JP2008020318A - Device and method for measuring film thickness - Google Patents

Device and method for measuring film thickness Download PDF

Info

Publication number
JP2008020318A
JP2008020318A JP2006192234A JP2006192234A JP2008020318A JP 2008020318 A JP2008020318 A JP 2008020318A JP 2006192234 A JP2006192234 A JP 2006192234A JP 2006192234 A JP2006192234 A JP 2006192234A JP 2008020318 A JP2008020318 A JP 2008020318A
Authority
JP
Japan
Prior art keywords
film
film thickness
light
spacer
thickness measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192234A
Other languages
Japanese (ja)
Inventor
Masao Eguchi
正夫 江口
Takashi Yamamoto
隆司 山本
Tomoyuki Miyazaki
知之 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Warner KK
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
NSK Warner KK
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Warner KK, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical NSK Warner KK
Priority to JP2006192234A priority Critical patent/JP2008020318A/en
Publication of JP2008020318A publication Critical patent/JP2008020318A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new film thickness measuring device. <P>SOLUTION: This film thickness measuring device consists of a light source 4, polarizing plates 3, 6, a beam splitter 7, a 1/4-wavelength plate 9, an objective lens 8, an image focusing lens 2, and a CCD sensor 1. This film thickness measuring device acquires an interference image between a glass plate 11 and a sample 10, which are in contact state with the white polarization interference method. A chromium thin film 12 and a silica thin film 13 are formed on the glass plate 11. Its color information is converted into an HSV color space to obtain a hue value, and based on the correction result of the clearance of thickness between two faces, a true contact part equivalent to the clearance thickness or zero film thickness is visualized. The resolution of clearance thickness measurement is above ± 3nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規な膜厚測定装置に関する。
また、本発明は、前記膜厚測定装置に使用する新規な膜厚測定方法に関する。
The present invention relates to a novel film thickness measuring apparatus.
Moreover, this invention relates to the novel film thickness measuring method used for the said film thickness measuring apparatus.

試料の表面が粗面や低反射率面である場合、潤滑下の真実接触部(油膜厚さゼロに相当する)の測定・観察は、従来、プリズムとの接触面における光の全反射を利用した方法が広く用いられ、湿式ペーパ材への適用例がある(特許文献1参照。)。ところがこれは、表面に対し斜めからみた画像(アスペクト比が1とならない)となるので後処理を必要とし、高倍率としたときにピントのぼけが生じたり、また、測定原理上、光干渉法に比べて測定精度が低いという欠点があった。   When the surface of the sample is a rough surface or a low reflectance surface, measurement and observation of the true contact area under lubrication (corresponding to an oil film thickness of zero) has traditionally used total reflection of light at the contact surface with the prism. This method is widely used, and there is an application example to a wet paper material (see Patent Document 1). However, this is an image viewed from an angle with respect to the surface (the aspect ratio does not become 1), so post-processing is required, and blurring occurs when the magnification is set high. There was a drawback that the measurement accuracy was lower than that.

無潤滑下の場合においては、上述の欠点を解決するものとして、白色偏光干渉法を利用した装置が報告されている(特許文献2参照。)。しかし、これは潤滑下においては、ガラス板と潤滑油間の屈折率の差が小さいため、コントラストのある干渉画像の取得が困難という欠点があった。   In the case of non-lubricated conditions, a device using white polarization interferometry has been reported as a solution to the above-described drawbacks (see Patent Document 2). However, this has the disadvantage that it is difficult to obtain a contrast interference image because the difference in refractive index between the glass plate and the lubricating oil is small under lubrication.

上述の欠点を解決するものとして、鋼球などの平滑・高反射率面の表面に対し接触面圧が高い(ヘルツ接触)場合について、クロム反射膜のみをガラス面にコートした通常の多重反射干渉法に対し、さらにシリカスペーサ膜を付与したnmオーダの膜厚測定法(スペーサ法)が知られている(非特許文献1参照。)。この方法は鋼球表面に粗さを付加した場合についても報告がある(非特許文献2参照。)。   As a solution to the above-mentioned drawbacks, in the case where the contact pressure is high (Hertz contact) against the surface of a smooth, high-reflectance surface such as a steel ball, normal multiple reflection interference in which only the chrome reflective film is coated on the glass surface In contrast to this method, a method of measuring a thickness on the order of nm (spacer method) in which a silica spacer film is further provided is known (see Non-Patent Document 1). This method has also been reported for the case where roughness is added to the steel ball surface (see Non-Patent Document 2).

さらに、鋼球(高い反射率と平滑な面を持つ)を対象としたEHL膜厚測定において、通常のクロム反射膜のみの多重反射干渉法によって干渉縞を求め、色情報としてHSV色空間を用いて色相とすきま間の校正によって膜厚測定した例が報告されている(非特許文献3参照。)。   Furthermore, in EHL film thickness measurement for steel balls (with high reflectivity and smooth surface), interference fringes are obtained by multiple reflection interferometry using only a normal chromium reflection film, and HSV color space is used as color information. An example of film thickness measurement by calibration between hue and clearance has been reported (see Non-Patent Document 3).

なお、発明者は、本発明に関連する技術内容を開示している(非特許文献4参照。)。この非特許文献4は、特許法第30条第1項を適用できるものと考えられる。   The inventor has disclosed the technical contents related to the present invention (see Non-Patent Document 4). This Non-Patent Document 4 is considered to be applicable to Patent Act Article 30 (1).

特開平8-247747号公報JP-A-8-247747 特開2005-55413号公報JP 2005-55413 A G.J.JOHNSTON, R.WAYTE and H.A.SPIKES: The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts, Tribology Transactions, 34,2 (1991) 187-194G.J.JOHNSTON, R.WAYTE and H.A.SPIKES: The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts, Tribology Transactions, 34,2 (1991) 187-194 H.A.Spikes and P.M.Cann: The development and application of the spacer layer imaging method for measuring lubricant film thickness, PIME part J, 215 (2001) 261-277H.A.Spikes and P.M.Cann: The development and application of the spacer layer imaging method for measuring lubricant film thickness, PIME part J, 215 (2001) 261-277 L. Gustafsson, E. Hoglund and O. Marklund: Measuring lubricant film thickness with image analysis,ImechE J. Enginerring Tribology, 208 (1994) 199-205L. Gustafsson, E. Hoglund and O. Marklund: Measuring lubricant film thickness with image analysis, ImechE J. Enginerring Tribology, 208 (1994) 199-205 江口正夫・山本隆司:白色スペーサ干渉法とHSV色空間を利用したすきま測定と真実接触部の可視化,トライボロジー会議予稿集,東京2006-5,229-230Masao Eguchi and Takashi Yamamoto: Clearance measurement and visualization of true contact using white spacer interferometry and HSV color space, Tribology Conference Proceedings, Tokyo 2006-5, 229-230

上述したように、鋼球などの平滑・高反射率面の表面に対し接触面圧が高い場合について、クロム反射膜のみをガラス面にコートした通常の多重反射干渉法に対し、さらにシリカスペーサ膜を付与したnmオーダの膜厚測定法(スペーサ法)が知られている。この方法は鋼球表面に粗さを付加した場合についても報告がある。
しかし、画像処理作業は、RGB色空間の輝度情報を用いて行うため、RGBの3要素に注目する必要があり、校正作業の見通しが悪くなるという問題がある。
As described above, in the case where the contact surface pressure is high with respect to the surface of a smooth and high-reflectance surface such as a steel ball, a silica spacer film is further added to the normal multiple reflection interference method in which only the chrome reflection film is coated on the glass surface. A film thickness measuring method (spacer method) of nm order to which is given is known. This method has also been reported in the case of adding roughness to the steel ball surface.
However, since the image processing work is performed using luminance information of the RGB color space, it is necessary to pay attention to the three elements of RGB, and there is a problem that the prospect of the calibration work is deteriorated.

上述したように、鋼球を対象としたEHL膜厚測定において、通常のクロム反射膜のみの多重反射干渉法によって干渉縞を求め、色情報としてHSV色空間を用いて色相とすきま間の校正によって膜厚測定した例が報告されている。
しかし、クロム反射膜コートによる光学的位相遅れの発生のために、95nm以下のすきまにおいて色相が定義できない、つまり膜厚測定ができないという問題がある。
As described above, in EHL film thickness measurement for steel balls, interference fringes are obtained by multiple reflection interferometry using only ordinary chromium reflective films, and the color information is determined by calibration between hues and gaps using the HSV color space. An example of film thickness measurement has been reported.
However, due to the occurrence of an optical phase delay due to the chromium reflecting film coating, there is a problem that the hue cannot be defined in a gap of 95 nm or less, that is, the film thickness cannot be measured.

そのため、このような課題を解決する、新規な膜厚測定装置と膜厚測定方法の開発が望まれている。   Therefore, development of a novel film thickness measuring apparatus and film thickness measuring method that solves such problems is desired.

本発明は、このような課題に鑑みてなされたものであり、新規な膜厚測定装置を提供することを目的とする。
また、本発明は、前記膜厚測定装置に使用する新規な膜厚測定方法を提供することを目的とする。
The present invention has been made in view of such problems, and an object thereof is to provide a novel film thickness measuring apparatus.
Another object of the present invention is to provide a novel film thickness measuring method used for the film thickness measuring apparatus.

上記課題を解決し、本発明の目的を達成するため、本発明の膜厚測定装置は、反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接する光透過性基板と、前記スペーサ膜とは反対側から、前記光透過性基板に白色光を照射する照射手段と、前記白色光の反射光を受光する受光手段と、前記反射光から色彩情報を取得する色彩情報取得手段を有する。   In order to solve the above problems and achieve the object of the present invention, a film thickness measuring apparatus of the present invention comprises a light-transmitting substrate in which a reflective film and a spacer film are sequentially formed, and the spacer film is in contact with a sample, and the spacer film From the opposite side, there is provided irradiation means for irradiating the light transmissive substrate with white light, light receiving means for receiving reflected light of the white light, and color information acquisition means for acquiring color information from the reflected light.

本発明の膜厚測定方法は、光透過性基板に反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接触させ、前記スペーサ膜とは反対側から前記光透過性基板に白色光を照射し、前記白色光の反射光を受光し、前記反射光から色彩情報を取得する。   In the thickness measurement method of the present invention, a reflective film and a spacer film are sequentially formed on a light-transmitting substrate, the spacer film is brought into contact with a sample, and white light is applied to the light-transmitting substrate from the side opposite to the spacer film. Irradiate, receive the reflected light of the white light, and acquire color information from the reflected light.

本発明は、以下に記載されるような効果を奏する。   The present invention has the following effects.

本発明の膜厚測定装置は、反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接する光透過性基板と、前記スペーサ膜とは反対側から、前記光透過性基板に白色光を照射する照射手段と、前記白色光の反射光を受光する受光手段と、前記反射光から色彩情報を取得する色彩情報取得手段を有するので、新規な膜厚測定装置を提供することができる。   In the film thickness measuring apparatus of the present invention, a reflective film and a spacer film are sequentially formed, and a light-transmitting substrate that contacts the sample with the spacer film, and white light is applied to the light-transmitting substrate from the side opposite to the spacer film. Since it has irradiation means for irradiating, light receiving means for receiving the reflected light of the white light, and color information acquisition means for acquiring color information from the reflected light, a novel film thickness measuring device can be provided.

本発明の膜厚測定方法は、光透過性基板に反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接触させ、前記スペーサ膜とは反対側から前記光透過性基板に白色光を照射し、前記白色光の反射光を受光し、前記反射光から色彩情報を取得するので、新規な膜厚測定方法を提供することができる。   In the thickness measurement method of the present invention, a reflective film and a spacer film are sequentially formed on a light-transmitting substrate, the spacer film is brought into contact with a sample, and white light is applied to the light-transmitting substrate from the side opposite to the spacer film. Irradiating, receiving the reflected light of the white light, and acquiring color information from the reflected light, it is possible to provide a novel film thickness measurement method.

以下、膜厚測定装置および膜厚測定方法にかかる発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the invention relating to a film thickness measuring apparatus and a film thickness measuring method will be described.

本発明の膜厚測定装置について説明する。本発明の膜厚測定装置は、反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接する光透過性基板と、前記スペーサ膜とは反対側から、前記光透過性基板に白色光を照射する照射手段と、前記白色光の反射光を受光する受光手段と、前記反射光から色彩情報を取得する色彩情報取得手段を有する。   The film thickness measuring apparatus of the present invention will be described. In the film thickness measuring apparatus of the present invention, a reflective film and a spacer film are sequentially formed, and a light-transmitting substrate that contacts the sample with the spacer film, and white light is applied to the light-transmitting substrate from the side opposite to the spacer film. Irradiation means for irradiating, light receiving means for receiving reflected light of the white light, and color information acquisition means for acquiring color information from the reflected light.

図1に本発明の干渉縞による膜厚測定装置の概略図を示す。基本的な光学系は、既報の白色偏光干渉法(江口正夫・山本隆司:無潤滑下の低反射率粗面を対象とした白色干渉法による真実接触面積の測定,トライボロジスト,50, 6 (2005) 471.)と同一である。測定原理の概略はつぎの通りである。実体顕微鏡、CCDカメラ、落射同軸照明装置と白色偏光を利用して光学系を構成している。CCDカメラにはCCDセンサ1が内蔵されている。スペーサ膜(シリカ薄膜13、膜厚:420nm)を最上層に反射膜(クロム薄膜12、光透過率:64%)をその下にコーティングした光透過性基板(ガラス板11)を試料10に押し付けている。試料10としては、低反射率粗面を有する物体が採用されている。白色干渉法による干渉縞によって真実接触部やすきまを可視化することができる。以下、この方法を「白色スペーサ干渉法」と称する。   FIG. 1 shows a schematic diagram of a film thickness measuring apparatus using interference fringes according to the present invention. The basic optical system is a previously reported white polarization interferometry method (Masao Eguchi, Takashi Yamamoto: Measurement of true contact area with low reflectance rough surface under non-lubrication, tribologist, 50, 6 ( 2005) Same as 471.). The outline of the measurement principle is as follows. The optical system is configured using a stereo microscope, CCD camera, epi-axial illumination device and white polarized light. The CCD camera 1 is built in the CCD camera. A light transmissive substrate (glass plate 11) having a spacer film (silica thin film 13, film thickness: 420 nm) as a top layer and a reflective film (chrome thin film 12, light transmittance: 64%) coated thereon is pressed against the sample 10. ing. As the sample 10, an object having a low reflectance rough surface is employed. The true contact portion clearance can be visualized by the interference fringes by the white interference method. Hereinafter, this method is referred to as “white spacer interferometry”.

このとき、光学系に偏光子6・検光子3からなる偏光板と1/4波長板9を挿入して、試料10が粗面・低反射率を有する物体で、かつ潤滑下であってもコントラストのある明瞭な色相分布を持つ干渉画像が得られる。   At this time, a polarizing plate composed of a polarizer 6 and an analyzer 3 and a quarter-wave plate 9 are inserted into the optical system so that the sample 10 is an object having a rough surface and a low reflectance and is under lubrication. An interference image having a clear hue distribution with contrast can be obtained.

光透過性基板は、ガラス、サファイヤ、またはポリカーボネイトからなる。
反射膜は、クロムまたは銀を含有する。
反射膜の膜厚は、数nmであることが好ましい。
スペーサ膜は、シリカまたはDLC膜(ダイヤモンド・ライク・カーボン膜)を含有する。
The light transmissive substrate is made of glass, sapphire, or polycarbonate.
The reflective film contains chromium or silver.
The thickness of the reflective film is preferably several nm.
The spacer film contains silica or a DLC film (diamond-like carbon film).

スペーサ膜の膜厚は130nm〜900nmの範囲内にあることが好ましい。膜厚が130nm以上であると、干渉縞を有彩色にできるという利点がある。膜厚が900nm以下であると、干渉縞の輝度の低下を抑制できるという利点がある。   The thickness of the spacer film is preferably in the range of 130 nm to 900 nm. When the film thickness is 130 nm or more, there is an advantage that the interference fringes can be made chromatic. When the film thickness is 900 nm or less, there is an advantage that a decrease in luminance of the interference fringes can be suppressed.

試料としては、鋼球、ゴムタイヤ、ブレーキ用摩擦材、湿式クラッチ用摩擦材などを採用することができる。   As the sample, steel balls, rubber tires, friction materials for brakes, friction materials for wet clutches, and the like can be used.

本発明の膜厚測定方法について説明する。本発明の膜厚測定方法は、光透過性基板に反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接触させ、前記スペーサ膜とは反対側から前記光透過性基板に白色光を照射し、前記白色光の反射光を受光し、前記反射光から色彩情報を取得する。   The film thickness measuring method of the present invention will be described. In the thickness measurement method of the present invention, a reflective film and a spacer film are sequentially formed on a light-transmitting substrate, the spacer film is brought into contact with a sample, and white light is applied to the light-transmitting substrate from the side opposite to the spacer film. Irradiate, receive the reflected light of the white light, and acquire color information from the reflected light.

校正方法の一例を図2に示す。これは既知の高精度な表面形状を持つ玉軸受用鋼球14を用いてガラス板11に接触させ、2面間に生じるすきまを利用するものである。このすきまはヘルツの接触理論によって詳細に解析可能であり、nmオーダのすきまを生じさせることが可能である。   An example of the calibration method is shown in FIG. In this method, a ball bearing steel ball 14 having a known high-precision surface shape is used to contact the glass plate 11 and a clearance generated between the two surfaces is used. This clearance can be analyzed in detail by Hertz's contact theory and can generate clearances on the order of nm.

図2から分かるように、ガラス板11の上にクロム薄膜12を形成している。これは、反射率を高めるためである。クロム薄膜12を形成するだけでは、光の電磁波としての性質から反射光の位相遅れが生じ、その遅れに相当する光路差(光学すきまゼロの点)では無彩色となり、0次の暗部干渉縞を形成するまでには至らない。そこで、この光路差の延長とクロム薄膜の耐摩耗・耐剥離性向上の目的のために、クロム薄膜12の上にさらにシリカ薄膜13を形成する。このシリカ薄膜13によって、すきまゼロ部に相当する真実接触部のRGB干渉輝度が変化し、結果として有彩色の干渉縞が現れる。   As can be seen from FIG. 2, a chromium thin film 12 is formed on the glass plate 11. This is to increase the reflectance. By simply forming the chrome thin film 12, the phase delay of the reflected light occurs due to the property of light as an electromagnetic wave, and the optical path difference corresponding to the delay (point of zero optical clearance) becomes achromatic, and the zero-order dark interference fringes It does not lead to formation. Therefore, a silica thin film 13 is further formed on the chromium thin film 12 for the purpose of extending the optical path difference and improving the wear resistance and peel resistance of the chromium thin film. The silica thin film 13 changes the RGB interference luminance of the true contact portion corresponding to the zero gap portion, and as a result, chromatic interference fringes appear.

このように白色偏光干渉法にスペーサ法を組み合わせれば、膜厚測定が可能となる。この時、干渉光を分光してそのスペクトル分布のピークを用いれば、干渉縞の明暗とすきまとの間には以下の式(1)の関係がある。なお、すきまには空気が存在すると仮定する。   Thus, if the spacer method is combined with the white polarization interference method, the film thickness can be measured. At this time, if interference light is dispersed and the peak of its spectral distribution is used, the relationship of the following equation (1) exists between the brightness and darkness of the interference fringes. It is assumed that air exists in the clearance.

Figure 2008020318
Figure 2008020318

ここで、nair:空気の屈折率、hair:空気の膜厚、nsp:スペーサ膜の屈折率、hsp:スペーサ膜の膜厚、φ:位相遅れ、λ:分光した光の波長、N:整数、ただし白色光は垂直に入射するものとする。しかし、この方法では膜厚の2次元分布測定は困難である。そこで、干渉光強度(輝度)の使用が考えられる。2光束干渉の場合の干渉光強度IRは、次の式(2)で表される。 Here, n air : air refractive index, h air : air film thickness, n sp : spacer film refractive index, h sp : spacer film thickness, φ: phase lag, λ: wavelength of dispersed light, N: integer, but white light is incident vertically. However, it is difficult to measure the two-dimensional film thickness distribution by this method. Therefore, use of interference light intensity (luminance) can be considered. The interference light intensity IR in the case of two-beam interference is expressed by the following equation (2).

Figure 2008020318
Figure 2008020318

ここで、I1,I2:2光束の光強度、hopt:光学的すきま(= nairhair + nsphsp)である。また、白色光の低コヒーレンス性を考慮し、その輝度振幅の減衰の係数をKとすれば、次の式(3)で近似できる (P. Sandoz and G. Tribillon: Profilometry by Zero-order Interference Fringe Identification, J. of Modern Opt., 40(1993)1691.)。 Here, I 1 and I 2 are the light intensities of the two light beams, and h opt is the optical clearance (= n air h air + n sp h sp ). Also, considering the low coherence of white light, and assuming the attenuation coefficient of the luminance amplitude as K, it can be approximated by the following equation (3) (P. Sandoz and G. Tribillon: Profilometry by Zero-order Interference Fringe Identification, J. of Modern Opt., 40 (1993) 1691.).

Figure 2008020318
Figure 2008020318

この白色光の低コヒーレンス性により、解析に邪魔となる高次の干渉縞が減衰し、解析が容易となる。本発明で対象とする試料や低反射率試料面では、二光束干渉と多重干渉の中間的挙動を示すと考えられるが、本発明の範囲内では見通しの良い式(3)による近似で充分と考えた。   Due to the low coherence of the white light, high-order interference fringes that hinder the analysis are attenuated, and the analysis becomes easy. Although it is considered that the sample to be used in the present invention and the low reflectance sample surface exhibit an intermediate behavior between the two-beam interference and the multiple interference, the approximation by the formula (3) having a good view is sufficient within the scope of the present invention. Thought.

図3にスペーサ法を用いた白色干渉によって生じる干渉縞光強度(輝度)の分布を示すが、RGBの3原色波長に対してプロットしたものである。「Cr」、「SiO2」の文字は、それぞれの薄膜によるhopt(光学的すきま)への寄与分を示す。SiO2で示されるシリカ薄膜の膜厚は任意に調整することが可能で、その結果、真実接触時の色(RGB値)を調整することができる。膜厚の2次元分布測定には図3に示した干渉光強度を使用する。 FIG. 3 shows the distribution of interference fringe light intensity (luminance) caused by white interference using the spacer method, which is plotted against the three primary color wavelengths of RGB. The letters “Cr” and “SiO 2 ” indicate the contribution of each thin film to h opt (optical clearance). The film thickness of the silica thin film represented by SiO 2 can be arbitrarily adjusted, and as a result, the color (RGB value) at the time of true contact can be adjusted. The interference light intensity shown in FIG. 3 is used for the two-dimensional distribution measurement of the film thickness.

一般に画像処理作業はRGB色空間の輝度情報を用いて行うが、RGBの3要素に注目する必要があり、校正作業の見通しが悪いものとなる。そこで、HSV色空間(色相H、彩度S、明度V)に注目した。色相Hを利用すれば単一の値(0〜1.0に正規化)で、RGB3原色の輝度情報と等価な情報を持つことができる。RGBからHSVへの色空間の変換には、図4に示す六角錐モデルを用いた。RGBからHSVへの変換式を次の式(4)に示す。   In general, image processing work is performed using luminance information in the RGB color space. However, it is necessary to pay attention to the three elements of RGB, and the prospect of the calibration work is poor. Therefore, we focused on the HSV color space (hue H, saturation S, brightness V). If the hue H is used, it is possible to have information equivalent to the luminance information of the RGB three primary colors with a single value (normalized to 0 to 1.0). The hexagonal pyramid model shown in FIG. 4 was used for conversion of the color space from RGB to HSV. The conversion formula from RGB to HSV is shown in the following formula (4).

Figure 2008020318
Figure 2008020318

色相HはRGBの光強度を同時に評価するため、照明輝度の影響を受けにくいという利点を持っている。   Hue H has the advantage of being less susceptible to illumination brightness because it simultaneously evaluates the RGB light intensity.

RGBからHSVへの色空間の変換方法は、上述の六角錐モデルと式 (4)を用いる方法に限定されるものではない。このほかRGBからHSVへの色空間の変換方法としては、双六角錐モデル、Haydnの定義に基づく変換、Rainesの定義に基づく変換などを採用することができる。   The color space conversion method from RGB to HSV is not limited to the method using the above-described hexagonal pyramid model and equation (4). In addition, as a conversion method of the color space from RGB to HSV, a bihexagonal pyramid model, conversion based on the definition of Haydn, conversion based on the definition of Raines, and the like can be adopted.

図5に白色干渉画像の実データ近似に基づいたHSV値−すきまの関係のシミュレーションの一例を示す。ただし、図5(a)に示すRGB光強度(輝度)は式(3)および表1で表されるとした。またデジタルカメラのRGBフィルターの代表波長をR=595nm、G=540nm、B=505nmとし、φ=0.27、hsp=420nm、nsp=1.46、輝度振幅の減衰係数K=10-6nm-2と仮定した。この図5(b)より、色相Hは265nm程度の周期をもって変化し、その傾きも変化している。この色相の使用によって1周期中のすきまの算定が可能であることがわかる。一方、彩度Sと明度Vは、不規則に変化して変化の幅も小さく、すきまの測定には適当でない。 FIG. 5 shows an example of a simulation of the HSV value-clearance relationship based on real data approximation of a white interference image. However, the RGB light intensity (luminance) shown in FIG. 5 (a) is expressed by Equation (3) and Table 1. The representative wavelength of RGB filter of digital camera is R = 595nm, G = 540nm, B = 505nm, φ = 0.27, hsp = 420nm, nsp = 1.46, luminance amplitude attenuation coefficient K = 10 -6 nm -2 Assumed. As shown in FIG. 5B, the hue H changes with a period of about 265 nm, and the inclination thereof also changes. It can be seen that the clearance in one cycle can be calculated by using this hue. On the other hand, the saturation S and the lightness V change irregularly and have a small change width, and are not suitable for the measurement of the clearance.

Figure 2008020318
Figure 2008020318

すきまゼロの点の色相はスペーサ膜厚等で変化するので、この点をシフトさせれば真実接触部の検出感度(色相の変化)を可変させることも可能である。図6は、このことを図5の色相Hに関するシミュレーション結果より示した一例である。色相が0.78〜0.85(hopt=604〜597nm相当)の間では、傾きの絶対値│ΔH/Δhopt│は0.01 nm-1以上となり、鋭敏な真実接触部の検出が期待できる。ここですきま測定(真実接触部抽出)の分解能について検討する。RGBによる256階調の取得画像の解析を考え、その輝度変化が100階調程度とする。これより、色相の分解能もΔH=0.01とし、上述の検出感度0.01nm-1を適用すればΔhopt=1nmを期待できる。この値を安全側に考え偏差の3倍の値としても、±3nmの分解能を充分に有することになる。 Since the hue at the point of zero clearance varies depending on the spacer film thickness and the like, it is possible to vary the detection sensitivity (change in hue) of the true contact portion by shifting this point. FIG. 6 is an example showing this from the simulation results for hue H in FIG. When the hue is between 0.78 and 0.85 (equivalent to h opt = 604 to 597 nm), the absolute value of the inclination | ΔH / Δh opt | is 0.01 nm −1 or more, and a sensitive detection of a true contact portion can be expected. Here we examine the resolution of clearance measurement (true contact extraction). Considering the analysis of an acquired image with 256 gradations using RGB, the luminance change is about 100 gradations. Accordingly, it is possible to expect Δh opt = 1 nm by setting the hue resolution to ΔH = 0.01 and applying the detection sensitivity of 0.01 nm −1 described above. Even if this value is considered as a safe side and the value is three times the deviation, the resolution of ± 3 nm is sufficiently obtained.

つぎに、色相とすきまの関係の校正を目的として、RGBの各代表波長の干渉縞について、その次数とその平面上の座標位置を調べた。図7は鋼球を使用したヘルツ接触下(鋼球直径:4.763mm、最大ヘルツ圧力:245MPa)において、干渉縞(GとBの波長)中央部の座標とその次数から読み取ったすきまとの関係を示す。破線はGとBの測定点を同時に評価した回帰多項式である。この多項式による内挿によって、最小次数の干渉縞発生位置のすきま(Gの明部3次、すきま約119nm)まで、一本の滑らかな関係を得た。また、図中には荷重ゼロ(剛体)、および荷重(0.134N)負荷時のガラス板−鋼球間の理論計算した変形外形線も示した。この図より実験点および外挿線は、理論外形線にほぼ一致しており、外挿の妥当性が認められた。この結果から、約119nmより小さいすきまは、この回帰多項式を用いた。   Next, for the purpose of calibrating the relationship between hue and gap, the order and coordinate position on the plane of the interference fringes of each RGB representative wavelength were examined. Fig. 7 shows the relationship between the coordinates of the center of the interference fringe (G and B wavelengths) and the clearance read from the order under Hertz contact using a steel ball (steel ball diameter: 4.763 mm, maximum Hertz pressure: 245 MPa) Indicates. The broken line is a regression polynomial that evaluates G and B measurement points simultaneously. By interpolation with this polynomial, a smooth relationship was obtained up to the clearance of the interference fringe generation position of the lowest order (G bright part 3rd order, clearance about 119 nm). In addition, the figure also shows the deformed outline calculated theoretically between the glass plate and the steel ball when the load is zero (rigid body) and the load (0.134N) is applied. From this figure, the experimental points and extrapolation lines almost coincided with the theoretical outline, and the validity of extrapolation was confirmed. From this result, this regression polynomial was used for the clearance smaller than about 119 nm.

図8は、ヘルツ接触部中心線近傍上で測定した色相Hと上述したすきまの関係の一例である。図中のY=223、Y=232は色相値を測定した横640×縦480ピクセル画像の縦方向のピクセル位置を表す。ほぼヘルツ接触円の直径上にある。すきまゼロの点の色相は0.82で周期は260nm程度となる。   FIG. 8 is an example of the relationship between the hue H measured in the vicinity of the center line of the Hertz contact portion and the above-described clearance. In the figure, Y = 223 and Y = 232 represent the pixel position in the vertical direction of the horizontal 640 × vertical 480 pixel image in which the hue value was measured. Almost on the diameter of the Hertzian contact circle. The hue at the zero gap is 0.82 and the period is about 260 nm.

また、図中に前述したシミュレーションによる色相の結果も記してある。すきま30nmを超える領域では、これら両者の色相値はおおむね一致しており、色相Hの有効性および式(3)の有効性が認められた。完全に一致しない原因としては、ヘルツ接触部近傍の変形や干渉光強度シミュレーションの近似度の問題と考えている。この図から、RGBの輝度変化が100階調程度とし、色相Hの分解能もΔH=0.01とすれば、図中に示したΔH/Δh=-1.0/300nm=-0.01/3nm 程度の勾配から、本法は±3nm程度の分解能を有しているといえる。   In addition, the result of the hue by the above-described simulation is also shown in the figure. In the region where the clearance exceeds 30 nm, the hue values of the two are almost the same, and the effectiveness of Hue H and the effectiveness of Equation (3) are confirmed. The cause of the inconsistency is considered to be a problem in the vicinity of the Hertz contact portion and the degree of approximation in the interference light intensity simulation. From this figure, if the luminance change of RGB is about 100 gradations and the resolution of hue H is also ΔH = 0.01, from the gradient of ΔH / Δh = -1.0 / 300nm = -0.01 / 3nm shown in the figure, It can be said that this method has a resolution of about ± 3 nm.

図9にヘルツ接触中央部の色相値を最大ヘルツ接触圧力に対しプロットした結果、および一組の接触条件下の圧力分布に対応した色相プロットを示す。丸印はヘルツ接触中央部の色相値を示し、四角印はヘルツ接触内部の中央部から周縁部にかけた圧力分布に対応した色相値を示している。明らかに面圧の増加と共に色相が増大する、色相の面圧依存性を示している。さらに接触圧力ゼロの色相は0.82程度と推定され、この値が真実接触の開始点と見なせる。この依存性は、シリカスペーサ膜がヘルツ圧力によって圧縮され薄くなったためと考えられる。   FIG. 9 shows the result of plotting the hue value at the center of the Hertz contact against the maximum Hertz contact pressure, and a hue plot corresponding to the pressure distribution under a set of contact conditions. The circle mark indicates the hue value at the center of the Hertz contact, and the square mark indicates the hue value corresponding to the pressure distribution from the center to the peripheral edge inside the Hertz contact. Clearly, the hue increases with increasing surface pressure, indicating the dependency of hue on surface pressure. Furthermore, the hue with zero contact pressure is estimated to be about 0.82, and this value can be regarded as the starting point of true contact. This dependence is considered to be because the silica spacer film was compressed and thinned by Hertz pressure.

このようなシリカスペーサ層の薄化現象についての報告 (G. Guangteng, P. M. Cann, A. V. Olver, H. A. Spikes: Lubricant Film Thickness in Rough Surface, Mixed Elasthydrodynamic Contact, J. Tribology, 122, 1(2000)65.)によると、ほぼ同じ条件(hsp=400nm)でΔhsp/Δpmax=-1nm/100MPaの値が得られている。この値と上述した検出感度ΔH/Δh=-0.01nm-1より、ΔH/Δpmax=0.01/100MPaが得られる。図中にこの傾きを示す。検出感度の非線形性を考えれば、色相の面圧依存性の主たる原因はシリカスペーサ膜厚の薄化と考えられる。 A report on the thinning phenomenon of silica spacer layers (G. Guangteng, PM Cann, AV Olver, HA Spikes: Lubricant Film Thickness in Rough Surface, Mixed Elasthydrodynamic Contact, J. Tribology, 122, 1 (2000) 65. ), A value of Δh sp / Δp max = −1 nm / 100 MPa is obtained under substantially the same conditions (h sp = 400 nm). From this value and the above-described detection sensitivity ΔH / Δh = −0.01 nm −1 , ΔH / Δp max = 0.01 / 100 MPa is obtained. This inclination is shown in the figure. Considering the nonlinearity of the detection sensitivity, the main cause of the surface pressure dependence of the hue is considered to be the thinning of the silica spacer film thickness.

真実接触部の抽出に当たっては、この色相の面圧依存性をあらかじめ把握して幅を持たせることが必要となる。また、この依存性は、混合潤滑などの真実接触と油膜層が混在する場合、従来不可能であった、真実接触部の接触圧力も同時に測定できる可能性を示すものである。   In extracting the true contact portion, it is necessary to grasp the dependence of the hue on the surface pressure in advance and to give a width. Further, this dependence indicates the possibility of simultaneously measuring the contact pressure at the true contact portion, which has been impossible in the past when the true contact such as mixed lubrication and the oil film layer coexist.

本発明の膜厚測定装置および膜厚測定方法の適用について説明する。本発明は、低反射率粗面を有する接触面を対象とする油膜厚さ及び真実接触部の可視化測定に適用できる。具体的には、潤滑油などの液体が存在する機械摺動部、特に摩擦駆動面(湿式クラッチ面、路面とタイヤ面間)、およびシール面間における油膜厚さ(膜厚)の測定や接触状態のモニタリングに適用できる。   The application of the film thickness measuring apparatus and the film thickness measuring method of the present invention will be described. The present invention can be applied to the visual measurement of the oil film thickness and the true contact portion for a contact surface having a low reflectance rough surface. Specifically, measurement and contact of oil film thickness (film thickness) between machine sliding parts where liquids such as lubricating oil exist, especially friction drive surfaces (wet clutch surfaces, road surfaces and tire surfaces), and seal surfaces Applicable for condition monitoring.

以上のことから、本発明を実施するための最良の形態によれば、以下の利点が得られる。
(1)偏光白色干渉法の採用によって、表面に対して正面から見た接触画像を取得することができ、粗面・低反射率表面を有する物体と透明(ガラス)板間の真実接触部や膜厚分布を可視化することができる。
(2)RGB3色のCCD画像情報に基づいたHSV色彩情報(色相値)の採用および(機械的)校正装置の併用によって、照明むらに強いなどの使用環境に左右されずに±3nmを超える分解能で油膜厚さの測定や真実接触部を抽出することができる。
(3)シリカスペーサ膜厚さおよびRGB3色光強度の調整によって、最適な校正曲線の構築ができる。
(4)油膜部と真実接触部が混在している接触面(混合潤滑面)であっても、これら両者を識別でき、さらに真実接触部の接触圧力をも推定可能である。
From the above, according to the best mode for carrying out the present invention, the following advantages can be obtained.
(1) By adopting polarization white light interferometry, it is possible to obtain a contact image seen from the front with respect to the surface, and the true contact portion between an object having a rough surface and a low reflectance surface and a transparent (glass) plate The film thickness distribution can be visualized.
(2) By using HSV color information (hue value) based on CCD image information of three RGB colors and using a (mechanical) calibration device, resolution exceeding ± 3 nm is not affected by the usage environment such as being resistant to uneven illumination. Can measure the oil film thickness and extract the true contact area.
(3) An optimum calibration curve can be constructed by adjusting the thickness of the silica spacer and the RGB three-color light intensity.
(4) Even the contact surface (mixed lubrication surface) where the oil film portion and the true contact portion coexist can be identified, and the contact pressure of the true contact portion can also be estimated.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。   The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

本発明に用いる装置の一例を示す図である。It is a figure which shows an example of the apparatus used for this invention. 本発明に用いるガラス板を示す図である。It is a figure which shows the glass plate used for this invention. スペーサ法を用いた白色干渉縞光強度分布を示す図である。It is a figure which shows the white interference fringe light intensity distribution using the spacer method. HSV色空間(HSV六角錐モデル)の説明に用いる図である。It is a figure used for description of HSV color space (HSV hexagonal pyramid model). HSV値とすきまの関係についてのシミュレーション結果を示す図である。It is a figure which shows the simulation result about the relationship between an HSV value and a clearance gap. シミュレーションにおける検出感度の変化を示す図である。It is a figure which shows the change of the detection sensitivity in simulation. 半径とすきまの関係を示す図である。It is a figure which shows the relationship between a radius and a clearance gap. 色相値とすきま(膜厚)の関係を示す図である。It is a figure which shows the relationship between a hue value and a clearance gap (film thickness). 色相の面圧依存性を示す図である。It is a figure which shows the surface pressure dependence of a hue.

符号の説明Explanation of symbols

1‥‥CCDセンサ、2‥‥結像レンズ、3‥‥検光子、4‥‥ハロゲンランプ、5‥‥ライトガイド、6‥‥偏光子、7‥‥ビームスプリッタ、8‥‥対物レンズ、9‥‥1/4波長板、10‥‥試料、11‥‥ガラス板、12‥‥クロム薄膜、13‥‥シリカ薄膜、14‥‥鋼球 DESCRIPTION OF SYMBOLS 1 ... CCD sensor, 2 ... Imaging lens, 3 ... Analyzer, 4 ... Halogen lamp, 5 ... Light guide, 6 ... Polarizer, 7 ... Beam splitter, 8 ... Objective lens, 9 ··· 1/4 wavelength plate, 10 ··· Sample, 11 ··· Glass plate, 12 ··· Chrome thin film, 13 ··· Silica thin film, 14 · · · Steel ball

Claims (12)

反射膜とスペーサ膜を順次形成し、前記スペーサ膜を試料に接する光透過性基板と、
前記スペーサ膜とは反対側から、前記光透過性基板に白色光を照射する照射手段と、
前記白色光の反射光を受光する受光手段と、
前記反射光から色彩情報を取得する色彩情報取得手段を有する
膜厚測定装置。
A reflective film and a spacer film are sequentially formed, and a light-transmitting substrate that contacts the sample with the spacer film;
Irradiation means for irradiating the light transmissive substrate with white light from the side opposite to the spacer film,
A light receiving means for receiving the reflected light of the white light;
A film thickness measurement device comprising color information acquisition means for acquiring color information from the reflected light.
反射膜は、クロムまたは銀を含有する
請求項1記載の膜厚測定装置。
The film thickness measuring apparatus according to claim 1, wherein the reflective film contains chromium or silver.
スペーサ膜は、シリカまたはDLC膜(ダイヤモンド・ライク・カーボン膜)を含有する
請求項1記載の膜厚測定装置。
The film thickness measuring apparatus according to claim 1, wherein the spacer film contains silica or a DLC film (diamond-like carbon film).
スペーサ膜の膜厚は130nm〜900nmの範囲にある
請求項1記載の膜厚測定装置。
The film thickness measuring apparatus according to claim 1, wherein the thickness of the spacer film is in a range of 130 nm to 900 nm.
光透過性基板は、ガラス、サファイヤ、またはポリカーボネイトからなる
請求項1記載の膜厚測定装置。
The film thickness measuring apparatus according to claim 1, wherein the light transmissive substrate is made of glass, sapphire, or polycarbonate.
色彩情報は、HSV色彩情報である
請求項1記載の膜厚測定装置。
The film thickness measuring apparatus according to claim 1, wherein the color information is HSV color information.
光透過性基板に反射膜とスペーサ膜を順次形成し、
前記スペーサ膜を試料に接触させ、
前記スペーサ膜とは反対側から、前記光透過性基板に白色光を照射し、
前記白色光の反射光を受光し、
前記反射光から色彩情報を取得する
膜厚測定方法。
A reflective film and a spacer film are sequentially formed on the light transmissive substrate,
Contacting the spacer film with the sample;
Irradiate the light transmissive substrate with white light from the side opposite to the spacer film,
Receiving the reflected light of the white light,
A film thickness measurement method for obtaining color information from the reflected light.
反射膜は、クロムまたは銀を含有する
請求項7記載の膜厚測定方法。
The film thickness measuring method according to claim 7, wherein the reflective film contains chromium or silver.
スペーサ膜は、シリカまたはDLC膜(ダイヤモンド・ライク・カーボン膜)を含有する
請求項7記載の膜厚測定方法。
The film thickness measuring method according to claim 7, wherein the spacer film contains silica or a DLC film (diamond-like carbon film).
スペーサ膜の膜厚は130nm〜900nmの範囲にある
請求項7記載の膜厚測定方法。
The film thickness measuring method according to claim 7, wherein the thickness of the spacer film is in a range of 130 nm to 900 nm.
光透過性基板は、ガラス、サファイヤ、またはポリカーボネイトからなる
請求項7記載の膜厚測定方法。
The film thickness measuring method according to claim 7, wherein the light-transmitting substrate is made of glass, sapphire, or polycarbonate.
色彩情報は、HSV色彩情報である
請求項7記載の膜厚測定方法。
The film thickness measurement method according to claim 7, wherein the color information is HSV color information.
JP2006192234A 2006-07-12 2006-07-12 Device and method for measuring film thickness Pending JP2008020318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192234A JP2008020318A (en) 2006-07-12 2006-07-12 Device and method for measuring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192234A JP2008020318A (en) 2006-07-12 2006-07-12 Device and method for measuring film thickness

Publications (1)

Publication Number Publication Date
JP2008020318A true JP2008020318A (en) 2008-01-31

Family

ID=39076365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192234A Pending JP2008020318A (en) 2006-07-12 2006-07-12 Device and method for measuring film thickness

Country Status (1)

Country Link
JP (1) JP2008020318A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791853A (en) * 2014-01-20 2014-05-14 天津大学 Microstructure measuring device and measuring method based on color strip information processing
CN104154868A (en) * 2014-08-06 2014-11-19 复旦大学 Bifocal lens-based non-contact lens central thickness measuring device
CN105066889A (en) * 2015-09-01 2015-11-18 武汉颐光科技有限公司 A portable thin film thickness measuring device and a film thickness measuring method thereof
CN111272085A (en) * 2020-03-13 2020-06-12 南京理工大学 Automatic detection device and method for center thickness of optical part
JP2022045215A (en) * 2020-09-08 2022-03-18 株式会社豊田中央研究所 Measurement device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117251A (en) * 1980-12-31 1982-07-21 Ibm Device for monitoring thickness change
JPH1194525A (en) * 1997-09-22 1999-04-09 Toshiba Corp Method and device for measuring film thickness
JP2003090710A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Evaluation method of multilayer film and recording medium
JP2003161605A (en) * 2001-11-28 2003-06-06 Mitsubishi Chemicals Corp Film thickness measuring device and method
JP2005055413A (en) * 2003-07-31 2005-03-03 Masao Eguchi Detector of true contact section
JP2005184013A (en) * 2001-03-12 2005-07-07 Denso Corp Method for measuring film thickness of semiconductor layer and method for manufacturing semiconductor substrate
JP2006071316A (en) * 2004-08-31 2006-03-16 Technos Kk Film thickness acquiring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117251A (en) * 1980-12-31 1982-07-21 Ibm Device for monitoring thickness change
JPH1194525A (en) * 1997-09-22 1999-04-09 Toshiba Corp Method and device for measuring film thickness
JP2005184013A (en) * 2001-03-12 2005-07-07 Denso Corp Method for measuring film thickness of semiconductor layer and method for manufacturing semiconductor substrate
JP2003090710A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Evaluation method of multilayer film and recording medium
JP2003161605A (en) * 2001-11-28 2003-06-06 Mitsubishi Chemicals Corp Film thickness measuring device and method
JP2005055413A (en) * 2003-07-31 2005-03-03 Masao Eguchi Detector of true contact section
JP2006071316A (en) * 2004-08-31 2006-03-16 Technos Kk Film thickness acquiring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012015842; G.J.JOHNSTON,R.WAYTE and H.A.SPIKES: 'The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts' TRIBOLOGY TRANSACTIONS 34巻2号, 199104, 187-194 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791853A (en) * 2014-01-20 2014-05-14 天津大学 Microstructure measuring device and measuring method based on color strip information processing
CN104154868A (en) * 2014-08-06 2014-11-19 复旦大学 Bifocal lens-based non-contact lens central thickness measuring device
CN105066889A (en) * 2015-09-01 2015-11-18 武汉颐光科技有限公司 A portable thin film thickness measuring device and a film thickness measuring method thereof
CN111272085A (en) * 2020-03-13 2020-06-12 南京理工大学 Automatic detection device and method for center thickness of optical part
JP2022045215A (en) * 2020-09-08 2022-03-18 株式会社豊田中央研究所 Measurement device
JP7294282B2 (en) 2020-09-08 2023-06-20 株式会社豊田中央研究所 measuring device

Similar Documents

Publication Publication Date Title
US9541381B2 (en) Surface topography interferometer with surface color
KR102558264B1 (en) Metrology of multi-layer stacks
Hartl et al. Differential colorimetry: tool for evaluation of chromatic interference pattern
JP2008020318A (en) Device and method for measuring film thickness
Jo et al. Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry
Lehmann et al. Reduction of chromatic aberration influences in vertical scanning white-light interferometry
Ajovalasit et al. RGB photoelasticity applied to the analysis of membrane residual stress in glass
Kasimayan et al. DIGITAL REFLECTION PHOTOELASTICITY USING CONVENTIONAL REFLECTION POLARISCOPE.
Claveau et al. Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography
Guo et al. A wide range measuring system for thin lubricating film: from nano to micro thickness
JP2017053690A (en) Sliding device
Abdallah et al. A modified method for calibration of polarimetric components using polarizing interferometry
US10890745B2 (en) Mirau interference objective
Wong et al. Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect
Tomota et al. Elucidation of contact state on various rough surfaces via highly robust colorimetric optical interferometry
Burlison et al. Evaluation of the performance of tilt scanning interferometry for tomographic imaging and profilometry
Arieli et al. Full field tomography using interference fringes casting of a non spatially-coherent extended spectrally modulated broadband light source
Debnath et al. Determination of film thickness and surface profile using reflectometry and spectrally resolved phase shifting interferometry
JP2018159557A (en) Film thickness measurement device and film thickness measurement method
JP7294282B2 (en) measuring device
JP6193088B2 (en) Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system
Mingzhou Development of fringe analysis technique in white light interferometry for micro-component measurement.
Abdulhalim Low coherence full field interference microscopy or optical coherence tomography: recent advances, limitations and future trends
Feng et al. Non-scanning techniques
Garzon et al. Polychromatic local reflectivity of materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618