JP2008026221A - Storage container - Google Patents

Storage container Download PDF

Info

Publication number
JP2008026221A
JP2008026221A JP2006200797A JP2006200797A JP2008026221A JP 2008026221 A JP2008026221 A JP 2008026221A JP 2006200797 A JP2006200797 A JP 2006200797A JP 2006200797 A JP2006200797 A JP 2006200797A JP 2008026221 A JP2008026221 A JP 2008026221A
Authority
JP
Japan
Prior art keywords
liquid
suction
probe
storage
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006200797A
Other languages
Japanese (ja)
Inventor
Yasuhiko Fujita
康彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006200797A priority Critical patent/JP2008026221A/en
Publication of JP2008026221A publication Critical patent/JP2008026221A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage container of simple constitution capable of sucking exactly a liquid, without detecting a liquid level, when sucking the liquid using a probe. <P>SOLUTION: This storage container is provided with an opening part 11 for inserting the probe P for sucking and delivering the liquid Lq, a storage part 12 for suction for storing the liquid sucked by the probe P, a storage part 13 for supply for supplying the liquid Lq to the storage part 12 for the suction, and shielded from the atmosphere via the liquid Lq, a partitioning wall 14 for forming a boundary between the storage part 12 for the suction and the storage part 13 for the supply, and for defining the liquid level S<SB>1</SB>of the liquid Lq in the storage part 12 for the suction, and a communication part 15 positioned in an under side of the partitioning wall 14, and for communicating the storage part 12 for the suction with the storage part 13 for the supply. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体を貯留する貯留容器に関する。   The present invention relates to a storage container that stores a liquid.

従来、検体と試薬とを反応させることによって検体の成分の分析を行う自動分析装置では、試薬や検体を吸引する吸引用のプローブの先端部を所定量だけ液面から侵入させる。この際、プローブには試薬や検体が付着するため、次の吸引を行うときに試薬や検体が汚染されないように吐出後のプローブの先端部を洗浄している。プローブの洗浄効率を考慮すると、吸引の際プローブに付着する液体の量が少ない方が好ましい。このため、試薬や検体の液面を正確に検知し、この検知した液面からプローブを所定量だけ侵入させることにより、プローブ先端部の試薬や検体への侵入深度を最小限に抑える工夫が施されている。   2. Description of the Related Art Conventionally, in an automatic analyzer that analyzes a component of a sample by reacting the sample with a reagent, a predetermined amount of the tip of an aspiration probe for aspirating the reagent or the sample enters from the liquid surface. At this time, since the reagent and the sample adhere to the probe, the tip of the probe after ejection is washed so that the reagent and the sample are not contaminated when the next aspiration is performed. In consideration of the cleaning efficiency of the probe, it is preferable that the amount of liquid adhering to the probe during suction is small. For this reason, measures are taken to minimize the depth of penetration of the probe tip into the reagent or sample by accurately detecting the liquid level of the reagent or sample and allowing the probe to penetrate a predetermined amount from the detected liquid level. Has been.

しかしながら、従来の液面検知技術は、プローブが液面の高さで停止できずに試薬ボトルや検体容器の底面まで潜り込んでしまったり、プローブが液面の高さに到達するまでに停止してしまったりすることがあった。前者の場合には、プローブの外壁に広範囲にわたって液体が付着するため、次に吸引する試薬または検体への汚染の懸念があった。また、後者の場合には、データが低値となり、異常な検体が正常と判断されてしまう恐れがあった。   However, conventional liquid level detection technology does not stop at the height of the liquid level, but the probe enters the bottom of the reagent bottle or sample container, or stops until the probe reaches the level of the liquid level. There were times when I missed. In the former case, since liquid adheres to the outer wall of the probe over a wide range, there is a concern of contamination of the reagent or specimen to be sucked next. In the latter case, the data has a low value, and there is a possibility that an abnormal sample is determined to be normal.

このような課題を解決するため、下記特許文献1では、液面の高さを一定とするとともに、プローブの動作を一定化しておくことにより、分注動作を安定化させる技術が開示されている。   In order to solve such problems, the following Patent Document 1 discloses a technique for stabilizing the dispensing operation by keeping the liquid level constant and keeping the probe operation constant. .

また、下記特許文献2および3では、ペット用の給水器として、液面を一定化させる技術が開示されている。   Moreover, in the following Patent Documents 2 and 3, a technique for making the liquid level constant is disclosed as a pet water supply device.

特公平6−14054号公報Japanese Examined Patent Publication No. 6-14054 登録実用新案3023261号公報Registered Utility Model No. 3032261 米国特許5259336号公報US Pat. No. 5,259,336

しかしながら、上記特許文献1に記載された技術では、分析用容器と補給用容器とが別体であり、送気チューブや送液チューブを設ける必要があり、構成が複雑であった。   However, in the technique described in Patent Document 1, the analysis container and the replenishment container are separate, and it is necessary to provide an air supply tube and a liquid supply tube, and the configuration is complicated.

また、上記特許文献2および3では、ペットボトルを流用した構成が開示されているが、ペット用であることからも明らかなように、給水器の位置は固定される場合を想定しているため、自動分析装置で適用される試薬容器のように容器自体が移動することは考慮されていなかった。加えて、水を飲む(液体を吸引する)のはペット(動物)であるため、自動分析装置のプローブのように、液面が上下に揺らぐことによって吸引する側に液体が付着してしまうことに対する配慮がなされていなかった。   Moreover, in the said patent documents 2 and 3, although the structure which diverted a plastic bottle is disclosed, since it is clear also from being for pets, since the position of the water feeder is assumed to be fixed, it is assumed. It has not been considered that the container itself moves like a reagent container applied in an automatic analyzer. In addition, since it is pets (animals) that drink water (liquid is sucked), liquid sticks to the suction side when the liquid level fluctuates up and down like a probe of an automatic analyzer. Was not considered.

本発明は、上記に鑑みてなされたものであって、構成が単純であり、プローブを用いた液体の吸引を行う際に液面検知を行うことなく適確な液体の吸引を実現することができる貯留容器を提供することを目的とする。   The present invention has been made in view of the above, has a simple configuration, and realizes accurate liquid suction without performing liquid level detection when performing liquid suction using a probe. It aims at providing the storage container which can be performed.

上述した課題を解決し、目的を達成するために、請求項1記載の発明は、液体を吸引および吐出するプローブを備えた分注装置に配設され、前記プローブが吸引する液体を貯留する貯留容器であって、前記プローブが挿入される開口部を有し、前記液体を貯留する吸引用貯留部と、前記吸引用貯留部へ前記液体を供給するとともに前記液体を介して大気との間が遮蔽される供給用貯留部と、前記吸引用貯留部と前記供給用貯留部との境界をなし、前記吸引用貯留部における前記液体の液面を規定する隔壁と、前記隔壁の下方に位置し、前記吸引用貯留部と前記供給用貯留部とを連通する連通部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the invention according to claim 1 is provided in a dispensing apparatus including a probe for sucking and discharging liquid, and stores the liquid sucked by the probe. A container having an opening into which the probe is inserted and storing the liquid, and supplying the liquid to the suction storage section and interposing between the liquid and the atmosphere. A barrier for the supply reservoir to be shielded, a partition between the reservoir for suction and the reservoir for supply, and defining a liquid level of the liquid in the reservoir for suction; and located below the partition And a communication portion that communicates the suction storage portion and the supply storage portion.

請求項2記載の発明は、請求項1記載の発明において、前記プローブが前記開口部から挿入される挿入方向と直交する平面における前記吸引用貯留部の面積は、前記挿入方向と直交する平面における前記供給用貯留部の面積よりも小さいことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the area of the suction reservoir in a plane orthogonal to the insertion direction in which the probe is inserted from the opening is in a plane orthogonal to the insertion direction. It is smaller than the area of the supply reservoir.

請求項3記載の発明は、請求項1または2記載の発明において、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置に配設され、前記試薬を貯留することを特徴とする。   The invention described in claim 3 is the invention according to claim 1 or 2, wherein the reagent is stored in the automatic analyzer that analyzes the components of the sample by reacting the sample with the reagent. And

請求項4記載の発明は、請求項1または2記載の発明において、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置に配設され、前記検体および/または前記試薬を希釈する希釈液を貯留することを特徴とする。   According to a fourth aspect of the present invention, in the first or second aspect of the invention, the sample and / or the reagent is disposed in an automatic analyzer that analyzes a component of the sample by reacting the sample with the reagent. The diluting liquid to be diluted is stored.

本発明に係る貯留容器によれば、液体を吸引および吐出するプローブが挿入される開口部を有し、前記プローブが吸引する前記液体を貯留する吸引用貯留部と、前記吸引用貯留部へ前記液体を供給するとともに前記液体を介して大気との間が遮蔽される供給用貯留部と、前記吸引用貯留部と前記供給用貯留部との境界をなし、前記吸引用貯留部における前記液体の液面を規定する隔壁と、前記隔壁の下方に位置し、前記吸引用貯留部と前記供給用貯留部とを連通する連通部と、を備えたことにより、構成が単純であり、プローブを用いた液体の吸引を行う際に液面検知を行うことなく適確な液体の吸引を実現することができる。   The storage container according to the present invention has an opening into which a probe for sucking and discharging a liquid is inserted, the suction storage section for storing the liquid sucked by the probe, and the suction storage section. A supply reservoir that supplies liquid and is shielded from the atmosphere via the liquid, and forms a boundary between the suction reservoir and the supply reservoir, and the liquid in the suction reservoir The structure is simple, and the probe is used by providing a partition that defines the liquid level and a communication part that is located below the partition and communicates the storage part for suction and the storage part for supply. Therefore, accurate liquid suction can be realized without detecting the liquid level when the liquid is sucked.

以下、添付図面を参照して本発明を実施するための最良の形態(以後、「実施の形態」と称する)を説明する。なお、以下の説明で参照する図面はあくまでも模式的なものであって、同じ物体を異なる図面で示す場合には、寸法や縮尺等が異なる場合もある。   The best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described below with reference to the accompanying drawings. Note that the drawings referred to in the following description are merely schematic, and when the same object is shown in different drawings, dimensions, scales, and the like may be different.

(実施の形態1)
図1は、本発明の実施の形態1に係る貯留容器の構成を示す図である。また、図2は、図1のA−A線断面図である。さらに、図3は、図1のB−B線断面図である。これらの図に示す貯留容器1は、液体を吸引および吐出するプローブを挿入する開口部11を有し、開口部11から挿入されるプローブが吸引する液体を貯留する吸引用貯留部12と、吸引用貯留部12へ液体を供給するとともにその液体を介して大気との間が遮蔽される供給用貯留部13と、貯留容器1の上面から延出し、吸引用貯留部12と供給用貯留部13との境界をなす隔壁14と、隔壁14の下方で吸引用貯留部12と供給用貯留部13とを連通する連通部15と、を備える。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a storage container according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along line AA in FIG. 3 is a cross-sectional view taken along line BB in FIG. The storage container 1 shown in these drawings has an opening 11 into which a probe for sucking and discharging liquid is inserted, a suction storage section 12 for storing liquid sucked by a probe inserted from the opening 11, and an aspiration A supply reservoir 13 that supplies liquid to the storage reservoir 12 and is shielded from the atmosphere via the liquid, and extends from the upper surface of the storage container 1, and stores the suction reservoir 12 and supply reservoir 13. And a communication portion 15 that communicates the suction storage portion 12 and the supply storage portion 13 below the partition wall 14.

図3に示すように、吸引用貯留部12のxy平面の面積M2は、供給用貯留部13のxy平面の面積M1よりも小さい(M1>M2)。すなわち、プローブが開口部21から挿入される挿入方向と直交する平面における吸引用貯留部12の面積は、その挿入方向にと直交する平面における供給用貯留部13の面積よりも小さい。 As shown in FIG. 3, the area M 2 on the xy plane of the suction reservoir 12 is smaller than the area M 1 on the xy plane of the supply reservoir 13 (M 1 > M 2 ). That is, the area of the suction reservoir 12 in the plane orthogonal to the insertion direction in which the probe is inserted from the opening 21 is smaller than the area of the supply reservoir 13 in the plane orthogonal to the insertion direction.

図4は、貯留容器1に液体Lqを収容した状態を示すとともに、液体Lqの吸引および吐出を行う分注装置が具備するプローブPを開口部11から挿入して吸引を行う状況を示す図である。この図において、貯留容器1内の底面から隔壁14の下端面までの高さhは、吸引用貯留部12における液面S1の底面からの高さと等しくなるように液体が注入されている。すなわち、隔壁14は、吸引用貯留部12における液面S1の高さを規定する機能を有している。 FIG. 4 is a diagram illustrating a state in which the liquid Lq is accommodated in the storage container 1 and a state in which the probe P included in the dispensing device that performs suction and discharge of the liquid Lq is inserted through the opening 11 to perform suction. is there. In this figure, the liquid is injected so that the height h from the bottom surface in the storage container 1 to the lower end surface of the partition wall 14 is equal to the height from the bottom surface of the liquid surface S 1 in the suction storage unit 12. That is, the partition wall 14 has a function of defining the height of the liquid surface S 1 in the suction storage unit 12.

液体Lqを貯留容器1へ注入する際には、まず貯留容器1を図2に示す状態からy軸を中心としてz軸方向からx軸方向へ90度回転させ、隔壁14の表面をx軸方向に平行(水平)とする。その後、液体Lqを開口部11から所定量注入する。液体Lqの注入量は、注入した後に貯留容器1を元の状態すなわち図2等に示すに戻したとき、吸引用貯留部12での液面S1が隔壁14の下端面となるように定めておく。 When injecting the liquid Lq into the storage container 1, first, the storage container 1 is rotated 90 degrees from the z-axis direction to the x-axis direction around the y-axis from the state shown in FIG. Parallel to (horizontal). Thereafter, a predetermined amount of liquid Lq is injected from the opening 11. The injection amount of the liquid Lq is determined so that the liquid surface S 1 in the suction storage portion 12 becomes the lower end surface of the partition wall 14 when the storage container 1 is returned to the original state, that is, as shown in FIG. Keep it.

液体Lqを注入した貯留容器1は、所定の分注装置に装着され、細管状のプローブPによって液体Lqが吸引される。開口部11を介して上方から挿入され、液体Lqを吸引するプローブPは、その下降量が予め一定値となるように設定されている。より具体的には、プローブPの先端部の液面S1からの侵入深度がΔuとなる位置まで下降するように予め設定されている。 The storage container 1 into which the liquid Lq has been injected is mounted on a predetermined dispensing device, and the liquid Lq is sucked by the thin tubular probe P. The probe P, which is inserted from above through the opening 11 and sucks the liquid Lq, is set so that its descending amount becomes a constant value in advance. More specifically, it is set in advance so as to descend to a position where the penetration depth from the liquid surface S 1 at the tip of the probe P becomes Δu.

図4に示す状態でプローブPが吸引を開始する前は、連通部15に対して吸引用貯留部12から加わる圧力と供給用貯留部13から加わる圧力とはつりあっているため、液面S1およびS2は一定である。なお、プローブPの先端部の体積は非常に小さく、その先端部が液体Lqに侵入することによって生じる液面S1の上昇は無視できるものとする。 Since the probe P is in the state shown in FIG. 4 before starting the suction, which is balanced to the pressure exerted by the pressure and supply reservoir 13 applied by the suction reservoir 12 to the communicating portion 15, the liquid surface S 1 And S 2 are constant. Note that the volume of the tip portion of the probe P is very small, and the rise in the liquid level S 1 caused by the tip portion entering the liquid Lq is negligible.

図4に示す状態でプローブPが所定量の液体Lqを吸引すると、吸引用貯留部12で貯留する液体Lqが減少するため、液面S1は瞬間的に隔壁14の下端面よりも下がる。これにより、連通部15において吸引用貯留部12から加わる圧力と供給用貯留部13から加わる圧力とのつりあいが崩れ、吸引用貯留部12から供給用貯留部13へ空気が流れ込む。この流入してきた空気によって供給用貯留部13の液面S2は下降し、供給用貯留部13で貯留されていた液体Lqの一部が連通部15を介して吸引用貯留部12へと流れ込む。この結果、連通部15が吸引用貯留部12側から加わる圧力と供給用貯留部13側から受ける圧力とは再びつりあって定常状態となる。この定常状態における吸引用貯留部12の液面S1は、供給用貯留部13の液面S2が隔壁14の下端面よりも上方に位置している間は、常に隔壁14の下端面と一致する。 When the probe P sucks a predetermined amount of the liquid Lq in the state shown in FIG. 4, the liquid Lq stored in the suction storage unit 12 decreases, so that the liquid level S 1 instantaneously falls below the lower end surface of the partition wall 14. As a result, the balance between the pressure applied from the suction storage section 12 and the pressure applied from the supply storage section 13 in the communication section 15 is broken, and air flows from the suction storage section 12 into the supply storage section 13. The liquid level S 2 of the supply reservoir 13 is lowered by the inflowing air, and a part of the liquid Lq stored in the supply reservoir 13 flows into the suction reservoir 12 via the communication portion 15. . As a result, the pressure applied to the communication unit 15 from the suction storage unit 12 side and the pressure received from the supply storage unit 13 side are balanced again to be in a steady state. The liquid level S 1 of the suction storage section 12 in this steady state is always the lower end face of the partition wall 14 while the liquid level S 2 of the supply storage section 13 is located above the lower end face of the partition wall 14. Match.

以上の説明からも明らかなように、プローブPによって所定量の液体Lqが吸引された後、吸引用貯留部12には供給用貯留部13から液体Lqが供給され、吸引用貯留部12における液面S1の高さは一定に保たれる。したがって、プローブPを下降する際に液面検知を行う必要がないので、プローブPの下降量だけを予め設定しておけばよい。 As is clear from the above description, after a predetermined amount of the liquid Lq is sucked by the probe P, the liquid Lq is supplied to the suction storage section 12 from the supply storage section 13, and the liquid in the suction storage section 12 is supplied. The height of the surface S 1 is kept constant. Accordingly, since it is not necessary to detect the liquid level when the probe P is lowered, only the lowering amount of the probe P may be set in advance.

本実施の形態1に係る貯留容器1は、検体と試薬とを反応させることによって検体の成分の分析を行う自動分析装置において、試薬を貯留する試薬容器として適用することができる。図5は、貯留容器1が試薬容器として配設された自動分析装置要部の構成を示す図である。同図に示す自動分析装置100は、検体と試薬との間で生じる反応を光学的に測定する測定ユニット101と、測定ユニット101における測定結果のデータ処理を行うデータ処理ユニット201とを有し、これら二つのユニットが連携することによって複数の検体の成分の分析を自動的かつ連続的に行う装置である。   The storage container 1 according to the first embodiment can be applied as a reagent container for storing a reagent in an automatic analyzer that analyzes the components of the specimen by reacting the specimen and the reagent. FIG. 5 is a diagram showing a configuration of a main part of the automatic analyzer in which the storage container 1 is arranged as a reagent container. The automatic analyzer 100 shown in the figure includes a measurement unit 101 that optically measures a reaction that occurs between a specimen and a reagent, and a data processing unit 201 that performs data processing of measurement results in the measurement unit 101. These two units cooperate to automatically and continuously analyze the components of a plurality of specimens.

測定ユニット101は、検体を収容する検体容器51が搭載された複数のラック52を収納して順次移送する検体移送部102と、試薬容器としての貯留容器1を保持する試薬容器保持部103と、検体と試薬とを反応させる反応容器53を保持する反応容器保持部104と、検体移送部102上の検体容器51に収容された検体を反応容器53に分注する検体分注部105と、プローブPを備え試薬容器保持部103上の貯留容器1に収容された試薬を反応容器53に分注する分注装置としての試薬分注部106と、反応容器53の内部の液体を攪拌する攪拌部107と、光源から照射されて反応容器53内を通過した光を受光して所定の波長成分の強度等を測定する測光部108と、反応容器53の洗浄を行う洗浄部109と、を備える。   The measurement unit 101 includes a sample transfer unit 102 that stores and sequentially transfers a plurality of racks 52 on which sample containers 51 that store samples are mounted, a reagent container holding unit 103 that holds a storage container 1 as a reagent container, A reaction container holding unit 104 for holding a reaction container 53 for reacting a sample and a reagent, a sample dispensing unit 105 for dispensing a sample contained in the sample container 51 on the sample transfer unit 102 into the reaction container 53, and a probe A reagent dispensing unit 106 serving as a dispensing device for dispensing the reagent contained in the storage container 1 on the reagent container holding unit 103 to the reaction container 53, and a stirring unit for stirring the liquid inside the reaction container 53 107, a photometric unit 108 that receives light irradiated from a light source and passed through the reaction vessel 53 and measures the intensity of a predetermined wavelength component, and a cleaning unit 109 that cleans the reaction vessel 53.

データ処理ユニット201は、CPU,ROM,RAM等を具備するコンピュータを用いて実現され、自動分析装置100の動作制御、測定ユニット101の測定結果に基づいた検体の成分の分析演算、分析に関する情報を含む各種情報の記憶および入出力等の機能を備える。   The data processing unit 201 is realized by using a computer having a CPU, a ROM, a RAM, and the like, and performs operation control of the automatic analyzer 100, analysis calculation and analysis of the sample component based on the measurement result of the measurement unit 101. It has functions such as storage and input / output of various information.

以上の構成を有する自動分析装置100の試薬容器として貯留容器1を使用することにより、試薬分注部106に対してプローブPを下降させるときに試薬の液面を検知する液面検知機能を設けることなく、試薬の正確な吸引を実現することができる。   By using the storage container 1 as a reagent container of the automatic analyzer 100 having the above configuration, a liquid level detection function for detecting the liquid level of the reagent when the probe P is lowered with respect to the reagent dispensing unit 106 is provided. Therefore, accurate aspiration of the reagent can be realized.

なお、一般に、自動分析装置では、試薬や検体を希釈する希釈液を用いることもある。この希釈液の分注を、試薬分注部106と同様の構成を有する希釈液分注部を設けることによって実現する場合には、貯留容器1を希釈液容器として適用することも可能である。   In general, in an automatic analyzer, a diluent for diluting a reagent or specimen may be used. When the diluting solution is realized by providing a diluting solution dispensing unit having the same configuration as the reagent dispensing unit 106, the storage container 1 can be applied as a diluting solution container.

以上説明した本発明の実施の形態1に係る貯留容器によれば、液体を吸引および吐出するプローブが挿入される開口部を有し、前記プローブが吸引する前記液体を貯留する吸引用貯留部と、前記吸引用貯留部へ前記液体を供給するとともに前記液体を介して大気との間が遮蔽される供給用貯留部と、前記吸引用貯留部と前記供給用貯留部との境界をなし、前記吸引用貯留部における前記液体の液面を規定する隔壁と、前記隔壁の下方に位置し、前記吸引用貯留部と前記供給用貯留部とを連通する連通部と、を備えたことにより、構成が単純であり、プローブを用いた液体の吸引を行う際に液面検知を行うことなく適確な液体の吸引を実現することができる。   According to the storage container according to the first embodiment of the present invention described above, the suction storage section that has the opening into which the probe that sucks and discharges the liquid is inserted and stores the liquid sucked by the probe; Supplying the liquid to the suction reservoir and shielding the atmosphere with the liquid via the liquid; and a boundary between the suction reservoir and the supply reservoir; A partition that defines a liquid level of the liquid in the suction reservoir, and a communication portion that is located below the partition and communicates the suction reservoir and the supply reservoir. However, it is possible to realize accurate liquid suction without performing liquid level detection when performing liquid suction using a probe.

また、本実施の形態1によれば、吸引用貯留部から吸引された液体の分は、この吸引用貯留部とは隔離された供給用貯留部から補給されるため、この補給が可能である間は液面の高さを一定に保つことができる。したがって、プローブの液体への侵入深度も最小限に抑えることができ。汚染やデータ異常に関する懸念を回避することが可能となる。   Further, according to the first embodiment, since the liquid sucked from the suction storage section is supplied from the supply storage section isolated from the suction storage section, this supply is possible. The height of the liquid level can be kept constant during the interval. Therefore, the penetration depth of the probe into the liquid can be minimized. It is possible to avoid concerns about contamination and data anomalies.

(実施の形態2)
図6は、本発明の実施の形態2に係る貯留容器の構成を示す図である。同図に示す貯留容器2は、上述した貯留容器1と同様に、プローブを挿入する開口部21と、プローブによって吸引される液体を貯留する吸引用貯留部22と、吸引用貯留部22へ液体を供給するとともにその液体を介して大気との間が遮蔽される供給用貯留部23と、吸引用貯留部22と供給用貯留部23との境界をなし、吸引用貯留部22における液体の液面を規定する隔壁24と、隔壁24の下方に位置し、吸引用貯留部22と供給用貯留部23とを連通する連通部25と、を備える。本実施の形態2においても、プローブの開口部21からの挿入方向と直交する平面における吸引用貯留部22の面積は、その挿入方向にと直交する平面における供給用貯留部23の面積よりも小さい。
(Embodiment 2)
FIG. 6 is a diagram showing a configuration of a storage container according to Embodiment 2 of the present invention. Similar to the storage container 1 described above, the storage container 2 shown in the figure has an opening 21 for inserting a probe, a suction storage part 22 for storing liquid sucked by the probe, and a liquid to the suction storage part 22. And the supply reservoir 23 that is shielded from the atmosphere through the liquid, the suction reservoir 22 and the supply reservoir 23, and the liquid in the suction reservoir 22. A partition wall 24 that defines a surface, and a communication portion 25 that is located below the partition wall 24 and communicates with the suction storage portion 22 and the supply storage portion 23 are provided. Also in the second embodiment, the area of the suction reservoir 22 in the plane orthogonal to the insertion direction from the probe opening 21 is smaller than the area of the supply reservoir 23 in the plane orthogonal to the insertion direction. .

貯留容器2の外観形状は、上記実施の形態1に係る貯留容器1と同様であるが、吸引用貯留部22と供給用貯留部23との位置関係は貯留容器1の吸引用貯留部12と供給用貯留部13との位置関係とは異なっている。これに伴って、開口部21の位置も開口部11の位置とは異なっており、貯留容器2の上面がなす略台形の短辺側に近い。   Although the external shape of the storage container 2 is the same as that of the storage container 1 according to the first embodiment, the positional relationship between the storage part for suction 22 and the storage part for supply 23 is the same as that of the storage part for suction 12 of the storage container 1. The positional relationship with the supply storage unit 13 is different. Accordingly, the position of the opening 21 is also different from the position of the opening 11 and is close to the substantially trapezoidal short side formed by the upper surface of the storage container 2.

以上説明した本発明の実施の形態2によれば、上記実施の形態1と同様、構成が単純であり、プローブを用いた液体の吸引を行う際に液面検知を行うことなく適確な液体の吸引を実現することができる。また、吸引用貯留部から吸引された液体の分は、この吸引用貯留部とは隔離された供給用貯留部から補給されるため、この補給が可能である間は液面の高さを一定に保つことができる。したがって、プローブの液体への侵入深度も最小限に抑えることができ。汚染やデータ異常に関する懸念を回避することが可能となる。   According to the second embodiment of the present invention described above, as in the first embodiment, the configuration is simple, and an accurate liquid can be obtained without performing liquid level detection when the liquid is sucked using the probe. Can be realized. Further, since the liquid sucked from the suction reservoir is supplied from the supply reservoir isolated from the suction reservoir, the liquid level is kept constant while the supply is possible. Can be kept in. Therefore, the penetration depth of the probe into the liquid can be minimized. It is possible to avoid concerns about contamination and data anomalies.

(実施の形態3)
図7は、本発明の実施の形態3に係る貯留容器の構成を示す斜視図である。また、図8は、図7のC−C線断面図である。これらの図に示す貯留容器3は、上述した貯留容器1と同様に、プローブを挿入する開口部31と、プローブによって吸引される液体を貯留する吸引用貯留部32と、吸引用貯留部32へ液体を供給するとともにその液体を介して大気との間が遮蔽される供給用貯留部33と、吸引用貯留部32と供給用貯留部33との境界をなし、吸引用貯留部32における液体の液面を規定する隔壁34と、隔壁34の下方に位置し、吸引用貯留部32と供給用貯留部33とを連通する連通部35と、を備える。本実施の形態3においても、プローブの開口部31からの挿入方向と直交する平面(図7のXY平面)における吸引用貯留部22の面積は、その挿入方向と直交する平面における供給用貯留部23の面積よりも小さい。
(Embodiment 3)
FIG. 7 is a perspective view showing a configuration of a storage container according to Embodiment 3 of the present invention. 8 is a cross-sectional view taken along the line CC of FIG. Similar to the storage container 1 described above, the storage container 3 shown in these drawings is connected to the opening 31 for inserting the probe, the suction storage section 32 for storing the liquid sucked by the probe, and the suction storage section 32. The supply reservoir 33 that supplies the liquid and is shielded from the atmosphere through the liquid, and forms a boundary between the suction reservoir 32 and the supply reservoir 33, and the liquid in the suction reservoir 32 A partition wall 34 that defines the liquid level and a communication part 35 that is located below the partition wall 34 and that communicates the suction storage part 32 and the supply storage part 33 are provided. Also in the third embodiment, the area of the suction reservoir 22 in the plane orthogonal to the insertion direction from the probe opening 31 (XY plane in FIG. 7) is the supply reservoir in the plane orthogonal to the insertion direction. The area is smaller than 23.

本実施の形態3では、吸引用貯留部32の上面が供給用貯留部33の上面よりも低くなるように形成されているが、これ以外の内部構成および作用は上記実施の形態1に係る貯留容器1と同様である。したがって、このような本実施の形態3に係る貯留容器が、上述した実施の形態1および2と同様の効果を奏することは勿論である。   In the third embodiment, the upper surface of the suction storage section 32 is formed so as to be lower than the upper surface of the supply storage section 33. Other internal configurations and operations are the storage according to the first embodiment. Similar to the container 1. Therefore, it goes without saying that such a storage container according to the third embodiment has the same effects as those of the first and second embodiments described above.

以上、本発明を実施するための最良の形態として、実施の形態1〜3を詳述してきたが、本発明はそれらの実施の形態によってのみ限定されるべきものではない。例えば、容器の外観形状やプローブを挿入する開口部の形状は、必ずしも上述したものに限られるわけではない。   As mentioned above, although Embodiment 1-3 was explained in full detail as the best form for implementing this invention, this invention should not be limited only by those embodiment. For example, the external shape of the container and the shape of the opening into which the probe is inserted are not necessarily limited to those described above.

このように、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。   Thus, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. It is possible to apply.

本発明の実施の形態1に係る貯留容器の構成を示す図である。It is a figure which shows the structure of the storage container which concerns on Embodiment 1 of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 本発明の実施の形態1に係る貯留容器の使用状態を示す図である。It is a figure which shows the use condition of the storage container which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る貯留容器を試薬容器として配設した自動分析装置要部の構成を示す図である。It is a figure which shows the structure of the principal part of the automatic analyzer which has arrange | positioned the storage container which concerns on Embodiment 1 of this invention as a reagent container. 本発明の実施の形態2に係る貯留容器の構成を示す図である。It is a figure which shows the structure of the storage container which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る貯留容器の構成を示す図である。It is a figure which shows the structure of the storage container which concerns on Embodiment 3 of this invention. 図7のC−C線断面図である。It is CC sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1、2、3 貯留容器
11、21、31 開口部
12、22、32 吸引用貯留部
13、23、33 供給用貯留部
14、24、34 隔壁
15、25、35 連通部
51 検体容器
52 ラック
53 反応容器
100 自動分析装置
101 測定ユニット
102 検体移送部
103 試薬容器保持部
104 反応容器保持部
105 検体分注部
106 試薬分注部
107 攪拌部
108 測光部
109 洗浄部
201 データ処理ユニット
Lq 液体
P プローブ
1、S2 液面
1, 2, 3 Storage container 11, 21, 31 Opening part 12, 22, 32 Suction storage part 13, 23, 33 Supply storage part 14, 24, 34 Bulkhead 15, 25, 35 Communication part 51 Sample container 52 Rack 53 Reaction container 100 Automatic analyzer 101 Measurement unit 102 Sample transfer part 103 Reagent container holding part 104 Reaction container holding part 105 Sample dispensing part 106 Reagent dispensing part 107 Stirring part 108 Photometric part 109 Washing part 201 Data processing unit Lq Liquid P probe S 1, S 2 liquid surface

Claims (4)

液体を吸引および吐出するプローブを備えた分注装置に配設され、前記プローブが吸引する液体を貯留する貯留容器であって、
前記プローブが挿入される開口部を有し、前記液体を貯留する吸引用貯留部と、
前記吸引用貯留部へ前記液体を供給するとともに前記液体を介して大気との間が遮蔽される供給用貯留部と、
前記吸引用貯留部と前記供給用貯留部との境界をなし、前記吸引用貯留部における前記液体の液面を規定する隔壁と、
前記隔壁の下方に位置し、前記吸引用貯留部と前記供給用貯留部とを連通する連通部と、
を備えたことを特徴とする貯留容器。
A storage container that is disposed in a dispensing device that includes a probe that sucks and discharges liquid, and stores the liquid sucked by the probe,
A suction storage section for storing the liquid, having an opening into which the probe is inserted;
A supply reservoir that supplies the liquid to the suction reservoir and is shielded from the atmosphere via the liquid;
A partition that defines a boundary between the suction reservoir and the supply reservoir, and defines a liquid level of the liquid in the suction reservoir;
A communication part located below the partition wall, and communicating the suction storage part and the supply storage part;
A storage container comprising:
前記プローブが前記開口部から挿入される挿入方向と直交する平面における前記吸引用貯留部の面積は、前記挿入方向と直交する平面における前記供給用貯留部の面積よりも小さいことを特徴とする請求項1記載の貯留容器。   The area of the suction reservoir in a plane orthogonal to the insertion direction in which the probe is inserted from the opening is smaller than the area of the supply reservoir in a plane orthogonal to the insertion direction. Item 1. A storage container according to item 1. 検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置に配設され、前記試薬を貯留することを特徴とする請求項1または2記載の貯留容器。   3. The storage container according to claim 1, wherein the storage container is disposed in an automatic analyzer that analyzes a component of the sample by reacting the sample with a reagent, and stores the reagent. 検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置に配設され、前記検体および/または前記試薬を希釈する希釈液を貯留することを特徴とする請求項1または2記載の貯留容器。   3. The automatic analyzer that analyzes the components of the specimen by reacting the specimen and the reagent, and stores a diluent for diluting the specimen and / or the reagent. Storage container.
JP2006200797A 2006-07-24 2006-07-24 Storage container Withdrawn JP2008026221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200797A JP2008026221A (en) 2006-07-24 2006-07-24 Storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200797A JP2008026221A (en) 2006-07-24 2006-07-24 Storage container

Publications (1)

Publication Number Publication Date
JP2008026221A true JP2008026221A (en) 2008-02-07

Family

ID=39116990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200797A Withdrawn JP2008026221A (en) 2006-07-24 2006-07-24 Storage container

Country Status (1)

Country Link
JP (1) JP2008026221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516990A (en) * 2013-03-13 2016-06-09 アボット・ラボラトリーズAbbott Laboratories Method and apparatus for reducing bubble formation in a liquid
US9535082B2 (en) 2013-03-13 2017-01-03 Abbott Laboratories Methods and apparatus to agitate a liquid
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516990A (en) * 2013-03-13 2016-06-09 アボット・ラボラトリーズAbbott Laboratories Method and apparatus for reducing bubble formation in a liquid
US9535082B2 (en) 2013-03-13 2017-01-03 Abbott Laboratories Methods and apparatus to agitate a liquid
US9789454B2 (en) 2013-03-13 2017-10-17 Abbott Laboratories Methods and apparatus to agitate a liquid
USD815299S1 (en) 2013-03-13 2018-04-10 Abbott Laboratories Reagent kit with multiple bottles
USD822224S1 (en) 2013-03-13 2018-07-03 Abbott Laboratories Reagent kit with multiple bottles
US10058866B2 (en) 2013-03-13 2018-08-28 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD875270S1 (en) 2013-03-13 2020-02-11 Abbott Laboratories Reagent kit with multiple bottles
USD875269S1 (en) 2013-03-13 2020-02-11 Abbott Laboratories Reagent kit with multiple bottles
US10639600B2 (en) 2013-03-13 2020-05-05 Abbott Laboratories Methods and apparatus to agitate a liquid
USD892350S1 (en) 2013-03-13 2020-08-04 Abbott Laboratories Reagent kit frame
USD905866S1 (en) 2013-03-13 2020-12-22 Abbott Laboratories Reagent kit frame
US10926263B2 (en) 2013-03-13 2021-02-23 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container
US11712671B2 (en) 2013-03-13 2023-08-01 Abbott Laboratories Methods and apparatus to agitate a liquid
US11738346B2 (en) 2013-03-13 2023-08-29 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid

Similar Documents

Publication Publication Date Title
US8764912B2 (en) Method of cleaning nozzle and device for cleaning nozzle
WO2010104072A1 (en) Analyzer and method for cleaning dispenser probe
US11754580B2 (en) Sample measurement method and sample measurement device
US9500577B2 (en) Sample analyzer
JP2008281480A (en) Method and device for washing nozzle, and automatic analyzer
NO781290L (en) APPARATUS FOR CHEMICAL ANALYSIS.
US20170242046A1 (en) Sample measurement apparatus and method of measuring samples
US9329195B2 (en) Container cleaning device, discharge member for container cleaning device, and analyzer
US20190049477A1 (en) Automatic analyzer and cleaning method
JP5028350B2 (en) Automatic analyzer
JP2008026221A (en) Storage container
JP2010121936A (en) Specimen processing system
JP2009145295A (en) Cleaning apparatus and automatic analyzer
JP2022179656A (en) Specimen measurement device and specimen measurement method
JP6368536B2 (en) Automatic analyzer and analysis method
JP2009074870A (en) Liquid suction device for analyzing specimen and specimen analyzer
JPWO2011093347A1 (en) Automatic analyzer
JP2010286324A (en) Dispensing system, automatic analysis system, and dispensing method
CN112689764A (en) Automatic analyzer
JP2011106828A (en) Dispensing device, automated analysis apparatus, and dispensing method
JP2015132521A (en) solution preparation system
CN210923458U (en) Full-automatic detector
JP2015087305A (en) Automatic analyzer
JP2009139238A (en) Liquid vessel, and automatic analyzer
JP2007047001A (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20100616

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20100928