JP2008021560A - Nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte Download PDF

Info

Publication number
JP2008021560A
JP2008021560A JP2006193307A JP2006193307A JP2008021560A JP 2008021560 A JP2008021560 A JP 2008021560A JP 2006193307 A JP2006193307 A JP 2006193307A JP 2006193307 A JP2006193307 A JP 2006193307A JP 2008021560 A JP2008021560 A JP 2008021560A
Authority
JP
Japan
Prior art keywords
carbonate
fluorine
volume
electrolyte salt
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006193307A
Other languages
Japanese (ja)
Inventor
Meiten Ko
明天 高
Michiru Tanaka
みちる 田中
Hitomi Miyawaki
瞳 宮脇
Akiyoshi Yamauchi
昭佳 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006193307A priority Critical patent/JP2008021560A/en
Publication of JP2008021560A publication Critical patent/JP2008021560A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte useful for an electrolyte for a lithium secondary battery, incombustible, high in solubility of an electrolyte salt, high in discharge capacity, and excellent in charge discharge cycle characteristics. <P>SOLUTION: The nonaqueous electrolyte contains an organic solvent (II) containing 0.5-30 vol.% fluorine-containing phosphate (I) represented by O=P(CH<SB>2</SB>Rf)<SB>3</SB>, and an electrolyte salt (III). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池用に適した不燃性の電解液に関する。   The present invention relates to a nonflammable electrolyte solution suitable for a lithium secondary battery.

リチウム二次電池用の電解質塩溶解用溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネートが使用されている。しかし、これらの炭化水素系カーボネートは引火点が低く燃焼性が高いため、過充電や過加熱による発火・爆発の危険がある。特にハイブリッド自動車や分散電源用の大型リチウム二次電池では安全確保の上で重要な課題となっている。   As a solvent for dissolving an electrolyte salt for a lithium secondary battery, cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as diethyl carbonate and ethyl methyl carbonate are used. However, since these hydrocarbon carbonates have a low flash point and high combustibility, there is a risk of ignition or explosion due to overcharging or overheating. In particular, large lithium secondary batteries for hybrid vehicles and distributed power sources are important issues for ensuring safety.

こうした発火・爆発を防ぐために、難燃剤や不燃剤を添加することが提案されている。そうした添加剤の一つとしてリン酸アルキルエステルがある。   In order to prevent such ignition and explosion, it has been proposed to add a flame retardant or an incombustible agent. One such additive is an alkyl phosphate ester.

リン酸アルキルエステルを添加したリチウム二次電池用電解液としては、たとえば特許文献1〜3に開示されたものがある。これらの文献で使用されているリン酸トリメチルは電解液を難燃性(燃えにくいが着火する性質)にはするが、不燃性(着火しない性質)を付与するには至っていない。   Examples of the electrolyte solution for a lithium secondary battery to which an alkyl phosphate ester is added include those disclosed in Patent Documents 1 to 3. Although the trimethyl phosphate used in these documents makes the electrolyte flame-retardant (not flammable but ignited), it has not yet imparted non-flammability (a property that does not ignite).

特許文献4には、式:

Figure 2008021560
(式中、nおよびmは1または2でn+m=3;R1はアルキル基またはハロゲン化アルキル基など;R2はメチル、エチルまたはハロゲン化アルキル基)で示されるリン酸エステルを有機溶媒に対して5〜100質量%配合するときに難燃性が向上すると記載されており、ハロゲン化アルキル基含有リン酸エステルの具体例として、ジ(2,2,2−トリフルオロエチル)−メタンホスホネート、ジ(2,2,2−トリフルオロエチル)−エタンホスホネート、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)−メタンホスホネート、ジメチル−パーフルオロエタンホスホネートがあげられている。 In Patent Document 4, the formula:
Figure 2008021560
(Wherein n and m are 1 or 2 and n + m = 3; R 1 is an alkyl group or a halogenated alkyl group, etc .; R 2 is a methyl, ethyl or halogenated alkyl group) On the other hand, it is described that the flame retardancy is improved when blended in an amount of 5 to 100% by mass. As a specific example of the halogenated alkyl group-containing phosphate ester, di (2,2,2-trifluoroethyl) -methanephosphonate Di (2,2,2-trifluoroethyl) -ethanephosphonate, di (2,2,3,3,3-pentafluoro-n-propyl) -methanephosphonate, dimethyl-perfluoroethanephosphonate Yes.

しかし、不燃性(不着火性)が得られる添加量は、有機溶媒の50質量%以上であり(表1)、多量に配合して初めて不燃化が達成されている。また容量維持率も90%を切っており、サイクル特性が低下している。   However, the amount of nonflammability (non-ignitability) obtained is 50% by mass or more of the organic solvent (Table 1), and nonflammability is achieved only when a large amount is blended. Also, the capacity retention rate is below 90%, and the cycle characteristics are degraded.

特許文献5には、リン原子を含む環構造をもつ特殊な含フッ素リン酸誘導体を難燃剤として使用することが記載されているが、この難燃剤も有機溶媒の50質量%以上という多量に配合して初めて不燃化が達成されている(表1)。また容量維持率も85%前後であり、サイクル特性が低下している。   Patent Document 5 describes that a special fluorine-containing phosphoric acid derivative having a ring structure containing a phosphorus atom is used as a flame retardant, but this flame retardant is also incorporated in a large amount of 50% by mass or more of an organic solvent. Incombustibility has been achieved for the first time (Table 1). The capacity retention rate is also about 85%, and the cycle characteristics are degraded.

特開平04−184870号公報Japanese Patent Laid-Open No. 04-184870 特開平08−022839号公報Japanese Patent Laid-Open No. 08-022839 特開平11−238652号公報Japanese Patent Application Laid-Open No. 11-238652 特開平11−233141号公報JP-A-11-233141 特開平11−283669号公報JP-A-11-283669

本発明は、こうした従来の問題点を解決しようとするものであり、不燃性でかつ電解質塩の溶解性が高く、放電容量が大きく、充放電サイクル特性に優れた非水系電解液を提供することを目的とする。   The present invention is intended to solve such conventional problems, and provides a non-aqueous electrolyte solution that is nonflammable, has high solubility of electrolyte salt, has a large discharge capacity, and is excellent in charge / discharge cycle characteristics. With the goal.

すなわち本発明は、
式(I):

Figure 2008021560
(式中、Rf1、Rf2およびRf3は同じかまたは異なり、いずれも炭素数1〜3の含フッ素アルキル基)で示される含フッ素リン酸エステル(I)を0.5〜30体積%含む有機溶媒(II)と電解質塩(III)を含む非水系電解液に関する。 That is, the present invention
Formula (I):
Figure 2008021560
(Wherein Rf 1 , Rf 2 and Rf 3 are the same or different, and all are fluorine-containing alkyl groups having 1 to 3 carbon atoms) 0.5 to 30% by volume of fluorine-containing phosphate ester (I) represented by The present invention relates to a nonaqueous electrolytic solution containing an organic solvent (II) and an electrolyte salt (III).

本発明によれば、リチウム二次電池用の電解液として有用な不燃性かつ難燃性で、しかも電解質塩の溶解性が高く、放電容量が大きく、充放電サイクル特性に優れた非水系電解液を提供することができる。   According to the present invention, a non-aqueous electrolyte solution that is non-flammable and flame retardant, which is useful as an electrolyte solution for a lithium secondary battery, has high electrolyte salt solubility, a large discharge capacity, and excellent charge / discharge cycle characteristics. Can be provided.

なお、本明細書において、「不燃性」とは後述する着火試験(試験例6)において着火しない性質をいい、「難燃性」とは後述する難燃性試験(試験例5)において発火・破裂しない性質をいう。   In the present specification, “nonflammability” means a property that does not ignite in an ignition test (Test Example 6) described later, and “flame retardant” refers to ignition / ignition in a flame retardant test (Test Example 5) described later. The nature that does not rupture.

本発明において、不燃化を達成させるために添加する含フッ素リン酸エステル(I)は式(I)で示される化合物である。Rf1、Rf2およびRf3の炭素数が4よりも多くなると粘性が高くなり、かつ相溶性がわるくなり、好ましくない。好ましくはRf1、Rf2およびRf3の炭素数が2のものである。 In the present invention, the fluorine-containing phosphate (I) added to achieve incombustibility is a compound represented by the formula (I). When Rf 1 , Rf 2 and Rf 3 have more than 4 carbon atoms, the viscosity becomes high and the compatibility becomes unfavorable. Rf 1 , Rf 2 and Rf 3 preferably have 2 carbon atoms.

式(I)において、Rf1、Rf2およびRf3としては、CF3−、CF3CF2−、CF3CH2−、HCF2CF2−またはCF3CFHCF2−が好ましく例示でき、電解質塩の溶解性が高く、他の溶媒との相溶性が高い点から、Rf1、Rf2およびRf3の少なくとも1つ、さらには全てがHCF2CF2−であるものが好ましい。具体的には、少量で不燃化が達成できる点、粘性が低い点、さらには相溶性が良好な点から、Rf1、Rf2およびRf3がいずれもCF3CF2−であるリン酸トリ2,2,3,3,3−ペンタフルオロプロピル、Rf1、Rf2およびRf3がいずれもHCF2CF2−であるリン酸トリ2,2,3,3−テトラフルオロプロピル、Rf1、Rf2およびRf3がいずれもCF3−であるリン酸トリ2,2,2−トリフルオロエチルなどが好ましく、特にリン酸トリ2,2,3,3,3−ペンタフルオロプロピル、リン酸トリ2,2,3,3−テトラフルオロプロピルが好ましく、なかでもリン酸トリ2,2,3,3−テトラフルオロプロピルが好ましい。 In the formula (I), Rf 1 , Rf 2 and Rf 3 can be preferably exemplified by CF 3- , CF 3 CF 2- , CF 3 CH 2- , HCF 2 CF 2 -or CF 3 CFHCF 2- From the viewpoint of high salt solubility and high compatibility with other solvents, at least one of Rf 1 , Rf 2 and Rf 3 , and all of them are preferably HCF 2 CF 2 —. Specifically, from the point that nonflammability can be achieved with a small amount, the viscosity is low, and the compatibility is good, Rf 1 , Rf 2, and Rf 3 are all CF 3 CF 2 — 2,2,3,3,3-pentafluoropropyl, Rf 1 , Rf 2 and Rf 3 are all HCF 2 CF 2 — tri2,2,3,3-tetrafluoropropyl phosphate, Rf 1 , Preferred are tri-2,2,2-trifluoroethyl phosphate and the like in which both Rf 2 and Rf 3 are CF 3 —, and particularly tri-2,2,3,3,3-pentafluoropropyl phosphate, triphosphate phosphate 2,2,3,3-tetrafluoropropyl is preferable, and tri-2,2,3,3-tetrafluoropropyl phosphate is particularly preferable.

含フッ素リン酸エステル(I)は、電解質塩溶解用有機溶媒(II)中に0.5〜30体積%となるように添加される。多くなりすぎると電解質塩の溶解性の低下や相溶性の低下が生じ、少なすぎると不燃化が不充分となる。好ましい上限はRf1、Rf2およびRf3の種類にもよるが、25体積%、さらには20体積%である。下限は1体積%が好ましい。特にRf1、Rf2およびRf3がパーフルオロアルキル基、またはパーフルオロアルキル基のフッ素原子の1個もしくは2個が水素原子で置換されたハイドロフルオロアルキル基の場合、20体積%以下で不燃化が達成できる。 The fluorine-containing phosphate ester (I) is added in an amount of 0.5 to 30% by volume in the electrolyte salt dissolving organic solvent (II). When the amount is too large, the solubility of the electrolyte salt is lowered and the compatibility is lowered. When the amount is too small, the incombustibility becomes insufficient. The preferable upper limit is 25% by volume, and further 20% by volume, although it depends on the types of Rf 1 , Rf 2 and Rf 3 . The lower limit is preferably 1% by volume. In particular, when Rf 1 , Rf 2 and Rf 3 are a perfluoroalkyl group or a hydrofluoroalkyl group in which one or two fluorine atoms of the perfluoroalkyl group are substituted with a hydrogen atom, nonflammability is achieved at 20% by volume or less. Can be achieved.

本発明の電解液における電解質塩溶解用有機溶媒(II)としては、フッ素原子を含んでいてもよい炭化水素系カーボネート、フッ素原子を含んでいてもよいエーテル、フッ素原子を含んでいてもよいラクトン、フッ素原子を含んでいてもよいニトリルなどの1種または2種以上が採用できる。   Examples of the organic solvent (II) for dissolving the electrolyte salt in the electrolytic solution of the present invention include hydrocarbon carbonates that may contain fluorine atoms, ethers that may contain fluorine atoms, and lactones that may contain fluorine atoms. One type or two or more types such as a nitrile which may contain a fluorine atom may be employed.

フッ素原子を含んでいてもよい炭化水素系カーボネートとしては環状カーボネートおよび/または鎖状カーボネートがあげられ、これらはリチウム二次電池用の電解液に最も使用されている。環状カーボネートとしては、たとえばエチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニルエチレンカーボネートなどがあげられ、鎖状カーボネートとしてはたとえばジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどがあげられる。   Examples of hydrocarbon carbonates that may contain fluorine atoms include cyclic carbonates and / or chain carbonates, and these are most used in electrolyte solutions for lithium secondary batteries. Examples of the cyclic carbonate include ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, and vinyl ethylene carbonate. Examples of the chain carbonate include diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate.

また、フッ素化された炭化水素系カーボネートが含まれている場合は、フッ素原子の難燃化作用により、含フッ素リン酸エステル(I)の添加量をさらに少なくすることができる。フッ素化された炭化水素系カーボネートとしては、たとえば特開6−21992号公報、特開2000−327634号公報、特開2001−256983号公報などに記載された化合物が例示でき、それらのうちCF3CH2OCOOCH2CF3、CF3CF2CH2OCOOCH2CF2CF3、CF3CF2CH2OCOOCH3、3,3,3−トリフルオロプロピルカーボネートが好ましい。 Moreover, when the fluorinated hydrocarbon carbonate is contained, the addition amount of the fluorine-containing phosphate (I) can be further reduced due to the flame retarding action of fluorine atoms. Examples of the fluorinated hydrocarbon carbonate include compounds described in JP-A-6-21992, JP-A-2000-327634, JP-A-2001-256983, etc. Among them, CF 3 CH 2 OCOOCH 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 2 CF 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 3 and 3,3,3-trifluoropropyl carbonate are preferred.

フッ素原子を含んでいてもよいエーテルとしては、非フッ素系のエーテルでも含フッ素エーテルでもよい。非フッ素系エーテルとしては、たとえばテトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、1,3−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどが例示できる。   The ether which may contain a fluorine atom may be a non-fluorine ether or a fluorine-containing ether. Examples of non-fluorine ethers include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.

含フッ素エーテルは電解液を難燃化する作用や、低温特性を改善する作用も併せもつ。含フッ素エーテルとしては、たとえば特開平08−037024号公報、特開平09−097627号公報、特開平11−026015号公報、特開2000−294281号公報、特開2001−052737号公報、特開平11−307123号公報などに記載された化合物が例示できる。なかでも式(1):
Rf4−O−Rf5
(式中、Rf4およびRf5は同じかまたは異なり、いずれも炭素数2〜4の含フッ素アルキル基)で示される含フッ素エーテルが、難燃化効果が良好で、炭化水素系カーボネートとの相溶性も良好な点から好ましい。具体的には、HCF2CF2CH2OCF2CFHCF3、HCF2CF2CH2OCF2CF2Hが好ましい。
The fluorine-containing ether has both an effect of making the electrolyte flame-retardant and an effect of improving low-temperature characteristics. Examples of the fluorine-containing ether include Japanese Patent Application Laid-Open No. 08-037024, Japanese Patent Application Laid-Open No. 09-097627, Japanese Patent Application Laid-Open No. 11-026015, Japanese Patent Application Laid-Open No. 2000-294281, Japanese Patent Application Laid-Open No. 2001-052737, and Japanese Patent Application Laid-Open No. -307123 etc. can illustrate the compound described. Above all, formula (1):
Rf 4 -O-Rf 5
(Wherein Rf 4 and Rf 5 are the same or different, both of which are fluorine-containing alkyl groups having 2 to 4 carbon atoms). The compatibility is also preferable from the viewpoint of good compatibility. Specifically, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 and HCF 2 CF 2 CH 2 OCF 2 CF 2 H are preferable.

含フッ素エーテルの添加量は、難燃性を与える観点からは、有機溶媒(II)中の70体積%以下、通常60体積%以下、好ましくは55体積%以下である。   The addition amount of the fluorine-containing ether is 70% by volume or less, usually 60% by volume or less, preferably 55% by volume or less in the organic solvent (II) from the viewpoint of imparting flame retardancy.

フッ素原子を含んでいてもよいラクトンとしては、たとえばγ−ブチロラクトン、γ−バレロラクトンなどがあげられる。   Examples of the lactone which may contain a fluorine atom include γ-butyrolactone and γ-valerolactone.

フッ素原子を含んでいてもよいニトリルとしては、たとえばアセトニトリル、プロピオニトリルなどがあげられる。   Examples of the nitrile which may contain a fluorine atom include acetonitrile and propionitrile.

そのほか電解液のサイクル特性を改善する目的で3体積%までの量で、ヘキサフルオロベンゼン、フルオロベンゼン、トルエンなども使用できる。   In addition, hexafluorobenzene, fluorobenzene, toluene and the like can be used in an amount of up to 3% by volume for the purpose of improving the cycle characteristics of the electrolytic solution.

これらのうち、炭化水素系環状カーボネートを必須とし、さらに炭化水素系鎖状カーボネートを配合した有機溶媒が、電解質塩の溶解性や相溶性、低温特性が良好な点から好ましい。   Among these, an organic solvent containing a hydrocarbon cyclic carbonate as an essential component and further containing a hydrocarbon chain carbonate is preferable from the viewpoint of good solubility, compatibility and low temperature characteristics of the electrolyte salt.

具体的には、エチレンカーボネートおよび/またはビニレンカーボネート3〜40体積%、およびジエチルカーボネート、エチルメチルカーボネートまたはジメチルカーボネートの1種または2種以上40〜96体積%の比率で含む電解質塩溶解用有機溶媒が好ましい。エチレンカーボネートおよび/またはビニレンカーボネートが3〜40体積%、特に3〜25体積%であるとき、相溶性や低温特性が良好であることから好ましい。なお、含フッ素リン酸エステル(I)を10体積%以上配合して不燃性を高める場合、エチレンカーボネートおよび/またはビニレンカーボネートにさらに鎖状のカーボネートを、エチレンカーボネートおよび/またはビニレンカーボネートの量と同じかまたは多い量で併用することが相溶性を高める点から好ましい。   Specifically, an organic solvent for dissolving an electrolyte salt containing ethylene carbonate and / or vinylene carbonate in an amount of 3 to 40% by volume and diethyl carbonate, ethyl methyl carbonate or dimethyl carbonate in a proportion of 40 to 96% by volume. Is preferred. When ethylene carbonate and / or vinylene carbonate is 3 to 40% by volume, particularly 3 to 25% by volume, the compatibility and the low temperature characteristics are preferable. In addition, when adding 10 volume% or more of fluorine-containing phosphate ester (I) and improving nonflammability, chain carbonate is further added to ethylene carbonate and / or vinylene carbonate in the same amount as ethylene carbonate and / or vinylene carbonate. From the viewpoint of increasing the compatibility, it is preferable to use a large amount in combination.

本発明の電解液に使用する電解質塩(III)としては、たとえばLiPF6、LiBF4、LiN(O2SCF32、LiN(O2SC252などがあげられる。リチウム二次電池用としては、LiPF6、LiBF4が好ましい。 Examples of the electrolyte salt (III) used in the electrolytic solution of the present invention include LiPF 6 , LiBF 4 , LiN (O 2 SCF 3 ) 2 , LiN (O 2 SC 2 F 5 ) 2 and the like. For a lithium secondary battery, LiPF 6 and LiBF 4 are preferable.

電解質塩(III)の濃度は、要求される電池特性を達成するためには、0.8モル/リットル以上、さらには1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒(II)にもよるが、通常1.5モル/リットルである。   The concentration of the electrolyte salt (III) needs to be 0.8 mol / liter or more, further 1.0 mol / liter or more in order to achieve the required battery characteristics. The upper limit is usually 1.5 mol / liter although it depends on the organic solvent (II) for dissolving the electrolyte salt.

本発明の非水系電解液はリチウム二次電池用の電解液として特に優れており、その場合、エチレンカーボネートおよび/またはビニレンカーボネート3〜40体積%と、ジエチルカーボネート、エチルメチルカーボネートまたはジメチルカーボネートの1種または2種以上40〜96体積%とリン酸トリ2,2,3,3,3−ペンタフルオロプロピルまたはリン酸トリ2,2,3,3−テトラフルオロプロピル1〜20体積%を含む電解質塩溶解用有機溶媒に0.8モル/リットル以上の濃度でLiPF6またはLiBF4を含む非水系電解液が好適であり、特にエチレンカーボネートおよび/またはビニレンカーボネート3〜25体積%と、ジエチルカーボネート、エチルメチルカーボネートまたはジメチルカーボネートの1種または2種以上55〜96体積%とリン酸トリ2,2,3,3−テトラフルオロプロピル1〜20体積%を含む電解質塩溶解用有機溶媒に0.8モル/リットル以上の濃度でLiPF6またはLiBF4を含む非水系電解液が好適である。 The nonaqueous electrolytic solution of the present invention is particularly excellent as an electrolytic solution for a lithium secondary battery. In this case, 3 to 40% by volume of ethylene carbonate and / or vinylene carbonate and 1 of diethyl carbonate, ethyl methyl carbonate, or dimethyl carbonate. Electrolyte containing 40-96 vol% of seeds or two or more and tri-2,2,3,3,3-pentafluoropropyl phosphate or 1-20 vol% of tri-2,2,3,3-tetrafluoropropyl phosphate A non-aqueous electrolyte solution containing LiPF 6 or LiBF 4 at a concentration of 0.8 mol / liter or more in the organic solvent for salt dissolution is suitable, particularly ethylene carbonate and / or vinylene carbonate 3 to 25% by volume, diethyl carbonate, One or more of ethyl methyl carbonate or dimethyl carbonate LiPF 6 or LiBF 4 at a concentration of 0.8 mol / liter or more in an electrolyte salt-dissolving organic solvent containing 55 to 96% by volume and 1 to 20% by volume of tri-2,2,3,3-tetrafluoropropyl phosphate. A nonaqueous electrolytic solution containing is preferable.

本発明の電解液は、不燃性であることから、ハイブリッド自動車用や分散電源用の大型リチウム二次電池用の電解液として有用であるが、そのほかアルミニウム電解コンデンサ用電解液、電気二重層キャパシタ用電解液などの非水系電解液としても有用である。   Since the electrolyte of the present invention is nonflammable, it is useful as an electrolyte for large lithium secondary batteries for hybrid vehicles and distributed power supplies, but also for electrolytes for aluminum electrolytic capacitors and electric double layer capacitors. It is also useful as a non-aqueous electrolyte such as an electrolyte.

つぎに本発明を実施例に基づいて具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to such examples.

実施例1
リン酸トリ2,2,3,3,3−ペンタフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを20/30/50体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 1
An electrolyte salt dissolving solvent is prepared by mixing tri2,2,3,3,3-pentafluoropropyl phosphate / ethylene carbonate / diethyl carbonate in a 20/30/50 vol% ratio, and for dissolving the electrolyte salt. adding LiPF 6 in a solvent at a concentration of 1.0 mole / liter, sufficiently stirred at 25 ° C., to produce the electrolytic solution of the present invention.

実施例2
リン酸トリ2,2,3,3−テトラフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを10/30/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 2
An electrolyte salt dissolving solvent was prepared by mixing tri2,2,3,3-tetrafluoropropyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 10/30/60% by volume. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例3
リン酸トリ2,2,3,3−テトラフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを20/20/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 3
An electrolyte salt dissolving solvent was prepared by mixing tri 2,2,3,3-tetrafluoropropyl phosphate / ethylene carbonate / diethyl carbonate in a 20/20/60 vol% ratio. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例4
リン酸トリ2,2,3,3−テトラフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを30/10/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 4
An electrolyte salt dissolving solvent was prepared by mixing tri2,2,3,3-tetrafluoropropyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 30/10/60% by volume. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例5
リン酸トリ2,2,3,3−テトラフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを20/10/70体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 5
An electrolyte salt dissolving solvent was prepared by mixing tri2,2,3,3-tetrafluoropropyl phosphate / ethylene carbonate / diethyl carbonate in a ratio of 20/10/70% by volume. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例6
リン酸トリ2,2,3,3−テトラフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを10/20/70体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 6
An electrolyte salt dissolving solvent was prepared by mixing tri2,2,3,3-tetrafluoropropyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 10/20/70% by volume. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例7
リン酸トリ2,2,3,3−テトラフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを5/30/65体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 7
An electrolyte salt dissolving solvent was prepared by mixing tri 2,2,3,3-tetrafluoropropyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 5/30/65% by volume. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例8
リン酸トリ2,2,3,3,3−ペンタフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを20/40/40体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 8
An electrolyte salt dissolving solvent is prepared by mixing tri2,2,3,3,3-pentafluoropropyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 20/40/40% by volume. adding LiPF 6 in a solvent at a concentration of 1.0 mole / liter, sufficiently stirred at 25 ° C., to produce the electrolytic solution of the present invention.

実施例9
リン酸トリ2,2,3,3−テトラフルオロプロピル/ビニレンカーボネート/ジエチルカーボネートを10/30/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 9
A solvent for dissolving an electrolyte salt was prepared by mixing tri2,2,3,3-tetrafluoropropyl phosphate / vinylene carbonate / diethyl carbonate at a ratio of 10/30/60% by volume. LiPF 6 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

実施例10
リン酸トリ2,2,3,3−テトラフルオロプロピル/ビニレンカーボネート/ジエチルカーボネートを10/30/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiBF4を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を製造した。
Example 10
A solvent for dissolving an electrolyte salt was prepared by mixing tri2,2,3,3-tetrafluoropropyl phosphate / vinylene carbonate / diethyl carbonate at a ratio of 10/30/60% by volume. LiBF 4 was added to a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to produce the electrolytic solution of the present invention.

比較例1
エチレンカーボネート/ジエチルカーボネートを40/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、比較用の電解液を製造した。
Comparative Example 1
Ethylene carbonate / diethyl carbonate was mixed at a ratio of 40/60% by volume to prepare an electrolyte salt dissolving solvent, and LiPF 6 was added to the electrolyte salt dissolving solvent to a concentration of 1.0 mol / liter, The solution was sufficiently stirred at 25 ° C. to produce a comparative electrolyte.

比較例2
リン酸トリエチル/エチレンカーボネート/ジエチルカーボネートを10/30/60体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、比較用の電解液を製造した。
Comparative Example 2
An electrolyte salt dissolving solvent was prepared by mixing triethyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 10/30/60% by volume, and LiPF 6 was added at a concentration of 1.0 mol / liter to the electrolyte salt dissolving solvent. Then, the mixture was sufficiently stirred at 25 ° C. to produce a comparative electrolyte.

比較例3
リン酸トリ2,2,3,3,3−ペンタフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを35/30/35体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、比較用の電解液を製造しようと試みたが、電解質塩が析出した。
Comparative Example 3
Mixing tri 2,2,3,3,3-pentafluoropropyl phosphate / ethylene carbonate / diethyl carbonate at a ratio of 35/30/35% by volume to prepare a solvent for dissolving the electrolyte salt. LiPF 6 was added to the solvent so as to have a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to attempt to produce a comparative electrolyte, but an electrolyte salt was deposited.

比較例4
リン酸トリ2,2,3,3,3−ペンタフルオロプロピル/エチレンカーボネート/ジエチルカーボネートを35/10/55体積%比で混合して、電解質塩溶解用溶媒を調製し、この電解質塩溶解用溶媒にLiPF6を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、比較用の電解液を製造しようと試みたが、電解質塩が析出した。
Comparative Example 4
A solvent for dissolving an electrolyte salt is prepared by mixing tri2,2,3,3,3-pentafluoropropyl phosphate / ethylene carbonate / diethyl carbonate in a 35/10/55 volume% ratio. LiPF 6 was added to the solvent so as to have a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to attempt to produce a comparative electrolyte, but an electrolyte salt was deposited.

試験例1(電解質塩の溶解性)
実施例1〜10および比較例1〜4でそれぞれ製造した電解液6mlを9ml容のサンプル瓶に取り出し、25℃にて8時間静置して液の状態を目視で観察する。結果を表1に示す。
(評価基準)
○:均一溶液である。
△:電解質塩が析出する。
×:液が層分離する。
Test Example 1 (Solubility of electrolyte salt)
6 ml of the electrolytic solution produced in each of Examples 1 to 10 and Comparative Examples 1 to 4 is taken out into a 9 ml sample bottle, allowed to stand at 25 ° C. for 8 hours, and the state of the liquid is visually observed. The results are shown in Table 1.
(Evaluation criteria)
○: A uniform solution.
(Triangle | delta): Electrolyte salt precipitates.
X: The liquid is separated into layers.

試験例2(低温安定性)
実施例1〜10および比較例1〜4でそれぞれ製造した電解液6mlを9ml容のサンプル瓶に取り出し、−20℃の冷凍庫内に8時間静置した後の状態を目視で観察する。結果を表1に示す。
(評価基準)
○:均一溶液である。
△:電解質塩が析出する。
×:液が固化する。
Test example 2 (low temperature stability)
6 ml of the electrolytic solution produced in each of Examples 1 to 10 and Comparative Examples 1 to 4 is taken out into a 9 ml sample bottle, and the state after standing in a freezer at −20 ° C. for 8 hours is visually observed. The results are shown in Table 1.
(Evaluation criteria)
○: A uniform solution.
(Triangle | delta): Electrolyte salt precipitates.
X: The liquid solidifies.

Figure 2008021560
Figure 2008021560

試験例3(イオン伝導率)
実施例1、2および比較例1のイオン伝導率をつぎの方法で調べた。結果を表2に示す。
(試験方法)
交流4端子法にて、室温でイオン伝導率を測定する。インピーダンス測定装置は東陽テクニカ(株)製のSI1280Bを用い、周波数は104Hz〜101Hzの範囲で行う。
Test Example 3 (Ionic conductivity)
The ion conductivity of Examples 1 and 2 and Comparative Example 1 was examined by the following method. The results are shown in Table 2.
(Test method)
The ion conductivity is measured at room temperature by the AC four-terminal method. The impedance measurement apparatus uses SI1280B manufactured by Toyo Technica Co., Ltd., and the frequency is in the range of 10 4 Hz to 10 1 Hz.

試験例4(充放電特性)
つぎの方法でコイン型リチウム二次電池を作製した。
(正極の作製)
LiCoO2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製。商品名KF−1000)を85/6/9(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ20μmのアルミニウム箔)上に均一に塗布し、乾燥後、直径12.5mmの円盤に打ち抜いて正極を作製した。
(負極の作製)
人造黒鉛粉末(テイムカル社製。商品名KS−44)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体((厚さ18μmのアルミニウム箔)上に均一に塗布し、乾燥後、直径12.5mmの円盤に打ち抜いて負極を作製した。
(セパレータの作製)
直径14mmのポリエチレン製のセパレータ(セルガード(株)製。商品名セルガード3501)に上記実施例または比較例で製造した電解液を含浸させてセパレータを作製した。
(コイン型リチウム二次電池の作製)
正極集電体を兼ねるステンレススチール製の缶体に上記正極を収容し、その上に上記セパレータを介して上記負極を載置し、この缶体と負極集電体を兼ねる封口板とを絶縁用ガスケットを介してかしめて密封し、コイン型リチウム二次電池を作製した。
(充放電試験)
つぎの充放電測定条件で50サイクル後の放電容量を測定する。評価は、比較例1の結果を100とした指数で行う。結果を表2に示す。
充放電電圧:2.5〜4.2V
充電:0.5C、4.2Vにて充電電流が1/10になるまで一定電圧を保持
放電:1C
Test example 4 (charge / discharge characteristics)
A coin-type lithium secondary battery was produced by the following method.
(Preparation of positive electrode)
A positive electrode active material prepared by mixing LiCoO 2 , carbon black, and polyvinylidene fluoride (made by Kureha Chemical Co., Ltd., trade name KF-1000) at 85/6/9 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone. The slurry was applied uniformly on a positive electrode current collector (aluminum foil having a thickness of 20 μm), dried, and then punched into a disk having a diameter of 12.5 mm to produce a positive electrode.
(Preparation of negative electrode)
Styrene-butadiene rubber dispersed with distilled water is added to artificial graphite powder (manufactured by Temcal Co., Ltd., trade name KS-44) so that the solid content becomes 6% by mass, and mixed with a disperser to form a slurry. Was uniformly coated on a negative electrode current collector ((aluminum foil having a thickness of 18 μm), dried, and then punched into a disk having a diameter of 12.5 mm to produce a negative electrode.
(Preparation of separator)
A separator made of polyethylene having a diameter of 14 mm (manufactured by Celgard Co., Ltd., trade name Celgard 3501) was impregnated with the electrolytic solution produced in the above Example or Comparative Example.
(Production of coin-type lithium secondary battery)
The positive electrode is housed in a stainless steel can body that also serves as a positive electrode current collector, and the negative electrode is placed thereon via the separator, and the can body and a sealing plate that also serves as the negative electrode current collector are insulated. The coin-type lithium secondary battery was manufactured by caulking and sealing through a gasket.
(Charge / discharge test)
The discharge capacity after 50 cycles is measured under the following charge / discharge measurement conditions. The evaluation is performed using an index with the result of Comparative Example 1 as 100. The results are shown in Table 2.
Charging / discharging voltage: 2.5-4.2V
Charge: Hold constant voltage until charge current becomes 1/10 at 0.5C, 4.2V Discharge: 1C

試験例5(難燃性試験)
電解液の難燃性をつぎの方法で調べた。結果を表2に示す。
(サンプルの調製)
試験例4と同様にして作製した正極および負極をそれぞれ50mm×100mmの長方形に切り取り、これらでポリエチレン製のセパレータ(セルガード(株)製。商品名セルガード3501)を挟んで積層体とする。正極および負極に幅5mm長さ150mmのアルミニウム箔をリード線として溶接したのち、この積層体を上記実施例または比較例で製造した電解液に浸漬し、ついでラミネータで密封してラミネートセルを作製する。
(試験方法)
ラミネートセルについて、つぎの3種類の難燃性試験を行う。
[釘刺し試験]
4.3Vまでラミネートセルを充電したのち、直径3mmの釘をラミネートセルに貫通させて、ラミネートセルの発火・破裂の有無を調べる。
[過充電試験]
10時間率でラミネートセルを24時間充電し、ラミネートセルの発火の有無を調べる。
[短絡試験]
4.3Vまでラミネートセルを充電した後、正極と負極を銅線で短絡させ、ラミネートセルの発火の有無を調べる。
Test Example 5 (Flame retardance test)
The flame retardancy of the electrolyte was examined by the following method. The results are shown in Table 2.
(Sample preparation)
A positive electrode and a negative electrode produced in the same manner as in Test Example 4 are cut into rectangles of 50 mm × 100 mm, and a polyethylene separator (manufactured by Celgard Co., Ltd., trade name Celgard 3501) is sandwiched between them to form a laminate. After welding an aluminum foil having a width of 5 mm and a length of 150 mm as a lead wire to the positive electrode and the negative electrode, this laminate is immersed in the electrolytic solution produced in the above example or comparative example, and then sealed with a laminator to produce a laminate cell. .
(Test method)
The laminate cell is subjected to the following three types of flame retardancy tests.
[Nail penetration test]
After charging the laminate cell to 4.3 V, a 3 mm diameter nail is passed through the laminate cell and examined for ignition or rupture of the laminate cell.
[Overcharge test]
The laminate cell is charged for 24 hours at a rate of 10 hours, and the presence or absence of ignition of the laminate cell is examined.
[Short-circuit test]
After charging the laminate cell to 4.3 V, the positive electrode and the negative electrode are short-circuited with a copper wire, and the presence or absence of ignition of the laminate cell is examined.

評価は、いずれの試験においても、発火(破裂)がない場合を○、発火(破裂)した場合を×とする。   In any of the tests, the case where there is no ignition (rupture) is indicated by ◯, and the case where ignition (explosion) is indicated by x.

試験例6(着火試験)
電解液の不燃性(着火しない性質)をつぎの方法で調べた。結果を表2に示す。
(サンプルの調製)
セルロース紙(幅15mm、長さ320mm、厚さ0.04mm)の短冊を上記実施例または比較例で製造した電解液に充分に浸漬したのち取り出し、サンプルとする。
(試験方法)
サンプルを金属製の台に固定し、サンプルの一端にライターの火を近づけ1秒間保持し、着火の有無を調べる。着火した場合は、サンプルが燃えた長さを測定する。試験は3回行い、平均値を採る。
Test Example 6 (Ignition test)
The nonflammability (non-ignition property) of the electrolyte was examined by the following method. The results are shown in Table 2.
(Sample preparation)
A strip of cellulose paper (width 15 mm, length 320 mm, thickness 0.04 mm) is sufficiently immersed in the electrolytic solution produced in the above-mentioned example or comparative example and then taken out to obtain a sample.
(Test method)
The sample is fixed on a metal table, and a lighter is brought close to one end of the sample and held for 1 second to check for ignition. In case of ignition, measure how long the sample burns. The test is performed three times and an average value is taken.

Figure 2008021560
Figure 2008021560

Claims (8)

式(I):
Figure 2008021560
(式中、Rf1、Rf2およびRf3は同じかまたは異なり、いずれも炭素数1〜3の含フッ素アルキル基)で示される含フッ素リン酸エステル(I)を0.5〜30体積%含む有機溶媒(II)と電解質塩(III)を含む非水系電解液。
Formula (I):
Figure 2008021560
(Wherein Rf 1 , Rf 2 and Rf 3 are the same or different, and all are fluorine-containing alkyl groups having 1 to 3 carbon atoms) 0.5 to 30% by volume of fluorine-containing phosphate ester (I) represented by A nonaqueous electrolytic solution containing an organic solvent (II) and an electrolyte salt (III).
含フッ素リン酸エステル(I)が、式(I)において、Rf1、Rf2およびRf3が同じかまたは異なり、いずれもCF3−、CF3CF2−、CF3CH2−、HCF2CF2−またはCF3CFHCF2−である請求項1記載の非水系電解液。 In the fluorine-containing phosphate ester (I), Rf 1 , Rf 2 and Rf 3 are the same or different in the formula (I), and all of them are CF 3 —, CF 3 CF 2 —, CF 3 CH 2 —, HCF 2. The nonaqueous electrolytic solution according to claim 1, which is CF 2 — or CF 3 CFHCF 2 —. 含フッ素リン酸エステル(I)が、式(I)において、Rf1、Rf2およびRf3がいずれもCF3CF2−であるリン酸トリ2,2,3,3,3−ペンタフルオロプロピルである請求項2記載の非水系電解液。 Fluorine-containing phosphate ester (I) is tri (2,2,3,3,3-pentafluoropropyl) phosphate in which Rf 1 , Rf 2 and Rf 3 are all CF 3 CF 2 — in formula (I) The non-aqueous electrolyte solution according to claim 2. 含フッ素リン酸エステル(I)が、式(I)において、Rf1、Rf2およびRf3がいずれもHCF2CF2−であるリン酸トリ2,2,3,3−テトラフルオロプロピルである請求項2記載の非水系電解液。 The fluorine-containing phosphate ester (I) is tri-2,2,3,3-tetrafluoropropyl phosphate in which Rf 1 , Rf 2 and Rf 3 are all HCF 2 CF 2 — in the formula (I) The non-aqueous electrolyte solution according to claim 2. 有機溶媒(II)が、フッ素原子を含んでいてもよい炭化水素系カーボネート、フッ素原子を含んでいてもよいラクトンまたはフッ素原子を含んでいてもよいエーテルの1種または2種以上である請求項1〜4のいずれかに記載の非水系電解液。 The organic solvent (II) is one or more of hydrocarbon-based carbonates optionally containing fluorine atoms, lactones optionally containing fluorine atoms, or ethers optionally containing fluorine atoms. The non-aqueous electrolyte solution in any one of 1-4. 電解質塩(III)が、LiPF6、LiBF4、LiN(O2SCF32またはLiN(O2SC252である請求項1〜5のいずれかに記載の非水系電解液。 The non-aqueous electrolyte solution according to claim 1, wherein the electrolyte salt (III) is LiPF 6 , LiBF 4 , LiN (O 2 SCF 3 ) 2 or LiN (O 2 SC 2 F 5 ) 2 . エチレンカーボネートおよび/またはビニレンカーボネート3〜40体積%と、ジエチルカーボネート、エチルメチルカーボネートまたはジメチルカーボネートの1種または2種以上40〜96体積%とリン酸トリ2,2,3,3,3−ペンタフルオロプロピルまたはリン酸トリ2,2,3,3−テトラフルオロプロピル1〜20体積%とを含む電解質塩溶解用有機溶媒に0.8モル/リットル以上の濃度でLiPF6またはLiBF4を含む非水系電解液。 3 to 40% by volume of ethylene carbonate and / or vinylene carbonate, 40 to 96% by volume of one or more of diethyl carbonate, ethyl methyl carbonate or dimethyl carbonate, and tri-2,2,3,3,3-pentaphosphate An electrolyte salt-dissolving organic solvent containing 1 to 20% by volume of fluoropropyl or tri2,2,3,3-tetrafluoropropyl phosphate contains LiPF 6 or LiBF 4 at a concentration of 0.8 mol / liter or more. Aqueous electrolyte. リチウム二次電池用の電解液である請求項1〜7のいずれかに記載の非水系電解液。 The nonaqueous electrolytic solution according to claim 1, which is an electrolytic solution for a lithium secondary battery.
JP2006193307A 2006-07-13 2006-07-13 Nonaqueous electrolyte Pending JP2008021560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193307A JP2008021560A (en) 2006-07-13 2006-07-13 Nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193307A JP2008021560A (en) 2006-07-13 2006-07-13 Nonaqueous electrolyte

Publications (1)

Publication Number Publication Date
JP2008021560A true JP2008021560A (en) 2008-01-31

Family

ID=39077367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193307A Pending JP2008021560A (en) 2006-07-13 2006-07-13 Nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JP2008021560A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289557A (en) * 2008-05-28 2009-12-10 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2011016212A1 (en) * 2009-08-04 2011-02-10 東ソー・エフテック株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
JP2011049157A (en) * 2009-07-27 2011-03-10 Tosoh F-Tech Inc High purity fluorine-containing phosphate for nonaqueous electrolyte
WO2011040447A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
JP2011113822A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2012029551A1 (en) 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery and secondary battery electrolyte used therein
WO2012077712A1 (en) 2010-12-07 2012-06-14 日本電気株式会社 Lithium secondary battery
JP2012164441A (en) * 2011-02-03 2012-08-30 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
JP2013239451A (en) * 2013-07-12 2013-11-28 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2013243170A (en) * 2012-05-17 2013-12-05 Nippon Chemicon Corp Fire retardant electrolytic capacitor
WO2014013858A1 (en) 2012-07-17 2014-01-23 日本電気株式会社 Lithium secondary battery
CN103633369A (en) * 2013-12-03 2014-03-12 深圳市崧鼎科技有限公司 High voltage lithium-ion battery electrolyte and lithium-ion battery
JP2015012247A (en) * 2013-07-01 2015-01-19 日本ケミコン株式会社 Fire retardant electrolytic capacitor
US9196926B2 (en) 2010-12-27 2015-11-24 Nec Energy Devices, Ltd. Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
EP3168917A4 (en) * 2014-07-07 2018-04-04 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
US10381686B2 (en) 2014-07-18 2019-08-13 Nec Corporation Electrolyte solution and secondary battery using same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289557A (en) * 2008-05-28 2009-12-10 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2011049157A (en) * 2009-07-27 2011-03-10 Tosoh F-Tech Inc High purity fluorine-containing phosphate for nonaqueous electrolyte
JP5802556B2 (en) * 2009-08-04 2015-10-28 東ソ−・エフテック株式会社 Asymmetric and / or low symmetric fluorine-containing phosphates for non-aqueous electrolytes
WO2011016212A1 (en) * 2009-08-04 2011-02-10 東ソー・エフテック株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
KR20120047898A (en) 2009-08-04 2012-05-14 토소 에프테크 인코퍼레이티드 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
CN102473964A (en) * 2009-08-04 2012-05-23 东曹氟技术株式会社 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
KR101689661B1 (en) * 2009-08-04 2016-12-26 토소 에프테크 인코퍼레이티드 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
WO2011040447A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
JP2011096638A (en) * 2009-09-29 2011-05-12 Nec Energy Devices Ltd Secondary battery
US9627687B2 (en) 2009-09-29 2017-04-18 Nec Energy Devices, Ltd. Secondary battery
CN102549829A (en) * 2009-09-29 2012-07-04 Nec能源元器件株式会社 Secondary battery
JP2011113822A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
WO2012029551A1 (en) 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery and secondary battery electrolyte used therein
WO2012077712A1 (en) 2010-12-07 2012-06-14 日本電気株式会社 Lithium secondary battery
US9196926B2 (en) 2010-12-27 2015-11-24 Nec Energy Devices, Ltd. Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2012164441A (en) * 2011-02-03 2012-08-30 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US9620812B2 (en) 2011-03-03 2017-04-11 Nec Energy Devices, Ltd. Lithium ion battery
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
JP2013243170A (en) * 2012-05-17 2013-12-05 Nippon Chemicon Corp Fire retardant electrolytic capacitor
WO2014013858A1 (en) 2012-07-17 2014-01-23 日本電気株式会社 Lithium secondary battery
US9935337B2 (en) 2012-07-17 2018-04-03 Nec Corporation Lithium secondary battery
JP2015012247A (en) * 2013-07-01 2015-01-19 日本ケミコン株式会社 Fire retardant electrolytic capacitor
JP2013239451A (en) * 2013-07-12 2013-11-28 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN103633369A (en) * 2013-12-03 2014-03-12 深圳市崧鼎科技有限公司 High voltage lithium-ion battery electrolyte and lithium-ion battery
EP3168917A4 (en) * 2014-07-07 2018-04-04 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
EP3435472A1 (en) 2014-07-07 2019-01-30 Daikin Industries, Ltd. Liquid electrolyte comprising an alkali metal salt of a phosphate compound
US10396399B2 (en) 2014-07-07 2019-08-27 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
US10686222B2 (en) 2014-07-07 2020-06-16 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
US10381686B2 (en) 2014-07-18 2019-08-13 Nec Corporation Electrolyte solution and secondary battery using same

Similar Documents

Publication Publication Date Title
JP2008021560A (en) Nonaqueous electrolyte
JP5206408B2 (en) Electrochemical devices
JP5223919B2 (en) Non-aqueous electrolyte
JP6037613B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP5234000B2 (en) Electrolyte
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP2008218387A (en) Non-aqueous electrolytic solution
JP2008192504A (en) Nonaqueous electrolyte
KR102633627B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte batteries
JP4257725B2 (en) Non-aqueous electrolyte secondary battery
WO2006109443A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same
JP5573639B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP2006179458A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JPH10223257A (en) Nonaqueous electrolyte for secondary battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
JP2008300523A (en) Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte
JP2011150820A (en) Additive material for lithium-ion secondary battery electrolyte