JP2008024977A - Method for manufacturing annular member - Google Patents

Method for manufacturing annular member Download PDF

Info

Publication number
JP2008024977A
JP2008024977A JP2006197484A JP2006197484A JP2008024977A JP 2008024977 A JP2008024977 A JP 2008024977A JP 2006197484 A JP2006197484 A JP 2006197484A JP 2006197484 A JP2006197484 A JP 2006197484A JP 2008024977 A JP2008024977 A JP 2008024977A
Authority
JP
Japan
Prior art keywords
annular member
peripheral surface
ring gear
inner peripheral
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006197484A
Other languages
Japanese (ja)
Inventor
Teru Harashima
照 原嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006197484A priority Critical patent/JP2008024977A/en
Publication of JP2008024977A publication Critical patent/JP2008024977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately manufacturing an annular member which has a thin wall, a large diameter and a machined inner circumferential surface. <P>SOLUTION: This manufacturing method includes quenching the outer circumferential surface 74 of a ring gear (R) before machining the inner circumferential surface 75 of the ring gear (R) to improve the rigidity of the outer circumferential surface 74 and to reduce the deformation of the outer circumferential surface 74 of the ring gear (R) due to machining even when the outer circumferential surface 74 is machined. Thereby manufactured ring member acquires less thermal deformation originating in quenching, and improves the accuracy in the circularity of the ring gear (R) and in the straightness of a direction of the central axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、たとえば車両用自動変速機に備えられている遊星歯車装置のリングギヤなど、内周面に機械加工が施された環状部材の製造方法に関し、特に、その環状部材の真円度や軸心方向の真直度の精度向上に関するものである。   The present invention relates to a method of manufacturing an annular member whose inner peripheral surface is machined, such as a ring gear of a planetary gear device provided in an automatic transmission for a vehicle, and more particularly, the roundness and shaft of the annular member. This relates to improving the accuracy of straightness in the direction of the heart.

車両用自動変速機に備えられている遊星歯車装置のリングギヤなど、内周面に機械加工が施されることで内周歯などが形成された環状部材がある。このような環状部材は、内周面に内周歯等の動力伝達部が設けられるため、比較的高い精度が要求される。この問題対して、特許文献1では、内歯歯車(本明細書では環状部材に相当)の歯部(内周)と本体(外周)とを別体で製作し、一体化する技術が開示されている。この技術によれば、加工後に焼入れを行いつつも精度のよい内歯歯車を製造することができる。また、特許文献2では、内歯歯車の歯部(内周)と本体(外周)とを別材料で構成する技術が開示されている。この技術によれば、本外(外周)を軽い材料、歯部(内周)を耐圧および耐摩耗に優れた材料で、内歯歯車を製造することで、軽量で耐久性も高く、比較的精度にも優れた内歯歯車を製造することができる。   There is an annular member in which inner peripheral teeth and the like are formed by machining the inner peripheral surface, such as a ring gear of a planetary gear device provided in an automatic transmission for a vehicle. Such an annular member is required to have relatively high accuracy because a power transmission portion such as an inner peripheral tooth is provided on the inner peripheral surface. To deal with this problem, Patent Document 1 discloses a technique in which a tooth portion (inner circumference) and a main body (outer circumference) of an internal gear (corresponding to an annular member in the present specification) are manufactured separately and integrated. ing. According to this technique, it is possible to manufacture an internal gear with high accuracy while quenching after processing. Patent Document 2 discloses a technique in which a tooth part (inner circumference) and a main body (outer circumference) of an internal gear are made of different materials. According to this technology, the outer gear (outer circumference) is made of a light material, the tooth portion (inner circumference) is made of a material excellent in pressure resistance and wear resistance, and the internal gear is manufactured. An internal gear with excellent accuracy can be manufactured.

特開2000−154850号公報JP 2000-154850 A 特開2006−15452号公報JP 2006-15452 A

ところで、前述した特許文献1および特許文献2をはじめとした従来の環状部材の製造方法は、何れも内周面の機械加工後にその加工部に焼入れを行う。このため、環状部材の肉厚を薄くする、さらには径を大きくする場合には、内周面の機械加工の際に環状部材の外周面の剛性が低いため加工歪が生じ易く、さらに加工歪が生じたまま内周面を焼入れるため、熱変形も大きくなり、著しく環状部材の真円度や軸心方向の真直度が損なわれる恐れがあった。   By the way, the conventional annular member manufacturing methods including Patent Document 1 and Patent Document 2 described above all quench the processed portion after machining the inner peripheral surface. For this reason, when the wall thickness of the annular member is reduced and the diameter is increased, machining strain is likely to occur due to the low rigidity of the outer circumferential surface of the annular member during machining of the inner circumferential surface. Since the inner peripheral surface is quenched with the occurrence of heat, thermal deformation also increases, and the roundness of the annular member and the straightness in the axial direction may be significantly impaired.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、肉厚が薄く、且つ大径である内周面に機械加工が施された環状部材を精度よく製造する方法を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to accurately manufacture an annular member having a thin wall and a machined inner peripheral surface having a large diameter. It is to provide a way to do.

上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)内周面に機械加工を施す環状部材の製造方法において、(b)前記環状部材の外周面に焼入れを行う第1の焼入工程と、(c)前記外周面に焼入れが行われた環状部材の内周面に機械加工を施す機械加工工程と、(d)前記機械加工が施された環状部材の内周面に焼入れを行う第2の焼入工程とを、有することを特徴とする。   In order to achieve the above object, the gist of the invention according to claim 1 is (a) a method of manufacturing an annular member in which an inner peripheral surface is machined, and (b) quenching the outer peripheral surface of the annular member. A first quenching step for performing the machining, (c) a machining step for machining the inner circumferential surface of the annular member that has been quenched to the outer circumferential surface, and (d) an annular member for which the machining has been performed. And a second quenching step of quenching the inner peripheral surface of the steel sheet.

また、請求項2にかかる発明の要旨とするところは、請求項1に記載の環状部材の製造方法において、前記機械加工は、前記環状部材の内周面に内周歯を形成する歯切加工であることを特徴とする。   According to a second aspect of the present invention, in the method for manufacturing an annular member according to claim 1, the machining is gear cutting for forming inner peripheral teeth on an inner peripheral surface of the annular member. It is characterized by being.

また、請求項3にかかる発明の要旨とするところは、請求項1または2に記載の環状部材の製造方法において、前記環状部材は、遊星歯車装置を構成するリングギヤであることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing an annular member according to claim 1 or 2, the annular member is a ring gear constituting a planetary gear device.

請求項1にかかる発明の環状部材の製造方法によれば、環状部材の内周面に機械加工を施す前に、環状部材の外周面を焼入れすることで、その外周面の剛性が向上し、機械加工を行っても環状部材の外周面への加工歪を抑制させることができる。これにより、焼入れによる熱変形も小さくなり、環状部材の真円度や軸心方向の真直度の精度を向上させることができる。   According to the manufacturing method of the annular member of the invention according to claim 1, the rigidity of the outer peripheral surface is improved by quenching the outer peripheral surface of the annular member before machining the inner peripheral surface of the annular member. Even if machining is performed, the processing strain on the outer peripheral surface of the annular member can be suppressed. Thereby, the thermal deformation by quenching is also reduced, and the accuracy of the circularity of the annular member and the straightness in the axial direction can be improved.

また、請求項2にかかる発明の環状部材の製造方法によれば、前記環状部材の内周面の歯切加工は、内周面への前記第2の焼入工程前に行うため、焼入れによる影響が回避され、精度のよい内周歯を成形することができる。   Moreover, according to the manufacturing method of the annular member of the invention concerning Claim 2, since gear cutting of the inner peripheral surface of the annular member is performed before the second quenching step to the inner peripheral surface, it is performed by quenching. The influence can be avoided, and an accurate inner peripheral tooth can be formed.

また、請求項3にかかる発明の環状部材の製造方法によれば、前記環状部材は、遊星歯車装置を構成するリングギヤであるため、リングギヤの真円度や軸心方向の真直度の精度が向上し、遊星歯車装置の噛合伝達誤差を抑制することができる。   According to the annular member manufacturing method of the invention of claim 3, since the annular member is a ring gear constituting a planetary gear device, the accuracy of the roundness of the ring gear and the straightness in the axial direction is improved. In addition, the meshing transmission error of the planetary gear device can be suppressed.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用された車両用自動変速機8の一部を示す断面図である。車両用自動変速機8の軸心部分には、第1入力軸10と第2入力軸12とが同軸心C上に直列に配設されている。第1入力軸10と第2入力軸12とは、第1入力軸10の第2入力軸12側の内周面に設けられたスプライン歯14と、第2入力軸12の第1入力軸10側の外周面に設けられたスプライン歯16とが互いに噛み合うことにより、軸心まわりに一体的に回転させられる。この第1および第2入力軸12、14は、エンジン等の走行用駆動源によって回転駆動される図示しないトルクコンバータのタービン軸である。   FIG. 1 is a cross-sectional view showing a part of an automatic transmission 8 for a vehicle to which the present invention is applied. A first input shaft 10 and a second input shaft 12 are arranged in series on a coaxial core C at the axial center portion of the vehicle automatic transmission 8. The first input shaft 10 and the second input shaft 12 are the spline teeth 14 provided on the inner peripheral surface of the first input shaft 10 on the second input shaft 12 side, and the first input shaft 10 of the second input shaft 12. The spline teeth 16 provided on the outer peripheral surface of the side mesh with each other to rotate integrally around the axis. The first and second input shafts 12 and 14 are turbine shafts of a torque converter (not shown) that are rotationally driven by a traveling drive source such as an engine.

第1入力軸10の第2入力軸12側の端部には、フランジ部18が形成されている。このフランジ部18の外周面には、スプライン歯20が形成されていると共に、軸心方向の一方側から径方向外側に突き出す突起部22が形成されている。サンギヤSは、内周面の一部に形成されたスプライン歯24が上記フランジ部18のスプライン歯20と噛み合うことにより、第1入力軸10に対して相対回転不能とされている。また、サンギヤSは、その側面が突起部22の側面に当接させられることにより、軸心方向の突起部22側への移動が禁止されている。   A flange portion 18 is formed at the end of the first input shaft 10 on the second input shaft 12 side. Spline teeth 20 are formed on the outer peripheral surface of the flange portion 18, and a protruding portion 22 that protrudes radially outward from one side in the axial direction is formed. The sun gear S is made non-rotatable relative to the first input shaft 10 because the spline teeth 24 formed on a part of the inner peripheral surface mesh with the spline teeth 20 of the flange portion 18. Further, the sun gear S is prohibited from moving toward the protruding portion 22 in the axial direction because the side surface thereof is brought into contact with the side surface of the protruding portion 22.

サンギヤSには、ピニオンギヤPが噛み合わされており、また、ピニオンギヤPはリングギヤRとも噛み合わされている。ピニオンギヤPの軸心には、ピニオンシャフト26が挿し通されており、ピニオンシャフト26は、キャリヤCAに支持されている。これら、サンギヤS、キャリヤCA、ピニオンギヤP、およびリングギヤRなどによって遊星歯車装置28が構成される。   A pinion gear P is meshed with the sun gear S, and the pinion gear P is also meshed with the ring gear R. A pinion shaft 26 is inserted through the shaft center of the pinion gear P, and the pinion shaft 26 is supported by the carrier CA. The planetary gear unit 28 is constituted by the sun gear S, the carrier CA, the pinion gear P, the ring gear R, and the like.

キャリヤCAは、ハブ部30と、ハブ部30の一方の端に連結されて径方向外側に向かう連結部32と、連結部32の外周端に連結されて、軸心方向のハブ部30とは反対側に延び、ピニオンシャフト26を支持する円筒状の支持部34とからなる。ハブ部30は、第2入力軸12の外周側に設けられ、第2入力軸12と同軸上でその第2入力軸12に対して相対回転可能とされた第1中間軸36にスプライン嵌合されている。前記ピニオンシャフト26は、支持部34を軸心方向に貫通する軸方向穴38に挿入され、且つ、その両端が支持部34に支持されているので、ピニオンギヤPは、キャリヤCAと一体回転させられる。   The carrier CA is connected to the hub portion 30, the connecting portion 32 that is connected to one end of the hub portion 30 toward the radially outer side, and the outer peripheral end of the connecting portion 32. It extends to the opposite side and comprises a cylindrical support portion 34 that supports the pinion shaft 26. The hub portion 30 is provided on the outer peripheral side of the second input shaft 12 and is spline-fitted to a first intermediate shaft 36 that is coaxial with the second input shaft 12 and is rotatable relative to the second input shaft 12. Has been. The pinion shaft 26 is inserted into an axial hole 38 penetrating the support portion 34 in the axial direction, and both ends thereof are supported by the support portion 34. Therefore, the pinion gear P is rotated integrally with the carrier CA. .

キャリヤCAの支持部34のハブ部30とは反対側の端部には、支持部34の外周面と前記軸心方向穴38とを連通する第1径方向穴40と、その第1径方向穴40と同軸上において、支持部34の内周面と前記軸心方向穴38とを連通する第2径方向穴42とが形成されている。   At the end of the support portion 34 of the carrier CA opposite to the hub portion 30, a first radial hole 40 that communicates the outer peripheral surface of the support portion 34 and the axial hole 38, and its first radial direction A second radial hole 42 communicating with the inner peripheral surface of the support portion 34 and the axial center hole 38 is formed coaxially with the hole 40.

また、ピニオンシャフト26には、ピニオンシャフト26を径方向に貫通し、ピニオンシャフト26がキャリヤCAに支持された状態で上記第1径方向穴40および第2径方向穴42と連通する貫通穴44が形成されている。そして、第1径方向穴40に挿入されたピニオンシャフト固定ピン46の先端がその貫通穴44に嵌め入れられることにより、ピニオンシャフト26はキャリヤCAに固定されている。さらに、ピニオンシャフト26には、そのピニオンシャフト26の軸心を通り、一方の端が上記貫通穴44と連通させられている軸心穴48が設けられている。   Further, the pinion shaft 26 penetrates the pinion shaft 26 in the radial direction, and the through-hole 44 communicates with the first radial hole 40 and the second radial hole 42 in a state where the pinion shaft 26 is supported by the carrier CA. Is formed. The tip of the pinion shaft fixing pin 46 inserted into the first radial hole 40 is fitted into the through hole 44, whereby the pinion shaft 26 is fixed to the carrier CA. Further, the pinion shaft 26 is provided with an axial hole 48 that passes through the axial center of the pinion shaft 26 and has one end communicating with the through hole 44.

キャリヤCAの支持部34の上記第1径方向穴40および第2径方向穴42が形成されている側の端部の内周面には、ブッシュ50(滑り軸受)が圧入により嵌合されている。また、支持部34のブッシュ50が圧入されている側の端部の外周面には、摩擦係合装置の構成部材であるブレーキハブ52がスプライン嵌合されている。   A bush 50 (slide bearing) is fitted by press-fitting to the inner peripheral surface of the end portion of the support portion 34 of the carrier CA where the first radial hole 40 and the second radial hole 42 are formed. Yes. A brake hub 52, which is a constituent member of the friction engagement device, is spline-fitted to the outer peripheral surface of the end portion of the support portion 34 on the side where the bush 50 is press-fitted.

上記ブッシュ50の内周には、さらにスリーブ54が嵌め入れられており、キャリヤCAは、スリーブ54およびブッシュ50を介して、非回転部材であるケース56に相対回転可能に支持されている。   A sleeve 54 is further fitted on the inner periphery of the bush 50, and the carrier CA is supported by the case 56, which is a non-rotating member, via the sleeve 54 and the bush 50 so as to be relatively rotatable.

また、サンギヤSのハブ部30とは反対側の側面と、ケース56の段付壁58との間には、スラストベアリング60が介装されており、サンギヤSはスラストベアリング60を介してケース56に対して相対回転可能に支持されている。   Further, a thrust bearing 60 is interposed between the side surface of the sun gear S opposite to the hub portion 30 and the stepped wall 58 of the case 56, and the sun gear S is inserted into the case 56 via the thrust bearing 60. It is supported so that relative rotation is possible.

リングギヤRの外周面の一端には、スプライン歯62が形成されており、有底円筒状のブレーキハブ64の円筒部の内周面に形成されたスプライン歯66と嵌合されて互いに相対回転不能となっている。また、リングギヤRのスプライン歯62の中央部には、環状溝68が形成されていると共に、ブレーキハブ64のスプライン歯66にも環状溝68と同じ溝幅を有する環状溝70が形成されており、それぞれの環状溝68、70にスナップリング72が嵌め着けられることで、軸心方向への移動が阻止されている。   Spline teeth 62 are formed at one end of the outer peripheral surface of the ring gear R, and are fitted to the spline teeth 66 formed on the inner peripheral surface of the cylindrical portion of the bottomed cylindrical brake hub 64 so that they cannot rotate relative to each other. It has become. An annular groove 68 is formed at the center of the spline teeth 62 of the ring gear R, and an annular groove 70 having the same groove width as the annular groove 68 is also formed on the spline teeth 66 of the brake hub 64. The snap ring 72 is fitted in each of the annular grooves 68 and 70 to prevent movement in the axial direction.

図2は、図1のリングギヤRを拡大して示した断面図である。リングギヤRは比較的肉薄で大径である環状部材であり、外周面74の一端には、スプライン歯62が形成されており、そのスプライン歯62の中央部には、図1のスナップリング72を嵌め付けるための環状溝68が形成されている。また、リングギヤRの内周面75にはピニオンギヤPと噛み合うための内周歯76が形成されている。なお、リングギヤRは軸心Cに対して対称となっているため、図2においては、軸心Cから下半分が省略されている。また、本実施例の遊星歯車装置28を構成するリングギヤRが本発明の環状部材に対応している。   FIG. 2 is an enlarged sectional view of the ring gear R of FIG. The ring gear R is an annular member that is relatively thin and has a large diameter. Spline teeth 62 are formed at one end of the outer peripheral surface 74, and the snap ring 72 of FIG. An annular groove 68 for fitting is formed. Inner peripheral teeth 76 for meshing with the pinion gear P are formed on the inner peripheral surface 75 of the ring gear R. Since the ring gear R is symmetric with respect to the axis C, the lower half of the axis C is omitted in FIG. Further, the ring gear R constituting the planetary gear device 28 of the present embodiment corresponds to the annular member of the present invention.

図3は、そのリングギヤRを製造する一連の工程を示したフローチャートである。まず、外周面焼入工程S1では、リングギヤRの外周面74に焼入れを行う。焼入れは、たとえば高周波焼入れによって実施され、焼入れによる熱硬化によって、図2の斜線で示されるリングギヤRの外周部表層の剛性が向上させられる。なお、本実施例の外周面焼入工程S1が、本発明の第1の焼入工程に対応している。   FIG. 3 is a flowchart showing a series of steps for manufacturing the ring gear R. First, in the outer peripheral surface quenching step S1, the outer peripheral surface 74 of the ring gear R is quenched. The quenching is performed by, for example, induction quenching, and the rigidity of the outer peripheral portion of the ring gear R indicated by the oblique lines in FIG. 2 is improved by thermosetting by quenching. In addition, the outer peripheral surface quenching process S1 of a present Example respond | corresponds to the 1st quenching process of this invention.

次いで、歯切工程S2では、リングギヤRの内周面75に歯切加工を施し、内周歯76を形成する。内周歯76は、たとえば、歯車シェービング盤やブローチ盤などの歯車加工用機械によって歯切される。この歯切加工では、外周面焼入工程S1によってリングギヤRの外周部の剛性が向上しているため、歯切の際に生じる外周部への加工歪が抑制される。また、リングギヤRの内周面75は外周面焼入工程S1によって熱硬化されていないため、歯切加工の際に歯車加工用機械の刃部にかかる荷重が大きくなり、その刃部の寿命が低下するなどの弊害が回避される。そして、内周歯焼入工程S3では、その歯切された内周歯76に焼入れを行うことで、内周歯76の表層を硬化させる。なお、内周歯76の焼入れについても前述と同様に高周波焼入れによって実施される。また、本実施例の歯切工程S2が、本発明の機械加工工程に対応しており、内周歯焼入工程S3が、本発明の第2の焼入工程に対応している。   Next, in the gear cutting step S <b> 2, gear cutting is performed on the inner peripheral surface 75 of the ring gear R to form inner peripheral teeth 76. The inner peripheral teeth 76 are cut by a gear machining machine such as a gear shaving machine or broaching machine. In this gear cutting, since the rigidity of the outer peripheral portion of the ring gear R is improved by the outer peripheral surface quenching step S1, processing distortion to the outer peripheral portion that occurs during gear cutting is suppressed. Further, since the inner peripheral surface 75 of the ring gear R is not thermally cured by the outer peripheral surface quenching step S1, the load applied to the blade portion of the gear machining machine during gear cutting is increased, and the life of the blade portion is shortened. Detrimental effects such as lowering are avoided. In the inner peripheral tooth quenching step S3, the surface layer of the inner peripheral teeth 76 is hardened by quenching the chopped inner peripheral teeth 76. In addition, the quenching of the inner peripheral teeth 76 is also performed by induction quenching as described above. Further, the gear cutting step S2 of this embodiment corresponds to the machining step of the present invention, and the inner peripheral tooth quenching step S3 corresponds to the second quenching step of the present invention.

ここで、外周面焼入工程S1では、リングギヤRの外周部の剛性が向上させられるため、歯切工程S2の歯切加工において、リングギヤRの歯切加工による加工歪が抑制され、内周歯焼入工程S3の焼入工程においても熱変形が減少し、リングギヤRの真円度や軸心方向の真直度の精度を向上させることができる。   Here, in the outer peripheral surface quenching step S1, the rigidity of the outer peripheral portion of the ring gear R is improved, so in the gear cutting process of the gear cutting step S2, processing distortion due to the gear cutting of the ring gear R is suppressed, and the inner peripheral tooth Also in the quenching step of the quenching step S3, thermal deformation is reduced, and the accuracy of the roundness of the ring gear R and the straightness in the axial direction can be improved.

上述のように、本実施例によれば、リングギヤRの内周面75に機械加工を施す前に、リングギヤRの外周面74を焼入れすることで、その外周面74の剛性が向上し、機械加工を行ってもリングギヤRの外周面74への加工歪を抑制させることができる。これにより、焼入れによる熱変形も小さくなり、リングギヤRの真円度や軸心方向の真直度の精度を向上させることができる。   As described above, according to the present embodiment, the outer peripheral surface 74 of the ring gear R is quenched before the inner peripheral surface 75 of the ring gear R is machined, so that the rigidity of the outer peripheral surface 74 is improved. Even if it processes, the process distortion to the outer peripheral surface 74 of the ring gear R can be suppressed. As a result, thermal deformation due to quenching is reduced, and the accuracy of the roundness of the ring gear R and the straightness in the axial direction can be improved.

また、前述の実施例によれば、リングギヤRの内周面75の歯切加工は、その内周面75への焼入工程前に行うため、焼入れによる影響が回避され、精度のよい内周歯76を成形することができる。   Further, according to the above-described embodiment, the gear cutting of the inner peripheral surface 75 of the ring gear R is performed before the quenching process to the inner peripheral surface 75, so that the influence of quenching is avoided and the inner periphery is highly accurate. Teeth 76 can be molded.

また、前述の実施例によれば、リングギヤRは、遊星歯車装置28を構成するリングギヤRであるため、リングギヤRの真円度や軸心方向の真直度の精度が向上し、遊星歯車装置28の噛合伝達誤差を抑制することができる。   Further, according to the above-described embodiment, the ring gear R is the ring gear R constituting the planetary gear device 28. Therefore, the accuracy of the roundness of the ring gear R and the straightness in the axial direction is improved, and the planetary gear device 28 is improved. The meshing transmission error can be suppressed.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

たとえば、本実施例では、本発明の環状部材はリングギヤRであったが、遊星歯車のリングギヤに限られず、本発明は、たとえば内周面にスプライン歯が形成された部材など、内周面に機械加工を施す他の環状部材にも適用することができる。   For example, in the present embodiment, the annular member of the present invention is the ring gear R. However, the present invention is not limited to the planetary gear ring gear, and the present invention is not limited to the inner peripheral surface such as a member having spline teeth formed on the inner peripheral surface. It can also be applied to other annular members that are machined.

また、前述の実施例では、リングギヤRの焼入れは、高周波焼入れによって実施されたが、特に高周波焼入れに限定されるものではなく、たとえば炎焼焼入れやレーザ焼入れなど、他の焼入れ法であっても構わない。   In the above-described embodiment, the quenching of the ring gear R is performed by induction quenching. However, the quenching is not particularly limited to induction quenching, and other quenching methods such as flame quenching and laser quenching may be used. I do not care.

また、前述の実施例では、リングギヤRの内周歯76は、、歯車シェービング盤やブローチ盤によって成形されるが、特にこれらに限定されるものではなく、ホブ盤など、他の歯車加工用機械によって内周歯76を成形したものであっても構わない。   In the above-described embodiment, the inner peripheral teeth 76 of the ring gear R are formed by a gear shaving machine or broaching machine, but are not particularly limited to this, and other gear machining machines such as a hobbing machine. Alternatively, the inner peripheral teeth 76 may be molded.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

本発明が適用された車両用自動変速機の一部を示す断面図である。It is sectional drawing which shows a part of automatic transmission for vehicles with which this invention was applied. 図1のリングギヤを拡大して示した断面図である。It is sectional drawing which expanded and showed the ring gear of FIG. リングギヤを製造する一連の工程を示したフローチャートである。It is the flowchart which showed a series of processes which manufacture a ring gear.

符号の説明Explanation of symbols

28:遊星歯車装置 74:外周面 75:内周面 R:リングギヤ(環状部材)
28: Planetary gear device 74: Outer peripheral surface 75: Inner peripheral surface R: Ring gear (annular member)

Claims (3)

内周面に機械加工を施す環状部材の製造方法であって、
前記環状部材の外周面に焼入れを行う第1の焼入工程と、
前記外周面に焼入れが行われた環状部材の内周面に機械加工を施す機械加工工程と、
前記機械加工が施された環状部材の内周面に焼入れを行う第2の焼入工程とを、
有することを特徴とする環状部材の製造方法。
A method of manufacturing an annular member that performs machining on an inner peripheral surface,
A first quenching step for quenching the outer peripheral surface of the annular member;
A machining step of machining the inner circumferential surface of the annular member that has been quenched to the outer circumferential surface;
A second quenching step of quenching the inner peripheral surface of the annular member subjected to the machining,
A method for manufacturing an annular member, comprising:
前記機械加工は、前記環状部材の内周面に内周歯を形成する歯切加工であることを特徴とする請求項1に記載の環状部材の製造方法。   The method of manufacturing an annular member according to claim 1, wherein the machining is gear cutting for forming inner peripheral teeth on an inner peripheral surface of the annular member. 前記環状部材は、遊星歯車装置を構成するリングギヤであることを特徴とする請求項1または2に記載の環状部材の製造方法。
The said annular member is a ring gear which comprises a planetary gear apparatus, The manufacturing method of the annular member of Claim 1 or 2 characterized by the above-mentioned.
JP2006197484A 2006-07-19 2006-07-19 Method for manufacturing annular member Pending JP2008024977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197484A JP2008024977A (en) 2006-07-19 2006-07-19 Method for manufacturing annular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197484A JP2008024977A (en) 2006-07-19 2006-07-19 Method for manufacturing annular member

Publications (1)

Publication Number Publication Date
JP2008024977A true JP2008024977A (en) 2008-02-07

Family

ID=39115929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197484A Pending JP2008024977A (en) 2006-07-19 2006-07-19 Method for manufacturing annular member

Country Status (1)

Country Link
JP (1) JP2008024977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718097A (en) * 2021-09-17 2021-11-30 重庆齿轮箱有限责任公司 Carburizing and quenching deformation control method for thin-wall gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718097A (en) * 2021-09-17 2021-11-30 重庆齿轮箱有限责任公司 Carburizing and quenching deformation control method for thin-wall gear

Similar Documents

Publication Publication Date Title
JP5093003B2 (en) Spline shaft and method for manufacturing spline shaft
JP5586929B2 (en) Method for manufacturing constant velocity universal joint
EP2520831A1 (en) Gear plate
JP2013245806A (en) Outer joint member of constant velocity universal joint, and constant velocity universal joint equipped with the same
JP4617939B2 (en) Manufacturing method of power transmission member
JP2009156351A (en) Integrally molded internal gear
JP2008024977A (en) Method for manufacturing annular member
US10962058B2 (en) Rotator support shaft, method for manufacturing rotator support shaft, and roller bearing
JP2008173995A (en) Bearing device for wheel
US11867283B2 (en) Method of manufacturing a power transmission device
JP2010014222A (en) Method for working outer race of one-way clutch of roller type
JP2009503323A (en) Camshaft and camshaft manufacturing method
JP2010127305A (en) Method for manufacturing rolling bearing device
US10428929B2 (en) Composite planetary staking pin with lubrication feed feature
CN206555269U (en) Engine output shaft
JP4599994B2 (en) Planetary gear device for vehicle power transmission device
KR101696907B1 (en) Wheel bearing and manufacturing method of the same
JP2016125531A (en) Reduction gear
WO2019065046A1 (en) Stepless transmission and method for manufacturing same
WO2018062045A1 (en) Ring gear and method for producing ring gear
JP7412196B2 (en) Power transmission shaft and power transmission shaft processing method
US20130000124A1 (en) Bearing device for vehicle and method of manufacturing the same
JP2021126725A (en) Hub wheel and manufacturing method for hub wheel
JP6410706B2 (en) Support structure for rotating body
JP4513635B2 (en) Ring gear flange