JP2008026380A - Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device - Google Patents

Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device Download PDF

Info

Publication number
JP2008026380A
JP2008026380A JP2006195617A JP2006195617A JP2008026380A JP 2008026380 A JP2008026380 A JP 2008026380A JP 2006195617 A JP2006195617 A JP 2006195617A JP 2006195617 A JP2006195617 A JP 2006195617A JP 2008026380 A JP2008026380 A JP 2008026380A
Authority
JP
Japan
Prior art keywords
contact type
charging
charging roller
roller
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195617A
Other languages
Japanese (ja)
Inventor
Shoji Ishiwatari
正二 石渡
Takeshi Miki
剛 三樹
Takahiro Imai
崇尋 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006195617A priority Critical patent/JP2008026380A/en
Publication of JP2008026380A publication Critical patent/JP2008026380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact type electrifying roller which has very little swell expansion compared to the conventional one in the range of the environmental conditions of an image forming apparatus, is free from the occurrence of cracks that may result in image formation failure, also free from bleeding-out of an ion conductive agent, ensures suppression of variation of electrification potential relative to a body to be electrified, and further is hardly subject to sputtering action during discharge, and to provide an electrifying device equipped with the non-contact type electrifying roller and an image forming apparatus equipped with the electrifying device. <P>SOLUTION: (1) The non-contact type electrifying roller is obtained by forming an oxide film of aluminum on the surface of a support composed of aluminum alloy, and forming a silica film obtained by using alkoxy silane on the surface of the oxide film. (2) The non-contact type electrifying roller described in (1) is such that the oxide film and the silica film obtained by using the alkoxy silane are resistance adjusting layers and a protective layer composed of resin composition including conductive particulates dispersed therein is formed on the surface of the resistance adjusting layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、像担持体表面を非接触で帯電する非接触式帯電ローラ、当該非接触式帯電ローラを備えた帯電装置、及び該帯電装置を備えた画像形成装置に関する。   The present invention relates to a non-contact charging roller that charges a surface of an image carrier in a non-contact manner, a charging device including the non-contact charging roller, and an image forming apparatus including the charging device.

複写機やレーザープリンタ等の電子写真方式の画像形成装置に使用される帯電装置には、オゾンや窒素酸化物の生成を抑制するための低電圧での帯電、画像形成装置の小型化、電源の低コスト化等から、帯電ローラの帯電電位付与面を感光体と接触させた接触式帯電ローラが使われている。
この接触式帯電ローラの帯電電位付与面となる材質は、アクリルニトリルブタジエンゴムやエピクロルヒドリンゴム等の弾性部材に、カーボンブラック等の導電性微粒子を分散させて、体積固有抵抗値を10〜10Ωcm、厚みを2〜3mmとし、表面に撥水性のフッ素系樹脂等を含有する組成物を薄く(0.1〜0.2μm)塗布し、汚れ防止や画像形成装置の設置環境(高温高湿、低温低湿)に対する安定性を確保しようとしているが、設置環境での高温高湿時には弾性部材が膨張膨潤し易く帯電性能を変化させてしまう。
同じく、カーボンブラック等の導電性付与剤を分散させた電気抵抗が10〜1010Ωcmのポリウレタン等の弾性部材表面に、ポリシラザンからなる表面被覆膜を形成して摩擦係数を低下させ、表面粘着性が小さく摺動や圧接回転による外径寸法や電気抵抗の変化が少ない導電性ローラが知られているが(特許文献1参照)、帯電ローラとして用いる場合には、やはり、高温高湿時に弾性部材が膨張膨潤し易く、帯電性能を変化させてしまう。また、その表面は、接触式のため記録紙の紙粉や感光体表面に残留するトナー等が付着して汚れ易く、長期使用における耐久性の面でも問題が生じ易い。
このため、帯電電位付与面を形成する部材の膨張膨潤性を改善し、汚れが付着し難く、メンテナンス頻度の比較的少ない非接触式帯電ローラが用いられるようになってきた。
Charging devices used in electrophotographic image forming apparatuses such as copiers and laser printers are charged at a low voltage to suppress the formation of ozone and nitrogen oxides, downsized image forming apparatuses, In order to reduce the cost and the like, a contact-type charging roller is used in which the charging potential applying surface of the charging roller is in contact with the photosensitive member.
The material used as the charging potential application surface of the contact-type charging roller is made by dispersing conductive fine particles such as carbon black in an elastic member such as acrylonitrile butadiene rubber or epichlorohydrin rubber, and having a volume resistivity of 10 6 to 10 9. Apply a thin (0.1-0.2 μm) composition containing water-repellent fluororesin, etc. on the surface, with a thickness of 2 to 3 mm, preventing contamination and setting environment (high temperature and high humidity) However, at high temperatures and high humidity in the installation environment, the elastic member easily expands and swells and changes the charging performance.
Similarly, a surface coating film made of polysilazane is formed on the surface of an elastic member such as polyurethane having an electrical resistance of 10 3 to 10 10 Ωcm in which a conductivity imparting agent such as carbon black is dispersed to reduce the friction coefficient, A conductive roller is known that has a low adhesiveness and a small change in outer diameter and electrical resistance due to sliding and press-rotating (see Patent Document 1). The elastic member easily expands and swells, and changes the charging performance. In addition, since the surface is contact type, paper dust of recording paper, toner remaining on the surface of the photoreceptor and the like are likely to become dirty, and problems are likely to occur in terms of durability in long-term use.
For this reason, non-contact type charging rollers that improve the expansion / swellability of the member that forms the charging potential applying surface, are less likely to adhere dirt, and have a relatively low maintenance frequency have come to be used.

非接触式帯電ローラでは、導電性支持体上に、高分子界面活性剤であるポリエーテルエステルアミド成分をABS樹脂に含有させ、射出成形により0.5〜1mmの厚みで被覆して抵抗調整層とし、その表面に、酸化スズ、ITO(酸化インジウムスズ)、カーボンブラック等の導電剤微粒子を50〜60重量%添加して体積固有抵抗値が1010〜1012Ωcmになるように調整した樹脂組成物からなる膜厚5〜10μmの保護層を形成したものが用いられる。この非接触式帯電ローラでは、導電性支持体上の抵抗調整層が樹脂であり、保護層もアクリル、シリコン、ウレタン又はフッ素系の樹脂と導電性微粒子からなるので、ゴム部材を用いたものと異なり、温湿度条件の変化に対し膨潤膨張量は比較的少なく、また、非接触式における帯電ギャップを狭小とすることも少ない。
しかし、ポリエーテルエステルアミド成分をABS樹脂に含有させて抵抗調整層とする場合には、ABS樹脂の体積固有抵抗値が高い(1012〜1016Ωcm)ので、10〜10Ωcmに低下させるため10〜10Ωcmのポリエーテルエステルアミド成分を多量に混入分散する必要があり(ABS樹脂100重量部に対し100〜120重量部程度)、温湿度条件により、飽和吸水率50〜70%のポリエーテルエステルアミド成分の影響が出易くなる。そのため、四級アンモニウム塩等の界面活性剤を3〜5重量%添加してポリエーテルエステルアミド成分の添加量を抑えたものもある。
また、ポリエーテルエステルアミド成分をABS樹脂に含有させて射出成形する場合には、射出成形用ペレット材料の吸湿量が多いと、泡などを発生させて成形不良となるので、成形前に水分量を0.5〜1質量%に減湿させて使用する。
In a non-contact type charging roller, a polyether ester amide component, which is a polymer surfactant, is contained in an ABS resin on a conductive support, and is coated with a thickness of 0.5 to 1 mm by injection molding, and a resistance adjusting layer. And 50 to 60% by weight of conductive agent fine particles such as tin oxide, ITO (indium tin oxide), carbon black, and the like on the surface, and adjusted so that the volume resistivity is 10 10 to 10 12 Ωcm. What formed the protective layer with a film thickness of 5-10 micrometers which consists of a composition is used. In this non-contact type charging roller, the resistance adjustment layer on the conductive support is a resin, and the protective layer is also made of an acrylic, silicon, urethane or fluorine-based resin and conductive fine particles. In contrast, the swelling expansion amount is relatively small with respect to changes in temperature and humidity conditions, and the charging gap in the non-contact type is rarely narrowed.
However, when the polyether ester amide component is contained in the ABS resin to form a resistance adjusting layer, the volume resistivity value of the ABS resin is high (10 12 to 10 16 Ωcm), so that it decreases to 10 8 to 10 9 Ωcm. Therefore, it is necessary to mix and disperse a large amount of 10 7 to 10 8 Ωcm polyether ester amide component (about 100 to 120 parts by weight with respect to 100 parts by weight of ABS resin), and depending on temperature and humidity conditions, saturated water absorption 50 to 70 % Of the polyetheresteramide component is easily affected. For this reason, some surfactants such as quaternary ammonium salts are added to suppress the addition amount of the polyetheresteramide component by adding 3 to 5% by weight.
In addition, when injection molding is performed with the polyether ester amide component contained in the ABS resin, if the moisture absorption amount of the pellet material for injection molding is large, foam will be generated and defective molding will occur. Is used after dehumidifying to 0.5 to 1% by mass.

抵抗調整層上に形成する保護層は、スプレー塗布等により、イソシアネート系硬化剤を用いた塗料を膜厚5〜15μmになるように成膜したのち、100〜130℃で30分間程度の加熱を行って形成するため、下層の抵抗調整層が熱膨張した状態にある表面で硬化することになる。
画像形成装置内では高温高湿(30℃90%RH)から低温低湿(10℃15%RH)の範囲の動作環境が想定されるが、上記の方法で形成される非接触式帯電ローラは、抵抗調整層のポリエーテルエステルアミド成分の飽和吸水率が50〜70%と高いために、高温高湿条件では保護層を通して吸湿膨潤する。
また、射出成形加工時の成形金型内で抵抗調整層材料が硬化する際に、ウエルドラインにポリエーテルエステルアミド成分が多くなり、その部分の電気抵抗が低下して帯電電位付与時の電路となって発熱し易く、変性劣化して脆くなり、画像形成装置の動作環境が低温低湿(10℃15%RH)となったときなどに収縮差を生じて亀裂を発生させ易い。
The protective layer formed on the resistance adjustment layer is formed by spray coating or the like using an isocyanate curing agent so as to have a film thickness of 5 to 15 μm, and then heated at 100 to 130 ° C. for about 30 minutes. In order to form by performing, it will harden | cure on the surface in the state which the lower resistance adjustment layer thermally expanded.
In the image forming apparatus, an operating environment ranging from high temperature and high humidity (30 ° C. and 90% RH) to low temperature and low humidity (10 ° C. and 15% RH) is assumed, but the non-contact type charging roller formed by the above method is Since the saturated water absorption rate of the polyether ester amide component of the resistance adjusting layer is as high as 50 to 70%, the moisture swells through the protective layer under high temperature and high humidity conditions.
In addition, when the resistance adjustment layer material is cured in the molding die during the injection molding process, the polyether ester amide component increases in the weld line, the electrical resistance of the portion decreases, and the electric path for applying the charging potential It tends to generate heat, becomes denatured and becomes brittle, and when the operating environment of the image forming apparatus becomes low temperature and low humidity (10 ° C., 15% RH), it causes a difference in shrinkage and easily causes cracks.

関連する公知技術としては、特許文献2に、導電性支持体上に高分子型イオン導電材料のポリエーテルエステルアミド含有化合物又は四級アンモニウム塩基含有化合物からなるイオン導電材料を分散した熱可塑性組成物を用いて、抵抗調整層を射出成形又は押出し成形で形成し、その表面を、アクリル骨格中にポリシロキサン成分を含有するセラミックハイブリッド材料からなる保護層で被覆した帯電部材が開示されている。
しかし、熱可塑性組成物を用いて抵抗調整層を射出成形又は押出し成形で形成する場合に、溶融材の流動性を確保するため、層の厚みを1〜2mm程度に厚くして表面に保護層を形成する必要があり、表面近傍が保護層形成時の溶剤により膨潤して抵抗調整層に亀裂を生じ易くなったり、保護層形成の際に加熱乾燥による抵抗調整層の熱膨張や抵抗調整層の吸湿を招く。また、成形金型内のウエルドライン部分にポリエーテルエステルアミド成分が多くなり、電路を形成して発熱し易くなり、樹脂成分が変性劣化して亀裂を発生させ易くなったりし、帯電電位付与時には抵抗調整層中の四級アンモニウム塩等のイオン導電材料が保護層表面にブリードアウトして被帯電体の帯電電位を変動させる。
As a related known technique, Patent Document 2 discloses a thermoplastic composition in which an ion conductive material composed of a polyether ester amide-containing compound or a quaternary ammonium base-containing compound of a polymer type ion conductive material is dispersed on a conductive support. A charging member is disclosed in which a resistance adjusting layer is formed by injection molding or extrusion molding, and the surface thereof is coated with a protective layer made of a ceramic hybrid material containing a polysiloxane component in an acrylic skeleton.
However, when the resistance adjusting layer is formed by injection molding or extrusion molding using the thermoplastic composition, the protective layer is formed on the surface by increasing the thickness of the layer to about 1 to 2 mm in order to ensure the fluidity of the molten material. The resistance adjustment layer is likely to be cracked by swelling in the vicinity of the surface due to the solvent at the time of forming the protective layer, or the resistance adjustment layer is thermally expanded or dried by heat drying when forming the protection layer. Invite moisture. In addition, the polyether ester amide component increases in the weld line part in the molding die, and it becomes easy to generate heat by forming an electric circuit, and the resin component is easily modified and deteriorated to cause cracks. An ionic conductive material such as a quaternary ammonium salt in the resistance adjustment layer bleeds out to the surface of the protective layer, thereby changing the charged potential of the charged body.

また、特許文献3では、抵抗調整層の外周面から両端部側面まで保護層で被覆することにより環境安定性が良くなるとしているが、保護層が10μm程度の薄膜であり、導電性微粒子が50〜60重量%添加されるために湿気が透過し易い。また抵抗調整層のポリエーテルエステルアミド成分が吸湿し易く膨潤するため保護層に亀裂を発生させ易い。また熱可塑性組成物により抵抗調整層を射出成形で形成する場合に、溶融材の流動性を確保するため、層の厚みを1〜2mm程度に厚くして表面に保護層を形成する必要があり、保護層形成時の溶剤により抵抗調整層が膨潤して亀裂を発生させ易くなったりする。
更に、射出成形加工時の成形金型内で抵抗調整層材料が硬化する際に、ウエルドラインにポリエーテルエステルアミド成分が多くなり、その部分の電気抵抗が低下して帯電電位付与時の電路となって発熱し、樹脂が変性劣化して脆くなり、画像形成装置の動作環境が低温低湿(10℃15%RH)となったときに収縮差を生じて亀裂を発生させ易い。
In Patent Document 3, the environmental stability is improved by covering with a protective layer from the outer peripheral surface of the resistance adjusting layer to the side surfaces of both ends. However, the protective layer is a thin film of about 10 μm, and the conductive fine particles are 50 Since it is added to 60% by weight, moisture easily permeates. Further, since the polyether ester amide component of the resistance adjusting layer easily absorbs moisture and swells, the protective layer is easily cracked. In addition, when the resistance adjustment layer is formed by injection molding with the thermoplastic composition, it is necessary to form a protective layer on the surface by increasing the thickness of the layer to about 1 to 2 mm in order to ensure the fluidity of the molten material. Further, the resistance adjusting layer swells due to the solvent at the time of forming the protective layer, and cracks are easily generated.
Further, when the resistance adjusting layer material is cured in the molding die during the injection molding process, the polyether ester amide component increases in the weld line, the electric resistance of the portion decreases, and the electric path when the charging potential is applied Heat is generated, the resin is denatured and deteriorated and becomes brittle. When the operating environment of the image forming apparatus is low temperature and low humidity (10 ° C. and 15% RH), a difference in shrinkage is easily generated and cracks are easily generated.

また、特許文献4には、トナー固着及びそれに伴う帯電不良の防止や長期使用時の耐久性を向上させるため、アクリル骨格中にフッ素成分とポリシロキサンオリゴマーを含有するハイブリッド樹脂で保護層を構成する方法が開示されている。
しかし、抵抗調整層にポリエーテルエステルアミド成分を含有した熱可塑性組成物を用いて射出成形する場合に、溶融材の流動性を確保するため、層の厚みを1〜2mm程度に厚くし、その上に保護層を形成する必要があり、抵抗調整層の表面近傍が保護層形成時の溶剤により膨潤して亀裂を発生させ易くなるという欠点がある。
また、射出成形加工時の成形金型内で抵抗調整層材料硬化の際にウエルドラインにポリエーテルエステルアミド成分が多くなり、その部分の電気抵抗が低下して帯電電位付与時の電路となって発熱し、樹脂が変性劣化して脆くなり、画像形成装置動作環境が低温低湿(10℃15%RH)となったときに収縮差を生じて亀裂を発生させ易い。
また、小径の非接触式帯電ローラは、中心部の導電性支持体である金属製軸部材も比較的細く形成されるため、剛性が低下する欠点があり、感光体表面と帯電ローラの帯電電位付与面が形成する帯電ギャップの変動を大きくし感光体への帯電ムラを起こし易い。
このため、帯電ローラに印加するDC(直流)電圧の帯電ムラを防止するために重畳するAC(交流)電圧を高くする傾向にあり、帯電ローラの抵抗調整層に形成されるウエルドラインのポリエーテルエステルアミド成分が多くなった部分の電流が増加して変性劣化し脆くなって亀裂を発生させ易くなる。
また、帯電電位付与面はコロナ放電が強くなり、発生するオゾン及びスパッタリング作用により損傷し易くなる。
In Patent Document 4, a protective layer is composed of a hybrid resin containing a fluorine component and a polysiloxane oligomer in an acrylic skeleton in order to prevent toner fixation and charging failure associated therewith and improve durability during long-term use. A method is disclosed.
However, when injection molding is performed using a thermoplastic composition containing a polyether ester amide component in the resistance adjustment layer, in order to ensure the fluidity of the molten material, the thickness of the layer is increased to about 1 to 2 mm. There is a disadvantage that a protective layer needs to be formed on the surface, and the vicinity of the surface of the resistance adjusting layer is easily swollen by a solvent at the time of forming the protective layer, and cracks are easily generated.
In addition, when the resistance adjustment layer material is cured in the molding die during the injection molding process, the polyether ester amide component increases in the weld line, and the electric resistance of the portion decreases to provide an electric circuit for applying a charging potential. When heat is generated, the resin is denatured and deteriorated and becomes brittle, and when the operating environment of the image forming apparatus is low temperature and low humidity (10 ° C., 15% RH), a difference in shrinkage is easily generated and cracks are easily generated.
In addition, the small-diameter non-contact type charging roller has a drawback that rigidity is lowered because the metal shaft member, which is a conductive support in the central portion, is formed relatively thin, and the charging potential between the surface of the photosensitive member and the charging roller is low. The variation in the charging gap formed by the imparting surface is increased, and charging unevenness to the photosensitive member is likely to occur.
For this reason, there is a tendency to increase the superimposed AC (alternating current) voltage to prevent charging unevenness of the DC (direct current) voltage applied to the charging roller, and the weld line polyether formed in the resistance adjusting layer of the charging roller. The current in the portion where the ester amide component is increased is increased, and the degradation is deteriorated and becomes brittle, and cracks are easily generated.
In addition, the charged potential application surface has a strong corona discharge and is easily damaged by the generated ozone and sputtering action.

特開平9−90739号公報JP-A-9-90739 特開2003−76116号公報JP 2003-76116 A 特開2004−70172号公報JP 2004-70172 A 特開2004−109528号公報JP 2004-109528 A

本発明は上記事情に鑑みてなされたもので、画像形成装置の環境条件(10℃15%〜30℃90%)の範囲で、従来の非接触式帯電ローラに比べて膨潤膨張が非常に少なく、画像形成欠陥を起こすようなひび割れの発生が無く、イオン導電剤のブリードアウトが無く、被帯電体への帯電電位変動を抑制することができ、更には、放電時のスパッタリング作用を受けることが少ない非接触式帯電ローラの提供、及び、該非接触式帯電ローラを備えた帯電装置、該帯電装置を備えた画像形成装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and in the range of environmental conditions (10 ° C. 15% to 30 ° C. 90%) of the image forming apparatus, the swelling and expansion is very small as compared with the conventional non-contact type charging roller. In addition, there is no occurrence of cracks that cause image formation defects, there is no bleed-out of the ionic conductive agent, charging potential fluctuation to the charged body can be suppressed, and furthermore, it can be subjected to sputtering action during discharge. An object of the present invention is to provide a small number of non-contact type charging rollers, a charging device including the non-contact type charging roller, and an image forming apparatus including the charging device.

上記課題は次の1)〜4)の発明(以下、本発明1〜4という)によって解決される。
1) アルミニウム合金からなる支持体表面にアルミニウムの酸化皮膜を形成し、該酸化皮膜の表面にアルコキシシランを用いて得られるシリカ膜を形成したことを特徴とする非接触式帯電ローラ。
2) 酸化皮膜及びアルコキシシランを用いて得られるシリカ膜を抵抗調整層とし、該抵抗調整層の表面に、導電性微粒子を分散させた樹脂組成物からなる保護層を形成したことを特徴とする1)記載の非接触式帯電ローラ。
3) 画像形成装置の感光体両端部と接し、感光体の帯電面となる範囲に帯電ギャップを形成して感光体に帯電電位を付与することができる非接触式帯電ローラとして、1)又は2)記載の非接触式帯電ローラを備えたことを特徴とする帯電装置。
4) 感光体表面を帯電する帯電装置として、3)記載の帯電装置を備えたことを特徴とする画像形成装置。
The above problems are solved by the following inventions 1) to 4) (hereinafter referred to as the present invention 1 to 4).
1) A non-contact type charging roller characterized in that an aluminum oxide film is formed on the surface of a support made of an aluminum alloy, and a silica film obtained by using alkoxysilane is formed on the surface of the oxide film.
2) A silica film obtained using an oxide film and alkoxysilane is used as a resistance adjustment layer, and a protective layer made of a resin composition in which conductive fine particles are dispersed is formed on the surface of the resistance adjustment layer. 1) The non-contact type charging roller described.
3) As a non-contact type charging roller that is in contact with both ends of the photoconductor of the image forming apparatus and forms a charging gap in a range that becomes a charging surface of the photoconductor to apply a charging potential to the photoconductor 1) or 2 A charging device comprising the non-contact type charging roller according to claim 1.
4) An image forming apparatus comprising the charging device according to 3) as a charging device for charging the surface of the photoreceptor.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
図8(a)は、機能分離型有機系感光体を使用しカールソンプロセスを用いる白黒及びカラー画像形成装置の構成図で、シアン、マゼンタ、イエロー、ブラックの各色毎のトナー画像形成ユニット81が順次配置されている。
図8(b)は、トナー画像形成ユニット81の構成を示し、外径φ30〜100mmの円筒状の機能分離型有機系感光体82を中心とし、その外周に帯電ユニット83、光書き込みユニット84、現像ユニット85、クリーニングユニット86が配置され、各色トナー毎に構成されて、転写ユニット87の転写ベルト88上に配置されている。
機能分離型有機系感光体82の表面には、帯電ローラ89により600〜800Vの正又は負の帯電が与えられ、レーザー光810により潜像を形成し、現像部材811によりトナーを静電付着させて可視画像とし、記録紙812上に転写部材813でトナー像を静電転写し、図8(a)の定着ユニット814に、画像形成された記録紙812を搬送し、160〜200℃でトナー像を加熱加圧して定着する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 8A is a configuration diagram of a black and white and color image forming apparatus using a function-separated organic photoconductor and using the Carlson process. Toner image forming units 81 for each color of cyan, magenta, yellow, and black are sequentially arranged. Has been placed.
FIG. 8B shows the configuration of the toner image forming unit 81, centering on a cylindrical function-separated organic photoconductor 82 having an outer diameter φ of 30 to 100 mm, and a charging unit 83, an optical writing unit 84, A developing unit 85 and a cleaning unit 86 are arranged, configured for each color toner, and arranged on the transfer belt 88 of the transfer unit 87.
The surface of the function-separated organic photoconductor 82 is charged with a positive or negative voltage of 600 to 800 V by a charging roller 89, forms a latent image with a laser beam 810, and electrostatically attaches toner with a developing member 811. Then, the toner image is electrostatically transferred onto the recording paper 812 by the transfer member 813, and the recording paper 812 on which the image is formed is conveyed to the fixing unit 814 in FIG. The image is fixed by heating and pressing.

近年、複写機やレーザープリンタなどの画像形成装置の感光体への帯電方法は、帯電装置を小型で省スペース化するため、また、感光体への帯電電位付与時のオゾン発生量を低減させるために、低電圧帯電を可能とする近接式ローラ帯電方法が採用されている。
この近接式ローラ帯電では、カーボンブラック等の導電剤を分散混入させた1〜2mmの厚さを有する導電性ゴムを利用し、画像形成時の帯電ムラを防止するためにその抵抗値を10〜10Ωcmに制御し、その弾性を利用して帯電ギャップを作らずに感光体と接触させる接触式帯電ローラを用いるか、又は、ポリエーテルエステルアミド等の高分子化合物及び四級アンモニウム塩等のイオン導電性物質を含有させて抵抗値を10〜10Ωcmに制御したABS樹脂を、射出成形により導電性支持体の表面に0.5〜1mmの厚みで被覆して抵抗調整層とし、該抵抗調整層の表面に、酸化錫、ITO(酸化錫インジウム)、カーボンブラックなどの導電性微粒子を分散させた熱可塑性樹脂組成物からなる保護層を形成し、感光体の両端部に帯電ギャップ保持部材を用いて当接させ、50〜100μmのギャップを持たせて近接させることにより、感光体と非接触とする非接触式帯電ローラを用いるかして、低電圧で帯電させている。
In recent years, a method for charging a photoconductor of an image forming apparatus such as a copying machine or a laser printer has been proposed in order to reduce the size of the charging device and save space, and to reduce the amount of ozone generated when a charged potential is applied to the photoconductor. In addition, a proximity roller charging method that enables low voltage charging is employed.
In this proximity roller charging, a conductive rubber having a thickness of 1 to 2 mm in which a conductive agent such as carbon black is dispersed and mixed is used, and its resistance value is set to 10 8 in order to prevent uneven charging during image formation. Use a contact-type charging roller that is controlled to 10 9 Ωcm and makes contact with the photoreceptor without making a charging gap using its elasticity, or a polymer compound such as polyetheresteramide and a quaternary ammonium salt, etc. A resistance adjustment layer is formed by coating the surface of a conductive support with a thickness of 0.5 to 1 mm by injection molding with an ABS resin whose resistance value is controlled to 10 8 to 10 9 Ωcm by containing an ionic conductive material. A protective layer made of a thermoplastic resin composition in which conductive fine particles such as tin oxide, ITO (indium tin oxide), and carbon black are dispersed is formed on the surface of the resistance adjustment layer; Charging at a low voltage by using a non-contact type charging roller that is in non-contact with the photosensitive member by bringing the both ends into contact with each other using a charging gap holding member and having a gap of 50 to 100 μm close to each other. I am letting.

<非接触式帯電ローラの抵抗調整層及び保護層の損傷する原因>
図3(a)に示すように、非接触式帯電ローラでは、帯電電圧を印加するための支持体として金属製軸部材30を用い、軸受け部31、電圧印加用軸受け部32、外径8〜12mmの被覆部33が一体で構成される。
図3(b)に示すように、被覆部33の周面上には、ポリエーテルエステルアミド等の高分子化合物及び四級アンモニウム塩等のイオン導電性物質を含有したABS樹脂(熱可塑性樹脂)を用いて、射出成形により0.5〜1mmの厚みで被覆したのち旋削加工を施して抵抗調整層34を形成し、該抵抗調整層34の表面に酸化スズ、ITO(酸化錫インジウム)、カーボンブラック等などの導電性微粒子が分散した電気抵抗1012〜1013Ωcmの熱可塑性樹脂組成物からなる5〜10μmの厚みの保護層35を形成する。
非接触式帯電ローラでは感光体両端と当接させてギャップを形成させるために、ギャップ形成部材36及び37が被覆され、所望の帯電ギャップを形成する。
ギャップ形成部材36、37の厚みは、通常、印加電圧を低電圧とするため50〜60μm程度であり、テフロン(登録商標)及びポリイミド等の粘着テープや熱収縮性のテフロン(登録商標)チユーブ及び樹脂等が用いられる。
<Causes of damage to resistance adjustment layer and protective layer of non-contact type charging roller>
As shown in FIG. 3A, in the non-contact type charging roller, a metal shaft member 30 is used as a support for applying a charging voltage, and a bearing portion 31, a voltage application bearing portion 32, an outer diameter of 8 to 8 are used. A 12 mm covering portion 33 is integrally formed.
As shown in FIG. 3B, an ABS resin (thermoplastic resin) containing a polymer compound such as polyetheresteramide and an ion conductive substance such as a quaternary ammonium salt is formed on the peripheral surface of the covering portion 33. Is used to form a resistance adjusting layer 34 by coating with a thickness of 0.5 to 1 mm by injection molding, and tin oxide, ITO (indium tin oxide), carbon is formed on the surface of the resistance adjusting layer 34 A protective layer 35 having a thickness of 5 to 10 μm is formed of a thermoplastic resin composition having an electric resistance of 10 12 to 10 13 Ωcm in which conductive fine particles such as black are dispersed.
In the non-contact type charging roller, the gap forming members 36 and 37 are covered to form a gap by making contact with both ends of the photoreceptor to form a desired charging gap.
The thickness of the gap forming members 36 and 37 is usually about 50 to 60 μm in order to make the applied voltage low, and adhesive tapes such as Teflon (registered trademark) and polyimide, heat-shrinkable Teflon (registered trademark) tubes, and Resin or the like is used.

図3(c)に示すように、図3(b)の非接触式帯電ローラを用いて、画像形成装置の感光体両端部と当接し、感光体の帯電面38の範囲に帯電ギャップ39、310、311を形成すると、感光体の中央部の帯電ギャップ310では、その隙間が狭小となり易い傾向にあり、その狭小となる量1μm当たり5〜10Vで帯電電位が変化して、画像形成時のムラやザラツキを引き起こす不具合を生じ易い。
これは、画像形成装置を小型化するために、非接触式帯電ローラの金属製軸部材30が小径化し、軸方向の機械強度が低下したためであり、本来設定される帯電ギャップは、ギャップ形成部材36及び37により50〜60μmとなるが、非接触式帯電ローラ312と感光体313を形成する精度によって、軸方向中央部では、設定する帯電ギャップ50〜60μmに対し、中央部の帯電ギャップ310が5〜10μm程度狭くなり易い傾向がある。
また、非接触式帯電ローラの中央部では、金属製軸部材30を無処理で使用すると被覆部33の軸振れが10〜20μm発生し易く、そのまま用いると感光体との帯電ギャップが回転に伴って狭小となり、残留するトナーと接触して非接触式帯電ローラの中央部にトナーが付着し汚染される状態になる。
As shown in FIG. 3C, the non-contact type charging roller shown in FIG. 3B is used to come into contact with both ends of the photosensitive member of the image forming apparatus, and the charging gap 39, When 310 and 311 are formed, in the charging gap 310 in the central portion of the photoconductor, the gap tends to be narrowed, and the charging potential is changed at 5 to 10 V per 1 μm of the narrowing amount. Problems that cause unevenness and roughness are likely to occur.
This is because the metal shaft member 30 of the non-contact type charging roller is reduced in diameter to reduce the size of the image forming apparatus, and the mechanical strength in the axial direction is lowered. 36 and 37, the charging gap 310 is 50-60 μm. However, depending on the accuracy of forming the non-contact type charging roller 312 and the photosensitive member 313, the charging gap 310 in the central portion is larger than the charging gap 50-60 μm in the central portion in the axial direction. There is a tendency to be narrowed by about 5 to 10 μm.
Further, in the central portion of the non-contact type charging roller, if the metal shaft member 30 is used without any treatment, the shaft portion of the covering portion 33 is likely to be shaken by 10 to 20 μm. As a result, the toner comes in contact with the remaining toner, and the toner adheres to the central portion of the non-contact type charging roller and becomes contaminated.

また、非接触式帯電ローラの金属製軸部材30を軸方向の機械強度が低いままで使用すると、中央部の帯電ギャップ310の幅の精度と外径形状が帯電ギャップ形成に影響してしまい、帯電ムラを防ぐために重畳するAC電圧(Vp−p)を上昇させ、その放電電流は、抵抗調整層34を樹脂で成形加工する際に樹脂の流動先端部が会合した場所に形成される細い線状のウエルドラインに流れる傾向がある。
ウエルドラインには、抵抗調整用の高分子界面活性剤であるポリエーテルエステルアミド成分が凝集し易く、凝集部分に放電電流が増加し発熱が多くなって変質劣化し易く、更に高温高湿環境では吸湿性の大きいポリエーテルエステルアミド成分が吸湿して電気抵抗を下げ、放電電流は増加傾向となり変質劣化を助長させ、抵抗調整層に亀裂を発生させ易い状況となり、低温低湿条件に移行すると変質劣化した部分で割れを生じる。
Further, when the metal shaft member 30 of the non-contact type charging roller is used while the mechanical strength in the axial direction is low, the accuracy of the width of the charging gap 310 in the central portion and the outer diameter shape affect the formation of the charging gap, The superimposed AC voltage (Vp-p) is raised to prevent charging unevenness, and the discharge current is a thin line formed at the place where the flow front portions of the resin meet when the resistance adjustment layer 34 is molded with the resin. There is a tendency to flow in a weld line.
In the weld line, the polyether ester amide component, which is a polymer surfactant for adjusting resistance, is likely to aggregate, the discharge current increases in the aggregated part, heat generation is increased, and deterioration is likely to occur. Highly hygroscopic polyether ester amide component absorbs moisture, lowers electrical resistance, discharge current tends to increase, promotes deterioration of deterioration, easily causes cracks in the resistance adjustment layer, and changes to low temperature and low humidity conditions. Cracks occur at the parts that are cut.

非接触式帯電ローラの場合、軸の直線性などについて金属製軸部材30の形状や精度の補正をせずに、電気的に帯電ムラを補正しようとすると、帯電ムラを補正するために重畳するAC印加電圧(Vp−p)は、−800Vの感光体の帯電に対し、−2000〜−2400V程度となる。その結果、帯電ローラ表面は高電圧で放電することとなり、発生するイオンやスパッタリング作用で、最表面の保護層の結着剤である樹脂成分の分解損耗度合いが大きくなって、形成する画像にザラツキが発生するようになり、部品寿命を短くして交換を余儀なくされる。
また、有機感光体表面も発生するイオンや電子の衝突で損傷する度合いが大きくなり、感光層を形成する樹脂の分解損耗などで、その寿命が低下する。また、高電圧で放電する場合には、オゾンや窒素酸化物の発生量も多くなり、画像形成装置を設置する室内環境を臭気などで汚染するようにもなる。
なお、図3(c)中の314、315はギヤ、316は軸間距離を示す。
In the case of the non-contact type charging roller, when correcting the charging unevenness without correcting the shape and accuracy of the metal shaft member 30 with respect to the linearity of the shaft, etc., it is superimposed to correct the charging unevenness. The AC applied voltage (Vp-p) is about -2000 to -2400V with respect to the charging of the photoconductor of -800V. As a result, the surface of the charging roller is discharged at a high voltage, and due to the generated ions and sputtering action, the degree of decomposition and wear of the resin component, which is the binder of the protective layer on the outermost surface, increases, and the formed image becomes rough. Will occur and the life of parts will be shortened and will be replaced.
Also, the surface of the organic photoreceptor is damaged by the collision of the generated ions and electrons, and the life of the photoreceptor is reduced due to decomposition and wear of the resin forming the photosensitive layer. In addition, when discharging at a high voltage, the amount of ozone and nitrogen oxide generated increases, and the indoor environment in which the image forming apparatus is installed is contaminated with odors.
In FIG. 3C, reference numerals 314 and 315 denote gears, and reference numeral 316 denotes an inter-axis distance.

<本発明の非接触式帯電ローラの構成>
そこで本発明では、図1(a)に示すように、金属製軸部材10の上に、アルミニウム合金からなる支持体11を形成し、その表面を、刃先のノーズR1〜5mm、ニゲ角5〜10°、スクイ角15〜20°、刃面の粗さ0〜0.2μm、刃面により形成される切れ刃嶺の丸み半径0〜0.5μmのダイヤモンドバイトを用いて旋削加工し、表面にアルミニウムの酸化皮膜12を形成させ、更に、アルコキシシランを用いて得られるシリカ膜13を被覆して非接触式帯電ローラとする。
図1(b)に示すように、順次形成する層の詳細な構成は、アルミニウム合金からなる支持体14(JIS H 4080 1999記載、合金番号1000番台、5000番台、6000番台の何れかを使用する)の表面を、0.5〜2.5mol/Lの濃度の無機酸又は有機酸を電解液として陽極酸化処理し、微細孔15が形成された膜厚10〜30μmの酸化皮膜16を形成する。
次いで、酸化皮膜16の表面に、SiOを28.8重量%含有する無色透明液体であるアルコキシシラン(テトラエトキシシラン、ポリテトラエトキシシランなど)を塗布し、100〜150℃で1時間焼成しシリカ膜17を形成する。
微細孔15の底部のバリヤー層18は、ホウ酸を電解液として、電圧250Vで電流がほぼゼロになるまでの約10分間程度陽極酸化し、膜厚を厚くして耐電圧を向上させる方が好ましい。
<Configuration of Non-Contact Charging Roller of the Present Invention>
Therefore, in the present invention, as shown in FIG. 1 (a), a support 11 made of an aluminum alloy is formed on a metal shaft member 10, and the surface thereof has a nose R1 to 5 mm at a cutting edge, a 5 Turned with a diamond tool of 10 °, a squeeze angle of 15 to 20 °, a roughness of the blade surface of 0 to 0.2 μm, and a round radius of the cutting edge ridge formed by the blade surface of 0 to 0.5 μm. An aluminum oxide film 12 is formed, and a silica film 13 obtained by using alkoxysilane is further coated to form a non-contact type charging roller.
As shown in FIG.1 (b), the detailed structure of the layer formed sequentially uses the support body 14 (JIS H 4080 1999 description, alloy number 1000s, 5000s, 6000s description) which consists of aluminum alloys. ) Is anodized using an inorganic or organic acid having a concentration of 0.5 to 2.5 mol / L as an electrolytic solution to form an oxide film 16 having a thickness of 10 to 30 μm in which fine holes 15 are formed. .
Next, alkoxysilane (tetraethoxysilane, polytetraethoxysilane, etc.), which is a colorless transparent liquid containing 28.8% by weight of SiO 2, is applied to the surface of the oxide film 16 and baked at 100 to 150 ° C. for 1 hour. A silica film 17 is formed.
The barrier layer 18 at the bottom of the micropores 15 should be anodized for about 10 minutes using boric acid as an electrolyte until the current becomes almost zero at a voltage of 250 V, and the withstand voltage is improved by increasing the film thickness. preferable.

更に図1(c)に示すように、アルコキシシランを用いて得られるシリカ膜13の表面に保護層113を被覆して非接触式帯電ローラとする。保護層113は導電性微粒子を分散させた電気抵抗1012〜1013Ωcm、膜厚5〜15μmの、フッ素樹脂系セラミックハイブリッド塗料とカーボンブラックからなる樹脂組成物などで形成される。
更に、図1(d)に示すように、金属製軸部材114としてSUS440A、SUS440B、SUS440C、及びSUS440Fのステンレス鋼棒の何れかを用い、外径周面が硬度HRC54〜65になるように焼入硬化処理を施して使用する。このように外径周面を焼入硬化し機械強度の増加した金属製軸部材114を用いて非接触式帯電ローラを形成するようにすれば、強度が増加した分、軸振れ精度が悪化せず、設定する帯電ギャップを確保し易くなる。
Further, as shown in FIG. 1C, the surface of the silica film 13 obtained by using alkoxysilane is coated with a protective layer 113 to obtain a non-contact type charging roller. The protective layer 113 is formed of a resin composition made of a fluororesin-based ceramic hybrid paint and carbon black having an electrical resistance of 10 12 to 10 13 Ωcm and a film thickness of 5 to 15 μm in which conductive fine particles are dispersed.
Further, as shown in FIG. 1 (d), any one of SUS440A, SUS440B, SUS440C, and SUS440F stainless steel rods is used as the metal shaft member 114, and the outer peripheral surface has a hardness of HRC54 to 65. Used after being cured. If the non-contact type charging roller is formed by using the metal shaft member 114 having an increased mechanical strength by quenching and hardening the outer peripheral surface in this way, the shaft runout accuracy deteriorates as the strength increases. Therefore, it is easy to secure the charging gap to be set.

図2(a)は抵抗調整層に熱可塑性樹脂組成物を用いた従来型の非接触式帯電ローラの構成を示し、金属製軸部材20上に、ポリエーテルエステルアミド等の高分子化合物及び四級アンモニウム塩等のイオン導電性物質を含有させて電気抵抗値10〜10Ωcmになるよう調整されたABS樹脂組成物の抵抗調整層21が、0.5〜1mmの膜厚で射出成形により形成され、最表面に導電性微粒子を分散させて電気抵抗値が1010〜1012Ωcmになるように調整された熱可塑性樹脂組成物からなる保護層22が、膜厚5〜15μmで形成されている。
図2(b)は、上記従来型の抵抗調整層21を射出成形機で被覆する際の、溶融したABS樹脂組成物の金型内での流動状況を示す図であり、固定金型23と可動金型24の合わせ目にできるパーティングライン25と、注入口26から金型内に流入したABS樹脂組成物の流動先端会合部のウエルドライン27の状況を示しており、金属製軸部材28の軸方向にスジとして形成される。
FIG. 2A shows the structure of a conventional non-contact type charging roller using a thermoplastic resin composition for the resistance adjusting layer. On the metal shaft member 20, a polymer compound such as polyether ester amide and four The resistance adjustment layer 21 of the ABS resin composition, which is adjusted to have an electric resistance value of 10 8 to 10 9 Ωcm by containing an ion conductive material such as a quaternary ammonium salt, is injection-molded with a film thickness of 0.5 to 1 mm. And a protective layer 22 made of a thermoplastic resin composition adjusted to have an electric resistance value of 10 10 to 10 12 Ωcm by dispersing conductive fine particles on the outermost surface is formed with a film thickness of 5 to 15 μm. Has been.
FIG. 2B is a diagram showing a flow state of the molten ABS resin composition in the mold when the conventional resistance adjusting layer 21 is coated with an injection molding machine. The state of the parting line 25 formed at the joint of the movable mold 24 and the weld line 27 at the flow tip meeting portion of the ABS resin composition flowing into the mold from the injection port 26 is shown, and the metal shaft member 28 is shown. It is formed as a streak in the axial direction.

パーティングライン25は、次の工程の外径旋削加工でほぼ消失するが、ウエルドライン27は、金型温度や樹脂溶融温度などの成形条件、ABS樹脂組成物の配合比などにより特に膜厚方向及び軸方向に発現し易く、図2(c)に示すように、外径を旋削加工された抵抗調整層表面29にスジ210として目視で確認されるように発現する。
このウエルドライン27のスジ210の部分では、ポリエーテルエステルアミド等のイオン導電性の高分子化合物成分が5μm幅で凝縮して電気抵抗値の低下した部分を形成し、更に高温高湿時の環境条件でポリエーテルエステルアミド成分特有の高吸湿状態となって電気抵抗値を低下させる。その結果、その部分での放電電流が増加することにより発熱して樹脂材料の変性劣化が起こって脆くなり、環境条件が低温低湿条件に変化すると伸縮差によりひび割れを発生させるようになる。
特に非接触式帯電ローラの軸振れが多い場合は、被帯電体への帯電ムラを緩和させるためにDC電圧に重畳するAC電圧1800〜2000Vが2000〜2400Vと高くなるので、放電電流も多くなって樹脂材料の変性劣化は更に加速され、よりひび割れを発生させ易い状況となる。
また、ウエルドライン27やパーティングライン25の部分では、他の部分と違って、成形時に熱応力が働いている状態になると、保護層形成の際の溶剤が含浸し易くなり、ひび割れを助長し易くなる。
The parting line 25 almost disappears in the outer diameter turning process in the next step, but the weld line 27 is particularly in the film thickness direction depending on molding conditions such as mold temperature and resin melting temperature, and the blending ratio of the ABS resin composition. As shown in FIG. 2 (c), the outer diameter appears so as to be visually confirmed as a streak 210 on the resistance adjusting layer surface 29 that has been turned.
In the line 210 of the weld line 27, an ion conductive polymer compound component such as polyether ester amide is condensed in a width of 5 μm to form a portion having a reduced electric resistance value, and the environment at high temperature and high humidity. Under certain conditions, it becomes a highly hygroscopic state peculiar to polyether ester amide components, and the electric resistance value is lowered. As a result, when the discharge current increases at that portion, heat is generated and the resin material is denatured and deteriorated and becomes brittle. When the environmental conditions are changed to low temperature and low humidity conditions, cracks are generated due to a difference in expansion and contraction.
In particular, when the shaft deflection of the non-contact type charging roller is large, the AC voltage 1800 to 2000V superimposed on the DC voltage is increased to 2000 to 2400 V in order to alleviate the uneven charging of the charged body, so that the discharge current also increases. As a result, the denaturation and deterioration of the resin material is further accelerated, and cracks are more likely to occur.
Also, in the weld line 27 and the parting line 25, unlike other parts, when thermal stress is applied during molding, the solvent during the formation of the protective layer is easily impregnated and promotes cracking. It becomes easy.

<アルミニウム合金からなる支持体の外径表面旋削加工の方法>
図4は、焼入れ及びセンターレス研削加工により軸振れが高精度となった金属製軸部材40の上に、アルミニウム合金からなる支持体41を被覆して外径表面を旋削加工する方法を示す図であり、図4(b)に示すように、旋削用の刃具は切削抵抗を低く抑えるため刃先を鋭く形成できるダイヤモンドバイト42を使用する。ダイヤモンドバイト42は、その刃先ノーズR1〜5mm、ニゲ角5〜10°、スクイ角15〜20°であって、刃面の粗さを0〜0.2μmとし、刃面により形成される切れ刃嶺の丸み半径を0〜0.5μmとする。スクイ角を15〜20°と鋭利にすることで加工抵抗を低く抑えることが可能となり、非接触式帯電ローラの軸方向中央部の外径が大きくなるのを抑制でき、バリの発生を抑制できるため、異常放電部を形成することが無くなる。
旋削加工は、発熱を抑制し切粉を吸引装置へ誘導するために、エアーノズル46から切削油の入った圧縮空気をダイヤモンドバイト42の先端に吹付けて行なう。ダイヤモンドバイト42の取付けは、スクイ面47を下向きとし、切粉を下方のフード48で吸引して行なう。そして切粉が被加工物の表面に付着したり巻込まれたりするのを防止できるように、切削速度に応じた切粉吸引速度を確保して切粉回収装置49で切粉の吸引を行ない、切粉をボックス410に収納し圧縮して回収する。
<Method for surface turning of outer diameter of support made of aluminum alloy>
FIG. 4 is a view showing a method of turning an outer diameter surface by coating a support member 41 made of an aluminum alloy on a metal shaft member 40 whose shaft runout has become highly accurate by quenching and centerless grinding. As shown in FIG. 4 (b), the cutting tool for turning uses a diamond cutting tool 42 capable of forming a sharp cutting edge in order to keep cutting resistance low. The diamond cutting tool 42 has a cutting edge nose R1 to 5 mm, a dent angle of 5 to 10 °, a squeeze angle of 15 to 20 °, and has a blade surface roughness of 0 to 0.2 μm and is formed by the blade surface. The round radius of the ridge is set to 0 to 0.5 μm. By making the squeeze angle as sharp as 15 to 20 °, it becomes possible to keep the processing resistance low, suppress the increase in the outer diameter of the central portion in the axial direction of the non-contact charging roller, and suppress the generation of burrs. Therefore, the abnormal discharge portion is not formed.
Turning is performed by blowing compressed air containing cutting oil from the air nozzle 46 onto the tip of the diamond tool 42 in order to suppress heat generation and guide the chips to the suction device. The diamond cutting tool 42 is attached with the squeeze surface 47 facing downward and sucking chips with the lower hood 48. And in order to prevent chips from adhering to or being caught on the surface of the work piece, the chips are sucked by the chip collection device 49 by securing the chip suction speed according to the cutting speed, Chips are stored in a box 410, compressed and collected.

上記ダイヤモンドバイト42を用いて、例えば図4(a)に示すように、主軸とテール軸の同期回転型旋削装置(株式会社エグロ製RL600型)の主軸チャック43(藤井精密工業製エアーバルーンチャック)により非接触式帯電ローラの電圧印加用軸受け部の外径をクランプし、テール軸チャック44(藤井精密工業製エアーバルーンチャック)により非接触式帯電ローラの軸受け部の外径をクランプし、主軸とテール軸に5000〜6000rpmの同期回転駆動を与え、旋削送り0.1mm/rev、切込み量5〜10μmでダイヤモンドバイト42を取付けた刃物台45を移動して荒加工を行ない、同じく切込み量3〜5μmで仕上加工を行ない、表面粗さ0.5〜3μmRz(JIS B 0601 1994)の表面を得る。   Using the diamond cutting tool 42, for example, as shown in FIG. 4A, a spindle chuck 43 (air balloon chuck manufactured by Fujii Seimitsu Kogyo Co., Ltd.) of a synchronous rotary turning device (RL600 model manufactured by Egro Co., Ltd.) of the spindle and tail shaft. To clamp the outer diameter of the bearing portion for voltage application of the non-contact type charging roller, and to clamp the outer diameter of the bearing portion of the non-contact type charging roller by the tail shaft chuck 44 (air balloon chuck manufactured by Fujii Seimitsu Kogyo). Synchronous rotation drive of 5000 to 6000 rpm is given to the tail shaft, roughing is performed by moving the tool post 45 with the diamond cutting tool 42 attached at a turning feed of 0.1 mm / rev and a cutting depth of 5 to 10 μm. Finishing is performed at 5 μm to obtain a surface with a surface roughness of 0.5 to 3 μm Rz (JIS B 0601 1994).

<酸化皮膜及びシリカ膜の形成方法>
外径表面を仕上げたアルミニウム合金からなる支持体41には、無機酸又は有機酸(例えば、硫酸、燐酸、蓚酸、マロン酸)を電解液とし濃度0.5〜2.5mol/L、液温20〜30℃、電解電流0.8〜2A/dの範囲で0.5〜2時間の陽極酸化処理を行って、膜厚10〜30μmの酸化皮膜を形成し、イオン交換水で洗浄したのち130℃で30分間加熱乾燥して、酸化皮膜に形成された微細孔の中の水分除去を行う。
酸化皮膜上には、図4(c)の塗布装置を用いて、アルコキシシランを塗布する。
金属製軸部材取付け主軸411、押え軸412の回転数を600rpmとし、スプレーノズル413の移動速度を10〜20mm/秒として、酸化皮膜の外径面414に、1〜2ccの上記テトラエトキシシランを塗布する。指触乾燥(指で触れて乾いたと感じる程度)後、100〜150℃で1時間加熱乾燥させ、膜厚0.05〜0.2μmのアルコキシシランを用いて得られるシリカ膜を形成する。
<Method for forming oxide film and silica film>
The support 41 made of an aluminum alloy having a finished outer diameter surface has an inorganic acid or organic acid (for example, sulfuric acid, phosphoric acid, oxalic acid, malonic acid) as an electrolytic solution, a concentration of 0.5 to 2.5 mol / L, and a liquid temperature. An anodizing treatment of 20 to 30 ° C. and an electrolytic current of 0.8 to 2 A / d 2 is performed for 0.5 to 2 hours to form an oxide film having a film thickness of 10 to 30 μm and washed with ion-exchanged water. After that, it is heated and dried at 130 ° C. for 30 minutes to remove moisture in the micropores formed in the oxide film.
On the oxide film, alkoxysilane is applied using the coating apparatus shown in FIG.
The rotational speed of the metal shaft member mounting main shaft 411 and the presser shaft 412 is set to 600 rpm, the moving speed of the spray nozzle 413 is set to 10 to 20 mm / second, and 1 to 2 cc of the tetraethoxysilane is applied to the outer diameter surface 414 of the oxide film. Apply. After finger-drying (to the extent that it feels dry when touched with a finger), it is dried by heating at 100 to 150 ° C. for 1 hour to form a silica film obtained using an alkoxysilane having a thickness of 0.05 to 0.2 μm.

<酸化皮膜とアルコキシシランを用いて得られるシリカ膜による抵抗調整層に保護層を形成する方法>
上記帯電ローラの酸化皮膜及びアルコキシシランを用いて得られるシリカ膜を抵抗調整層として、酸化錫、ITO(酸化錫インジウム)、カーボンブラック等の導電性微粒子20〜50重量%を混合分散したフッ素樹脂、アクリル樹脂、シリコン樹脂、ポリウレタン樹脂の少なくとも一つを含有するセラミック複合樹脂塗料を、図4(c)と同様の塗布装置で塗布して、電気抵抗値が1010〜1012Ωcmの保護層を5〜15μmの膜厚で形成する。
図5は、形成された保護層表面を研磨する方法を示す図であって、図5(a)に示すように、保護層50の表面にはセラミック複合樹脂塗料の微小な突起51が形成され易く、そのままで帯電ローラ表面として使用すると、突起51部分が放電点となって強い放電が行われ、画像形成上でざらつきの原因となるので、表面をラッピングペーパーで研磨して平滑化させる。
図5(b)は、研磨装置の概略図であって、番2000〜3500のラッピングペーパー52を収納したテープリール53からテンションローラ上54及びテンションローラ下55を介して巻取りテープリール56に毎分20〜50mmで巻取りながら非接触式帯電ローラ57の保護層となる表面を研磨し、突起の除去された表面粗さが0.1〜3μmRz(JIS B 0601 1994)の範囲の研磨面を持つ図5(c)に示すような保護層表面57を形成する。次いで、帯電ギャップ形成部材36、37を両端部に被覆すれば、本発明2の非接触式帯電ローラが得られる。
<Method of forming a protective layer on a resistance adjustment layer by a silica film obtained using an oxide film and alkoxysilane>
Fluororesin in which 20 to 50% by weight of conductive fine particles such as tin oxide, ITO (indium tin oxide) and carbon black are mixed and dispersed using the oxide film of the charging roller and a silica film obtained by using alkoxysilane as a resistance adjusting layer. A ceramic composite resin paint containing at least one of acrylic resin, silicone resin, and polyurethane resin is applied with the same application apparatus as in FIG. 4C, and the protective layer has an electrical resistance value of 10 10 to 10 12 Ωcm. Is formed with a film thickness of 5 to 15 μm.
FIG. 5 is a diagram showing a method of polishing the surface of the formed protective layer. As shown in FIG. 5A, fine protrusions 51 of the ceramic composite resin paint are formed on the surface of the protective layer 50. FIG. If it is used as it is as the surface of the charging roller as it is, the protrusion 51 becomes a discharge point and a strong discharge is performed, which causes roughness in image formation. Therefore, the surface is polished and smoothed by wrapping paper.
FIG. 5B is a schematic diagram of the polishing apparatus, and the tape reel 53 storing the wrapping paper 52 of No. 2000 to 3500 is moved from the tape reel 53 to the take-up tape reel 56 via the tension roller upper 54 and the tension roller lower 55. The surface to be a protective layer of the non-contact type charging roller 57 is polished while being wound at a thickness of 20 to 50 mm, and a polished surface having a surface roughness with a protrusion removed of 0.1 to 3 μm Rz (JIS B 0601 1994) is obtained. A protective layer surface 57 as shown in FIG. 5C is formed. Next, if both ends are covered with the charging gap forming members 36 and 37, the non-contact charging roller of the second aspect of the present invention can be obtained.

<本発明1、2の非接触式帯電ローラと、支持体表面に酸化皮膜のみを形成した非接触式帯電ローラの帯電特性>
図6(a)は、非接触式帯電ローラの帯電電位測定装置の構成図で、帯電ギャップ形成部材となる膜厚50μmの粘着テープで非接触式帯電ローラ60の両端部を幅10mm被覆し、2〜4Nの荷重で感光体に当接させ帯電ギャップ50μmで配置し、被帯電体には機能分離型有機感光体61を用いた。機能分離型有機感光体61の層構成は、アルミニウム基体(φ30mm)、下引き層5μm(メラミンアルキド樹脂、酸化Ti分散)、電荷発生層0.5μm(電荷発生剤チタニルフタロシアニン、ブチラール樹脂)、電荷輸送層30μm(電荷輸送剤スチルベン系、ポリカーボネート樹脂)である。
測定に用いた機器は、高圧電源62(FLUKE415B 0〜±3KV)、表面電位計63(TREK344)、電位測定プローブ64(TREK344用)、測定間隔約1mm、帯電電位の記録計65(GRAPHTEC SERVO150)、オゾン測定器66(光明理化学工業ガス検知管)である。
暗箱67内で機能分離型有機感光体61を線速250mm/秒で回転させ、感光体61表面に帯電した電位は導電性の除電ブラシ68を用いて除去した。
<Charging Characteristics of Non-Contact Charging Rollers of Inventions 1 and 2 and Non-Contact Charging Roller with Only Oxide Film Formed on Support Surface>
FIG. 6A is a configuration diagram of a charging potential measuring device for a non-contact type charging roller, in which both ends of the non-contact type charging roller 60 are coated with a width of 10 mm with an adhesive tape having a film thickness of 50 μm serving as a charging gap forming member. The photosensitive member was brought into contact with the photosensitive member with a load of 2 to 4 N and disposed with a charging gap of 50 μm. The layer structure of the functionally separated organic photoreceptor 61 is an aluminum substrate (φ30 mm), an undercoat layer 5 μm (melamine alkyd resin, oxidized Ti dispersion), a charge generation layer 0.5 μm (charge generation agent titanyl phthalocyanine, butyral resin), charge The transport layer is 30 μm (charge transport agent stilbene-based, polycarbonate resin).
The equipment used for the measurement is a high-voltage power supply 62 (FLUKE 415B 0 to ± 3 KV), a surface potential meter 63 (TREK 344), a potential measurement probe 64 (for TREK 344), a measurement interval of about 1 mm, and a charging potential recorder 65 (GRAPHTEC SERVO 150). , An ozone measuring device 66 (a gas detector tube of Komyo Chemical Co., Ltd.).
The function-separated organic photoconductor 61 was rotated at a linear speed of 250 mm / sec in the dark box 67, and the potential charged on the surface of the photoconductor 61 was removed using a conductive static eliminating brush 68.

図6(b)は、支持体表面に酸化皮膜610のみを形成した従来の非接触式帯電ローラでの機能分離型有機感光体61への帯電電位を測定した記録チャートであって、横軸が帯電電位測定時間(15秒/5mm)、縦軸が感光体帯電電位(200V/10mm)である。測定環境は室温22〜23℃、湿度52〜55%である。
図から分るように、非接触式帯電ローラへの印加電圧−900Vから、感光体への立上り帯電電位611が−90V程度上昇し始め、印加電圧−1000V〜−1600Vの範囲612で、30〜150Vと振幅不安定領域613を持った帯電電位となり、画像形成装置で用いられる感光体への帯電電位−400〜−800Vの範囲614では、安定な帯電が得られ難い傾向を示している。
FIG. 6B is a recording chart in which the charge potential to the function-separated organic photoconductor 61 is measured with a conventional non-contact type charging roller in which only the oxide film 610 is formed on the support surface. The charging potential measurement time (15 seconds / 5 mm), and the vertical axis represents the photosensitive member charging potential (200 V / 10 mm). The measurement environment is a room temperature of 22 to 23 ° C. and a humidity of 52 to 55%.
As can be seen from the voltage applied to the non-contact type charging roller from -900V, the rising charging potential 611 to the photosensitive member starts to rise by about -90V, and in the range 612 of the applied voltage from -1000V to -1600V, from 30 to The charging potential has 150 V and the amplitude unstable region 613, and in the range 614 of the charging potential of -400 to -800 V to the photosensitive member used in the image forming apparatus, it tends to be difficult to obtain stable charging.

図6(c)は、上記不安定領域613を持った帯電電位となる従来の非接触式帯電ローラの酸化皮膜610の上に、アルコキシシランを用いて得られるシリカ膜615を形成した本発明1の非接触式帯電ローラについて、同様にして帯電電位を測定した記録チャートである。
図から分るように、非接触式帯電ローラへの印加電圧が−900Vから感光体への立上り帯電電位616が−40V程度上昇し始め、画像形成装置で用いられる感光体への帯電電位−400〜−800Vの範囲617では、安定な帯電が得られるようになっている。更に非接触式帯電ローラへの印加電圧−900Vの位置618から印加電圧−2500Vの位置619の範囲で、ほぼ等間隔で感光体帯電電位が上昇し、印加電圧に対し直線性を持った帯電電位となっている。酸化皮膜の膜厚10〜30μm、シリカ膜の膜厚0.1〜0.2μmの範囲では、ほぼ同様の結果が得られる。
また、感光体帯電電位−800Vで画像形成を行う場合を想定して、非接触式帯電ローラへDC−1660Vの印加電圧を2分間連続印加した時の感光体帯電電位620は安定している。
FIG. 6C shows the present invention 1 in which a silica film 615 obtained by using alkoxysilane is formed on an oxide film 610 of a conventional non-contact type charging roller having a charging potential having the unstable region 613. 6 is a recording chart in which the charging potential of the non-contact charging roller is measured in the same manner.
As can be seen from the figure, the applied voltage to the non-contact type charging roller starts from −900V, the rising charging potential 616 to the photosensitive member starts to increase by about −40V, and the charging potential to the photosensitive member used in the image forming apparatus is −400. In a range 617 of -800V, stable charging can be obtained. Further, in the range from the position 618 where the applied voltage −900V is applied to the non-contact type charging roller to the position 619 where the applied voltage −2500V, the charging potential of the photosensitive member rises at almost equal intervals, and the charging potential having linearity with respect to the applied voltage. It has become. In the range of the oxide film thickness of 10 to 30 μm and the silica film thickness of 0.1 to 0.2 μm, substantially the same results are obtained.
Further, assuming that image formation is performed at a photosensitive member charging potential of -800 V, the photosensitive member charging potential 620 is stable when a DC-1660 V applied voltage is continuously applied to the non-contact charging roller for 2 minutes.

図7は、酸化皮膜の上にアルコキシシランを用いて得られるシリカ膜を形成して抵抗調整層とし、更にその表面に保護層70を形成した本発明2の非接触式帯電ローラについて、図6の場合と同様にして帯電電位を測定した記録チャートである。
酸化皮膜とアルコキシシランを用いて得られるシリカ膜による抵抗調整層上に、セラミックハイブリッド樹脂となる塗料(エスケー化研製セラタイトF、Si、タイルトップのいずれか一部または混合物)にカーボンブラック(三菱化学製ケッチェンブラックEC)0.2〜0.5重量%混合し、図3(c)のスプレー装置で膜厚5〜15μmになるように塗布し、80℃で30分間余熱乾燥したのち160℃で30分間の本乾燥を行って保護層70を形成した。
図から分かるように、画像形成装置で用いられる帯電電位−400〜−800Vの範囲71では安定な帯電が得られた。更に非接触式帯電ローラへの印加電圧−900Vの位置72から印加電圧−1600Vの位置73の範囲で、ほぼ等間隔で感光体への電位が上昇し、印加電圧に対し直線性を持った帯電電位となった。
また、感光体帯電電位−800Vで画像形成を行う場合を想定して、非接触式帯電ローラへDC−1600Vの印加電圧を5分間連続で印加した時の保護層での感光体帯電電位74は−800Vで安定していた。
FIG. 7 shows a non-contact type charging roller of the present invention 2 in which a silica film obtained by using alkoxysilane is formed on an oxide film to form a resistance adjusting layer and a protective layer 70 is further formed on the surface. 6 is a recording chart in which the charging potential is measured in the same manner as in FIG.
On the resistance adjustment layer made of silica film obtained by using an oxide film and alkoxysilane, paint (ceramic F, Si, tile top made by SK Kaken, or a mixture of tile tops) or carbon black (Mitsubishi Chemical) is used as a ceramic hybrid resin. Ketjen Black EC) 0.2-0.5% by weight was mixed, applied with a spray device of FIG. 3 (c) to a film thickness of 5-15 μm, preheated at 80 ° C. for 30 minutes, and then 160 ° C. The protective layer 70 was formed by performing main drying for 30 minutes.
As can be seen from the figure, stable charging was obtained in the range 71 of the charging potential of −400 to −800 V used in the image forming apparatus. Further, in the range from the position 72 where the applied voltage −900V is applied to the non-contact type charging roller to the position 73 where the applied voltage −1600V is applied, the potential to the photosensitive member rises at almost equal intervals, and the charging is linear with respect to the applied voltage. It became a potential.
Further, assuming that image formation is performed at a photosensitive member charging potential of -800 V, the photosensitive member charging potential 74 at the protective layer when a DC-1600 V applied voltage is continuously applied to the non-contact charging roller for 5 minutes is It was stable at -800V.

このようにアルミニウム合金を支持体としてアルミニウムの酸化皮膜10〜30μmを形成し、その表面にアルコキシシランを用いて得られるシリカ膜0.1〜0.2μmを形成して非接触式帯電ローラとすることにより、非接触式帯電ローラへの印加電圧に対応して感光体へ直線性を持った帯電をさせることができ、更に、酸化皮膜とアルコキシシランを用いて得られるシリカ膜を抵抗調整層とし保護層を形成することで、スパッタリングにより抵抗調整層表面の損耗劣化が無くなり耐久性のあるものとなる上に、保護層がない場合と同様に非接触式帯電ローラへの印加電圧に対応して感光体へ直線性を持った帯電をさせることができる。
また、抵抗調整層が酸化アルミニウム(Al)及びアルコキシシランを用いて得られるシリカ(SiO)の無機皮膜で形成されるため、高温高湿条件においても、ABS樹脂等を用いた抵抗調整層と比較して膨潤膨張は非常に少なく、画像形成に影響するような抵抗調整層のヒビ割れの発生などを起さないものとなる。
In this way, an aluminum oxide film of 10 to 30 μm is formed using an aluminum alloy as a support, and a silica film of 0.1 to 0.2 μm obtained by using alkoxysilane is formed on the surface to form a non-contact type charging roller. Therefore, the photosensitive member can be charged with linearity corresponding to the voltage applied to the non-contact type charging roller, and a silica film obtained by using an oxide film and an alkoxysilane is used as a resistance adjusting layer. By forming the protective layer, the resistance adjustment layer surface wear and tear are eliminated by sputtering, and in addition to durability, in the same manner as when there is no protective layer, it corresponds to the voltage applied to the non-contact type charging roller. The photosensitive member can be charged with linearity.
In addition, since the resistance adjustment layer is formed of an inorganic film of silica (SiO 2 ) obtained using aluminum oxide (Al 2 O 3 ) and alkoxysilane, resistance using ABS resin or the like even under high temperature and high humidity conditions Compared with the adjustment layer, the swelling and expansion is very small, and the resistance adjustment layer does not cause cracks that affect image formation.

上記本発明1〜2の非接触式帯電ローラを組み込んだ本発明3の帯電装置は、感光体に所望の帯電電位を付与し、帯電ムラ防止のために重畳するACバイアス電圧(Vp−p)を特に上昇させることなく帯電電位付与が可能となり、抵抗調整層にポリエーテルエステルアミド等の高分子界面活性材を用いないため膨潤膨張が非常に少なく、ウエルドライン等の亀裂の発生し易い層構造がないため耐久性の良い安定した帯電装置となる。   The charging device according to the third aspect of the present invention incorporating the non-contact type charging roller according to the first and second aspects of the present invention applies a desired charging potential to the photosensitive member and superimposes an AC bias voltage (Vp-p) to prevent uneven charging. Layer structure that can easily apply a charging potential without increasing the resistance, and does not use a polymer surfactant such as polyether ester amide in the resistance adjustment layer, so that the swelling expansion is very small and cracks such as weld lines are likely to occur. Therefore, it becomes a stable charging device with good durability.

本発明1の非接触式帯電ローラによれば、画像形成装置の環境条件として高湿時に、高分子界面活性剤及びイオン導電剤を混合した熱可塑性樹脂組成物を用いた非接触式帯電ローラに比べて膨潤膨張が非常に少なく、画像形成欠陥を起こすようなひび割れの発生が無く、四級アンモニウム塩等のイオン導電剤を用いないためイオン導電剤のブリードアウトが無く、被帯電体への帯電電位変動を抑制することができる。
本発明2の非接触式帯電ローラによれば、画像形成装置の環境条件として高湿時に、高分子界面活性剤及びイオン導電剤を混合した熱可塑性樹脂組成物を用いた非接触式帯電ローラに比べて抵抗調整層の膨潤膨張が非常に少なく、画像形成欠陥を起こすような抵抗調整層のひび割れ及び保護層のひび割れの発生が無く、また抵抗調整層に四級アンモニウム塩等のイオン導電剤を用いないため、保護層表面へのイオン導電剤のブリードアウトが無く、更に、保護層の被覆により抵抗調整層表面が直接露出していないため、放電時のスパッタリング作用を受けることが少なく、抵抗変化が少なくなり、被帯電体への帯電電位変動を抑制することができる。
According to the non-contact type charging roller of the first aspect of the present invention, a non-contact type charging roller using a thermoplastic resin composition in which a polymer surfactant and an ionic conductive agent are mixed as an environmental condition of an image forming apparatus at high humidity. Compared with very little swelling expansion, there is no cracking that causes image formation defects, and no ionic conductive agent such as quaternary ammonium salt is used, so there is no bleed out of the ionic conductive agent, and the charged object is charged. Potential fluctuation can be suppressed.
According to the non-contact charging roller of the second aspect of the present invention, a non-contact charging roller using a thermoplastic resin composition in which a polymer surfactant and an ionic conductive agent are mixed as an environmental condition of an image forming apparatus at high humidity. Compared with the resistance adjustment layer, the swelling and expansion of the resistance adjustment layer is very small, there is no occurrence of cracks in the resistance adjustment layer and cracks in the protective layer that cause image formation defects, and ionic conductive agents such as quaternary ammonium salts are used in the resistance adjustment layer. Because it is not used, there is no bleed-out of the ionic conductive agent on the surface of the protective layer, and the resistance adjustment layer surface is not directly exposed by covering the protective layer. And the fluctuation of the charged potential on the member to be charged can be suppressed.

本発明3の帯電装置によれば、本発明1又は2の非接触式帯電ローラを備えることにより過剰な放電(電子なだれ)が抑制され、それに伴いオゾンの発生も抑制され、DC印加電圧の各電圧に対応する被帯電体の帯電電位が安定となり、また、重畳するAC印加電圧を低下させることができる。
本発明4の画像形成装置によれば、本発明3の帯電装置を備えた画像形成装置であることから、画像形成装置を設置する室内環境の汚染を増加させることがない。
According to the charging device of the present invention 3, excessive discharge (electron avalanche) is suppressed by providing the non-contact type charging roller of the first or second invention, and accordingly, generation of ozone is suppressed, and each of the DC applied voltages is suppressed. The charged potential of the charged object corresponding to the voltage becomes stable, and the superimposed AC applied voltage can be reduced.
According to the image forming apparatus of the fourth aspect of the invention, since the image forming apparatus includes the charging device of the third aspect of the present invention, contamination of the indoor environment in which the image forming apparatus is installed is not increased.

以下、実施例及び比較例を示すが、本発明はこれらの実施例により限定されるものではない。
なお、外径測定にはキーエンスLS型レーザー測定機、ギャップテープの厚み測定にはミツトヨ製0〜25mmマイクロメータ、ギャップ変動量測定にはキーエンスLS型レーザー測定機とφ30鋼製円筒冶具(精度:1μm/350mm)、画像形成にはリコーイマジオカラー複写機、オゾン測定にはガステックGV−100S(オゾンガス検知管0.05〜0.6ppm、5回基準)を用いた。
Examples and Comparative Examples are shown below, but the present invention is not limited to these Examples.
In addition, Keyence LS type laser measuring machine for outer diameter measurement, Mitutoyo 0-25mm micrometer for gap tape thickness measurement, Keyence LS type laser measuring machine and φ30 steel cylindrical jig (accuracy: 1 μm / 350 mm), Ricoh Imagio Color Copier was used for image formation, and Gasetech GV-100S (ozone gas detector tube 0.05 to 0.6 ppm, 5 times standard) was used for ozone measurement.

実施例1
金属製軸部材としてステンレス鋼棒(SUS440C製、直径11.3mm)を用い、外径周面が硬度HRC58になるように真空焼入硬化処理をしたのち、研削加工を施して直径11mmとした。
次いでステンレス鋼棒の上にアルミニウム合金(アルミニウム合金継目無管JIS H 4080 1999 合金番号5056、内径11mm、肉厚1mm)からなる支持体を被覆したのち表面を旋削加工し外径φ11.9mmとした。旋削加工にはダイヤモンドバイトを使用し、発熱を抑制し切粉を吸引装置へ誘導するために、エアーノズルから切削油の入った圧縮空気をダイヤモンドバイトの先端に吹付けて行なった。荒加工、仕上加工を経て、表面粗さ0.5〜3μmRz(JIS B 0601 1994)の表面を得た。
次いで、外径表面を仕上げた上記アルミニウム合金からなる支持体に対し、マロン酸を電解液とし、濃度2.5mol/L、液温25℃、電解電流0.8A/dの範囲で40分の陽極酸化処理を行って、膜厚30μmの酸化皮膜を形成し、イオン交換水で洗浄したのち、130℃で30分間加熱乾燥して酸化皮膜に形成された微細孔の中の水分を除去した。
次いで、図4(c)の塗布装置を用いて、酸化皮膜上に、アルコキシシランを含む材料である、SiOを28.8%含有するテトラエトキシシラン溶液(和光純薬工業製)を塗布した。金属製軸部材取付け主軸及び押え軸の回転数を600rpmとし、スプレーノズルの移動速度を10mm/秒として、酸化皮膜の外径面に、1〜2ccの上記テトラエトキシシラン溶液を数回塗布し、指触乾燥(指で触れて乾いたと感じる程度)後、150℃で1時間加熱乾燥させ、膜厚0.15μmのアルコキシシランを用いて得られるシリカ膜を形成した。
次いで、帯電ギャップ形成部材として粘着テープ(ニチバン製50μm粘着テープ:幅10mm)を両端部に被覆し、非接触式帯電ローラのサンプルを得た。
このサンプルを用いて測定を行った。結果を表1に示す。
Example 1
A stainless steel rod (manufactured by SUS440C, diameter 11.3 mm) was used as the metal shaft member, vacuum-hardened and hardened so that the outer peripheral surface had a hardness HRC58, and then grinding was performed to a diameter of 11 mm.
Next, after coating a support made of an aluminum alloy (aluminum alloy seamless pipe JIS H 4080 1999 alloy number 5056, inner diameter 11 mm, wall thickness 1 mm) on a stainless steel rod, the surface was turned to an outer diameter of φ11.9 mm. . A diamond bite was used for turning, and in order to suppress heat generation and guide the chips to the suction device, compressed air containing cutting oil was blown from the air nozzle to the tip of the diamond bite. A surface with a surface roughness of 0.5 to 3 μm Rz (JIS B 0601 1994) was obtained through roughing and finishing.
Subsequently, malonic acid is used as an electrolytic solution for the support made of the above aluminum alloy with the outer diameter surface finished, and the concentration is 2.5 mol / L, the liquid temperature is 25 ° C., and the electrolytic current is 0.8 A / d 2 for 40 minutes. An anodizing treatment was performed to form an oxide film with a thickness of 30 μm, washed with ion-exchanged water, and then dried by heating at 130 ° C. for 30 minutes to remove moisture in the micropores formed in the oxide film. .
Next, a tetraethoxysilane solution (manufactured by Wako Pure Chemical Industries, Ltd.) containing 28.8% of SiO 2 , which is a material containing alkoxysilane, was applied onto the oxide film using the coating apparatus of FIG. . The rotational speed of the metal shaft member mounting main shaft and the presser shaft is 600 rpm, the moving speed of the spray nozzle is 10 mm / second, and 1-2 cc of the tetraethoxysilane solution is applied several times to the outer diameter surface of the oxide film, After finger-drying (to the extent that it feels dry when touched with a finger), it was dried by heating at 150 ° C. for 1 hour to form a silica film obtained using an alkoxysilane having a thickness of 0.15 μm.
Next, an adhesive tape (50 μm adhesive tape made by Nichiban: width 10 mm) was coated on both ends as a charging gap forming member to obtain a sample of a non-contact type charging roller.
Measurement was performed using this sample. The results are shown in Table 1.

実施例2
アルコキシシランを用いて得られるシリカ膜の上に、セラミックハイブリッド樹脂となる塗料(エスケー化研製:セラタイトF)にカーボンブラック(三菱化学製ケッチェンブラックEC)を0.2〜0.5重量%混合し、図4(c)の塗布装置を用いて膜厚10〜15μmになるように塗布し、80℃で30分間余熱乾燥したのち160℃で30分間の本乾燥を行って保護層70を形成した点以外は、実施例1と同様にして非接触式帯電ローラのサンプルを得た。
このサンプルを用いて、実施例1と同様にして測定したところ、表1に示すような結果が得られた。
Example 2
On the silica film obtained by using alkoxysilane, carbon black (Mitsubishi Chemical Ketjen Black EC) is mixed in an amount of 0.2 to 0.5% by weight to a ceramic hybrid resin paint (manufactured by SK Kaken: Ceratite F). Then, the film is applied so as to have a film thickness of 10 to 15 μm using the coating apparatus of FIG. Except for these points, a non-contact charging roller sample was obtained in the same manner as in Example 1.
When this sample was used in the same manner as in Example 1, the results shown in Table 1 were obtained.

比較例1
金属製軸部材としてステンレス鋼棒(SUS303製、直径9.98mm、焼入れ処理無し)を用い、抵抗調整層としてポリエーテルエステルアミド及びイオン導電剤を含有するABS樹脂を射出成形加工により厚さ0.95mmに形成し、その表面に、アクリルシリコン系樹脂、イソシアネート系硬化剤及びITO(酸化インジウムスズ)からなるセラミックハイブリッド樹脂組成物を塗布して厚さ約10μmに形成した保護層を持つ外径φ11.9mmの非接触式帯電ローラのサンプル(従来品であるリコー製デジタルカラー複写機イマジオネオC600のサービスパーツに相当)を得た。
このサンプルを用いて、実施例1と同様にして測定したところ、表1に示すような結果が得られた。
Comparative Example 1
A stainless steel rod (made of SUS303, diameter 9.98 mm, no quenching treatment) was used as the metal shaft member, and ABS resin containing polyether ester amide and an ionic conductive agent as the resistance adjustment layer was formed by injection molding to a thickness of 0. An outer diameter φ11 having a protective layer formed to a thickness of about 10 μm by applying a ceramic hybrid resin composition made of acrylic silicon resin, isocyanate curing agent and ITO (indium tin oxide) to the surface. A sample of a non-contact type charging roller of 9 mm (corresponding to a service part of a conventional Ricoh digital color copying machine Imagioneo C600) was obtained.
When this sample was used in the same manner as in Example 1, the results shown in Table 1 were obtained.

比較例2
金属製軸部材としてステンレス鋼棒(SUS303製、直径8mm、焼入れ処理無し)を用い、抵抗調整層としてエピクロルヒドリンゴム及び導電剤にカーボンブラックを混合分散して厚さ1.5mmに形成し、その表面にフッ素樹脂系塗料を厚さ0.1〜0.2μm塗布して形成した外径φ11mmの非接触式帯電ローラのサンプル(従来品であるリコー製デジタルカラー複写機イマジオネオC285のサービスパーツに相当)を得た。
このサンプルを用いて、実施例1と同様にして測定したところ、表1に示すような結果が得られた。
Comparative Example 2
A stainless steel rod (made of SUS303, diameter 8 mm, no quenching treatment) is used as a metal shaft member, and a carbon black is mixed and dispersed in epichlorohydrin rubber and a conductive agent as a resistance adjustment layer to a thickness of 1.5 mm. Sample of non-contact charging roller with outer diameter of φ11mm formed by applying 0.1 to 0.2μm in thickness of fluororesin paint (corresponding to the service parts of the conventional Ricoh digital color copier Imagioneo C285) Got.
When this sample was used in the same manner as in Example 1, the results shown in Table 1 were obtained.

Figure 2008026380
表1から分るように、実施例1、2では、金属製軸部材に焼入れ硬化処理をして研削加工を施すことにより、非接触帯電ローラ中央部の外径の増径量が、比較例1、2の半分以下になり、ギャップ変動量も向上し、画像ムラを防止するためのAC重畳電圧を上昇させることもなかった。
実施例のオゾン発生量は、比較例1とは大差無いが、比較例2のゴム製非接触帯電ローラに比べて半減し、暗箱内でのオゾン臭を感じない程度となった。
Figure 2008026380
As can be seen from Table 1, in Examples 1 and 2, by increasing the outer diameter of the central portion of the non-contact charging roller by subjecting the metal shaft member to quench hardening and grinding, a comparative example The gap fluctuation amount was improved and the AC superimposed voltage for preventing image unevenness was not increased.
The amount of ozone generated in the example was not much different from that in Comparative Example 1, but was reduced to half that of the rubber non-contact charging roller in Comparative Example 2 so that the ozone odor was not felt in the dark box.

(a)金属製軸部材に、アルミニウム合金の支持体に酸化皮膜を施してアルコキシシランを用いて得られるシリカ膜を形成した非接触式帯電ローラの断面図、(b)酸化皮膜とアルコキシシランを用いて得られるシリカ膜の詳細な構成を示す説明図(部分拡大図)、(c)シリカ膜の表面に保護層を被覆した非接触式帯電ローラを示す断面図、(d)焼入硬化処理を施した金属製軸部材を用いた非接触式帯電ローラを示す断面図。(A) A cross-sectional view of a non-contact type charging roller in which a silica film obtained by applying an oxide film to an aluminum alloy support on a metal shaft member and using an alkoxysilane, (b) an oxide film and an alkoxysilane Explanatory drawing (partially enlarged view) showing the detailed structure of the silica film obtained by using, (c) a cross-sectional view showing a non-contact type charging roller with a protective layer coated on the surface of the silica film, (d) quench hardening treatment Sectional drawing which shows the non-contact-type charging roller using the metal shaft members which gave. (a)抵抗調整層に熱可塑性樹脂組成物を用いた従来型の非接触式帯電ローラの構成を示す図、(b)射出成形で形成される従来型の非接触式帯電ローラの抵抗調整層に形成されるパーティングライン及びウエルドラインの説明図、(c)射出成形で形成された抵抗調整層表面のウエルドラインの状態説明図。(A) The figure which shows the structure of the conventional non-contact-type charging roller which used the thermoplastic resin composition for the resistance adjustment layer, (b) The resistance adjustment layer of the conventional non-contact-type charging roller formed by injection molding Explanatory drawing of the parting line and weld line which are formed in this figure, (c) State explanatory drawing of the weld line state of the resistance adjustment layer surface formed by injection molding. (a)非接触式帯電ローラの金属製軸部材の正面図、(b)非接触式帯電ローラの正面図、(c)非接触式帯電ローラと感光体とそのギャップの正面図。(A) Front view of metal shaft member of non-contact type charging roller, (b) Front view of non-contact type charging roller, (c) Front view of non-contact type charging roller, photoconductor and its gap. 焼入れ及びセンターレス研削加工により軸振れが高精度となった金属製軸部材の上に、アルミニウム合金からなる支持体を被覆して外径表面を旋削加工する方法を示す図。(a)旋削加工方法の上面図、(b)旋削加工のダイヤモンドバイト取付図及び切粉回収方法の概要図、(c)スプレー塗布装置の上面図。The figure which shows the method of carrying out the turning process of the outer diameter surface by coat | covering the support body which consists of aluminum alloys on the metal shaft member to which axial runout became high precision by hardening and centerless grinding. (A) Top view of turning method, (b) Diamond bite attachment drawing of turning and schematic diagram of chip collection method, (c) Top view of spray coating apparatus. 形成された保護層表面を研磨する方法を示す図。(a)スプレー塗布装置での保護層の表面状態図、(b)ラッピングペーパー研磨装置の概要図、(c)研磨後の保護層の表面状態図。The figure which shows the method of grind | polishing the formed protective layer surface. (A) Surface state diagram of protective layer in spray coating device, (b) Schematic diagram of lapping paper polishing device, (c) Surface state diagram of protective layer after polishing. (a)非接触式帯電ローラの帯電電位測定装置の説明図、(b)支持体表面に酸化皮膜のみを形成した非接触式帯電ローラでの感光体への帯電電位を測定した記録チャート、(c)支持体表面に形成した酸化皮膜にアルコキシシランを用いて得られるシリカ膜を被覆して抵抗調整層とした本発明の非接触式帯電ローラでの感光体への帯電電位を測定した記録チャート。(A) An explanatory diagram of a charging potential measuring device for a non-contact type charging roller, (b) a recording chart for measuring a charging potential to a photoconductor with a non-contact type charging roller in which only an oxide film is formed on the surface of a support, c) A recording chart in which the charging potential on the photosensitive member of the non-contact type charging roller of the present invention was measured by coating the oxide film formed on the support surface with a silica film obtained by using alkoxysilane to form a resistance adjusting layer. . 酸化皮膜にシリカ膜を被覆して抵抗調整層とし、更に保護層を被覆して非接触式帯電ローラとしたときの感光体への帯電電位を測定した記録チャートである。3 is a recording chart in which a charging potential to a photoconductor is measured when an oxide film is coated with a silica film to form a resistance adjusting layer and further a protective layer is coated to form a non-contact charging roller. (a)機能分離型有機系感光体を使用しカールソンプロセスを用いる白黒及びカラー画像形成装置の概略構成図、(b)トナー画像形成ユニットの構成を示す図。FIG. 2A is a schematic configuration diagram of a black and white and color image forming apparatus using a function-separated organic photoconductor and using a Carlson process, and FIG. 3B is a diagram illustrating a configuration of a toner image forming unit.

符号の説明Explanation of symbols

10 金属製軸部材
11 支持体
12 酸化皮膜
13 アルコキシシランを用いて得られるシリカ膜
14 支持体
15 微細孔
16 酸化皮膜
17 アルコキシシランを用いて得られるシリカ膜
18 バリヤー層
113 保護層
114 焼入硬化処理された金属製軸部材
20 金属製軸部材
21 抵抗調整層
22 保護層
23 固定金型
24 可動金型
25 パーティングライン
26 注入口
27 ウエルドライン
28 金属製軸部材
29 旋削加工された抵抗調整層表面
210 スジ
30 金属製軸部材
31 軸受け部
32 電圧印加用軸受け部
33 被覆部
34 抵抗調整層
35 保護層
36 帯電ギャップ形成部材
37 帯電ギャップ形成部材
38 帯電面
39 帯電ギャップ
310 帯電ギャップ
311 帯電ギャップ
312 非接触式帯電ローラ
313 感光体
314 ギヤ
315 ギヤ
316 軸間距離
40 焼入れ硬化された金属製軸部材
41 アルミニウム合金の支持体
42 ダイヤモンドバイト
43 旋削装置主軸チャック
44 旋削装置テール軸チャック
45 刃物台
46 エアーノズル
47 スクイ面
48 フード
49 切粉回収装置
410 ボックス
411 金属製軸部材取付け主軸
412 押え軸
413 スプレーノズル
414 酸化皮膜の外径面
50 保護層
51 突起
52 ラッピングペーパー
53 テープリール
54 テンションローラ上
55 テンションローラ下
56 巻取りテープリール
57 研磨面を持つ保護層表面
60 非接触式帯電ローラ
61 機能分離型有機系感光体
62 高圧電源
63 表面電位計
64 表面電位計プローブ
65 帯電電位の記録計
66 オゾン測定器
67 暗箱
68 除電ブラシ
610 酸化皮膜
611 立上り帯電電位
612 印加電圧−1000〜−1600Vの範囲
613 振幅不安定領域
614 酸化皮膜での帯電電位−400〜−800Vの範囲
615 シリカ膜
616 立上り帯電電位
617 アルコキシシランを用いて得られるシリカ膜での帯電電位−400〜−800Vの範囲
618 印加電圧−900Vの位置
619 印加電圧−2500の位置
620 酸化皮膜とアルコキシシランを用いて得られるシリカ膜での帯電電位
70 保護層
71 抵抗調整層と保護層での帯電電位−400〜−800Vの範囲
72 印加電圧−900Vの位置
73 印加電圧−1600Vの位置
74 保護層での感光体帯電電位
81 トナー画像形成ユニット
82 機能分離型有機系感光体
83 帯電ユニット
84 光書込みユニット
85 現像ユニット
86 クリーニングユニット
87 転写ユニット
88 転写ベルト
89 帯電ローラ
810 レーザー光
811 現像部材
812 記録紙
813 転写部材
814 定着ユニット
DESCRIPTION OF SYMBOLS 10 Metal shaft member 11 Support body 12 Oxide film 13 Silica film obtained using alkoxysilane 14 Support body 15 Micropore 16 Oxide film 17 Silica film obtained using alkoxysilane 18 Barrier layer 113 Protective layer 114 Quenching hardening Treated metal shaft member 20 Metal shaft member 21 Resistance adjustment layer 22 Protective layer 23 Fixed die 24 Movable die 25 Parting line 26 Inlet 27 Weld line 28 Metal shaft member 29 Turned resistance adjustment layer Surface 210 Line 30 Metal shaft member 31 Bearing portion 32 Voltage application bearing portion 33 Cover portion 34 Resistance adjustment layer 35 Protective layer 36 Charging gap forming member 37 Charging gap forming member 38 Charging surface 39 Charging gap 310 Charging gap 311 Charging gap 312 Non-contact charging roller 313 Body 314 Gear 315 Gear 316 Distance between shafts 40 Hardened and hardened metal shaft member 41 Aluminum alloy support 42 Diamond bit 43 Turning device spindle chuck 44 Turning device tail shaft chuck 45 Tool post 46 Air nozzle 47 Squee surface 48 Hood 49 Chip recovery device 410 Box 411 Metal shaft member mounting main shaft 412 Presser shaft 413 Spray nozzle 414 Oxidized film outer surface 50 Protective layer 51 Protrusion 52 Wrapping paper 53 Tape reel 54 Tension roller upper 55 Tension roller lower 56 Winding tape reel 57 Surface of the protective layer having a polished surface 60 Non-contact type charging roller 61 Functional separation type organic photoconductor 62 High voltage power supply 63 Surface potential meter 64 Surface potential meter probe 65 Charge potential recorder 66 Ozone measuring device 67 Dark box 6 8 Static elimination brush 610 Oxide film 611 Rising charging potential 612 Applied voltage -1000 to -1600 V range 613 Amplitude unstable region 614 Charging potential at oxide film -400 to -800 V range 615 Silica film 616 Rising charging potential 617 Charged potential of silica film obtained by using the range of −400 to −800 V 618 Applied voltage −900 V position 619 Applied voltage −2500 position 620 Charged potential of silica film obtained using oxide film and alkoxysilane 70 Protection Layer 71 Range of charged potential at resistance adjusting layer and protective layer -400 to -800V 72 Position of applied voltage -900V 73 Position of applied voltage-1600V 74 Photoconductor charging potential at protective layer 81 Toner image forming unit 82 Function separation Type organic photoreceptor 83 Charging unit 84 Light Inclusive unit 85 developing unit 86 cleaning unit 87 the transfer unit 88 transfer belt 89 charging roller 810 laser beam 811 developing member 812 recording paper 813 transferring member 814 fixing unit

Claims (4)

アルミニウム合金からなる支持体表面にアルミニウムの酸化皮膜を形成し、該酸化皮膜の表面にアルコキシシランを用いて得られるシリカ膜を形成したことを特徴とする非接触式帯電ローラ。   A non-contact type charging roller, wherein an aluminum oxide film is formed on the surface of a support made of an aluminum alloy, and a silica film obtained by using alkoxysilane is formed on the surface of the oxide film. 酸化皮膜及びアルコキシシランを用いて得られるシリカ膜を抵抗調整層とし、該抵抗調整層の表面に、導電性微粒子を分散させた樹脂組成物からなる保護層を形成したことを特徴とする請求項1記載の非接触式帯電ローラ。   A silica film obtained using an oxide film and an alkoxysilane is used as a resistance adjustment layer, and a protective layer made of a resin composition in which conductive fine particles are dispersed is formed on the surface of the resistance adjustment layer. The non-contact charging roller according to 1. 画像形成装置の感光体両端部と接し、感光体の帯電面となる範囲に帯電ギャップを形成して感光体に帯電電位を付与することができる非接触式帯電ローラとして、請求項1又は2記載の非接触式帯電ローラを備えたことを特徴とする帯電装置。   3. A non-contact type charging roller that is in contact with both ends of the photosensitive member of the image forming apparatus and forms a charging gap in a range that becomes a charging surface of the photosensitive member to apply a charging potential to the photosensitive member. A non-contact type charging roller. 感光体表面を帯電する帯電装置として、請求項3記載の帯電装置を備えたことを特徴とする画像形成装置。
An image forming apparatus comprising the charging device according to claim 3 as a charging device for charging the surface of the photoreceptor.
JP2006195617A 2006-07-18 2006-07-18 Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device Pending JP2008026380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195617A JP2008026380A (en) 2006-07-18 2006-07-18 Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195617A JP2008026380A (en) 2006-07-18 2006-07-18 Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device

Publications (1)

Publication Number Publication Date
JP2008026380A true JP2008026380A (en) 2008-02-07

Family

ID=39117114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195617A Pending JP2008026380A (en) 2006-07-18 2006-07-18 Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device

Country Status (1)

Country Link
JP (1) JP2008026380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838318A (en) * 2012-10-15 2015-08-12 惠普发展公司,有限责任合伙企业 Charge roller for electrographic printer
CN104956268A (en) * 2013-01-30 2015-09-30 惠普发展公司,有限责任合伙企业 Control for a non-contact charging roller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838318A (en) * 2012-10-15 2015-08-12 惠普发展公司,有限责任合伙企业 Charge roller for electrographic printer
US20150277264A1 (en) * 2012-10-15 2015-10-01 Hewlett-Packard Development, L.P. Charge roller for electrographic printer
US9423717B2 (en) * 2012-10-15 2016-08-23 Hewlett-Packard Development Company, L.P. Charge roller for electrographic printer
EP2906995A4 (en) * 2012-10-15 2016-09-14 Hewlett Packard Development Co Charge roller for electrographic printer
EP3376300A1 (en) * 2012-10-15 2018-09-19 Hewlett-Packard Development Company, L.P. Charge roller for electrographic printer
US10254676B2 (en) 2012-10-15 2019-04-09 Hewlett-Packard Development Company, L.P. Charge roller for electrographic printer
CN104838318B (en) * 2012-10-15 2019-05-17 惠普发展公司,有限责任合伙企业 Charging roller for electrographic printer
CN104956268A (en) * 2013-01-30 2015-09-30 惠普发展公司,有限责任合伙企业 Control for a non-contact charging roller

Similar Documents

Publication Publication Date Title
JP5504713B2 (en) Conductive roll, charging device, process cartridge, and image forming apparatus
CN110780560B (en) Electrophotographic member, process cartridge, and electrophotographic image forming apparatus
CN104635450B (en) Charging unit, charging unit, handle box and imaging device
JP5110985B2 (en) Contact charging member, process cartridge, and electrophotographic image forming apparatus
EP3627229B1 (en) Developing roller, electrophotographic process cartridge and electrophotographic image forming apparatus
JP2022141843A (en) Charging roller
US8086142B2 (en) Bias charge roller comprising overcoat layer
JP2008026380A (en) Non-contact type electrifying roller, electrifying device equipped with non-contact type electrifying roller and image forming apparatus equipped with electrifying device
JP4662843B2 (en) Non-contact charging roller, charging device including the non-contact charging roller, and image forming apparatus including the charging device
JP2005221563A (en) Roller coating method
US8396403B2 (en) Toner roller with an insulation layer comprising polymer
CN114270274A (en) Charged roller
JP2008122951A (en) Charging device and method, and image forming apparatus
JP5167573B2 (en) Charging member, cleaning member, and image forming apparatus
JP2017058642A (en) Charging member, charging device, image forming apparatus, and process cartridge
JP2006259006A (en) Noncontact type charging roller, regenerating method for noncontact type charging roller, charging device, and image forming apparatus
JP5538702B2 (en) Charging member, electrophotographic image forming apparatus
JP2007225708A (en) Conductive roll, method of manufacturing same, charging roll, transfer roll, cleaning roll, and image forming apparatus
US10754272B1 (en) Charging device and cleaning member
JP2023029102A (en) Charging member, charging device, process cartridge, and image forming device
KR100334303B1 (en) Electrophotographic Photosensitive Member and Image Forming Apparatus Using The Same
CN113242939B (en) Charging roller
JP2008299118A (en) Charging roller and method for manufacturing the same
EP4184025A1 (en) Conductive roller
CN114286968B (en) Charging roller