JP2008025366A - Control device of secondary air supply system for internal combustion engine - Google Patents

Control device of secondary air supply system for internal combustion engine Download PDF

Info

Publication number
JP2008025366A
JP2008025366A JP2006195622A JP2006195622A JP2008025366A JP 2008025366 A JP2008025366 A JP 2008025366A JP 2006195622 A JP2006195622 A JP 2006195622A JP 2006195622 A JP2006195622 A JP 2006195622A JP 2008025366 A JP2008025366 A JP 2008025366A
Authority
JP
Japan
Prior art keywords
secondary air
flow rate
air flow
air supply
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195622A
Other languages
Japanese (ja)
Inventor
Masahiko Yamaguchi
正彦 山口
Yasuo Mukai
向井  弥寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006195622A priority Critical patent/JP2008025366A/en
Publication of JP2008025366A publication Critical patent/JP2008025366A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate a secondary air flow rate without having sensors for measuring the secondary air flow rate (or secondary air pressure), in a secondary air supply system for an internal combustion engine. <P>SOLUTION: Based on an excess air ratio (air-fuel ratio) detected by an air-fuel ratio sensor 16 during a secondary air supply period, a fuel injection amount, and an intake air amount, a secondary air flow rate estimate value during the secondary air supply period is calculated. Based on the excess air ratio (air-fuel ratio) detected by an air-fuel ratio sensor 16 during the secondary air supply period, a fuel injection amount, and an intake air amount, the secondary air flow rate estimate value during the secondary air supply period is calculated, and the secondary air flow rate estimate value during the secondary air supply period is detected as an estimated error of the secondary air flow rate. Then, the secondary air flow rate estimate value during the secondary air supply period is corrected by the estimated error of the secondary air flow rate detected during the secondary air supply period so as to acquire a final secondary air flow rate estimate value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気通路に触媒早期暖機等のために二次空気を供給する内燃機関の二次空気供給システムの制御装置に関する発明である。   The present invention relates to a control device for a secondary air supply system of an internal combustion engine that supplies secondary air to an exhaust passage of the internal combustion engine for early warm-up of a catalyst or the like.

例えば、特許文献1(特開2003−83048号公報)、特許文献2(特開2004−11585号公報)に示すように、内燃機関の排気管のうちの排出ガス浄化用の触媒よりも上流側にエアポンプにより二次空気を供給して排出ガス中のHC、COの浄化(酸化反応)を促進したり、その反応熱で触媒の暖機を促進する技術が知られている。   For example, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2003-83048) and Patent Document 2 (Japanese Patent Laid-Open No. 2004-11585), the exhaust gas purification catalyst in the exhaust pipe of the internal combustion engine is upstream of the exhaust gas. In addition, there is known a technique in which secondary air is supplied by an air pump to promote purification (oxidation reaction) of HC and CO in exhaust gas, or to accelerate catalyst warm-up by the reaction heat.

このような二次空気供給システムが故障すると、排気エミッションが悪化するため、特許文献1,2では、二次空気供給管に圧力センサを設置し、この圧力センサで検出した二次空気の圧力に基づいて二次空気供給システムの異常診断を行うようにしている。   When such a secondary air supply system breaks down, exhaust emission deteriorates. Therefore, in Patent Documents 1 and 2, a pressure sensor is installed in the secondary air supply pipe, and the pressure of the secondary air detected by this pressure sensor is reduced. Based on this, the abnormality diagnosis of the secondary air supply system is performed.

しかし、この構成では、二次空気供給管に圧力センサを設置する必要があるため、その分、コスト高になるという欠点がある。   However, this configuration has a drawback in that the pressure sensor needs to be installed in the secondary air supply pipe, which increases the cost accordingly.

そこで、特許文献3(特許第3482019号公報)に示すように、二次空気供給期間中に内燃機関に供給する混合気の空燃比(吸入空気量と燃料噴射量との比)と空燃比センサの検出空燃比と吸入空気量とに基づいて二次空気流量を算出し、この二次空気流量に基づいて二次空気供給システムの動作状態を監視するようにしたものがある。
特開2003−83048号公報 特開2004−11585号公報 特許第3482019号公報
Therefore, as shown in Patent Document 3 (Japanese Patent No. 3482019), the air-fuel ratio (ratio between the intake air amount and the fuel injection amount) of the air-fuel mixture supplied to the internal combustion engine during the secondary air supply period and the air-fuel ratio sensor The secondary air flow rate is calculated based on the detected air-fuel ratio and the intake air amount, and the operation state of the secondary air supply system is monitored based on the secondary air flow rate.
JP 2003-83048 A JP 2004-11585 A Japanese Patent No. 3482019

上記特許文献3の技術では、二次空気供給期間中に内燃機関への供給空燃比(吸入空気量と燃料噴射量との比)と空燃比センサの検出空燃比と吸入空気量とに基づいて二次空気流量を算出するようにしているが、燃料噴射弁、空燃比センサ、吸入空気量センサの個体差(製造ばらつきや経時変化等)の影響で、供給空燃比、空燃比センサの検出空燃比、吸入空気量のデータにばらつきが生じることは避けられないため、二次空気流量を精度良く算出することが困難である。   In the technique of Patent Document 3, the air-fuel ratio supplied to the internal combustion engine (ratio between the intake air amount and the fuel injection amount), the air-fuel ratio detected by the air-fuel ratio sensor, and the intake air amount during the secondary air supply period. Although the secondary air flow rate is calculated, the supply air-fuel ratio and the air-fuel ratio sensor detected air are affected by the individual differences (manufacturing variation, change over time, etc.) of the fuel injection valve, air-fuel ratio sensor, and intake air amount sensor. Since it is inevitable that the data on the fuel ratio and the intake air amount will vary, it is difficult to accurately calculate the secondary air flow rate.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、空燃比センサの検出空燃比と燃料噴射量と吸入空気量とに基づいて二次空気流量を推定する機能を備えた二次空気供給システムにおいて、燃料噴射弁、空燃比センサ、吸入空気量センサの個体差(製造ばらつきや経時変化等)に起因して生じる二次空気流量の推定誤差を精度良く検出することができる内燃機関の二次空気供給システムの制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to estimate the secondary air flow rate based on the air-fuel ratio detected by the air-fuel ratio sensor, the fuel injection amount, and the intake air amount. In the provided secondary air supply system, the estimation error of the secondary air flow rate caused by individual differences (manufacturing variation, change with time, etc.) of the fuel injection valve, the air-fuel ratio sensor, and the intake air amount sensor can be accurately detected. It is an object of the present invention to provide a control device for a secondary air supply system of an internal combustion engine capable of performing the above.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排気通路に排出ガスの空燃比を検出する空燃比センサを設置すると共に、前記排気通路のうちの前記空燃比センサよりも上流側に二次空気を供給する内燃機関の二次空気供給システムの制御装置において、前記空燃比センサの検出空燃比と燃料噴射量と吸入空気量とに基づいて前記排気通路内に供給する二次空気流量を推定する二次空気流量推定手段と、二次空気供給停止期間中に前記二次空気流量推定手段により二次空気流量を推定して、その推定値を前記二次空気流量推定手段の推定誤差として検出する推定誤差検出手段とを備えるようにしたものである。   In order to achieve the above object, an invention according to claim 1 is provided with an air-fuel ratio sensor for detecting an air-fuel ratio of exhaust gas in an exhaust passage of an internal combustion engine, and moreover than the air-fuel ratio sensor in the exhaust passage. In a control device for a secondary air supply system of an internal combustion engine that supplies secondary air to the upstream side, a secondary air supply system that supplies air into the exhaust passage based on an air-fuel ratio detected by the air-fuel ratio sensor, a fuel injection amount, and an intake air amount. A secondary air flow rate estimating means for estimating a secondary air flow rate, and a secondary air flow rate estimating means for estimating a secondary air flow rate by the secondary air flow rate estimating means during a secondary air supply stop period, An estimation error detecting means for detecting as an estimation error is provided.

二次空気供給停止期間中は、排気通路内への二次空気の供給が完全に停止されて二次空気流量の真の値が0になるため、二次空気供給停止期間中に二次空気流量を推定して、その二次空気流量の推定値を真の値(=0)と比較すれば、両者の差分から二次空気流量の推定誤差(=推定値−真の値=推定値)を精度良く求めることができる。従って、本発明のように、二次空気供給停止期間中(つまり二次空気流量の真の値が0である期間中)に、二次空気流量を推定して、その推定値を二次空気流量の推定誤差として検出すれば、燃料噴射弁、空燃比センサ、吸入空気量センサの個体差(製造ばらつきや経時変化等)に起因して生じる二次空気流量の推定誤差を精度良く検出することができる。   During the secondary air supply stop period, the supply of secondary air into the exhaust passage is completely stopped and the true value of the secondary air flow rate becomes zero. If the flow rate is estimated and the estimated value of the secondary air flow rate is compared with the true value (= 0), the estimation error of the secondary air flow rate (= estimated value−true value = estimated value) from the difference between the two. Can be obtained with high accuracy. Therefore, as in the present invention, during the secondary air supply stop period (that is, during the period when the true value of the secondary air flow rate is 0), the secondary air flow rate is estimated, and the estimated value is used as the secondary air flow rate. If it is detected as an estimation error of the flow rate, it can accurately detect the estimation error of the secondary air flow rate caused by individual differences (manufacturing variation, change over time, etc.) of the fuel injection valve, air-fuel ratio sensor, and intake air amount sensor. Can do.

本発明は、請求項2のように、二次空気供給期間中に推定した二次空気流量を上記推定誤差検出手段で検出した推定誤差分だけ補正して最終的な二次空気流量を求めるようにすると良い。このようにすれば、燃料噴射弁、空燃比センサ、吸入空気量センサの個体差(製造ばらつきや経時変化等)の影響を受けずに二次空気流量を精度良く検出することができる。これにより、二次空気流量(又は二次空気圧力)を計測するための専用のセンサ類を新たに設けなくても、二次空気流量を精度良く推定することができ、低コスト化の要求を満たしながら二次空気流量の推定精度向上を実現することができる。   According to the second aspect of the present invention, the final secondary air flow rate is obtained by correcting the secondary air flow rate estimated during the secondary air supply period by the estimated error detected by the estimation error detecting means. It is good to make it. In this way, it is possible to accurately detect the secondary air flow rate without being affected by individual differences (manufacturing variation, temporal change, etc.) among the fuel injection valve, the air-fuel ratio sensor, and the intake air amount sensor. As a result, the secondary air flow rate can be accurately estimated without newly providing dedicated sensors for measuring the secondary air flow rate (or secondary air pressure), and there is a demand for cost reduction. It is possible to improve the estimation accuracy of the secondary air flow rate while satisfying.

更に、本発明は、請求項3のように、前記推定誤差分だけ補正された最終的な二次空気流量に基づいて二次空気供給システムの異常診断を実行する異常診断手段を設けるようにすると良い。このようにすれば、二次空気流量(又は二次空気圧力)を計測するための専用のセンサ類を新たに設けなくても、二次空気供給システムの異常診断を精度良く実行することができ、低コスト化の要求を満たしながら二次空気供給システムの異常診断精度向上を実現することができる。   Further, according to the present invention, as in claim 3, an abnormality diagnosis means for performing an abnormality diagnosis of the secondary air supply system based on the final secondary air flow rate corrected by the estimated error is provided. good. In this way, it is possible to accurately perform abnormality diagnosis of the secondary air supply system without newly providing dedicated sensors for measuring the secondary air flow rate (or secondary air pressure). Therefore, it is possible to improve the abnormality diagnosis accuracy of the secondary air supply system while satisfying the demand for cost reduction.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてシステム全体の概略構成を説明する。
内燃機関であるエンジン11の各気筒の吸気マニホールド12の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁13が取り付けられている。一方、エンジン11の排気管14(排気通路)には、排出ガス中のCO、HC、NOx等を浄化する三元触媒等の触媒15が設けられ、この触媒15の上流側に、排出ガスの空燃比を検出する空燃比センサ16が設けられている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire system will be described with reference to FIG.
A fuel injection valve 13 that injects fuel is attached in the vicinity of the intake port of the intake manifold 12 of each cylinder of the engine 11 that is an internal combustion engine. On the other hand, the exhaust pipe 14 (exhaust passage) of the engine 11 is provided with a catalyst 15 such as a three-way catalyst for purifying CO, HC, NOx, etc. in the exhaust gas. An air-fuel ratio sensor 16 that detects the air-fuel ratio is provided.

次に、排気管14のうちの空燃比センサ16よりも上流側(例えば排気ポート近傍)に二次空気を供給する二次空気供給システム17の構成を説明する。二次空気供給システム17は、電気モータで駆動されるエアポンプ18から吐出する二次空気を、二次空気配管19を通して各気筒の二次空気供給ノズル20に分配して各気筒の排気マニホールド(排気通路)に導入する。二次空気配管19には、該二次空気配管19を開閉する制御弁21が設けられている。   Next, the configuration of the secondary air supply system 17 that supplies secondary air to the upstream side of the air-fuel ratio sensor 16 in the exhaust pipe 14 (for example, near the exhaust port) will be described. The secondary air supply system 17 distributes the secondary air discharged from an air pump 18 driven by an electric motor to a secondary air supply nozzle 20 of each cylinder through a secondary air pipe 19 so that an exhaust manifold (exhaust gas) of each cylinder. Introduced into the aisle). The secondary air pipe 19 is provided with a control valve 21 for opening and closing the secondary air pipe 19.

この二次空気供給システム17のエアポンプ18と制御弁21は、制御回路(以下「ECU」と表記する)23によって制御される。このECU23は、エンジン運転状態を検出する各種センサ(例えば、回転角センサ24、吸入空気量センサ25、水温センサ26等)の出力信号を読み込んで、エンジン回転速度、吸入空気量、冷却水温等のエンジン運転状態を検出して、エンジン運転状態に応じて燃料噴射量や点火時期を制御する。   The air pump 18 and the control valve 21 of the secondary air supply system 17 are controlled by a control circuit (hereinafter referred to as “ECU”) 23. The ECU 23 reads the output signals of various sensors (for example, the rotation angle sensor 24, the intake air amount sensor 25, the water temperature sensor 26, etc.) that detect the engine operating state, and the engine rotation speed, the intake air amount, the cooling water temperature, etc. The engine operating state is detected, and the fuel injection amount and ignition timing are controlled according to the engine operating state.

このECU23は、二次空気供給制御プログラム(図示せず)を実行することで、所定の二次空気供給制御実行条件が成立したときに、エアポンプ18をオンすると共に制御弁21を開弁して排気管14に二次空気を供給する二次空気供給制御を開始し、二次空気供給制御実行条件が不成立となったとき又は所定の二次空気供給実行期間が経過したときにエアポンプ18をオフすると共に制御弁21を閉弁して二次空気の供給を停止する。図2は、二次空気供給期間及び二次空気供給停止期間における空燃比センサ16の検出空燃比と供給空燃比と推定二次空気流量の挙動を示している。   The ECU 23 executes a secondary air supply control program (not shown) to turn on the air pump 18 and open the control valve 21 when a predetermined secondary air supply control execution condition is satisfied. Secondary air supply control for supplying secondary air to the exhaust pipe 14 is started, and the air pump 18 is turned off when the secondary air supply control execution condition is not satisfied or when a predetermined secondary air supply execution period has elapsed. At the same time, the control valve 21 is closed to stop the supply of secondary air. FIG. 2 shows the behavior of the detected air-fuel ratio, supply air-fuel ratio, and estimated secondary air flow rate of the air-fuel ratio sensor 16 during the secondary air supply period and the secondary air supply stop period.

更に、ECU23は、後述する図3の二次空気供給システム異常診断プログラムを実行することで、二次空気供給期間中に空燃比センサ16で検出した空気過剰率λout(A)と燃料噴射量Fin(A) と吸入空気量Qin(A) に基づいて二次空気供給期間中の二次空気流量推定値Qap(A) を算出すると共に、二次空気供給停止期間中に空燃比センサ16で検出した空気過剰率λout(B)と燃料噴射量Fin(B) と吸入空気量Qin(B) とに基づいて二次空気供給停止期間中の二次空気流量推定値Qap(B) を算出して、その推定値Qap(B) を二次空気流量の推定誤差として検出し、二次空気供給期間中に算出した二次空気流量推定値Qap(A) を二次空気供給期間中に検出した二次空気流量の推定誤差Qap(B) 分だけ補正して最終的な二次空気流量推定値Qap(A-B) を求める。   Further, the ECU 23 executes a secondary air supply system abnormality diagnosis program shown in FIG. 3 to be described later, whereby the excess air ratio λout (A) detected by the air-fuel ratio sensor 16 during the secondary air supply period and the fuel injection amount Fin. Based on (A) and the intake air amount Qin (A), the secondary air flow rate estimated value Qap (A) during the secondary air supply period is calculated and detected by the air-fuel ratio sensor 16 during the secondary air supply stop period. Based on the excess air ratio λout (B), the fuel injection amount Fin (B), and the intake air amount Qin (B), the estimated secondary air flow rate Qap (B) during the secondary air supply stop period is calculated. The estimated value Qap (B) is detected as an estimation error of the secondary air flow rate, and the secondary air flow rate estimated value Qap (A) calculated during the secondary air supply period is detected during the secondary air supply period. A final secondary air flow rate estimated value Qap (AB) is obtained by correcting the secondary air flow rate by an estimated error Qap (B).

具体的には、二次空気供給期間中の二次空気流量推定値Qap(A) は次式により算出される。
Qap(A) ={λout(A)/λin(A) }×Qin(A) −Qin(A) ……(1)
Specifically, the secondary air flow rate estimated value Qap (A) during the secondary air supply period is calculated by the following equation.
Qap (A) = {λout (A) / λin (A)} × Qin (A) −Qin (A) (1)

上式において、λin(A) は、二次空気供給期間中にエンジン11に供給する混合気の空気過剰率であり、二次空気供給期間中の吸入空気量Qin(A) と燃料噴射量Fin(A) と理論空燃比(目標空燃比)とから次式により算出される。
λin(A) =Qin(A) /{Fin(A) ×理論空燃比} ……(2)
ここで、理論空燃比は14.7である。
In the above equation, λin (A) is the excess air ratio of the air-fuel mixture supplied to the engine 11 during the secondary air supply period, and the intake air amount Qin (A) and the fuel injection amount Fin during the secondary air supply period It is calculated by the following equation from (A) and the theoretical air fuel ratio (target air fuel ratio).
λin (A) = Qin (A) / {Fin (A) × theoretical air-fuel ratio} (2)
Here, the theoretical air-fuel ratio is 14.7.

上記(1)の右辺の第1項{λout(A)/λin(A) }×Qin(A) は、二次空気供給期間中の排気流量に相当し、この排気流量から吸入空気量Qin(A) を差し引くことで、二次空気供給期間中の二次空気流量推定値Qap(A) を求めるものである。   The first term {λout (A) / λin (A)} × Qin (A) on the right side of the above (1) corresponds to the exhaust flow rate during the secondary air supply period, and the intake air amount Qin ( By subtracting A), the estimated secondary air flow rate Qap (A) during the secondary air supply period is obtained.

上記(2)式を(1)式に代入して整理すると、次式が導き出される。
Qap(A) =λout(A)×Fin(A) ×理論空燃比−Qin(A) ……(3)
また、二次空気供給停止期間中の二次空気流量推定値である二次空気流量推定誤差Qap(B) は次式により算出される。
Qap(B) ={λout(B)/λin(B) }×Qin(B) −Qin(B) ……(4)
Substituting the above equation (2) into the equation (1) and rearranging it leads to the following equation.
Qap (A) = λout (A) × Fin (A) × theoretical air-fuel ratio−Qin (A) (3)
Further, a secondary air flow rate estimation error Qap (B) that is an estimated value of the secondary air flow rate during the secondary air supply stop period is calculated by the following equation.
Qap (B) = {λout (B) / λin (B)} × Qin (B) −Qin (B) (4)

上式において、λin(B) は、二次空気供給停止期間中にエンジン11に供給する混合気の空気過剰率であり、二次空気供給停止期間中の吸入空気量Qin(B) と燃料噴射量Fin(B) と理論空燃比(目標空燃比)とから次式により算出される。
λin(B) =Qin(B) /{Fin(B) ×理論空燃比} ……(5)
In the above equation, λin (B) is the excess air ratio of the air-fuel mixture supplied to the engine 11 during the secondary air supply stop period, and the intake air amount Qin (B) and fuel injection during the secondary air supply stop period It is calculated from the amount Fin (B) and the theoretical air fuel ratio (target air fuel ratio) by the following equation.
λin (B) = Qin (B) / {Fin (B) × theoretical air-fuel ratio} (5)

上記(3)の右辺の第1項{λout(B)/λin(B) }×Qin(B) は、二次空気供給停止期間中の排気流量に相当し、この排気流量から吸入空気量Qin(B) を差し引くことで、二次空気供給停止期間中の二次空気流量推定値Qap(B) を推定して、この二次空気流量推定値Qap(B) を二次空気流量の推定誤差として検出するものである。
上記(5)式を(4)式に代入して整理すると、次式が導き出される。
Qap(B) =λout(B)×Fin(B) ×理論空燃比−Qin(B) ……(6)
The first term {λout (B) / λin (B)} × Qin (B) on the right side of the above (3) corresponds to the exhaust flow rate during the secondary air supply stop period. From this exhaust flow rate, the intake air amount Qin By subtracting (B), the secondary air flow rate estimate Qap (B) during the secondary air supply stop period is estimated, and this secondary air flow rate estimate Qap (B) is estimated as the secondary air flow rate estimation error. Is detected.
Substituting the above equation (5) into the equation (4) and rearranging it leads to the following equation.
Qap (B) = λout (B) × Fin (B) × theoretical air-fuel ratio−Qin (B) (6)

二次空気供給停止期間中は、排気管14内への二次空気の供給が完全に停止されて二次空気流量の真の値が0になるため、二次空気供給停止期間中に二次空気流量推定値Qap(B) を算出して、その二次空気流量推定値Qap(B) を真の値(=0)と比較すれば、両者の差分から二次空気流量の推定誤差(=推定値−真の値=推定値)Qap(B) を精度良く求めることができる。   During the secondary air supply stop period, the supply of the secondary air into the exhaust pipe 14 is completely stopped and the true value of the secondary air flow rate becomes 0. Therefore, the secondary air supply is stopped during the secondary air supply stop period. If the estimated air flow rate value Qap (B) is calculated and the estimated secondary air flow rate value Qap (B) is compared with the true value (= 0), the estimated error (= (Estimated value−true value = estimated value) Qap (B) can be obtained with high accuracy.

そして、二次空気供給期間中の二次空気流量推定値Qap(A) から二次空気供給停止期間中の二次空気流量推定値(二次空気流量推定誤差)Qap(B) を差し引くことで、最終的な二次空気流量推定値Qap(A-B) が求められる。   By subtracting the secondary air flow rate estimated value (secondary air flow rate estimation error) Qap (B) during the secondary air supply stop period from the secondary air flow rate estimated value Qap (A) during the secondary air supply period, The final estimated secondary air flow rate Qap (AB) is obtained.

Qap(A-B) =Qap(A) −Qap(B)
=[{λout(A)/λin(A) }×Qin(A) −Qin(A) ]
−[{λout(B)/λin(B) }×Qin(B) −Qin(B) ]
={λout(A)×Fin(A) ×理論空燃比−Qin(A) }
−{λout(B)×Fin(B) ×理論空燃比−Qin(B) } ……(7)
Qap (AB) = Qap (A)-Qap (B)
= [{Λout (A) / λin (A)} × Qin (A) −Qin (A)]
− [{Λout (B) / λin (B)} × Qin (B) −Qin (B)]
= {Λout (A) × Fin (A) × theoretical air-fuel ratio−Qin (A)}
− {Λout (B) × Fin (B) × theoretical air / fuel ratio−Qin (B)} (7)

尚、燃料噴射量Fin(A) ,Fin(B) は、実測できないため、ECU23で演算した要求燃料噴射量をそのまま燃料噴射量Fin(A) ,Fin(B) とすれば良い。
また、検出空気過剰率λと検出空燃比との関係は、次式で定義される。
検出空気過剰率λ=検出空燃比/理論空燃比 ……(8)
Since the fuel injection amounts Fin (A) and Fin (B) cannot be actually measured, the required fuel injection amounts calculated by the ECU 23 may be directly used as the fuel injection amounts Fin (A) and Fin (B).
Further, the relationship between the detected excess air ratio λ and the detected air-fuel ratio is defined by the following equation.
Detected air excess ratio λ = Detected air / fuel ratio / theoretical air / fuel ratio (8)

従って、二次空気供給期間中の供給空燃比と検出空燃比をそれぞれAFin(A) 、AFout(A)、二次空気供給停止期間中の供給空燃比と検出空燃比をそれぞれAFin(B) 、AFout(B)とすると、二次空気供給期間中の二次空気流量推定値Qap(A) と二次空気供給停止期間中の二次空気流量推定値である二次空気流量推定誤差Qap(B) は、それぞれ次式で算出される。
Qap(A) ={AFout(A)/AFin(A) }×Qin(A) −Qin(A) ……(9)
Qap(B) ={AFout(B)/AFin(B) }×Qin(B) −Qin(B) ……(10)
Therefore, the supply air-fuel ratio and the detected air-fuel ratio during the secondary air supply period are AFin (A) and AFout (A), respectively, and the supply air-fuel ratio and the detected air-fuel ratio during the secondary air supply stop period are respectively AFin (B), Assuming that AFout (B), the secondary air flow rate estimated value Qap (A) during the secondary air supply period and the secondary air flow rate estimation error Qap (B) which is the secondary air flow rate estimated value during the secondary air supply stop period ) Is calculated by the following equation.
Qap (A) = {AFout (A) / AFin (A)} × Qin (A) −Qin (A) (9)
Qap (B) = {AFout (B) / AFin (B)} × Qin (B) −Qin (B) (10)

ここで、二次空気供給期間中の供給空燃比AFin(A) は、二次空気供給期間中の吸入空気量Qin(A) と燃料噴射量Fin(A) とから次式により算出される。
AFin(A) =Qin(A) /Fin(A) ……(11)
この(11)式を上記(9)式に代入して整理すると、次式が導き出される。
Qap(A) =AFout(A)×Fin(A) −Qin(A) ……(12)
Here, the supply air-fuel ratio AFin (A) during the secondary air supply period is calculated from the intake air amount Qin (A) and the fuel injection amount Fin (A) during the secondary air supply period by the following equation.
AFin (A) = Qin (A) / Fin (A) (11)
Substituting this equation (11) into the above equation (9) and rearranging it leads to the following equation.
Qap (A) = AFout (A) × Fin (A) −Qin (A) (12)

同様に、二次空気供給停止期間中の供給空燃比AFin(B) は、二次空気供給停止期間中の吸入空気量Qin(B) と燃料噴射量Fin(B) とから次式により算出される。
AFin(B) =Qin(B) /Fin(B) ……(13)
この(13)式を上記(10)式に代入して整理すると、次式が導き出される。
Qap(B) =AFout(B)×Fin(B) −Qin(B) ……(14)
Similarly, the supply air-fuel ratio AFin (B) during the secondary air supply stop period is calculated by the following equation from the intake air amount Qin (B) and the fuel injection amount Fin (B) during the secondary air supply stop period. The
AFin (B) = Qin (B) / Fin (B) (13)
Substituting this equation (13) into the above equation (10) and rearranging it leads to the following equation.
Qap (B) = AFout (B) × Fin (B) −Qin (B) (14)

従って、上記(12)式と(14)式とから、二次空気流量推定誤差Qap(B) を取り除いた補正二次空気流量推定値Qap(A-B) が次式によって求められる。
Qap(A-B) =Qap(A) −Qap(B)
={AFout(A)×Fin(A) −Qin(A) }
−{AFout(B)×Fin(B) −Qin(B) } ……(15)
Therefore, a corrected secondary air flow rate estimated value Qap (AB) obtained by removing the secondary air flow rate estimation error Qap (B) is obtained from the above formulas (12) and (14) by the following formula.
Qap (AB) = Qap (A)-Qap (B)
= {AFout (A) × Fin (A) −Qin (A)}
− {AFout (B) × Fin (B) −Qin (B)} (15)

更に、本実施例では、二次空気流量推定誤差Qap(B) を取り除いた補正二次空気流量推定値Qap(A-B) を異常判定しきい値と比較して、補正二次空気流量推定値Qap(A-B) が異常判定しきい値よりも少ないか否かで、二次空気供給システム17の異常の有無を判定するようにしている。この場合、異常判定しきい値は、予め適合した一定の値を用いても良いが、二次空気供給中に二次空気供給ノズル20の出口に作用するエンジン11の排気圧力が変動すると、二次空気供給システム17から排気管14内に流入する二次空気流量が変動することを考慮して、排気圧力の変動要因となるパラメータ(例えば吸入空気量)に応じて異常判定しきい値をマップ等により設定するようにしても良い。   Further, in the present embodiment, the corrected secondary air flow rate estimated value Qap (B) from which the secondary air flow rate estimation error Qap (B) is removed is compared with the abnormality determination threshold value, and the corrected secondary air flow rate estimated value Qap is compared. Whether or not the secondary air supply system 17 is abnormal is determined based on whether or not (AB) is smaller than the abnormality determination threshold value. In this case, the abnormality determination threshold value may be a fixed value that is adapted in advance. However, if the exhaust pressure of the engine 11 acting on the outlet of the secondary air supply nozzle 20 varies during the supply of the secondary air, Considering that the flow rate of the secondary air flowing into the exhaust pipe 14 from the secondary air supply system 17 varies, the abnormality determination threshold is mapped according to a parameter (for example, intake air amount) that causes the exhaust pressure to vary. It may be set by, for example.

以上説明した補正二次空気流量Qap(A-B) の算出処理と二次空気供給システム17の異常診断は、ECU23によって図3の二次空気供給システム異常診断プログラムに従って次のように実行される。本プログラムは、エンジン運転中に所定周期で実行され、まずステップ101で、二次空気供給中(エアポンプ18がオン且つ制御弁21が開弁)であるか否かを判定し、二次空気供給中であれば、ステップ102に進み、二次空気供給時に空燃比センサ16で検出した空気過剰率λout(A)と、燃料噴射弁13から噴射した燃料噴射量Fin(A) と、吸入空気量センサ25で検出した吸入空気量Qin(A) を読み込む。   The calculation process of the corrected secondary air flow rate Qap (A-B) and the abnormality diagnosis of the secondary air supply system 17 described above are executed by the ECU 23 as follows in accordance with the secondary air supply system abnormality diagnosis program of FIG. This program is executed at a predetermined cycle during engine operation. First, in step 101, it is determined whether secondary air is being supplied (the air pump 18 is on and the control valve 21 is open). If it is medium, the routine proceeds to step 102 where the excess air ratio λout (A) detected by the air-fuel ratio sensor 16 during the supply of secondary air, the fuel injection amount Fin (A) injected from the fuel injection valve 13, and the intake air amount. The intake air amount Qin (A) detected by the sensor 25 is read.

この後、ステップ103に進み、二次空気供給期間中の二次空気流量推定値Qap(A) を次式により算出する。
Qap(A) =λout(A)×Fin(A) ×理論空燃比−Qin(A)
Thereafter, the process proceeds to step 103, and the secondary air flow rate estimated value Qap (A) during the secondary air supply period is calculated by the following equation.
Qap (A) = λout (A) x Fin (A) x Theoretical air-fuel ratio-Qin (A)

図2に示すように、空燃比センサ16の出力に重畳するノイズや空燃比センサ16周辺の排出ガスの流動状態の変動等によって空燃比センサ16の検出空気過剰率λout(A)が振動し、また、燃料噴射弁13に供給する燃料の圧力の振動等によって燃料噴射量Fin(A) (供給空気過剰率)も振動するため、それらのデータを用いて算出した二次空気流量推定値Qap(A) も振動する結果となる。この対策として、二次空気供給中の所定期間内の検出空気過剰率λout(A)の平均値(又はなまし値)と燃料噴射量Fin(A) の平均値(又はなまし値)を算出して、それらの平均値(又はなまし値)を用いて二次空気流量推定値Qap(A) を算出するようにしても良いし、或は、二次空気供給中の所定期間内に所定の演算周期で繰り返し算出した二次空気流量推定値Qap(A) の平均値、なまし値、積算値を算出するようにしても良い。このようにすれば、二次空気供給中の所定期間内の平均的又は中間的な二次空気流量推定値Qap(A) に関するデータを取得することができ、検出空気過剰率λout(A)や燃料噴射量Fin(A) の振動の影響を極力排除した信頼性の高い二次空気流量推定値Qap(A) に関するデータを取得することができる。   As shown in FIG. 2, the detected excess air ratio λout (A) of the air-fuel ratio sensor 16 oscillates due to noise superimposed on the output of the air-fuel ratio sensor 16, fluctuations in the flow state of exhaust gas around the air-fuel ratio sensor 16, and the like. Further, since the fuel injection amount Fin (A) (excess air supply rate) also vibrates due to the vibration of the pressure of the fuel supplied to the fuel injection valve 13, etc., the secondary air flow rate estimated value Qap ( A) also results in vibration. As a countermeasure, calculate the average value (or smoothing value) of the detected excess air ratio λout (A) and the average value (or smoothing value) of the fuel injection amount Fin (A) during the specified period during the supply of secondary air. Then, the secondary air flow rate estimated value Qap (A) may be calculated using the average value (or the smoothed value) thereof, or it may be determined within a predetermined period during the supply of secondary air. The average value, the smoothed value, and the integrated value of the estimated secondary air flow rate Qap (A) repeatedly calculated at the calculation cycle may be calculated. In this way, it is possible to obtain data on the average or intermediate secondary air flow rate estimated value Qap (A) within a predetermined period during the supply of secondary air, and the detected excess air ratio λout (A) or It is possible to acquire data on the reliable secondary air flow rate estimated value Qap (A) that eliminates the influence of the vibration of the fuel injection amount Fin (A) as much as possible.

但し、本発明は、二次空気供給中に所定タイミングで検出した空気過剰率λout(A)と燃料噴射量Fin(A) の瞬時値を用いて二次空気流量推定値Qap(A) の算出を1回のみ行う構成を本発明の技術的範囲から除外するものではない。これは、空燃比センサ16の出力や燃料噴射量Fin(A) の信号をフィルタ処理すれば、振動成分を取り除いた空気過剰率λout(A)や燃料噴射量Fin(A) を検出できるためである。   However, the present invention calculates the secondary air flow rate estimated value Qap (A) using the instantaneous value of the excess air ratio λout (A) and the fuel injection amount Fin (A) detected at a predetermined timing during the supply of the secondary air. It is not excluded from the technical scope of the present invention that the configuration is performed only once. This is because the excess air ratio λout (A) and the fuel injection amount Fin (A) from which the vibration component is removed can be detected by filtering the output of the air-fuel ratio sensor 16 and the signal of the fuel injection amount Fin (A). is there.

一方、上記ステップ101で、二次空気供給中でないと判定されれば、ステップ104に進み、二次空気供給期間中の二次空気流量推定値Qap(A) を算出済みであるか否かを判定し、まだ、二次空気供給期間中の二次空気流量推定値Qap(A) が算出されていなければ、以降の処理を行うことなく、そのまま本プログラムを終了する。   On the other hand, if it is determined in step 101 that the secondary air is not being supplied, the routine proceeds to step 104, where it is determined whether or not the secondary air flow rate estimated value Qap (A) during the secondary air supply period has been calculated. If the secondary air flow rate estimated value Qap (A) during the secondary air supply period has not been calculated yet, the program is terminated without performing the subsequent processing.

これに対して、上記ステップ104で、二次空気供給期間中の二次空気流量推定値Qap(A) を算出済みと判定されれば、ステップ105に進み、二次空気供給停止期間中に空燃比センサ16で検出した空気過剰率λout(B)と、燃料噴射弁13から噴射した燃料噴射量Fin(B) と、吸入空気量センサ25で検出した吸入空気量Qin(B) を読み込む。   On the other hand, if it is determined in step 104 that the secondary air flow rate estimated value Qap (A) during the secondary air supply period has been calculated, the process proceeds to step 105, where the empty air supply is stopped during the secondary air supply stop period. The excess air ratio λout (B) detected by the fuel ratio sensor 16, the fuel injection amount Fin (B) injected from the fuel injection valve 13, and the intake air amount Qin (B) detected by the intake air amount sensor 25 are read.

この後、ステップ106に進み、二次空気供給停止期間中の二次空気流量推定値(二次空気流量推定誤差)Qap(B) を次式により算出する。
Qap(B) =λout(B)×Fin(B) ×理論空燃比−Qin(B)
Thereafter, the routine proceeds to step 106, where the secondary air flow rate estimated value (secondary air flow rate estimation error) Qap (B) during the secondary air supply stop period is calculated by the following equation.
Qap (B) = λout (B) x Fin (B) x Theoretical air-fuel ratio-Qin (B)

この場合も、二次空気供給停止中の所定期間内の検出空気過剰率λout(B)の平均値(又はなまし値)と燃料噴射量Fin(B) の平均値(又はなまし値)を算出して、それらの平均値(又はなまし値)を用いて二次空気流量推定誤差Qap(B) を算出するようにしても良いし、或は、二次空気供給停止中の所定期間内に所定の演算周期で繰り返し算出した二次空気流量推定誤差Qap(B) の平均値、なまし値、積算値を算出するようにしても良い。このステップ106の処理が特許請求の範囲でいう推定誤差検出手段としての役割を果たす。   Also in this case, the average value (or smoothing value) of the detected excess air ratio λout (B) and the average value (or smoothing value) of the fuel injection amount Fin (B) within the predetermined period during the secondary air supply stoppage are calculated. The secondary air flow rate estimation error Qap (B) may be calculated using the average value (or the smoothed value) of these values, or within a predetermined period when the secondary air supply is stopped. Alternatively, the average value, the smoothed value, and the integrated value of the secondary air flow rate estimation error Qap (B) repeatedly calculated at a predetermined calculation cycle may be calculated. The processing in step 106 serves as an estimation error detection means in the claims.

二次空気流量推定誤差Qap(B) の算出後、ステップ107に進み、二次空気供給期間中の二次空気流量推定値Qap(A) から二次空気流量推定誤差Qap(B) を差し引くことで、補正二次空気流量推定値Qap(A-B) を求める。
Qap(A-B) =Qap(A) −Qap(B)
以上説明したステップ101〜ステップ107の処理が特許請求の範囲でいう二次空気流量推定手段としての役割を果たす。
After calculating the secondary air flow estimation error Qap (B), proceed to step 107 and subtract the secondary air flow estimation error Qap (B) from the secondary air flow estimation value Qap (A) during the secondary air supply period. Then, the corrected secondary air flow rate estimated value Qap (AB) is obtained.
Qap (AB) = Qap (A)-Qap (B)
The processes in steps 101 to 107 described above serve as secondary air flow rate estimation means in the claims.

この後、ステップ108に進み、補正二次空気流量推定値Qap(A-B) を異常判定しきい値と比較して、補正二次空気流量推定値Qap(A-B) が異常判定しきい値よりも少なければ、二次空気供給システム17から排気管14内に流入する二次空気流量が異常に少ないと判断して、ステップ109に進み、二次空気供給システム17の異常と判定する。   Thereafter, the routine proceeds to step 108, where the corrected secondary air flow rate estimated value Qap (AB) is compared with the abnormality determination threshold value, and the corrected secondary air flow rate estimated value Qap (AB) must be less than the abnormality determination threshold value. For example, it is determined that the flow rate of the secondary air flowing into the exhaust pipe 14 from the secondary air supply system 17 is abnormally small, and the process proceeds to step 109 to determine that the secondary air supply system 17 is abnormal.

これに対して、上記ステップ108で、補正二次空気流量推定値Qap(A-B) が異常判定しきい値以上と判定されれば、二次空気供給システム17から排気管14内に流入する二次空気流量が正常範囲内であると判断して、ステップ110に進み、二次空気供給システム17が正常であると判定する。尚、上記ステップ108〜ステップ110の処理が特許請求の範囲でいう異常診断手段手段としての役割を果たす。   On the other hand, if it is determined in step 108 that the corrected secondary air flow rate estimated value Qap (AB) is greater than or equal to the abnormality determination threshold value, the secondary air flowing into the exhaust pipe 14 from the secondary air supply system 17. It is determined that the air flow rate is within the normal range, the process proceeds to step 110, and it is determined that the secondary air supply system 17 is normal. Note that the processing from step 108 to step 110 serves as abnormality diagnosis means in the claims.

尚、本プログラムでは、二次空気供給終了後に、二次空気流量推定誤差Qap(B) を算出するようになっているが、二次空気供給開始前に、二次空気流量推定誤差Qap(B) を算出し、その後、二次空気供給時の排気流量Qout(A)を算出するようにしても良い。   In this program, the secondary air flow rate estimation error Qap (B) is calculated after the secondary air supply is completed. However, before the secondary air supply is started, the secondary air flow rate estimation error Qap (B ) May be calculated, and then the exhaust flow rate Qout (A) at the time of secondary air supply may be calculated.

或は、二次空気流量推定誤差Qap(B) をバックアップRAM等の書き換え可能な不揮発性メモリに記憶して学習するようにしても良い。この場合、エンジン運転条件毎に二次空気流量推定誤差Qap(B) を学習して、二次空気流量推定値Qap(A) を算出した時点のエンジン運転条件に対応する二次空気流量推定誤差Qap(B) の学習値をメモリから読み込んで、二次空気流量推定値Qap(A) を補正するようにしても良い。勿論、エンジン運転条件とは関係なく二次空気流量推定誤差Qap(B) を学習するようにしても良いことは言うまでもない。   Alternatively, the secondary air flow rate estimation error Qap (B) may be stored in a rewritable nonvolatile memory such as a backup RAM for learning. In this case, the secondary air flow estimation error Qap (B) is learned for each engine operating condition, and the secondary air flow estimation error corresponding to the engine operating condition at the time when the secondary air flow estimated value Qap (A) is calculated. The learned value of Qap (B) may be read from the memory and the secondary air flow rate estimated value Qap (A) may be corrected. Of course, it goes without saying that the secondary air flow rate estimation error Qap (B) may be learned regardless of the engine operating conditions.

以上説明した本実施例によれば、二次空気供給停止期間中は、排気管14内への二次空気の供給が完全に停止されて二次空気流量の真の値が0になることに着目して、二次空気供給停止期間中に二次空気流量推定値Qap(B) を算出して、その二次空気流量推定値Qap(B) を真の値(=0)と比較して二次空気流量の推定誤差(=推定値−真の値=推定値)を検出するようにしたので、二次空気供給停止期間中(つまり二次空気流量の真の値が0である期間中)に、燃料噴射弁13、空燃比センサ16、吸入空気量センサの個体差(製造ばらつきや経時変化等)に起因して生じる二次空気流量推定誤差を精度良く検出することができる。   According to the present embodiment described above, during the secondary air supply stop period, the supply of secondary air into the exhaust pipe 14 is completely stopped and the true value of the secondary air flow rate becomes zero. Paying attention, the secondary air flow rate estimated value Qap (B) is calculated during the secondary air supply stop period, and the secondary air flow rate estimated value Qap (B) is compared with the true value (= 0). Since an estimation error (= estimated value−true value = estimated value) of the secondary air flow rate is detected, during the secondary air supply stop period (that is, during the period when the true value of the secondary air flow rate is 0) ), It is possible to accurately detect a secondary air flow rate estimation error caused by individual differences (manufacturing variation, temporal change, etc.) among the fuel injection valve 13, the air-fuel ratio sensor 16, and the intake air amount sensor.

そして、二次空気供給期間中に算出した二次空気流量推定値Qap(A) を上記二次空気流量推定誤差Qap(B) 分だけ補正して最終的な二次空気流量推定値Qap(A-B) を求めるようにしたので、燃料噴射弁13、空燃比センサ16、吸入空気量センサの個体差(製造ばらつきや経時変化等)の影響を受けずに二次空気流量を精度良く検出することができる。これにより、二次空気流量(又は二次空気圧力)を計測するための専用のセンサ類を新たに設けなくても、二次空気流量を精度良く推定することができ、低コスト化の要求を満たしながら二次空気流量の推定精度向上を実現することができる。   Then, the secondary air flow rate estimated value Qap (A) calculated during the secondary air supply period is corrected by the secondary air flow rate estimation error Qap (B) to obtain the final secondary air flow rate estimated value Qap (AB Therefore, the secondary air flow rate can be accurately detected without being affected by individual differences (manufacturing variation, change with time, etc.) of the fuel injection valve 13, the air-fuel ratio sensor 16, and the intake air amount sensor. it can. As a result, the secondary air flow rate can be accurately estimated without newly providing dedicated sensors for measuring the secondary air flow rate (or secondary air pressure), and there is a demand for cost reduction. It is possible to improve the estimation accuracy of the secondary air flow rate while satisfying.

更に、本実施例では、二次空気流量推定誤差Qap(B) で補正した最終的な二次空気流量推定値Qap(A-B) を異常判定しきい値と比較して二次空気供給システム17の異常の有無を判定するようにしたので、二次空気流量(又は二次空気圧力)を計測するための専用のセンサ類を新たに設けなくても、二次空気供給システム17の異常診断を精度良く実行することができ、低コスト化の要求を満たしながら二次空気供給システム17の異常診断精度向上を実現することができる。   Further, in the present embodiment, the final secondary air flow rate estimated value Qap (AB) corrected by the secondary air flow rate estimation error Qap (B) is compared with the abnormality determination threshold value, so that the secondary air supply system 17 Since the presence / absence of abnormality is determined, the abnormality diagnosis of the secondary air supply system 17 can be accurately performed without providing a dedicated sensor for measuring the secondary air flow rate (or secondary air pressure). It can be executed well and the abnormality diagnosis accuracy of the secondary air supply system 17 can be improved while satisfying the demand for cost reduction.

尚、本実施例では、電動モータで駆動されるエアポンプ18を備えた二次空気供給システム17に本発明を適用したが、エンジン11の動力等で電磁クラッチを介して駆動されるエアポンプを備えた二次空気供給システムに本発明を適用するようにしても良い。   In the present embodiment, the present invention is applied to the secondary air supply system 17 including the air pump 18 driven by an electric motor. However, the present invention includes an air pump driven via an electromagnetic clutch by the power of the engine 11 or the like. The present invention may be applied to a secondary air supply system.

本発明の一実施例におけるシステム全体の概略構成図である。It is a schematic block diagram of the whole system in one Example of this invention. 二次空気供給時及び二次空気供給停止時における空燃比センサの検出λと供給λと推定二次空気流量の挙動を示すタイムチャートである。It is a time chart which shows the behavior of the detection λ and supply λ of the air-fuel ratio sensor and the estimated secondary air flow rate when the secondary air is supplied and when the secondary air supply is stopped. 二次空気供給システム異常診断プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a secondary air supply system abnormality diagnosis program.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気マニホールド、13…燃料噴射弁、14…排気管(排気通路)、15…触媒、16…空燃比センサ、17…二次空気供給システム、18…エアポンプ、19…二次空気配管、20…二次空気供給ノズル、21…制御弁、23…ECU(二次空気流量推定手段,推定誤差検出手段,異常診断手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake manifold, 13 ... Fuel injection valve, 14 ... Exhaust pipe (exhaust passage), 15 ... Catalyst, 16 ... Air-fuel ratio sensor, 17 ... Secondary air supply system, 18 ... Air pump, DESCRIPTION OF SYMBOLS 19 ... Secondary air piping, 20 ... Secondary air supply nozzle, 21 ... Control valve, 23 ... ECU (Secondary air flow rate estimation means, estimation error detection means, abnormality diagnosis means)

Claims (3)

内燃機関の排気通路に排出ガスの空燃比を検出する空燃比センサを設置すると共に、前記排気通路のうちの前記空燃比センサよりも上流側に二次空気を供給する内燃機関の二次空気供給システムの制御装置において、
前記空燃比センサの検出空燃比と燃料噴射量と吸入空気量とに基づいて前記排気通路内に供給する二次空気流量を推定する二次空気流量推定手段と、
二次空気供給停止期間中に前記二次空気流量推定手段により二次空気流量を推定して、その推定値を該二次空気流量推定手段の推定誤差として検出する推定誤差検出手段と
を備えていることを特徴とする内燃機関の二次空気供給システムの制御装置。
An air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust passage of the internal combustion engine, and the secondary air supply of the internal combustion engine that supplies secondary air upstream of the air-fuel ratio sensor in the exhaust passage In the system control unit,
Secondary air flow rate estimating means for estimating a secondary air flow rate to be supplied into the exhaust passage based on the air / fuel ratio detected by the air / fuel ratio sensor, the fuel injection amount, and the intake air amount;
An estimation error detecting means for estimating a secondary air flow rate by the secondary air flow rate estimating means during a secondary air supply stop period and detecting the estimated value as an estimation error of the secondary air flow rate estimating means. A control device for a secondary air supply system of an internal combustion engine.
前記二次空気流量推定手段は、二次空気供給期間中に推定した二次空気流量を前記推定誤差検出手段で検出した推定誤差分だけ補正して最終的な二次空気流量を求めることを特徴とする請求項1に記載の内燃機関の二次空気供給システムの制御装置。   The secondary air flow rate estimation means corrects the secondary air flow rate estimated during the secondary air supply period by the estimated error detected by the estimation error detection means to obtain a final secondary air flow rate. The control device for a secondary air supply system of an internal combustion engine according to claim 1. 前記推定誤差分だけ補正された最終的な二次空気流量に基づいて前記二次空気供給システムの異常診断を実行する異常診断手段を備えていることを特徴とする請求項2に記載の内燃機関の二次空気供給システムの制御装置。   The internal combustion engine according to claim 2, further comprising an abnormality diagnosis unit that performs an abnormality diagnosis of the secondary air supply system based on a final secondary air flow rate corrected by the estimated error. Secondary air supply system control device.
JP2006195622A 2006-07-18 2006-07-18 Control device of secondary air supply system for internal combustion engine Pending JP2008025366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195622A JP2008025366A (en) 2006-07-18 2006-07-18 Control device of secondary air supply system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195622A JP2008025366A (en) 2006-07-18 2006-07-18 Control device of secondary air supply system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008025366A true JP2008025366A (en) 2008-02-07

Family

ID=39116278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195622A Pending JP2008025366A (en) 2006-07-18 2006-07-18 Control device of secondary air supply system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008025366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275651A (en) * 2014-06-23 2016-01-27 福特环球技术公司 Method and system for secondary air injection coordination with exhaust back pressure valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275651A (en) * 2014-06-23 2016-01-27 福特环球技术公司 Method and system for secondary air injection coordination with exhaust back pressure valve
CN105275651B (en) * 2014-06-23 2020-06-26 福特环球技术公司 Method and system for secondary air injection with exhaust back pressure valve coordination

Similar Documents

Publication Publication Date Title
US20100018186A1 (en) Fault detection system for pm trapper
JP2007032466A (en) Internal combustion engine control device
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
JP2005307961A (en) Sensor response characteristic detecting device
JPH07127441A (en) Catalyst temperature detecting device for vehicle
JP4873378B2 (en) Abnormality diagnosis device for intake air volume sensor
JP2008144639A (en) Control device for internal combustion engine
JP4186679B2 (en) Failure diagnosis device for secondary air supply device.
JP5839118B2 (en) Abnormality determination system for exhaust gas purification device of internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP2019116867A (en) Abnormality diagnosis system for exhaust emission control device
JP2010174872A (en) Malfunction diagnosis device for internal combustion engine secondary air supply system
JPH10148152A (en) Temperature estimating device for oxygen sensor in engine
JP2006057523A (en) Failure diagnosis device for engine control system
JP2008064078A (en) Control device of internal combustion engine
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP2007321662A (en) Control device for secondary air supply system of internal combustion engine
JP2008025366A (en) Control device of secondary air supply system for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP4547617B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine
JP2005163618A (en) Control device for engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2008019791A (en) Abnormality diagnosis system for secondary air supply system for internal combustion engine
JP2006138261A (en) Abnormality diagnosis device for secondary air supply system for internal combustion engine
JP2020045814A (en) Fuel injection control device for internal combustion engine