxide; ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether; esters such as methyl acetate, ethyl acetate and butyl acetate; chloroform, methylene chloride, dichloroethylene, Aliphatic halogenated hydrocarbons such as carbon tetrachloride and trichloroethylene; aromatics such as benzene, toluene, xylene, monochlorobenzene and dichlorobenzene; n-hexane, Black aliphatic hydrocarbons hexanoate ligroin; tetrafluoro propyl alcohol, fluorine-based solvents such as pentafluoropropyl alcohol.

塗工液の塗工は、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法等のコーティング法を用いて行うことができる。   Coating liquid coating methods include dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, curtain coating, slit die coater, gravure coater, A coating method such as a slit reverse coater method, a micro gravure method, or a comma coater method can be used.

近赤外線吸収層の厚さは、0.3〜50.0μmが好ましく、0.5〜20.0μmが特に好ましい。近赤外線吸収層の厚さを0.3μm以上とすることで、近赤外線吸収能を充分に発揮できる。近赤外線吸収層の厚さを50μm以下とすることで、成形時の有機溶媒の残留を低減できる。   The thickness of the near infrared absorbing layer is preferably 0.3 to 50.0 μm, particularly preferably 0.5 to 20.0 μm. By setting the thickness of the near infrared absorbing layer to 0.3 μm or more, the near infrared absorbing ability can be sufficiently exhibited. By setting the thickness of the near-infrared absorbing layer to 50 μm or less, the residual organic solvent at the time of molding can be reduced.

(基材)
基材として、剥離性基材を用いた場合、該剥離性基材を剥離することにより、近赤外線吸収層のみからなる光学フィルムが得られる。
基材として、透明な支持フィルム(以下、支持フィルムと記す。)を用いた場合、支持フィルムと近赤外線吸収層とが一体化されたフィルムが得られる。
(Base material)
When a peelable substrate is used as the substrate, an optical film consisting only of the near infrared absorbing layer is obtained by peeling off the peelable substrate.
When a transparent support film (hereinafter referred to as a support film) is used as the substrate, a film in which the support film and the near-infrared absorbing layer are integrated is obtained.

剥離性基材は、フィルム状または板状のものであればよく、特に材料に限定はない。剥離性を良好にするために、シリコーン、低表面張力の樹脂等を用いて、基材表面に離型処理を施すことが好ましい。   The peelable substrate may be in the form of a film or a plate, and the material is not particularly limited. In order to improve the releasability, it is preferable to perform a mold release treatment on the surface of the substrate using silicone, a low surface tension resin, or the like.

支持フィルムの材料としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル類;ポリエチレン、ポリプロピレン等のポリオレフィン類;ポリメチルメタクリレート(PMMA)等のポリアクリレート類:ポリカーボネート(PC)類、ポリスチレン類、トリアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、エチレン−酢酸ビニル共重合体、ポリビニルブチラール、ポリウレタン類、セロファン等が挙げられ、PET、PC、PMMAが好ましい。   Examples of the material for the support film include polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyolefins such as polyethylene and polypropylene; polyacrylates such as polymethyl methacrylate (PMMA): polycarbonate (PC), Examples thereof include polystyrenes, triacetates, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, ethylene-vinyl acetate copolymers, polyvinyl butyral, polyurethanes, cellophane and the like, and PET, PC, and PMMA are preferable.

支持フィルムの厚さは、作業性が良好で、ヘイズ値が低く抑えられる点から、10〜500μmが好ましい。
支持フィルム上に近赤外線吸収層を形成する前に、該支持フィルムの表面にコロナ処理または易接着処理を施すことが好ましい。
The thickness of the support film is preferably 10 to 500 μm from the viewpoint of good workability and low haze value.
Before forming the near-infrared absorbing layer on the support film, the surface of the support film is preferably subjected to corona treatment or easy adhesion treatment.

(機能性層)
本発明の光学フィルムは、近赤外線吸収層以外の、任意の機能性層を1層以上有していてもよい。機能性層としては、例えば、紫外線による色素の劣化を防ぎ耐光性を改善するための紫外線吸収層;画像の視認性を向上させるための反射防止層;PDPなどの表示装置から発せられる電磁波を遮断するための電磁波遮蔽層;耐擦傷性機能を与えるハードコート層;自己修復性を有する層;最表面の汚れを防止するための防汚層;各層を積層させるための粘着層または接着層等が挙げられる。近赤外線吸収層は、機能性層の機能を併有していてもよい。たとえば、近赤外線吸収層は、粘着層または接着層であってもよい。また、近赤外線吸収層は、紫外線吸収機能、電磁波遮蔽機能等を有していてもよい。
(Functional layer)
The optical film of the present invention may have one or more arbitrary functional layers other than the near-infrared absorbing layer. As the functional layer, for example, an ultraviolet absorbing layer for preventing deterioration of pigment due to ultraviolet rays and improving light resistance; an antireflection layer for improving image visibility; blocking electromagnetic waves emitted from a display device such as a PDP Electromagnetic wave shielding layer for carrying out; Hard coat layer for giving scratch resistance; Self-repairing layer; Antifouling layer for preventing dirt on the outermost surface; Adhesive layer or adhesive layer for laminating each layer Can be mentioned. The near-infrared absorbing layer may have the function of the functional layer. For example, the near infrared absorbing layer may be an adhesive layer or an adhesive layer. Moreover, the near-infrared absorption layer may have an ultraviolet absorption function, an electromagnetic wave shielding function, or the like.

(光学部材)
光学部材は、本発明の光学フィルムを粘着剤層を介して高い剛性を有する透明基板(以下、透明基板と記す。)に貼着したものである。該粘着剤層は、近赤外線吸収層であってもよい。光学部材は、PDP等の表示装置の保護板としての機能も発揮できる。
透明基板の材料としては、ガラス、強化もしくは半強化ガラス等の無機材料、ポリカーボネート、ポリアクリレート等の高分子材料等が挙げられる。
(Optical member)
The optical member is obtained by adhering the optical film of the present invention to a transparent substrate having high rigidity (hereinafter referred to as a transparent substrate) via an adhesive layer. The pressure-sensitive adhesive layer may be a near-infrared absorbing layer. The optical member can also function as a protective plate for a display device such as a PDP.
Examples of the material for the transparent substrate include inorganic materials such as glass, tempered or semi-tempered glass, and polymer materials such as polycarbonate and polyacrylate.

近赤外線吸収層における粘着剤以外として用いられる粘着剤としては、市販されている粘着剤が挙げられる。具体例には、アクリル酸エステル共重合体、ポリ塩化ビニル、エポキシ樹脂、ポリウレタン、酢酸ビニル共重合体、スチレンーアクリル共重合体、ポリエステル、ポリアミド、ポリオレフィン、スチレンーブタジエン共重合体系ゴム、ブチルゴム、シリコーン樹脂等が挙げられる。
粘着剤層を設ける場合、作業性の点で、その粘着面にシリコーンが塗布されたPET等の離型フィルムを貼付しておくことが好ましい。
粘着剤層には、紫外線吸収剤等の種々の機能を有する添加剤を添加してもよい。
Examples of the pressure-sensitive adhesive used as other than the pressure-sensitive adhesive in the near-infrared absorbing layer include commercially available pressure-sensitive adhesives. Specific examples include acrylic ester copolymer, polyvinyl chloride, epoxy resin, polyurethane, vinyl acetate copolymer, styrene-acrylic copolymer, polyester, polyamide, polyolefin, styrene-butadiene copolymer rubber, butyl rubber, A silicone resin etc. are mentioned.
When providing the pressure-sensitive adhesive layer, it is preferable to attach a release film such as PET coated with silicone to the pressure-sensitive adhesive surface in terms of workability.
You may add the additive which has various functions, such as a ultraviolet absorber, to an adhesive layer.

本発明の光学フィルムまたは光学部材は、PDP、プラズマアドレスリキッドクリスタル(PALC)ディスプレイパネル、フィールドエミッションディスプレイ(FED)パネル等の平面型表示装置;陰極管表示装置(CRT)等の表示装置用の光学フィルタとして用いることができる。
光学フィルタは、表示装置の視認側に設置すればよい。この際、光学フィルタは、表示装置から離して設置してもよく、表示装置表面に直接貼り付けてもよい。
The optical film or optical member of the present invention is a flat display device such as a PDP, a plasma addressed liquid crystal (PALC) display panel, a field emission display (FED) panel; an optical for a display device such as a cathode ray tube display (CRT). It can be used as a filter.
The optical filter may be installed on the viewing side of the display device. At this time, the optical filter may be installed away from the display device or may be directly attached to the display device surface.

本発明の光学フィルムは、高度な近赤外線吸収能を有するとともに、耐湿性、耐熱性等の耐久性に優れていることから、近赤外線が発生するPDP等の光学フィルタに好適である。   The optical film of the present invention has high near-infrared absorbing ability and is excellent in durability such as moisture resistance and heat resistance, and thus is suitable for an optical filter such as PDP that generates near-infrared rays.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
例1〜8、14、15は実施例であり、例9〜13、16は比較例である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
Examples 1 to 8, 14, and 15 are examples, and examples 9 to 13 and 16 are comparative examples.

近赤外線吸収色素(化合物(1)および近赤外線吸収色素)のλmaxおよびεは、下記手順で測定した。
近赤外線吸収色素を、試料濃度が20mg/Lとなるようにクロロホルムで希釈し、試料溶液を作製した。この試料溶液の吸収スペクトルを、島津製作所製UV−3100を用いて、300〜1300nmの範囲で測定し、その最大吸収波長(λmax)を読み取り、該最大吸収波長(λmax)におけるモル吸光係数(ε)を下記式から算出した。
ε=ε/(c・d)。
ただし、εは吸光係数であり、ε=−log(I/I)で算出され、Iは入射前の光強度であり、Iは入射後の光強度であり、εはモル吸光係数であり、cは試料濃度(mol/L)であり、dはセル長である。
Λ max and ε m of the near-infrared absorbing dye (compound (1) and near-infrared absorbing dye) were measured by the following procedure.
The near-infrared absorbing dye was diluted with chloroform so that the sample concentration was 20 mg / L to prepare a sample solution. The absorption spectrum of this sample solution was measured in the range of 300 to 1300 nm using UV-3100 manufactured by Shimadzu Corporation, the maximum absorption wavelength (λ max ) was read, and the molar extinction coefficient at the maximum absorption wavelength (λ max ). (Ε m ) was calculated from the following equation.
ε m = ε / (c · d).
Where ε is an extinction coefficient, calculated as ε = −log (I / I 0 ), I 0 is the light intensity before incidence, I is the light intensity after incidence, and ε m is the molar extinction coefficient. Where c is the sample concentration (mol / L) and d is the cell length.

(例1)
透明アクリル樹脂(日本触媒社製、商品名「ハルスハイブリッドIR−G204」:ガラス転移温度89℃)を、樹脂分が15質量%になるように、メチルエチルケトン(MEK)に溶解して、主剤溶液を得た。該主剤溶液の樹脂分100質量部に対して、14.0質量部の化合物(1)(N,N,N’,N’−テトラキス(p−ジイソブチルアミノフェニル)−p−フェニレンジアミン・ビス(トリス(トリフルオロメタンスルホニル)メチド酸)イモニウム塩、λmax:1108nm,香F6.3×10)を主剤溶液に添加し、これらを溶解させた塗工液を得た。この塗工液をマイクログラビアにて、厚さ100μmのPETフィルム(東洋紡績社製、商品名「A4100」)上に乾燥塗膜の厚さが4μmとなるようにコーティングし、120℃で5分間乾燥させて、近赤外線吸収層を形成し、光学フィルムを得た。
(Example 1)
A transparent acrylic resin (made by Nippon Shokubai Co., Ltd., trade name “HALS HYBRID IR-G204”: glass transition temperature 89 ° C.) is dissolved in methyl ethyl ketone (MEK) so that the resin content is 15% by mass. Obtained. 14.0 parts by mass of compound (1) (N, N, N ′, N′-tetrakis (p-diisobutylaminophenyl) -p-phenylenediamine bis (100 parts by mass) with respect to 100 parts by mass of the resin content of the main agent solution tris (trifluoromethanesulfonyl) methide acid) imonium salt, λ max: 1108nm, adding shrimp flavor F6.3 × 10 4) in the main agent solution to obtain a coating solution obtained by dissolving them. This coating solution was coated on a 100 μm-thick PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) with a microgravure so that the thickness of the dried coating film was 4 μm, and then at 120 ° C. for 5 minutes. It was made to dry and the near infrared absorption layer was formed, and the optical film was obtained.

(例2)
例1の主剤溶液を、透明ポリエステル樹脂(鐘紡社製、商品名「O−PET」、ガラス転移温度140℃)を、樹脂分が15質量%になるように、シクロペンタノン/トルエン(6/4容量比)混合溶媒に溶解した主剤溶液に代えた以外は、例1と同様にして光学フィルムを得た。
(Example 2)
The main agent solution of Example 1 was prepared by using a transparent polyester resin (trade name “O-PET”, manufactured by Kanebo Co., Ltd., glass transition temperature: 140 ° C.), cyclopentanone / toluene (6 / 4 volume ratio) An optical film was obtained in the same manner as in Example 1 except that the base solution was dissolved in a mixed solvent.

(例3)
例1の主剤溶液を、透明ポリカーボネート樹脂(帝人化成社製、商品名「PC−N1」、ガラス転移温度190℃)を、樹脂分が15質量%になるように、シクロペンタノンに溶解した主剤溶液に代えた以外は、例1と同様にして光学フィルムを得た。
(Example 3)
Main agent solution prepared by dissolving transparent polycarbonate resin (manufactured by Teijin Chemicals Ltd., trade name “PC-N1”, glass transition temperature 190 ° C.) in cyclopentanone so that the resin content is 15% by mass. An optical film was obtained in the same manner as in Example 1 except that the solution was replaced.

(例4)
例1の透明アクリル樹脂を、透明アクリル樹脂(日本触媒社製、商品名「PDP108」、ガラス転移温度79℃)に代えた以外は、例1と同様にして光学フィルムを得た。
(Example 4)
An optical film was obtained in the same manner as in Example 1 except that the transparent acrylic resin of Example 1 was replaced with a transparent acrylic resin (manufactured by Nippon Shokubai Co., Ltd., trade name “PDP108”, glass transition temperature 79 ° C.).

(例5)
アクリル粘着剤(東洋インキ製造社製、商品名「NCK101」、ガラス転移温度−26℃)を、樹脂分が15質量%になるように、MEKに溶解して、主剤溶液を得た。該主剤溶液の樹脂分100質量部に対して、2.3質量部の、例1の化合物(1)を主剤溶液に添加し、これらを溶解させた塗工液を得た。該塗工液をアプリケータにて、厚さ100μmのPETフィルム(東洋紡績社製、商品名「A4100」)上に乾燥塗膜の厚さが25μmとなるようにコーティングし、120℃で5分間乾燥させて、粘着性の近赤外線吸収層を形成し、光学フィルムを得た。該光学フィルムの近赤外線吸収層と、厚さ100μmの反射防止フィルム(日本油脂社製、商品名「リアルック 7710UV」)の反射防止層とは反対の面とを貼り合わせて、反射防止機能付き光学フィルムを得た。
(Example 5)
An acrylic pressure-sensitive adhesive (manufactured by Toyo Ink Manufacturing Co., Ltd., trade name “NCK101”, glass transition temperature −26 ° C.) was dissolved in MEK so that the resin content was 15% by mass to obtain a base solution. With respect to 100 parts by mass of the resin content of the main agent solution, 2.3 parts by mass of the compound (1) of Example 1 was added to the main agent solution to obtain a coating solution in which these were dissolved. The coating solution is coated with an applicator on a PET film having a thickness of 100 μm (trade name “A4100”, manufactured by Toyobo Co., Ltd.) so that the thickness of the dried coating film becomes 25 μm, and the temperature is 120 ° C. for 5 minutes. It was made to dry and the adhesive near-infrared absorption layer was formed, and the optical film was obtained. An optical film with an antireflection function is formed by bonding the near-infrared absorbing layer of the optical film and the surface opposite to the antireflection layer of a 100 μm-thick antireflection film (trade name “Realak 7710UV” manufactured by NOF Corporation). A film was obtained.

(例6)
例5の化合物(1)の量を2.3質量部から0.9質量部に変更した以外は、例5と同様にして反射防止機能付き光学フィルムを得た。
(Example 6)
An optical film with an antireflection function was obtained in the same manner as in Example 5 except that the amount of the compound (1) in Example 5 was changed from 2.3 parts by mass to 0.9 parts by mass.

(例7)
透明アクリル樹脂(日本触媒社製、商品名「ハルスハイブリッドIR−G207」、ガラス転移温度76℃)を、樹脂分が15質量%になるように、メチルエチルケトン(MEK)に溶解して、主剤溶液を得た。該主剤溶液の樹脂分100質量部に対して、25.0質量部の例1の化合物(1)を主剤溶液に添加し、これらを溶解させた塗工液を得た。該塗工液をマイクログラビアにて、厚さ100μmのPETフィルム(東洋紡績社製、商品名「A4100」)上に乾燥塗膜の厚さが4μmとなるようにコーティングし、120℃で5分間乾燥させて、近赤外線吸収層を形成し、光学フィルムを得た。
(Example 7)
A transparent acrylic resin (made by Nippon Shokubai Co., Ltd., trade name “HALS HYBRID IR-G207”, glass transition temperature: 76 ° C.) is dissolved in methyl ethyl ketone (MEK) so that the resin content is 15% by mass. Obtained. With respect to 100 parts by mass of the resin content of the main agent solution, 25.0 parts by mass of the compound (1) of Example 1 was added to the main agent solution to obtain a coating solution in which these were dissolved. The coating solution is coated on a 100 μm-thick PET film (trade name “A4100”, manufactured by Toyobo Co., Ltd.) with a micro gravure so that the thickness of the dried coating film is 4 μm, and then at 120 ° C. for 5 minutes. It was made to dry and the near-infrared absorption layer was formed, and the optical film was obtained.

(例8)
例7の主剤溶液の樹脂分100質量部に対して、25.0質量部の例1の化合物(1)、2.6質量部の安定化シアニン系色素(住友精化社製、商品名「SD−AG01」、λmax=877nm、ε=3.1×10)、および2.6質量部のトリフルオロメタンスルホニルメチド酸・シアニン系色素(日本化薬社製、商品名「CY−40MCM」、λmax=820nm、ε=2.7×10)、さらに1.3質量部のN,N,N’,N’−テトラキス(p−ジイソブチルアミノフェニル)−p−フェニレンジアミン・−ビス(ビス(トリフルオロメタンスルホニル)イミド酸)アミニウム塩を添加した以外は、例7と同様にして光学フィルムを得た。
(Example 8)
2100 parts by weight of the compound (1) of Example 1 and 2.6 parts by weight of a stabilized cyanine dye (manufactured by Sumitomo Seika Co., Ltd., trade name “ SD-AG01 ", λ max = 877 nm, ε m = 3.1 × 10 5 ), and 2.6 parts by mass of trifluoromethanesulfonylmethideic acid / cyanine dye (manufactured by Nippon Kayaku Co., Ltd., trade name“ CY- ”) 40MCM ”, λ max = 820 nm, ε m = 2.7 × 10 5 ), and further 1.3 parts by mass of N, N, N ′, N′-tetrakis (p-diisobutylaminophenyl) -p-phenylenediamine An optical film was obtained in the same manner as in Example 7 except that -bis (bis (trifluoromethanesulfonyl) imidic acid) aminium salt was added.

(例9)
例7の化合物(1)の代わりに、(N,N,N’,N’−テトラキス(p−ジイソブチルアミノフェニル)−p−フェニレンジアミン・ビス(ビス(トリフルオロメタンスルホニル)イミド酸)イモニウム塩を用いる以外は、例7と同様にして光学フィルムを得る。
(Example 9)
Instead of the compound (1) of Example 7, (N, N, N ′, N′-tetrakis (p-diisobutylaminophenyl) -p-phenylenediamine bis (bis (trifluoromethanesulfonyl) imidic acid) imonium salt is used. An optical film is obtained in the same manner as in Example 7 except that it is used.

(例10)
例6の化合物(1)の代わりに、(N,N,N’,N’−テトラキス(p−ジイソブチルアミノフェニル)−p−フェニレンジアミン・ビス(ビス(トリフルオロメタンスルホニル)イミド酸)イモニウム塩を用いる以外は、例6と同様にして光学フィルムを得る。
(Example 10)
Instead of the compound (1) of Example 6, (N, N, N ′, N′-tetrakis (p-diisobutylaminophenyl) -p-phenylenediamine bis (bis (trifluoromethanesulfonyl) imidic acid) imonium salt is used. An optical film is obtained in the same manner as in Example 6 except that it is used.

(例11)
例4の化合物(1)の代わりに、ジイモニウム系色素(N,N,N’,N’−テトラキス(p−ジノルマルブチルアミノフェニル)−p−フェニレンジアミン・−ビス(トリス(トリフルオロメタンスルホニル)メチド酸)イモニウム塩(λmax=1105nm、ε=6.3×10)を用いた以外は、例4と同様にして光学フィルムを得た。
(Example 11)
In place of the compound (1) of Example 4, a diimonium dye (N, N, N ′, N′-tetrakis (p-dinormalbutylaminophenyl) -p-phenylenediamine · bis (tris (trifluoromethanesulfonyl)) An optical film was obtained in the same manner as in Example 4 except that (methidic acid) imonium salt (λ max = 1105 nm, ε m = 6.3 × 10 4 ) was used.

(例12)
例11のジイモニウム系色素の代わりに、例11のジイモニウム系色素の側鎖Rをシアノプロピルにかえたジイモニウム系色素(λmax=1067nm、ε=6.3×10)に代えた以外は、例11と同様にして光学フィルムを得た。
(Example 12)
Instead of the diimonium dye of Example 11, the diimonium dye (λ max = 1067 nm, ε m = 6.3 × 10 4 ) in which the side chain R of the diimonium dye of Example 11 was replaced with cyanopropyl was used. In the same manner as in Example 11, an optical film was obtained.

(例13)
例4の化合物(1)を、ジイモニウム系色素(N,N,N’,N’−テトラキス(p−ジノルマルブチルアミノフェニル)−p−フェニレンジアミン・−ビス(ビス(トリフルオロメタンスルホニル)イミド酸)イモニウム塩、λmax=1100nm、ε=7.3×10)に代えた以外は、例4と同様にして光学フィルムを得た。
(Example 13)
The compound (1) of Example 4 was converted into a diimonium dye (N, N, N ′, N′-tetrakis (p-dinnormalbutylaminophenyl) -p-phenylenediamine · bis (bis (trifluoromethanesulfonyl) imidic acid). ) Immonium salt, λ max = 1100 nm, ε m = 7.3 × 10 4 ), except that the optical film was obtained in the same manner as in Example 4.

(例14)
例8の主剤溶液に、該主剤溶液の樹脂分100質量部に対して、86.8質量部のベンゾトリアゾール系紫外線吸収剤(チバスペシャリティケミカルズ社製、商品名「チヌビン928」)をさらに添加した以外は、例8と同様にして光学フィルムを得た。
(Example 14)
To the main agent solution of Example 8, 86.8 parts by mass of a benzotriazole-based ultraviolet absorber (manufactured by Ciba Specialty Chemicals, trade name “Tinuvin 928”) was further added to 100 parts by mass of the resin content of the main agent solution. Except for the above, an optical film was obtained in the same manner as in Example 8.

(例15)
例14において、N,N,N’,N’−テトラキス(p−ジイソブチルアミノフェニル)−p−フェニレンジアミン・−ビス(ビス(トリフルオロメタンスルホニル)イミド酸)アミニウム塩を添加しなかったこと以外は、例14と同様にして光学フィルムを得た。
(Example 15)
In Example 14, except that N, N, N ′, N′-tetrakis (p-diisobutylaminophenyl) -p-phenylenediamine-bis (bis (trifluoromethanesulfonyl) imidic acid) aminium salt was not added. In the same manner as in Example 14, an optical film was obtained.

(例16)
例7のジイモニウム系色素の代わりに、例7のジイモニウム系色素の側鎖Rをシアノプロピルにかえたジイモニウム系色素(λmax=1067nm、ε=6.3×10)を用いた以外は、例7と同様にして光学フィルムを得た。
(Example 16)
A diimonium dye (λ max = 1067 nm, ε m = 6.3 × 10 4 ) in which the side chain R of the diimonium dye of Example 7 was replaced with cyanopropyl was used in place of the diimonium dye of Example 7. In the same manner as in Example 7, an optical film was obtained.

例1〜16の光学フィルムの光学特性(視感平均透過率、色度、近赤外線透過率)、および耐久性(耐熱性、耐湿性)を下記方法で評価した。その結果を表1に示す。
また、表1に、例1〜16の化合物(1)または他のジイモニウム系色素の陰イオン、側鎖R(式(1)の陽イオンにおけるR〜Rに相当)、および樹脂のガラス転移温度(Tg)を併記する。
The optical properties (luminous average transmittance, chromaticity, near infrared transmittance) and durability (heat resistance, moisture resistance) of the optical films of Examples 1 to 16 were evaluated by the following methods. The results are shown in Table 1.
Table 1 also shows anions of compounds (1) of Examples 1 to 16 or other diimonium dyes, side chains R (corresponding to R 1 to R 8 in the cation of formula (1)), and resin glass. The transition temperature (Tg) is also shown.

(光学特性)
分光光度計(島津製作所社製、UV−3100)を用い、各試料から切り出した20×20mm角の試験片のスペクトルを380〜1300nmの範囲で測定した。JIS Z 8701−1999に従い、可視領域(380〜780nm)における加重平均透過率(視感平均透過率Tv)、色度座標(x、y)を算出した。
また、近赤外領域(850nm、900nm、950nm、1000nm)の透過率を測定し、室内の空気の透過率を比較対照として、近赤外線透過率を求めた。各波長における近赤外線透過率をそれぞれT850、T900、T950、T1000とした。
(optical properties)
Using a spectrophotometer (manufactured by Shimadzu Corporation, UV-3100), the spectrum of a 20 × 20 mm square test piece cut out from each sample was measured in the range of 380 to 1300 nm. According to JIS Z 8701-1999, the weighted average transmittance (luminous average transmittance Tv) and chromaticity coordinates (x, y) in the visible region (380 to 780 nm) were calculated.
Further, the transmittance in the near-infrared region (850 nm, 900 nm, 950 nm, 1000 nm) was measured, and the near-infrared transmittance was determined using the indoor air transmittance as a comparative control. The near-infrared transmittance at each wavelength was T850, T900, T950, and T1000, respectively.

(耐熱性)
定温恒温器(東京理化器械社製)を用い、温度80℃に設定し、500時間試験後の各試料のTv、x、yの各測定値について、試験前の測定値と比較した。試験前後の変化量がすべて3%未満であるものを〇、いずれか一つでも3%以上〜5%未満のものがある場合は△、いずれか一つでも5%以上のものがある場合を×とした。
(Heat-resistant)
Using a constant temperature thermostat (manufactured by Tokyo Rika Kikai Co., Ltd.), the temperature was set to 80 ° C., and the measured values of Tv, x, y of each sample after the 500 hour test were compared with the measured values before the test. Yes, if the amount of change before and after the test is less than 3%, △ if any one is 3% to less than 5%, △, if any one is more than 5% X.

(耐湿性)
恒温恒湿試験器(東京理化器械社製、KCH−1000)を用い、温度60℃、湿度95%RHに設定し、500時間試験後の各試料のTv、x、yの各測定値について、試験前の測定値と比較した。試験前後の変化量がすべて3%未満であるものを〇、いずれか一つでも3%以上〜5%未満のものがある場合は△、いずれか一つでも5%以上のものがある場合を×とした。
(Moisture resistance)
Using a constant temperature and humidity tester (manufactured by Tokyo Rika Kikai Co., Ltd., KCH-1000), the temperature is set to 60 ° C. and the humidity is 95% RH, and the measured values of Tv, x, y of each sample after 500 hours test are as follows: The measured values were compared with those before the test. Yes, if the amount of change before and after the test is less than 3%, △ if any one is 3% to less than 5%, △, if any one is more than 5% X.

(耐光性)
耐光性試験機(スガ試験機社製、キセノンフェードメーターX−15F)を用い、380nm以上の光を200MJ/cm(132時間)照射させ、各試料のTv、x、yの各測定値について、試験前の測定値と比較した。試験前後の変化量がすべて3%未満であるものを〇、いずれか一つでも3%以上〜5%未満のものがある場合は△、いずれか一つでも5%以上のものがある場合を×とした。
(Light resistance)
Using a light resistance tester (Suga Test Instruments Co., Ltd., Xenon Fade Meter X-15F), irradiating light of 380 nm or more with 200 MJ / cm 2 (132 hours), and measuring each value of Tv, x, y of each sample Compared with the measured value before the test. Yes, if the amount of change before and after the test is less than 3%, △ if any one is 3% to less than 5%, △, if any one is more than 5% X.

Figure 2008026727
Figure 2008026727

表1に示すように、例1〜8、14、15の光学フィルム(実施例)は、耐熱性、耐湿性ともに良好であった。特に、ジイモニウム系色素以外の色素も配合した例7、例8の光学フィルムは、全色素量が少ないにもかかわらず、優れた光学特性を示した。
これに対し、側鎖Rとしてノルマルブチルを用いた例11、13、シアノプロピルを用いた例12、16の光学フィルムは、耐湿性が悪く、特に、例12、16は耐熱性も悪かった。
As shown in Table 1, the optical films (Examples) of Examples 1 to 8, 14, and 15 were good in both heat resistance and moisture resistance. In particular, the optical films of Examples 7 and 8 in which a dye other than the diimonium dye was also blended exhibited excellent optical properties despite the small amount of the total dye.
On the other hand, the optical films of Examples 11 and 13 using normal butyl as the side chain R and Examples 12 and 16 using cyanopropyl had poor moisture resistance, and in particular, Examples 12 and 16 had poor heat resistance.

本発明の光学フィルムは、各種表示装置用の光学フィルタとして有用であり、特にPDPの視認側に設置されて用いられる光学フィルタに好適である。
The optical film of the present invention is useful as an optical filter for various display devices, and is particularly suitable for an optical filter that is installed and used on the viewing side of a PDP.

Claims (5)

下式(1)で表される化合物および樹脂を含有する近赤外線吸収層を有する光学フィルム。
Figure 2008026727
ただし、R〜Rは、イソブチルを表し、Xは、(RSOで表される陰イオンを表し、Rは、炭素数1〜4のフルオロアルキル基を表す。
An optical film having a near-infrared absorbing layer containing a compound represented by the following formula (1) and a resin.
Figure 2008026727
However, R 1 to R 8 is an isobutyl, X - is, (R f SO 2) 3 C - represents an anion represented by the R f, represents a fluoroalkyl group having 1 to 4 carbon atoms .
前記フルオロアルキル基が、パーフルオロアルキル基である、請求項1に記載の光学フィルム。   The optical film according to claim 1, wherein the fluoroalkyl group is a perfluoroalkyl group. 前記近赤外線吸収層が、さらに、最大吸収波長(λmax)が800〜1100nmの範囲にある、前記式(1)で表される化合物以外の近赤外線吸収色素を含有する、請求項1または2に記載の光学フィルム。 The near-infrared absorbing layer further contains a near-infrared absorbing dye other than the compound represented by the formula (1), wherein the maximum absorption wavelength (λ max ) is in the range of 800 to 1100 nm. The optical film described in 1. 前記式(1)で表される化合物以外の近赤外線吸収色素が、アミニウム系色素およびシアニン系色素から選ばれる少なくとも1種の近赤外線吸収色素である、請求項3に記載の光学フィルム。   The optical film according to claim 3, wherein the near-infrared absorbing dye other than the compound represented by the formula (1) is at least one near-infrared absorbing dye selected from an aminium dye and a cyanine dye. 前記樹脂のガラス転移温度(Tg)が、80℃以下である、請求項1〜4のいずれかに記載の光学フィルム。
The optical film in any one of Claims 1-4 whose glass transition temperature (Tg) of the said resin is 80 degrees C or less.
JP2006201023A 2006-07-24 2006-07-24 Optical film Withdrawn JP2008026727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201023A JP2008026727A (en) 2006-07-24 2006-07-24 Optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201023A JP2008026727A (en) 2006-07-24 2006-07-24 Optical film

Publications (1)

Publication Number Publication Date
JP2008026727A true JP2008026727A (en) 2008-02-07

Family

ID=39117397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201023A Withdrawn JP2008026727A (en) 2006-07-24 2006-07-24 Optical film

Country Status (1)

Country Link
JP (1) JP2008026727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162393A1 (en) * 2010-06-25 2011-12-29 旭硝子株式会社 Optical film and process for production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361525A (en) * 2003-06-03 2004-12-24 Dainippon Printing Co Ltd Optical filter and display using the same
JP2005049848A (en) * 2003-07-16 2005-02-24 Asahi Glass Co Ltd Optical film
WO2006028006A1 (en) * 2004-09-06 2006-03-16 Nippon Kayaku Kabushiki Kaisha Diimmonium compound and use thereof
JP2007004098A (en) * 2005-05-25 2007-01-11 Nippon Kayaku Co Ltd Near infrared absorption filter and optical filter using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361525A (en) * 2003-06-03 2004-12-24 Dainippon Printing Co Ltd Optical filter and display using the same
JP2005049848A (en) * 2003-07-16 2005-02-24 Asahi Glass Co Ltd Optical film
WO2006028006A1 (en) * 2004-09-06 2006-03-16 Nippon Kayaku Kabushiki Kaisha Diimmonium compound and use thereof
JP2007004098A (en) * 2005-05-25 2007-01-11 Nippon Kayaku Co Ltd Near infrared absorption filter and optical filter using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162393A1 (en) * 2010-06-25 2011-12-29 旭硝子株式会社 Optical film and process for production thereof
JPWO2011162393A1 (en) * 2010-06-25 2013-08-22 旭硝子株式会社 Optical film and manufacturing method thereof
US8664309B2 (en) 2010-06-25 2014-03-04 Asahi Glass Company, Limited Optical film and process for its production

Similar Documents

Publication Publication Date Title
EP1496375B1 (en) Composition for optical film comprising a near-infrared absorbing dye and a quencher
JP5040645B2 (en) Adhesive composition, adhesive film and optical filter
JP2005062506A (en) Near-infrared ray absorbing adhesive composition, and optical film
JP4918860B2 (en) Adhesive composition and optical filter
JP4086871B2 (en) Near-infrared shield and display front plate
JP2007163644A (en) Composition for forming optical film, optical film and optical filter
JP4440720B2 (en) Optical film
JP2005049848A (en) Optical film
JP2010266870A (en) Optical film
US6818304B2 (en) Optical film
JP2008026727A (en) Optical film
JP2003021715A (en) Near ir absorbing film
JP4353024B2 (en) Color correction heat welding film and near infrared cut filter with heat welding function using the same
JP2004325532A (en) Film for plasma display and plasma display filter using the film
JP2005084474A (en) Optical filter and display using the same
JP4730333B2 (en) Optical film
JP2005258170A (en) Optical film and its manufacturing method
JP2008070869A (en) Composition for optical film and optical film
JP2007079462A (en) Filter for display and display
JP3957567B2 (en) Optical filter
JP2007310383A (en) Near-infrared shield and display front plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090615

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A761 Written withdrawal of application

Effective date: 20111207

Free format text: JAPANESE INTERMEDIATE CODE: A761