JP2008024839A - Thermosetting resin composite and method for producing the same - Google Patents

Thermosetting resin composite and method for producing the same Download PDF

Info

Publication number
JP2008024839A
JP2008024839A JP2006199534A JP2006199534A JP2008024839A JP 2008024839 A JP2008024839 A JP 2008024839A JP 2006199534 A JP2006199534 A JP 2006199534A JP 2006199534 A JP2006199534 A JP 2006199534A JP 2008024839 A JP2008024839 A JP 2008024839A
Authority
JP
Japan
Prior art keywords
thermosetting resin
filler
composite material
resin composite
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199534A
Other languages
Japanese (ja)
Inventor
Sei Kurihara
生 栗原
Hiroshi Idei
浩 出井
Yoshihiro Aoyanagi
佳宏 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2006199534A priority Critical patent/JP2008024839A/en
Publication of JP2008024839A publication Critical patent/JP2008024839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composite in which self-aggregation properties and dispersibility of a filler are improved; molding temperature is shortened and molding temperature is reduced; properties such as mechanical strength and heat resistance are improved, and to provide a method for producing the same. <P>SOLUTION: A phenol derivative, an amine, and an aldehyde are agitated, heated, and subjected to polycondensation in the state where a surface-treated filler is dispersed to obtain a thermosetting resin composite comprising at least the surface-treated filler. The surface-treated filler is preferably a filler which is surface-treated with a surface-treatment agent having an amine terminal. The method for producing a thermosetting resin composite containing a filler in a dispersed state comprises the steps of surface-treating the filler and agitating, heating, and subjecting to polycondensation a phenol derivative, an amine, and an aldehyde in the state where the surface-treated filler is dispersed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱硬化性樹脂複合材料に関する。特に、自動車、鉄道車輌、各種産業機械等の制動に用いられるディスクブレーキパッド、ブレーキライニング、クラッチフェーシング等の摩擦材、成形材料、電気・電子機器部品、通信機器部品、機械部品、構造用部材、構造用接着剤等に用いられる熱硬化性樹脂複合材料に関する。   The present invention relates to a thermosetting resin composite material. In particular, friction materials such as disc brake pads, brake linings, clutch facings, etc. used for braking of automobiles, railway vehicles, various industrial machines, molding materials, electrical / electronic equipment parts, communication equipment parts, machine parts, structural members, The present invention relates to a thermosetting resin composite material used for structural adhesives and the like.

熱硬化性樹脂複合材料は、機械強度、耐熱性、電気特性などが優れており、各種用途に使用されている。熱硬化性樹脂は結合材として用いられるが、成形材料の特性を左右する重要な成分である。
上記の熱硬化性樹脂複合材料は、圧縮成形、押出成形、射出成形、トランスファー成形等の方法で成形される。例えば、ブレーキパッドの成形は、約130〜180℃の温度で圧縮成形した後、更に高い温度でポストキュア(アフタキュア)する。
Thermosetting resin composite materials are excellent in mechanical strength, heat resistance, electrical properties, etc., and are used in various applications. Thermosetting resins are used as binders, but are important components that affect the properties of molding materials.
Said thermosetting resin composite material is shape | molded by methods, such as compression molding, extrusion molding, injection molding, transfer molding. For example, the brake pad is molded by compression molding at a temperature of about 130 to 180 ° C. and then post-curing at a higher temperature.

一方、表面処理剤で表面処理したフィラーを熱硬化性樹脂中に充填して、フィラーの自己凝集性・分散性の改良や樹脂/フィラー間の濡れ性を改善して、熱硬化性樹脂複合材料の特性を向上させることが行われている。
通常、熱硬化性樹脂複合材料の内部では表面処理剤は熱硬化性樹脂と分離した状態で存在し、また、表面処理剤は熱硬化性樹脂と比較して低分子量成分であり、強度や耐熟性に劣る場合が多い。したがって、表面処理剤の添加により熱硬化性樹脂複合材料の特性(強度、耐熱性など)が低下する場合がある。
On the other hand, fillers surface-treated with a surface treatment agent are filled into a thermosetting resin to improve the self-cohesiveness / dispersibility of the filler and improve the wettability between the resin / filler, and the thermosetting resin composite material Improvements have been made to the characteristics.
Usually, the surface treatment agent exists in a state separated from the thermosetting resin inside the thermosetting resin composite material, and the surface treatment agent is a low molecular weight component as compared with the thermosetting resin, and has strength and resistance. It is often inferior to maturity. Therefore, the properties (strength, heat resistance, etc.) of the thermosetting resin composite material may be reduced by the addition of the surface treatment agent.

例えば、「特許文献1」では、粒状無機物質を天然の又は合成したラテックス組成物で処理し、得られた混合物を脱水し乾燥することにより表面処理した無機充填材を製造し、次に熱可塑性樹脂あるいは熱硬化性樹脂に前記表面処理した無機充填材を分散させる工程を経て熱可塑性樹脂あるいは熱硬化性樹脂組成物を製造することが記載されている。しかし、前記のような表面処理では、粒状無機物質が確実に改質されたとは言えない。
又、「特許文献2」でも、成形材料全体に対して、熱硬化性樹脂5〜25重量%と、基材として黒鉛75〜95質量%を含有し、前記黒鉛が炭素数10〜32である直鎖飽和脂肪酸により表面処理を施された熱硬化性樹脂成形材料が記載されているが、直鎖飽和脂肪酸が黒鉛にイオン的に結合している確率が高く、前記成形材料中では脂肪酸が遊離してくる可能性がある。
特開平7−173330号公報 特開2002−294079号公報
For example, in “Patent Document 1”, a particulate inorganic substance is treated with a natural or synthetic latex composition, and the resulting mixture is dehydrated and dried to produce a surface-treated inorganic filler, and then thermoplastic. It describes that a thermoplastic resin or a thermosetting resin composition is produced through a step of dispersing the surface-treated inorganic filler in a resin or a thermosetting resin. However, it cannot be said that the above-described surface treatment has surely modified the particulate inorganic substance.
Also, in “Patent Document 2”, 5 to 25% by weight of thermosetting resin and 75 to 95% by weight of graphite as a base material with respect to the entire molding material, and the graphite has 10 to 32 carbon atoms. Although thermosetting resin molding materials that have been surface-treated with linear saturated fatty acids are described, there is a high probability that linear saturated fatty acids are ionically bonded to graphite, and fatty acids are liberated in the molding materials. There is a possibility of coming.
JP 7-173330 A JP 2002-294079 A

本発明の目的は、表面処理したフィラーを熱硬化性樹脂中に充填する際、熱硬化性樹脂複合材料の内部でフィラーの表面処理に使用した表面処理剤が遊離せず、熱硬化性樹脂と化学的に共有結合した状態で存在し、フィラーの自己凝集性・分散性及び樹脂/フィラー間の濡れ性が改善され、かつ、成形時間が短縮され成形温度が低下して、機械的強度や耐熟性等の特性が向上した熱硬化性樹脂複合材料とその製造方法を提供することである。   The object of the present invention is that when the surface-treated filler is filled in the thermosetting resin, the surface treatment agent used for the surface treatment of the filler is not released inside the thermosetting resin composite material, and the thermosetting resin and It exists in a state of being chemically covalently bonded to improve the self-aggregation / dispersibility of the filler and the wettability between the resin / filler, shorten the molding time and lower the molding temperature, and improve the mechanical strength and resistance. It is to provide a thermosetting resin composite material having improved properties such as maturity and a method for producing the same.

本発明は、アミン末端を持つ表面処理剤でフィラーに表面処理し、前記表面処理したフィラーを分散させた状態で、フェノール誘導体とアミン類とアルデヒドとを撹拌・加熱し、表面処理剤とフェノール誘導体を共重合した熱硬化性樹脂を作成し、前記重合操作と同時にフィラーを熱硬化性樹脂中に均一に分散させるようにして、フィラーが熱硬化性樹脂中に均一に分散している熱硬化性樹脂複合材料とすることであり、強度、耐熱性に優れた熱硬化性樹脂複合材料を得ることができる。   In the present invention, a filler is surface-treated with a surface-treating agent having an amine terminal, and the surface-treated agent and the phenol derivative are stirred and heated in a state where the surface-treated filler is dispersed and the phenol derivative, amines and aldehyde are stirred. A thermosetting resin is prepared by copolymerizing the filler and the filler is uniformly dispersed in the thermosetting resin so that the filler is uniformly dispersed in the thermosetting resin simultaneously with the polymerization operation. This is a resin composite material, and a thermosetting resin composite material having excellent strength and heat resistance can be obtained.

すなわち、本発明は、下記の手段により上記の課題を解決した。
(1)少なくとも表面処理されたフィラーを含有する熱硬化性樹脂複合材料において、該表面処理されたフィラーを分散させた状態で、フェノール誘導体とアミン類とアルデヒドを攪拌・加熱・重縮合化させてなることを特徴とする熱硬化性樹脂複合材料。
(2)前記表面処理されたフィラーは、アミン末端を持つ表面処理剤で表面処理されたものであることを特徴とする前記(1)記載の熱硬化性樹脂複合材料。
(3)前記表面処理されたフィラーが熱硬化性樹脂複合材料全体に対し、1〜95質量%含まれていることを特徴とする前記(1)又は(2)記載の熱硬化性樹脂複合材料。
(4)フィラーを分散して含有する熱硬化性樹脂複合材料の製造方法において、前記フィラーが表面処理される工程と、該表面処理されたフィラーを分散させた状態で、フェノール誘導体とアミン類とアルデヒドを攪拌・加熱・重縮合化させる工程とを含むことを特徴とする熱硬化性樹脂複合材料の製造方法。
(5)前記フィラーが表面処理される工程は、アミン末端を持つ表面処理剤で表面処理されることを特徴とする前記(4)記載の熱硬化性樹脂複合材料の製造方法。
That is, the present invention has solved the above problems by the following means.
(1) In a thermosetting resin composite material containing at least a surface-treated filler, a phenol derivative, an amine and an aldehyde are stirred, heated, and polycondensed in a state where the surface-treated filler is dispersed. A thermosetting resin composite material.
(2) The thermosetting resin composite material according to (1), wherein the surface-treated filler is surface-treated with a surface treatment agent having an amine terminal.
(3) The thermosetting resin composite material according to (1) or (2), wherein the surface-treated filler is contained in an amount of 1 to 95% by mass with respect to the entire thermosetting resin composite material. .
(4) In the method for producing a thermosetting resin composite material in which a filler is dispersed and contained, in the state in which the filler is surface-treated, and in the state in which the surface-treated filler is dispersed, A method for producing a thermosetting resin composite material comprising the steps of stirring, heating and polycondensation of an aldehyde.
(5) The method for producing a thermosetting resin composite material according to (4), wherein the filler is subjected to a surface treatment with a surface treatment agent having an amine terminal.

本発明の熱硬化性樹脂複合材料を構成するフィラーは、フィラー表面にアミノ基を導入したため、フィラーの自己凝集性・分散性が改良され、更に樹脂/フィラー間の濡れ性が改善された。又、フィラーの分散と熱硬化性樹脂の重縮合反応を同時に行うことでフィラーの分散性が向上するので、フィラーが均一に分散した熱硬化性樹脂複合材料を得ることができる、
その上、フィラーは、フィラー表面にアミノ基を導入することにより、フェノール誘導体との反応性を付与したため、その表面処理剤が熱硬化性樹脂と共重合化するので、表面処理剤が熱硬化性樹脂複合材料中で遊離せず、表面処理剤による特性低下のない諸特性(強度、耐熱性など)に優れた複合材料が得られる。又、表面処理剤のアミノ末端やフィラー表面官能基の反応性により、熱硬化性樹脂の硬化反応が促進されるため、成形時間短縮・成形温度低温化に効果がある。
Since the filler constituting the thermosetting resin composite material of the present invention has an amino group introduced on the filler surface, the self-aggregation and dispersibility of the filler are improved, and the wettability between the resin and the filler is further improved. Moreover, since the dispersibility of the filler is improved by simultaneously performing the dispersion of the filler and the polycondensation reaction of the thermosetting resin, a thermosetting resin composite material in which the filler is uniformly dispersed can be obtained.
In addition, since the filler is rendered reactive with the phenol derivative by introducing an amino group on the filler surface, the surface treatment agent is copolymerized with the thermosetting resin, so the surface treatment agent is thermosetting. A composite material excellent in various properties (strength, heat resistance, etc.) that is not liberated in the resin composite material and does not deteriorate due to the surface treatment agent can be obtained. In addition, the reactivity of the thermosetting resin is accelerated by the reactivity of the amino terminal of the surface treatment agent and the functional group of the filler surface, which is effective in shortening the molding time and lowering the molding temperature.

以下、本発明について詳細に説明する。本発明において使用する熱硬化性樹脂は特に限定されるものではない。
本発明の熱硬化性樹脂複合材料は、少なくとも表面処理されたフィラーと熱硬化性樹脂からなる熱硬化性樹脂複合材料である。複合材料中に占める熱硬化性樹脂の添加量は複合材料中の1〜95質量%が好ましい。更に好ましくは、1〜50質量%である。樹脂が足りないと成形材料の結合が弱くなり、強度不足になる。又、樹脂が多すぎると複合材料が硬くなりすぎたりする。
Hereinafter, the present invention will be described in detail. The thermosetting resin used in the present invention is not particularly limited.
The thermosetting resin composite material of the present invention is a thermosetting resin composite material comprising at least a surface-treated filler and a thermosetting resin. The addition amount of the thermosetting resin in the composite material is preferably 1 to 95% by mass in the composite material. More preferably, it is 1-50 mass%. If the resin is insufficient, the bonding of the molding material becomes weak and the strength becomes insufficient. Moreover, when there is too much resin, a composite material will become hard too much.

フェノール誘導体としては、フェノール性水酸基を有する化合物を使用することができる。例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、キシレノール、p−t−ブチルフェノール等のアルキル置換フェノール類、p−フェニルフェノール等の芳香族置換フェノール類、カテコール、レゾルシノール、ビスフェノールF、ビスフェノールA等の2価のフェノール類、α−ナフトール、β−ナフトール等のナフトール類等が挙げられる。これらの中で、好ましいのはビスフェノールAである。   As the phenol derivative, a compound having a phenolic hydroxyl group can be used. For example, phenol, o-cresol, m-cresol, p-cresol, xylenol, alkyl-substituted phenols such as pt-butylphenol, aromatic-substituted phenols such as p-phenylphenol, catechol, resorcinol, bisphenol F, bisphenol Examples thereof include divalent phenols such as A, and naphthols such as α-naphthol and β-naphthol. Of these, bisphenol A is preferred.

本発明において使用されるフィラーとしては、炭酸カルシウム、硫酸バリウム、マグネシア、アルミナ、ジルコニア、アルミナ、アルミニウム粉、銅粉、亜鉛粉、黒鉛あるいは二硫化モリブデン等を挙げることができ、これらを表面処理して用いる。本発明で好適に用いることができるのは表面処理した黒鉛である。使用する黒鉛の種類は特に限定されないが、天然鱗状黒鉛、人造黒鉛、膨張黒鉛等がある。表面処理は後述するように周知の方法で行うことができるが、本発明では複合材料とする際に、表面処理された黒鉛が熱硬化性樹脂との間に化学的に共有結合を生じるような表面処理剤で表面処理して官能基を導入することが望ましい。   Examples of the filler used in the present invention include calcium carbonate, barium sulfate, magnesia, alumina, zirconia, alumina, aluminum powder, copper powder, zinc powder, graphite, and molybdenum disulfide. Use. The surface-treated graphite can be suitably used in the present invention. The type of graphite to be used is not particularly limited, and examples thereof include natural scale graphite, artificial graphite, and expanded graphite. The surface treatment can be performed by a well-known method as will be described later, but in the present invention, when the composite material is used, the surface-treated graphite is chemically covalently bonded to the thermosetting resin. It is desirable to introduce a functional group by surface treatment with a surface treatment agent.

化学的に共有結合を生じ得る官能基を有する表面処理剤は多数あるが、本発明では末端にアミノ基を有するアミンを使用することが好ましい。表面処理剤としてのアミン化合物は炭素数が10〜35程度のアルキル基、アリール基等を含むアミンであれば使用することができる。アルキル基は直鎖状でも分岐していてもよいが、直鎖状のアルキルアミンが好ましい。炭素数が10未満のアミンは融点が低すぎて刺激臭が強いため作業が難しくなる。具体的なアミン化合物としてはとしては、n−ドデシルアミン、n−ヘキサデシルアミン、n−オクタデシルアミン、n−ノナデシルアミン等、及び3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミン末端を持つカップリング剤を挙げることができるが、本発明ではドデシルアミンを使用することが好ましい。   Although there are many surface treatment agents having a functional group capable of chemically forming a covalent bond, it is preferable to use an amine having an amino group at the terminal in the present invention. The amine compound as the surface treatment agent can be used as long as it is an amine containing an alkyl group, aryl group or the like having about 10 to 35 carbon atoms. The alkyl group may be linear or branched, but a linear alkylamine is preferred. An amine having less than 10 carbon atoms has a low melting point and a strong pungent odor, making it difficult to work. Specific examples of the amine compound include n-dodecylamine, n-hexadecylamine, n-octadecylamine, n-nonadecylamine, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- Although a coupling agent having an amine terminal such as phenyl-3-aminopropyltrimethoxysilane can be mentioned, it is preferable to use dodecylamine in the present invention.

フィラーの表面処理の際、表面処理剤の添加量はフィラー100質量部に対して0.05〜500質量部添加することが好ましい。表面処理は、表面処理剤の融点又は軟化点を超えた温度で、処理剤とフィラー(例えば黒鉛)を溶融混合する方法、融点又は軟化点を超えた温度の処理剤をフィラーに噴霧する方法等がある。また、溶剤に溶解した処理剤をフィラーと混合・表面処理した後、生成物をろ過・洗浄・乾燥・粉砕する方法も採用することができる。このように、表面処理を施したフィラーは、自己凝集性・分散性が改良されると共に、樹脂/フィラー間の濡れ性を改善することができる。   In the surface treatment of the filler, the addition amount of the surface treatment agent is preferably 0.05 to 500 parts by mass with respect to 100 parts by mass of the filler. Surface treatment includes a method of melt-mixing a treatment agent and a filler (for example, graphite) at a temperature exceeding the melting point or softening point of the surface treatment agent, a method of spraying a treatment agent at a temperature exceeding the melting point or softening point, etc. There is. In addition, a method of filtering, washing, drying, and pulverizing the product after mixing and surface-treating a treatment agent dissolved in a solvent with a filler can also be employed. Thus, the surface-treated filler can improve the self-aggregation and dispersibility and improve the wettability between the resin and the filler.

複合材料中に占める表面処理されたフィラー(黒鉛)の配合量は複合材料中の1〜95質量%が好ましい。強度を考えると、更に好ましくは、1〜50質量%である。また、使用するフィラーの粒子径についても特に限定されないが、粒子径は複合材料の流動性や複合材料の成形性に影響するため、成形品の特性に併せて適宜選択すればよい。
更に好ましい態様として、複合材料中に占める熱硬化性樹脂の配合量が5〜99質量%であり、フィラー(黒鉛)の添加量が複合材料中の1〜95質量%であることが好ましい。
The compounding amount of the surface-treated filler (graphite) in the composite material is preferably 1 to 95% by mass in the composite material. Considering the strength, it is more preferably 1 to 50% by mass. Further, the particle diameter of the filler to be used is not particularly limited. However, since the particle diameter affects the fluidity of the composite material and the moldability of the composite material, it may be appropriately selected according to the characteristics of the molded product.
As a more preferred embodiment, the amount of the thermosetting resin in the composite material is 5 to 99% by mass, and the amount of filler (graphite) added is preferably 1 to 95% by mass in the composite material.

本発明の熱硬化性樹脂複合材料は定法により製造することができる。すなわち、原料となる表面処理されたフィラー(黒鉛)、熱硬化性樹脂の原料となるフェノール誘導体、アニリン等のアミン、パラホルムアルデヒド、アセトアルデヒド等のアルデヒド、水、メチルエチルケトン(MEK)、メタノール等の溶媒を反応容器に入れ、所定の温度で数時間撹拌し付加縮合反応を行う。反応終了後、ろ過・洗滌・乾燥する。又、減圧下で脱溶媒してもよい。   The thermosetting resin composite material of the present invention can be produced by a conventional method. That is, a surface-treated filler (graphite) as a raw material, a phenol derivative as a raw material for a thermosetting resin, an amine such as aniline, an aldehyde such as paraformaldehyde and acetaldehyde, a solvent such as water, methyl ethyl ketone (MEK), and methanol The reaction mixture is placed in a reaction vessel and stirred at a predetermined temperature for several hours to perform an addition condensation reaction. After completion of the reaction, it is filtered, washed and dried. Further, the solvent may be removed under reduced pressure.

上記のようにして得られた熱硬化性樹脂複合材料の成形物を得るには、例えば、熱硬化性樹脂複合材料を金型等に充填して、130〜180℃、10〜100MPaの条件で、加熱、圧縮成形法で5〜35分間成形し、その後、必要に応じて160〜270℃で1〜10時間ポストキュアー処理を行うことが好ましい。   In order to obtain a molded product of the thermosetting resin composite material obtained as described above, for example, the thermosetting resin composite material is filled in a mold or the like, and the conditions are 130 to 180 ° C. and 10 to 100 MPa. It is preferable to form by heating and compression molding for 5 to 35 minutes, and then post-cure treatment at 160 to 270 ° C. for 1 to 10 hours as necessary.

補強繊維としては、ガラス繊維、セラミック繊維、炭素繊維、鉱物繊維等の無機繊維、アラミド繊維、ポリアミド繊維、ポリイミド繊維等の有機繊維、銅繊維、黄銅繊維、スチール繊維等の金属繊維が用いられる。
通常の充填材としては、カシューダスト、ゴムダスト、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、シリカ、金属粉等が1種または2種以上混合して用いることができる。
本発明の熱硬化性樹脂複合材料を摩擦材等として用いる場合には、硫化アンチモン、硫化モリブデン等の潤滑材を添加してもよい。
As the reinforcing fibers, inorganic fibers such as glass fibers, ceramic fibers, carbon fibers and mineral fibers, organic fibers such as aramid fibers, polyamide fibers and polyimide fibers, and metal fibers such as copper fibers, brass fibers and steel fibers are used.
As a normal filler, cashew dust, rubber dust, barium sulfate, calcium carbonate, magnesium carbonate, silica, metal powder and the like can be used singly or in combination.
When the thermosetting resin composite material of the present invention is used as a friction material or the like, a lubricant such as antimony sulfide or molybdenum sulfide may be added.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明の範囲はそれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, the scope of the present invention is not limited by those Examples.

1.熱硬化性樹脂複合材料等の作製
(作製材料の種類)
試験のために作製した材料の違いを判りやすくために、先に説明しておく。
実施例1:末端にアミノ基を有する表面処理剤によるアミン処理黒鉛を分散下に熱硬化性樹脂原料を反応させて得た熱硬化性樹脂複合材料
比較例1:末端にアミノ基を有しない表面処理剤による表面処理黒鉛を分散下に熱硬化性樹脂原料を反応させて得た熱硬化性樹脂複合材料
比較例2:表面処理剤による表面処理をしていない黒鉛を分散下に熱硬化性樹脂原料を反応させて得た熱硬化性樹脂複合材料
比較例3:末端にアミノ基を有する表面処理剤によるアミン処理黒鉛を、別に合成した熱硬化性樹脂と溶融混練して得た熱硬化性樹脂複合材料
比較例4:表面処理剤による表面処理をしていない黒鉛を、別に合成した熱硬化性樹脂と溶融混練して得た熱硬化性樹脂複合材料
比較例5:別に合成した熱硬化性樹脂単独
1. Production of thermosetting resin composite materials, etc. (Types of production materials)
In order to make it easier to understand the difference in the materials produced for the test, it will be explained first.
Example 1: Thermosetting resin composite material obtained by reacting a thermosetting resin raw material with dispersion of amine-treated graphite with a surface-treating agent having an amino group at the terminal Comparative Example 1: Surface having no amino group at the terminal Thermosetting resin composite material obtained by reacting surface-treated graphite with a treatment agent while dispersing the thermosetting resin raw material Comparative example 2: Thermosetting resin with dispersion of graphite not surface-treated with a surface treatment agent Thermosetting resin composite material obtained by reacting raw materials Comparative Example 3: Thermosetting resin obtained by melt-kneading an amine-treated graphite with a surface treating agent having an amino group at the end with a thermosetting resin synthesized separately Composite Material Comparative Example 4: Thermosetting resin composite material obtained by melt-kneading graphite not surface-treated with a surface treatment agent with a separately synthesized thermosetting resin Comparative Example 5: Separately synthesized thermosetting resin Alone

実施例1
1)フィラーの表面処理
リン状黒鉛20gを硫酸300gと硝酸20gの混酸に24時間浸漬し、3回水洗した後、吸引ろ過し黒鉛を回収した。ドデシルアミン60gを80℃の水2リットルに溶解した中に上記の黒鉛を投入し、3時間撹絆した後吸引ろ過して、アミン処理黒鉛を回収した。アミン処理黒鉛を120℃、5時間乾燥後に粗粉砕して80gのアミン処理黒鉛を得た。
2)熱硬化性樹脂複合材料の合成
4つ口フラスコにアミン処理黒鉛80g、ビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 92g、パラホルムアルデヒド 84gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い実施例1の熱硬化性樹脂複合材料を得た。
Example 1
1) Surface treatment of filler 20 g of phosphorus-like graphite was immersed in a mixed acid of 300 g of sulfuric acid and 20 g of nitric acid for 24 hours, washed with water three times, and suction filtered to collect graphite. The above graphite was added to 60 g of dodecylamine dissolved in 2 liters of water at 80 ° C., stirred for 3 hours, and then suction filtered to recover amine-treated graphite. The amine-treated graphite was coarsely pulverized after drying at 120 ° C. for 5 hours to obtain 80 g of amine-treated graphite.
2) Synthesis of thermosetting resin composite material Amine-treated graphite 80 g, bisphenol A 150 g, methyl ethyl ketone (MEK) 150 g, aniline 92 g, and paraformaldehyde 84 g are added to a four-necked flask, and 40 ° C. for 1 hour and 50 ° C. for 1 hour. The polycondensation reaction was carried out at 80 ° C. for 4 hours. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin composite material of Example 1.

比較例1
1)フィラーの表面処理
リン状黒鉛20gを硫酸:300gと硝酸20gの混酸に24時間浸漬し、3回水洗した後、吸引ろ過し黒鉛を回収した。ドデシル硫酸ナトリウム88gを80℃の水2リットルに溶解した中に上記の黒鉛を投入し、3時間撹枠した後吸引ろ過して、表面処理黒鉛を回収した。表面処理黒鉛を120℃、5時間乾燥後に粗粉砕して108gの表面処理黒鉛を得た。
2)熱硬化性樹脂複合材料の合成
4つ口フラスコに表面処理黒鉛108g、ビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 101gパラホルムアルデヒド 84gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂複合材料を得た。
Comparative Example 1
1) Surface treatment of filler 20 g of phosphorus-like graphite was immersed in a mixed acid of sulfuric acid: 300 g and nitric acid 20 g for 24 hours, washed with water three times, and then suction filtered to collect graphite. The above graphite was added to 88 g of sodium dodecyl sulfate dissolved in 2 liters of water at 80 ° C., stirred for 3 hours, and suction filtered to recover surface-treated graphite. The surface-treated graphite was coarsely pulverized after drying at 120 ° C. for 5 hours to obtain 108 g of surface-treated graphite.
2) Synthesis of thermosetting resin composite material 108 g of surface-treated graphite, 150 g of bisphenol A, 150 g of methyl ethyl ketone (MEK), and 84 g of aniline paraformaldehyde were added to a four-necked flask. A polycondensation reaction was carried out at 80 ° C. for 4 hours. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin composite material.

比較例2
1)フィラーの表面処理
リン状黒鉛20gを硫酸300gと硝酸20gの混酸に24時間浸漬し、3回水洗した後、吸引ろ過し黒鉛20gを回収した。
2)熱硬化性樹脂複合材料の合成
4つ口フラスコに黒鉛20g、ビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 122g、パラホルムアルデヒド 84gを加え、40℃で1時聞、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂複合材料を得た。
Comparative Example 2
1) Surface treatment of filler 20 g of phosphorus-like graphite was immersed in a mixed acid of 300 g of sulfuric acid and 20 g of nitric acid for 24 hours, washed with water three times, and suction filtered to recover 20 g of graphite.
2) Synthesis of thermosetting resin composite material 20 g of graphite, 150 g of bisphenol A, 150 g of methyl ethyl ketone (MEK), 122 g of aniline, and 84 g of paraformaldehyde are added to a four-necked flask, at 40 ° C for 1 hour, at 50 ° C for 1 hour, A polycondensation reaction was carried out at 80 ° C. for 4 hours. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin composite material.

比較例3
1)フィラーの表面処理
リン状黒鉛20gを硫酸300gと硝酸20gの混酸に24時間浸漬し、3回水洗した後、吸引ろ過し黒鉛を回収した。ドデシルアミン60gを80℃の水2Lに溶解した中に上記の黒鉛を投入し、3時間撹枠した後吸引ろ過して、アミン処理黒鉛を回収した。アミン処理黒鉛を120℃、5時間乾燥後に粗粉砕して80gのアミン処理黒鉛を得た。
2)熟硬化性樹脂の合成
4つ口フラスコにビスフェノールA 115g、メチルエチルケトン(MEK) 115g、アニリン 94g、パラホルムアルデヒド 65gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂を得た。
3)フィラーと熱硬化性樹脂の溶融混錬
上記1)と2)の粗粉砕物を混合・共粉砕し混合粉を作製した。混合粉を2軸混錬機を用いて100℃で溶融混錬し、熱硬化性樹脂複合材料を得た。
Comparative Example 3
1) Surface treatment of filler 20 g of phosphorus-like graphite was immersed in a mixed acid of 300 g of sulfuric acid and 20 g of nitric acid for 24 hours, washed with water three times, and suction filtered to collect graphite. The above graphite was added to 60 g of dodecylamine dissolved in 2 L of water at 80 ° C., stirred for 3 hours, and suction filtered to recover amine-treated graphite. The amine-treated graphite was coarsely pulverized after drying at 120 ° C. for 5 hours to obtain 80 g of amine-treated graphite.
2) Synthesis of mature curable resin Add 115 g of bisphenol A, 115 g of methyl ethyl ketone (MEK), 94 g of aniline, and 65 g of paraformaldehyde to a four-necked flask, and add 1 hour at 40 ° C, 1 hour at 50 ° C, 4 hours at 80 ° C. A condensation reaction was performed. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin.
3) Melt kneading of filler and thermosetting resin The coarsely pulverized products of the above 1) and 2) were mixed and co-ground to produce a mixed powder. The mixed powder was melted and kneaded at 100 ° C. using a biaxial kneader to obtain a thermosetting resin composite material.

比較例4
1)フィラーの表面処理
リン状黒鉛20gを硫酸300gと硝酸20gの混酸に24時間漫漬し、3回水洗した後、吸引ろ過し黒鉛20gを回収した。
2)熱硬化性樹脂の合成
4つ口フラスコにビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 122g、パラホルムアルデヒド 84gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂を得た。
3)フィラーと熱硬化性樹脂の溶融混錬
上記1)と2)の粗粉砕物を混合・共粉砕し混合粉を作製した。混合粉を2軸混錬機を用いて100℃で溶融混錬し、熱硬化性樹脂複合材料を得た。
Comparative Example 4
1) Surface treatment of filler 20 g of phosphorus-like graphite was immersed in a mixed acid of 300 g of sulfuric acid and 20 g of nitric acid for 24 hours, washed with water three times, and suction filtered to recover 20 g of graphite.
2) Synthesis of thermosetting resin In a four-necked flask, 150 g of bisphenol A, 150 g of methyl ethyl ketone (MEK), 122 g of aniline, and 84 g of paraformaldehyde are added, and the weight is 1 hour at 40 ° C, 1 hour at 50 ° C, and 4 hours at 80 ° C. A condensation reaction was performed. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin.
3) Melt kneading of filler and thermosetting resin The coarsely pulverized products of the above 1) and 2) were mixed and co-ground to produce a mixed powder. The mixed powder was melted and kneaded at 100 ° C. using a biaxial kneader to obtain a thermosetting resin composite material.

比較例5
1)熱硬化性樹脂の合成
4つ口フラスコにビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 122g、パラホルムアルデヒド 84gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂を得た。
Comparative Example 5
1) Synthesis of thermosetting resin In a four-necked flask, 150 g of bisphenol A, 150 g of methyl ethyl ketone (MEK), 122 g of aniline, and 84 g of paraformaldehyde are added, and the mixture is heated at 40 ° C for 1 hour, at 50 ° C for 1 hour, and at 80 ° C for 4 hours. A condensation reaction was performed. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin.

実施例2
1)フィラー表面処理
アミン系シランカップリング剤(アミノプロピルトリエトキシシラン)1gを蒸留水100gに溶解した中にシリカ粉末(平均粒径5μm)20gを投入し、3時間攪拌した後、吸引ろ過した後、120℃、5時間乾燥してアミン処理シリカ粉末を得た。
2)熱硬化性樹脂複合材料の合成
4つ口フラスコにアミン処理シリカ粉末 20g、ビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 92g、パラホルムアルデヒド 84gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂複合材料を得た。
Example 2
1) Filler surface treatment Into 1 g of an amine-based silane coupling agent (aminopropyltriethoxysilane) dissolved in 100 g of distilled water, 20 g of silica powder (average particle size: 5 μm) was added and stirred for 3 hours, followed by suction filtration. Thereafter, it was dried at 120 ° C. for 5 hours to obtain an amine-treated silica powder.
2) Synthesis of thermosetting resin composite material 20 g of amine-treated silica powder, 150 g of bisphenol A, 150 g of methyl ethyl ketone (MEK), 92 g of aniline, and 84 g of paraformaldehyde are added to a four-necked flask, and 1 hour at 40 ° C. and 1 at 50 ° C. The polycondensation reaction was carried out at 80 ° C. for 4 hours. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin composite material.

比較例6
1)熱硬化性樹脂複合材料の合成
4つ口フラスコに未処理シリカ粉末 20g、ビスフェノールA 150g、メチルエチルケトン(MEK) 150g、アニリン 122g、パラホルムアルデヒド 84gを加え、40℃で1時間、50℃で1時間、80℃で4時間重縮合反応を行った。その後、0.06MPaで1時間減圧して脱溶媒を行い熱硬化性樹脂複合材料を得た。
Comparative Example 6
1) Synthesis of thermosetting resin composite material In a four-necked flask, 20 g of untreated silica powder, 150 g of bisphenol A, 150 g of methyl ethyl ketone (MEK), 122 g of aniline, and 84 g of paraformaldehyde were added, and 1 hour at 40 ° C. and 1 at 50 ° C. The polycondensation reaction was carried out at 80 ° C. for 4 hours. Thereafter, the solvent was removed by reducing the pressure at 0.06 MPa for 1 hour to obtain a thermosetting resin composite material.

2.評価
1)テストピース曲げ強度試験
i)テストピースの作製
熱硬化性樹脂複合材料等粉末:炭酸カルシウム粉末=40:60vol%で配合、乾式混合して得た混合粉を成形型に充填し、成形圧力10MPa、180℃で所定時間(実施例1、比較例3は300秒、比較例2、4は960秒、比較例1、5は1800秒)熱成形を行った。その後、250℃で3時間熱処理を行った。得られた成形体から10mm×50mm×2mmのテストピースを圧縮方向に対し平行及び垂直の方向で切り出してテストピースとした。
2. Evaluation 1) Test piece bending strength test i) Preparation of test piece Powder such as thermosetting resin composite material: Calcium carbonate powder = 40: 60 vol% Blended powder obtained by dry blending is filled into a mold and molded. Thermoforming was performed at a pressure of 10 MPa and 180 ° C. for a predetermined time (300 seconds for Example 1 and Comparative Example 3, 960 seconds for Comparative Examples 2 and 4, and 1800 seconds for Comparative Examples 1 and 5). Thereafter, heat treatment was performed at 250 ° C. for 3 hours. A test piece of 10 mm × 50 mm × 2 mm was cut out from the obtained molded body in a direction parallel and perpendicular to the compression direction to obtain a test piece.

ii)曲げ試験
上記のテストピースを用いて、支点間距離40mm、試験速度1mm/minで各条件5回試験を行い、平均値を比較した。
2)ゲルタイム試験
JIS K6910 7.11 D法(平板法)に準拠し、熱板温度は180±1℃にて実施した。
3)DSC測定
昇温速度:10℃/min、空気中、走査温度25℃〜300℃で実施した。
4)TG−DTA測定
試料を180℃で1時間、次いで250℃で3時間加熱し、平均粒径約50μmに粉砕したものを用いた。昇温速度:100℃/min、空気中、走査温度25℃〜1050℃で実施、550℃での重量保持率を比較した。
ii) Bending test Using the above test pieces, the test was performed five times at a distance between supporting points of 40 mm and a test speed of 1 mm / min, and the average values were compared.
2) Gel time test In accordance with JIS K6910 7.11 D method (flat plate method), the hot plate temperature was 180 ± 1 ° C.
3) DSC measurement Temperature rising rate: 10 ° C / min, in air, at a scanning temperature of 25 ° C to 300 ° C.
4) TG-DTA measurement The sample was heated at 180 ° C. for 1 hour and then at 250 ° C. for 3 hours and ground to an average particle size of about 50 μm. Temperature increase rate: 100 ° C./min, in air, at a scanning temperature of 25 ° C. to 1050 ° C. The weight retention at 550 ° C. was compared.

3.評価結果
評価結果を第1表に示す。
3. Evaluation results The evaluation results are shown in Table 1.

Figure 2008024839
Figure 2008024839

実施例1、2のテストピースは強度の異方性が少なく良好な強度特性を示した。硬化特性、耐熱性も良好であり総合的に性能が高い熱硬化性樹脂複合材料が得られた。   The test pieces of Examples 1 and 2 showed good strength characteristics with little strength anisotropy. A thermosetting resin composite material having good curing characteristics and heat resistance and high overall performance was obtained.

本発明の熱硬化性樹脂複合材料は、成形時間が短縮され成形温度が低下して、機械的強度や耐熟性等の特性が向上した熱硬化性樹脂複合材料とその製造方法を提供できるので、自動車、鉄道車輌、各種産業機械等の制動に用いられるディスクブレーキパッド、ブレーキライニング、クラッチフェーシング等の摩擦材、電気・電子機器部品、通信機器部品、機械部品等の成形材料の生産効率を大幅に改善することができる。   The thermosetting resin composite material of the present invention can provide a thermosetting resin composite material having a reduced molding time and a reduced molding temperature, and improved properties such as mechanical strength and ripening resistance, and a method for producing the same. Greatly increases the production efficiency of molding materials such as friction materials such as disc brake pads, brake linings, clutch facings, electrical / electronic equipment parts, communication equipment parts, mechanical parts, etc. used for braking automobiles, railway vehicles, various industrial machines, etc. Can be improved.

Claims (5)

少なくとも表面処理されたフィラーを含有する熱硬化性樹脂複合材料において、該表面処理されたフィラーを分散させた状態で、フェノール誘導体とアミン類とアルデヒドを攪拌・加熱・重縮合化させてなることを特徴とする熱硬化性樹脂複合材料。   In a thermosetting resin composite material containing at least a surface-treated filler, a phenol derivative, an amine and an aldehyde are stirred, heated, and polycondensed in a state in which the surface-treated filler is dispersed. Characteristic thermosetting resin composite material. 前記表面処理されたフィラーは、アミン末端を持つ表面処理剤で表面処理されたものであることを特徴とする請求項1記載の熱硬化性樹脂複合材料。   The thermosetting resin composite material according to claim 1, wherein the surface-treated filler is surface-treated with a surface treatment agent having an amine terminal. 前記表面処理されたフィラーが熱硬化性樹脂複合材料全体に対し、1〜95質量%含まれていることを特徴とする請求項1又は請求項2記載の熱硬化性樹脂複合材料。   The thermosetting resin composite material according to claim 1, wherein the surface-treated filler is contained in an amount of 1 to 95% by mass with respect to the entire thermosetting resin composite material. フィラーを分散して含有する熱硬化性樹脂複合材料の製造方法において、前記フィラーが表面処理される工程と、該表面処理されたフィラーを分散させた状態で、フェノール誘導体とアミン類とアルデヒドを攪拌・加熱・重縮合化させる工程とを含むことを特徴とする熱硬化性樹脂複合材料の製造方法。   In the method for producing a thermosetting resin composite material containing dispersed fillers, the step of surface-treating the filler and stirring the phenol derivative, amines and aldehyde in a state where the surface-treated filler is dispersed -The manufacturing method of the thermosetting resin composite material characterized by including the process of heating and polycondensation. 前記フィラーが表面処理される工程は、アミン末端を持つ表面処理剤で表面処理されることを特徴とする請求項4記載の熱硬化性樹脂複合材料の製造方法。   The method for producing a thermosetting resin composite material according to claim 4, wherein the surface treatment of the filler is performed with a surface treatment agent having an amine terminal.
JP2006199534A 2006-07-21 2006-07-21 Thermosetting resin composite and method for producing the same Pending JP2008024839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199534A JP2008024839A (en) 2006-07-21 2006-07-21 Thermosetting resin composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199534A JP2008024839A (en) 2006-07-21 2006-07-21 Thermosetting resin composite and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008024839A true JP2008024839A (en) 2008-02-07

Family

ID=39115815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199534A Pending JP2008024839A (en) 2006-07-21 2006-07-21 Thermosetting resin composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008024839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123227A1 (en) * 2021-12-28 2023-07-06 王顺方 Phenolic resin composite plastic and preparation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123227A1 (en) * 2021-12-28 2023-07-06 王顺方 Phenolic resin composite plastic and preparation method therefor

Similar Documents

Publication Publication Date Title
WO2023145575A1 (en) Phenol resin composition, cured product, and molded body
JP6718756B2 (en) Commitator and method for manufacturing commutator
JP2008024839A (en) Thermosetting resin composite and method for producing the same
JP2008285534A (en) Resol-type phenolic resin having affinity to hydrophobic organic material
JP4355979B2 (en) Phenolic resin molding composition
US6080230A (en) Friction material composition
JP5236955B2 (en) Binder resin composition for friction material, thermosetting resin composite material including the same, and friction material
JP2010144034A (en) Thermosetting resin composition, method for producing the same, friction material binder, and friction material
JPH05230439A (en) Thermosetting resin composition for friction material and friction material prepared therefrom
JP7117218B2 (en) ROTOR CORE MAGNET FIXING RESIN COMPOSITION AND ROTOR CORE
JP2005097374A (en) Phenol resin composition for friction material, its manufacturing method, mixture for friction material and friction material
JP4794083B2 (en) Composite molding material
JP2010168550A (en) Friction material and method for manufacturing the same
JP7131713B2 (en) Phenolic resin composition for friction material
JP3583872B2 (en) Carbon / resin composite
JPWO2005040276A1 (en) Phenolic resin molding material and molded article thereof
JP5033154B2 (en) Phenolic resin molding material and molded article thereof
JPH0940844A (en) Thermosetting resin composition for frictional material and frictional material
JP4120517B2 (en) Wood resin for molding on-vehicle components, its manufacturing method, wood resin material for molding on-vehicle components, and on-vehicle components molded therefrom
JPH0651825B2 (en) Phenolic resin binder
JP2024147304A (en) Polymerizable composition and resin composition
JPH0349935B2 (en)
JP2023004568A (en) Molding material and molded article
JPH0874904A (en) Resin composition for frictional material
JP2621718B2 (en) Thermosetting resin composition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127