JP2022045215A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2022045215A
JP2022045215A JP2020150784A JP2020150784A JP2022045215A JP 2022045215 A JP2022045215 A JP 2022045215A JP 2020150784 A JP2020150784 A JP 2020150784A JP 2020150784 A JP2020150784 A JP 2020150784A JP 2022045215 A JP2022045215 A JP 2022045215A
Authority
JP
Japan
Prior art keywords
film thickness
hue
optical film
pixel
monochromatic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020150784A
Other languages
Japanese (ja)
Other versions
JP7294282B2 (en
Inventor
達規 友田
Tatsunori Tomota
護 遠山
Mamoru Toyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2020150784A priority Critical patent/JP7294282B2/en
Publication of JP2022045215A publication Critical patent/JP2022045215A/en
Application granted granted Critical
Publication of JP7294282B2 publication Critical patent/JP7294282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a measurement device in which the influence of a surface state of a sample is suppressed and which can measure film thickness more easily.SOLUTION: The measurement device comprises: a light source which emits monochromatic light in 3 wavelengths or greater; a first sliding part which transmits the monochromatic light; a semipermeable membrane which reflects a portion of the monochromatic light passing through the first sliding part and transmits other portions of the monochromatic light; a second sliding part which reflects the monochromatic light passing through the semipermeable membrane; a load application part which relatively moves the first sliding part and the second sliding part while applying a load; an imaging part which acquires an interference image in which the monochromatic light reflected by the semipermeable membrane interferes with the monochromatic light reflected by the second sliding part; and a calculation part which converts a luminance distribution image for each wavelength region of the monochromatic light by the interference image into a hue distribution image, acquires an optical film thicknesses distribution image by converting a hue value for each pixel of the hue distribution image into an optical film thicknesses on the basis of a correspondence between a predetermined optical film thicknesses and the hue value, and calculates the optical film thickness distribution of a transparent film formed between the semipermeable membrane and the second sliding part.SELECTED DRAWING: Figure 1

Description

本発明は、膜厚を測定する測定装置に関する。 The present invention relates to a measuring device for measuring a film thickness.

膜厚を測定する測定装置の従来技術の一例として、例えば特許文献1に開示された膜厚測定装置が知られている。特許文献1に係る膜厚測定装置では、白色偏光干渉法によって、接触状態にあるガラス板と試料の間の干渉画像を取得する。ガラス板には、クロム薄膜とシリカ薄膜が形成されている。その色情報をHSV色空間に変換して色相値を求め、二面間のすきまの厚さとの較正結果に基づき、すきまの厚さあるいは膜厚ゼロに相当する真実接触部を可視化する。 As an example of the prior art of a measuring device for measuring a film thickness, for example, the film thickness measuring device disclosed in Patent Document 1 is known. In the film thickness measuring apparatus according to Patent Document 1, an interference image between a glass plate in a contact state and a sample is acquired by a white polarization interferometry method. A chromium thin film and a silica thin film are formed on the glass plate. The color information is converted into the HSV color space to obtain the hue value, and based on the calibration result with the clearance thickness between the two surfaces, the true contact portion corresponding to the clearance thickness or the film thickness zero is visualized.

また、特許文献2に開示された油膜厚さの測定装置も知られている。特許文献2に係る測定装置は、透明板と、光源と、顕微鏡と、カメラと、演算装置とを備える。光源およびカメラは、透明板の上面側に配置される。光源は、複数の波長域の光を透明板と転動体との接触部に瞬間的に照射する。カメラは、干渉光が入射されたときに顕微鏡で拡大された接触部を撮影して干渉画像を生成する。演算装置は、波長域ごとの強度を干渉画像から取得して油膜厚さに変換する。測定装置は、光源の発光時間をL[μs]、転動体の回転速度をV[m/s]、顕微鏡倍率をM、カメラの撮像素子サイズおよび画素数をS[μm]、NPとしたとき、0<L×V+(S/NP)/M≦5を満たす。 Further, a measuring device for oil film thickness disclosed in Patent Document 2 is also known. The measuring device according to Patent Document 2 includes a transparent plate, a light source, a microscope, a camera, and an arithmetic unit. The light source and the camera are arranged on the upper surface side of the transparent plate. The light source instantaneously irradiates the contact portion between the transparent plate and the rolling element with light in a plurality of wavelength ranges. The camera captures the magnified contact area with a microscope when interference light is incident to generate an interference image. The arithmetic unit acquires the intensity of each wavelength range from the interference image and converts it into an oil film thickness. When the light emission time of the light source is L [μs], the rotation speed of the rolling element is V [m / s], the microscope magnification is M, the image pickup element size and the number of pixels of the camera are S [μm], and NP. , 0 <L × V + (S / NP) / M ≦ 5.

さらに、特許文献3に開示された摺動装置も知られている。特許文献3に係る摺動装置では、透明摺動材と反射摺動材とが荷重を受けながら相対運動し、液体膜は、透明摺動材と反射摺動材との間に存在し、透明摺動材および液体膜は、光を透過する材質から構成され、反射摺動材は、光を反射する材質から構成される。白色光源からの光を、バンドパスフィルタを用いて3波長の単色光から構成される光にし、透明摺動材と液体膜とを透過させて反射摺動材へ照射して光干渉を生じさせ、カメラは、生じた光干渉における、波長が異なる2以上の光の各々の輝度を計測する。演算装置は、カメラによって計測された2以上の光の各々の輝度に基づいて、液体膜の膜厚を計算する。 Further, a sliding device disclosed in Patent Document 3 is also known. In the sliding device according to Patent Document 3, the transparent sliding material and the reflective sliding material move relative to each other while receiving a load, and the liquid film exists between the transparent sliding material and the reflective sliding material and is transparent. The sliding material and the liquid film are made of a material that transmits light, and the reflective sliding material is made of a material that reflects light. The light from the white light source is converted into light composed of monochromatic light of three wavelengths using a bandpass filter, and the transparent sliding material and the liquid film are transmitted and irradiated to the reflective sliding material to cause light interference. The camera measures the brightness of each of two or more lights of different wavelengths in the resulting light interference. The arithmetic unit calculates the film thickness of the liquid film based on the brightness of each of the two or more lights measured by the camera.

特開2008-020318号公報Japanese Unexamined Patent Publication No. 2008-02318 特開2017-207316号公報JP-A-2017-207316 特開2017-053690号公報Japanese Unexamined Patent Publication No. 2017-053690

しかしながら、従来技術に係る測定装置では以下のような課題があった。特許文献1に関連して、白色光源には様々な波長成分が含まれているため、光学膜厚と色相の較正曲線は観測系(カメラ、レンズ、光源)固有のものとなり、別個に較正作業が必要となるという課題がある(較正曲線固有補正問題)。また、色相は0~1の範囲で折り返すため、膜厚換算可能範囲は1周期(約265nm)に限られるという課題がある(較正曲線周期問題)。 However, the measuring device according to the prior art has the following problems. In relation to Patent Document 1, since the white light source contains various wavelength components, the calibration curve of the optical film thickness and the hue is unique to the observation system (camera, lens, light source), and the calibration work is performed separately. There is a problem that is required (calibration curve specific correction problem). Further, since the hue is folded back in the range of 0 to 1, there is a problem that the film thickness convertible range is limited to one cycle (about 265 nm) (calibration curve cycle problem).

また、特許文献2、3に関連して、以下のような課題もあった。すなわち、摩耗などにより試料に面粗度が大きい箇所が存在すると、その部分は乱反射によって反射光の強度が減衰するため較正曲線から外れ、膜厚換算が困難となる。図9は、この問題を説明するための試料の干渉画像であり、図9(a)は摩耗がない試料の干渉画像を、図9(b)は部分的な摩耗を含む試料の干渉画像を各々示している。このように、摩耗を含む試料では、干渉画像における反射光の強度が著しく低下する。このことは、潤滑現象を経時的に観察する場合に摩耗の発生を許容できないことを意味しており、完全非接触の潤滑現象しか取り扱えないなど測定の自由度を著しく低下させる要因になる(乱反射問題)。 In addition, there are the following problems in relation to Patent Documents 2 and 3. That is, if there is a portion of the sample having a large surface roughness due to wear or the like, the intensity of the reflected light is attenuated by diffuse reflection in that portion, which deviates from the calibration curve, and it becomes difficult to convert the film thickness. 9A and 9B are sample interference images for explaining this problem, FIG. 9A is an interference image of a sample without wear, and FIG. 9B is an interference image of a sample including partial wear. Each is shown. As described above, in the sample containing wear, the intensity of the reflected light in the interference image is significantly reduced. This means that the occurrence of wear cannot be tolerated when observing the lubrication phenomenon over time, and it becomes a factor that significantly reduces the degree of freedom of measurement, such as handling only the completely non-contact lubrication phenomenon (diffuse reflection). problem).

また、ガラスと試料との間にオイルが存在するとき、該オイルによる吸光(吸収)現象が発生し、反射光は波長とオイル種類に依存する吸収係数に従って減衰する。精度よく膜厚推定を行うためには、この吸収係数を波長およびオイル種類ごとに求める必要がある(吸収問題)。 Further, when oil is present between the glass and the sample, an absorption (absorption) phenomenon due to the oil occurs, and the reflected light is attenuated according to the absorption coefficient depending on the wavelength and the oil type. In order to estimate the film thickness accurately, it is necessary to obtain this absorption coefficient for each wavelength and oil type (absorption problem).

さらに、干渉画像を一括で膜厚に換算する際、上記のような理由あるいはその他の理由によってRGB輝度が局所的に異常になった場合、その部分のみ周囲と大きく異なる膜厚が得られるため、膜厚分布としての信頼性が低下する(特異画素問題)。 Further, when the interference images are collectively converted into the film thickness, if the RGB brightness is locally abnormal due to the above reason or other reasons, the film thickness that is significantly different from the surroundings can be obtained only in that portion. The reliability of the film thickness distribution is reduced (unique pixel problem).

また、理論上は較正作業が不要だが、上記の問題がなかったとしてもRGB輝度が較正曲線に完全に一致することは稀であり、実用上は事前に複数の参照点を選択し、それらのRGB輝度と膜厚値の関係を手動で入力して較正曲線を補正する必要がある(較正曲線手動補正問題)。 Also, although calibration work is theoretically unnecessary, it is rare that the RGB brightness perfectly matches the calibration curve even without the above problems, and in practice, multiple reference points are selected in advance and they are selected. It is necessary to manually input the relationship between the RGB brightness and the film thickness value to correct the calibration curve (calibration curve manual correction problem).

本発明は、上記の事情を鑑みてなされたもので、試料の表面状態の影響が抑制され、より簡易に膜厚の測定が可能な測定装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a measuring device capable of measuring the film thickness more easily by suppressing the influence of the surface condition of the sample.

上記目的を達成するために、請求項1に記載の測定装置は、3波長以上の単色光を出射する光源と、前記単色光を透過する第1の摺動部と、前記第1の摺動部を透過した前記単色光の一部を反射し他部を透過する半透膜と、前記半透膜を透過した前記単色光を反射する第2の摺動部と、荷重を付与しながら前記第1の摺動部と前記第2の摺動部とを相対運動させる荷重付与部と、前記半透膜で反射した前記単色光と前記第2の摺動部で反射した前記単色光を干渉させた干渉画像を取得する撮像部と、前記干渉画像による前記単色光の波長域ごとの輝度分布画像を色相分布画像に変換し、予め定められた光学膜厚と色相値の対応関係に基づいて前記色相分布画像の画素ごとの色相値を光学膜厚に変換して光学膜厚分布画像を取得し、前記半透膜と前記第2の摺動部との間に形成された透明膜の光学膜厚分布を演算する演算部と、を含む。 In order to achieve the above object, the measuring device according to claim 1 has a light source that emits monochromatic light having three or more wavelengths, a first sliding portion that transmits the monochromatic light, and the first sliding portion. The semitransparent film that reflects a part of the monochromatic light transmitted through the portion and transmits the other portion, and the second sliding portion that reflects the monochromatic light transmitted through the semitransparent film, and the above while applying a load. The load-applying portion that causes the first sliding portion and the second sliding portion to move relative to each other interferes with the monochromatic light reflected by the semitransparent film and the monochromatic light reflected by the second sliding portion. The imaging unit that acquires the interference image and the brightness distribution image for each wavelength range of the monochromatic light generated by the interference image are converted into a hue distribution image, and based on a predetermined correspondence between the optical film thickness and the hue value. The optical film thickness distribution image is obtained by converting the hue value for each pixel of the hue distribution image into an optical film thickness, and the optical of the transparent film formed between the semitransparent film and the second sliding portion is optical. Includes a calculation unit that calculates the film thickness distribution.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記演算部は、前記対応関係に複数の周期が存在することによって1の色相値に複数の光学膜厚が対応する場合に、予め定められた方法に基づいて前記色相分布画像における基準画素を選定し、前記基準画素の色相値の属する基準周期を決定して基準膜厚を決定し、以後隣接する画素の光学膜厚を前記基準周期の範囲で決定することによって、前記光学膜厚分布を演算する。 Further, in the invention according to claim 2, in the invention according to claim 1, the arithmetic unit has a plurality of optical film thicknesses corresponding to one hue value due to the existence of a plurality of cycles in the corresponding relationship. In this case, the reference pixel in the hue distribution image is selected based on a predetermined method, the reference period to which the hue value of the reference pixel belongs is determined, the reference film thickness is determined, and then the optical film of the adjacent pixel is determined. The optical film thickness distribution is calculated by determining the thickness within the range of the reference period.

また、請求項3に記載の発明は、請求項2に記載の発明において、前記演算部は、色相分布画像に含まれる個々の画素について、各々の画素の色相値に対応する複数の光学膜厚候補を前記対応関係に基づいて選定し、各々の画素のRGB輝度と前記複数の光学膜厚候補の各々に対応するRGB輝度との誤差ノルムのうちの最小値である最小誤差ノルムを算出し、前記最小誤差ノルムの最も小さい画素を基準画素として選定し、前記基準画素の最小誤差ノルムに対応する光学膜厚を基準膜厚として決定する。 Further, the invention according to claim 3 is the invention according to claim 2, wherein the calculation unit has a plurality of optical film thicknesses corresponding to the hue values of each pixel for each pixel included in the hue distribution image. Candidates are selected based on the correspondence relationship, and the minimum error norm, which is the minimum value among the error norms between the RGB brightness of each pixel and the RGB brightness corresponding to each of the plurality of optical film thickness candidates, is calculated. The pixel having the smallest minimum error norm is selected as the reference pixel, and the optical film thickness corresponding to the minimum error norm of the reference pixel is determined as the reference film.

また、請求項4に記載の発明は、請求項2または請求項3に記載の発明において、前記演算部は、前記色分布画像中に存在する特異画素に起因して、前記光学膜厚分布の演算において光学膜厚値の欠損が発生する場合には、前記光学膜厚値の欠損がなくなるまで基準画素を変えて前記光学膜厚分布の演算を繰り返し実行する。 Further, the invention according to claim 4 is the invention according to claim 2 or 3, wherein the calculation unit has the optical film thickness distribution due to the peculiar pixels present in the color distribution image. When the loss of the optical film thickness value occurs in the calculation, the calculation of the optical film thickness distribution is repeatedly executed by changing the reference pixel until the loss of the optical film thickness value disappears.

また、請求項5に記載の発明は、請求項1から請求項4のいずれか1項に記載の発明において、前記演算部は、色相分布画像の各画素の色相値を正弦成分、余弦成分に分離し、前記正弦成分、前記余弦成分の各々に対して色相フィルタリング処理を行った後、逆正接をとって元に戻すことによって、前記色相分布画像における特異画素を除去するための色相フィルタリング処理をさらに実行する。 Further, in the invention according to claim 5, in the invention according to any one of claims 1 to 4, the arithmetic unit converts the hue value of each pixel of the hue distribution image into a sine component and a cosine component. Hue filtering processing for removing singular pixels in the hue distribution image is performed by separating, performing hue filtering processing on each of the sine component and the cosine component, and then taking the inverse tangent and returning to the original state. Do more.

また、請求項6に記載の発明は、請求項5に記載の発明において、前記色相フィルタリング処理で用いるフィルタがガウシアンフィルタである。 Further, in the invention according to claim 6, the filter used in the hue filtering process in the invention according to claim 5 is a Gaussian filter.

また、請求項7に記載の発明は、請求項5または請求項6に記載の発明において、前記演算部は、前記色相フィルタリング処理前の色相分布に対応する光学膜厚値候補の中から、色相フィルタリング処理後の色相から得た光学膜厚に最も近い光学膜厚の値を選択することによって色相分布画像の鮮明さを復元する処理をさらに実行する。 Further, the invention according to claim 7 is the invention according to claim 5 or 6, wherein the calculation unit has a hue from among optical film thickness value candidates corresponding to the hue distribution before the hue filtering process. Further processing is performed to restore the sharpness of the hue distribution image by selecting the value of the optical film thickness closest to the optical film thickness obtained from the hue after the filtering process.

本発明に係る測定装置によれば、試料の表面状態の影響が抑制され、より簡易に膜厚の測定が可能な測定装置を提供することができる、という効果を奏する。 According to the measuring device according to the present invention, the influence of the surface state of the sample is suppressed, and it is possible to provide a measuring device capable of measuring the film thickness more easily.

実施の形態に係る測定装置の一例を示すブロック図である。It is a block diagram which shows an example of the measuring apparatus which concerns on embodiment. 実施の形態に係る、(a)は光学膜厚とRGB輝度の関係を示す図、(b)は光学膜厚と色相値の関係を示す図である。In the embodiment, (a) is a diagram showing the relationship between the optical film thickness and RGB luminance, and (b) is a diagram showing the relationship between the optical film thickness and the hue value. 実施の形態に係る、(a)は光学膜厚変換処理を説明するための図、(b)は基準膜厚決定処理を説明するための図である。In the embodiment, (a) is a diagram for explaining an optical film thickness conversion process, and (b) is a diagram for explaining a reference film thickness determining process. (a)は部分摩耗を含む干渉画像を色相分布に変換した画像、(b)は(a)の画像に対して本実施の形態に係る光学膜厚変換処理を施した画像を、各々示している。(A) shows an image obtained by converting an interference image including partial wear into a hue distribution, and (b) shows an image obtained by subjecting the image of (a) to the optical film thickness conversion process according to the present embodiment. There is. (a)は特異画素が存在する場合の干渉画像と、当該干渉画像を光学膜厚分布に変換した際に発生する光学膜厚の異常分布との関係を示す図、(b)は多数の構造欠陥を含む干渉画像に対して、色相フィルタリング処理を行う前の色相分布画像と、色相フィルタリング処理を行った後の色相分布画像を示している。(A) is a diagram showing the relationship between an interference image in the presence of singular pixels and an abnormal distribution of optical film thickness generated when the interference image is converted into an optical film thickness distribution, and (b) is a diagram showing a large number of structures. The hue distribution image before the hue filtering process and the hue distribution image after the hue filtering process are shown for the interference image including defects. (a)は本実施の形態に係る色相フィルタリング処理の原理を説明するための図、(b)は本実施の形態に係る色相フィルタリング処理を適用した場合の光学膜厚分布の画像である。(A) is a diagram for explaining the principle of the hue filtering process according to the present embodiment, and (b) is an image of the optical film thickness distribution when the hue filtering process according to the present embodiment is applied. 実施形態に係る膜厚欠損部補完処理について説明するための図である。It is a figure for demonstrating the film thickness defect complementation process which concerns on embodiment. 実施の形態に係る測定処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the process flow of the measurement processing program which concerns on embodiment. (a)は摩耗がない試料の干渉画像を示す図、(b)部分的な摩耗を含む試料の干渉画像を示す図である。(A) is a diagram showing an interference image of a sample without wear, and (b) is a diagram showing an interference image of a sample with partial wear.

以下、図面を参照して本発明の実施の形態について詳細に説明する。なお、以下の説明では、数式に表された斜体の文字について、斜体でない文字で記載している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the italic characters represented in the mathematical formula are described as non-italic characters.

<測定装置の構成>
図1を参照して、本実施の形態に係る測定装置10の構成の一例について説明する。測定装置10は、摺動面の透明膜の厚さ(光学膜厚)、例えば油膜の厚さを測定する装置であり、摺動装置とよばれる場合もある。測定装置10による光学膜厚測定の基本原理は光干渉法である。測定装置10は、大きく分けて、光学系30、摺動系40、および演算装置21を備えている。
<Measuring device configuration>
An example of the configuration of the measuring device 10 according to the present embodiment will be described with reference to FIG. 1. The measuring device 10 is a device for measuring the thickness (optical film thickness) of the transparent film on the sliding surface, for example, the thickness of the oil film, and is sometimes called a sliding device. The basic principle of optical film thickness measurement by the measuring device 10 is the optical interferometry. The measuring device 10 is roughly divided into an optical system 30, a sliding system 40, and an arithmetic unit 21.

(光学系)
光学系30は、光源15、バンドパスフィルタ16、通路17、顕微鏡18、ハーフミラー19、およびカメラ20を含んでいる。光源15は、測定装置10で用いる測定光を生成する部位であり、本実施の形態では、一例として白色光源を用いている。バンドパスフィルタ16は、白色光である光源15の光から、単色光の測定光を抜き出す素子である。本実施の形態では、後述するように測定光として3波長の光を用いているので、バンドパスフィルタ16は、当該3波長の単色光を透過させる。バンドパスフィルタ16を透過した測定光は通路17を通りハーフミラー19で反射され、照射光Piとして摺動系へ入射される。顕微鏡18は図示を省略するレンズ等を含み、接触部(後述)を拡大する機能を有する。
(Optical system)
The optical system 30 includes a light source 15, a bandpass filter 16, a passage 17, a microscope 18, a half mirror 19, and a camera 20. The light source 15 is a portion that generates measurement light used in the measuring device 10, and in the present embodiment, a white light source is used as an example. The bandpass filter 16 is an element that extracts the measurement light of monochromatic light from the light of the light source 15 which is white light. In the present embodiment, as will be described later, light having three wavelengths is used as the measurement light, so that the bandpass filter 16 transmits the monochromatic light having the three wavelengths. The measurement light transmitted through the bandpass filter 16 passes through the passage 17 and is reflected by the half mirror 19 and is incident on the sliding system as irradiation light Pi. The microscope 18 includes a lens and the like (not shown), and has a function of enlarging a contact portion (described later).

摺動系40で反射された反射光Prが、ハーフミラー19を透過して、カメラ20に入射される。カメラ20は、摺動系40で生じた光干渉における、3波長の光の各々の輝度を計測する。後述するように、本実施の形態では、単色光として、波長が600nm、560nm、470nm3波長を選択している。これらは一般的なカラーカメラのRGBの分光感度を考慮し、一般的なカラーカメラを光検出器として用いるためである。各単色光の半値全幅(FWMH)は約10nmである。本実施の形態では半値全幅は小さいほどよいが、半値全幅10nmの単色光を用いた場合でも妥当な結果が得られている。なお、本実施の形態では照射光Piを単色光のみから構成するためにバンドパスフィルタを用いたが、単色光を発する光源、例えばLEDやレーザーを組み合わせることによって実現してもよい。 The reflected light Pr reflected by the sliding system 40 passes through the half mirror 19 and is incident on the camera 20. The camera 20 measures the brightness of each of the three wavelengths of light in the light interference generated by the sliding system 40. As will be described later, in the present embodiment, the wavelengths of 600 nm, 560 nm, and 470 nm 3 wavelengths are selected as the monochromatic light. This is because a general color camera is used as a photodetector in consideration of the spectral sensitivity of RGB of a general color camera. The full width at half maximum (FWMH) of each monochromatic light is about 10 nm. In the present embodiment, the smaller the full width at half maximum is, the better, but reasonable results are obtained even when monochromatic light having a full width at half maximum of 10 nm is used. In the present embodiment, a bandpass filter is used to configure the irradiation light Pi from only monochromatic light, but it may be realized by combining a light source that emits monochromatic light, for example, an LED or a laser.

本実施の形態では、照射する光の波長にこれらの可視光を用いた場合を例に説明するが、測定装置10の測定原理においては可視光に限定されるものではなく、任意の波長を持つ光(電磁波)に対しても本測定原理は成立する。また、本実施の形態では単色光の数は3を用いているが、これは最低限の波長数であり、4以上の波長数としてもよい。 In the present embodiment, the case where these visible lights are used as the wavelength of the irradiated light will be described as an example, but the measurement principle of the measuring device 10 is not limited to visible light and has an arbitrary wavelength. This measurement principle also holds for light (electromagnetic waves). Further, in the present embodiment, the number of monochromatic light is 3, but this is the minimum number of wavelengths, and may be 4 or more wavelengths.

(摺動系)
測定装置10の摺動系40は、透明部材11、半透明膜12、反射部材13、および荷重機構14を含んでいる。測定装置10の測定対象は、半透明膜12と反射部材13との間に形成される透明膜、例えば油膜(図示省略)の厚さである。該油膜は、反射部材13と半透明膜12とが接触している部分(「接触部」)に供給される、例えば潤滑剤である。油膜は、半透明膜12と反射部材13との間に存在し、透明部材11の光学系30側と反対側に設けられた半透明膜12と油膜とは接触するように配置され、反射部材13と油膜とは接触している。
(Sliding system)
The sliding system 40 of the measuring device 10 includes a transparent member 11, a translucent film 12, a reflective member 13, and a load mechanism 14. The measurement target of the measuring device 10 is the thickness of a transparent film, for example, an oil film (not shown) formed between the translucent film 12 and the reflective member 13. The oil film is, for example, a lubricant supplied to a portion (“contact portion”) where the reflective member 13 and the translucent film 12 are in contact with each other. The oil film exists between the translucent film 12 and the reflective member 13, and is arranged so that the translucent film 12 provided on the side opposite to the optical system 30 side of the transparent member 11 and the oil film are in contact with each other. 13 is in contact with the oil film.

透明部材11および油膜は、3波長の光を透過し、反射部材13は3波長の光を反射する。光学系からの入射された照射光Piを、透明部材11と油膜とを透過させて反射部材13へ照射して光干渉を生じさせる。 The transparent member 11 and the oil film transmit light having three wavelengths, and the reflecting member 13 reflects light having three wavelengths. The irradiation light Pi incident from the optical system is transmitted through the transparent member 11 and the oil film and irradiates the reflective member 13, causing optical interference.

荷重機構14は、透明部材11を回転させ、透明部材11と反射部材13とに荷重を付加しつつ相対運動させる。 The load mechanism 14 rotates the transparent member 11 and causes the transparent member 11 and the reflective member 13 to move relative to each other while applying a load.

演算装置21は測定装置10の全体を統括制御する装置であり、例えばPC(Personal Computer)等で構成されている。演算装置21は、図示を省略するCPU、ROM、RAM等を備え、後述する測定処理プログラムを実行する。すなわち、上記干渉画像から干渉光の輝度を波長域ごとに取得し、それら輝度を色相に変換し、色相を光学膜厚に換算する。 The arithmetic unit 21 is a device that comprehensively controls the entire measuring device 10, and is composed of, for example, a PC (Personal Computer) or the like. The arithmetic unit 21 includes a CPU, ROM, RAM, etc. (not shown), and executes a measurement processing program described later. That is, the luminance of the interference light is acquired for each wavelength range from the interference image, the luminance is converted into the hue, and the hue is converted into the optical film thickness.

(測定装置の動作)
まず、荷重機構14により、透明部材11が回転して、透明部材11と反射部材13とが荷重を受けながら相対運動しているときに、光源15からの白色光が、バンドパスフィルタ16に入射され、バンドパスフィルタ16を透過した3波長の単色光からなる照射光Piが、ハーフミラー19で反射して、摺動系40に入射される。3波長の単色光からなる照射光Piの一部は、半透明膜12と油膜との界面で反射し、3波長の単色光からなる照射光Piの他の一部(他部)は、反射部材13と油膜との界面で反射する。両反射光によって光干渉が生じているとき、カメラ20によって光干渉分布を撮像し、カメラ20によって撮像する毎に、画像が演算装置21に入力される。そして、入力された画像の各々について、演算装置21によって、後述する測定処理プログラムが実行される。
(Operation of measuring device)
First, when the transparent member 11 is rotated by the load mechanism 14 and the transparent member 11 and the reflective member 13 are moving relative to each other while receiving a load, white light from the light source 15 is incident on the bandpass filter 16. Then, the irradiation light Pi composed of monochromatic light having three wavelengths transmitted through the bandpass filter 16 is reflected by the half mirror 19 and is incident on the sliding system 40. A part of the irradiation light Pi made of monochromatic light of three wavelengths is reflected at the interface between the translucent film 12 and the oil film, and the other part (other part) of the irradiation light Pi made of monochromatic light of three wavelengths is reflected. Reflects at the interface between the member 13 and the oil film. When light interference is caused by both reflected lights, the light interference distribution is imaged by the camera 20, and the image is input to the arithmetic unit 21 each time the image is taken by the camera 20. Then, for each of the input images, the arithmetic unit 21 executes a measurement processing program described later.

<本実施の形態の背景技術>
(透明膜の定義)
本実施の形態では、摺動材料の間に存在する透明膜の厚さ分布を測定可能な測定装置について説明するが、その前に透明膜の定義を記す。本実施の形態において透明膜とは、水の膜のような透過による光の減衰をほぼ生じない膜のみを意味するのではなく、エンジン油の膜のような透過による光の減衰を生じる膜、すなわち着色透明膜も意味する。さらに、摺動面間に存在する光を透過する領域という意味において、液体や固体が含まれない場合の摺動面間のすき間も意味する。具体例としては、空気中や真空中で表面粗さを持つ表面同士が摺動する場合における表面粗さの谷部などである。本実施の形態では、特に指示のない場合、透明膜は上記を意味する。
<Background technology of this embodiment>
(Definition of transparent film)
In this embodiment, a measuring device capable of measuring the thickness distribution of the transparent film existing between the sliding materials will be described, but the definition of the transparent film will be described before that. In the present embodiment, the transparent film does not mean only a film that causes almost no light attenuation due to transmission such as a water film, but also a film that causes light attenuation due to transmission such as an engine oil film. That is, it also means a colored transparent film. Further, in the sense of a region for transmitting light existing between the sliding surfaces, it also means a gap between the sliding surfaces when no liquid or solid is contained. A specific example is a valley portion of surface roughness when surfaces having surface roughness slide with each other in air or vacuum. In the present embodiment, unless otherwise specified, the transparent film means the above.

(透明膜厚さ分布測定の重要性)
機械要素の摺動部では、多くの場合において摺動面間に透明膜が存在する。例えば、多くの摺動部は油などの液体で潤滑されており、それらの液体は多くの場合に透明であるため、摺動面間には透明膜が存在する。また、摺動材料と周囲の物質の化学反応により摺動材料表面に透明膜が形成されることがある。具体例としては、エンジン油中で鋼を摩擦した場合におけるZnDTPの反応被膜や大気中で鋼を摩擦した場合における酸化膜が挙げられる。これらはいずれも透明である。さらに、摺動面間に物体としての透明膜は存在しないが光を透過する領域が存在する場合がある。具体例としては、上記の空気中や真空中で表面粗さを持つ表面同士が摺動する場合における表面粗さの谷部などである。このような場合においても、その領域の厚さ分布を測定することは有益である。なぜなら膜厚ゼロ点の分布は真実接触点分布を意味するからである。
(Importance of measuring transparent film thickness distribution)
In the sliding portion of the mechanical element, a transparent film is often present between the sliding surfaces. For example, many sliding parts are lubricated with a liquid such as oil, and these liquids are often transparent, so that a transparent film exists between the sliding surfaces. In addition, a transparent film may be formed on the surface of the sliding material due to a chemical reaction between the sliding material and surrounding substances. Specific examples include a ZnDTP reaction film when the steel is rubbed in engine oil and an oxide film when the steel is rubbed in the atmosphere. All of these are transparent. Further, although the transparent film as an object does not exist between the sliding surfaces, there may be a region through which light is transmitted. As a specific example, there is a valley portion of the surface roughness when the surfaces having the surface roughness slide with each other in the air or vacuum. Even in such a case, it is useful to measure the thickness distribution of the region. This is because the distribution of zero film thickness points means the distribution of true contact points.

これらの透明膜厚さ分布は摩擦特性に影響するため、透明膜厚さ分布を測定することは摺動部設計において重要である。 Since these transparent film thickness distributions affect the friction characteristics, it is important to measure the transparent film thickness distribution in the design of sliding parts.

(光干渉法)
透明膜厚さ分布、特に油膜厚さ分布の測定方法として広く普及している手法に「光干渉法」がある。これは光の干渉を用いて透明膜厚さを測定する手法である。
(Optical interferometry)
The "optical interferometry" is a widely used method for measuring the transparent film thickness distribution, especially the oil film thickness distribution. This is a method of measuring the transparent film thickness using the interference of light.

光干渉法の原理は以下のとおりである。すなわち、摺動材の一方を光を透過する材質で構成し、もう一方の摺動材の材料を光を反射する材質で構成する。これらの摺動材はそれぞれ“透明摺動材”、“反射摺動材”とよばれる場合がある。光源から透明摺動材を透過させて透明膜越しにもう一方の摺動材へ光を照射する。このとき、透明摺動材と透明膜の屈折率差を適切に設定し、その界面で光を一部反射し一部透過するようにする。屈折率差が小さく反射が十分に生じない場合には、透明摺動材の透明膜と接する表面に部分反射膜を成膜する場合もある。 The principle of the optical interferometry is as follows. That is, one of the sliding materials is made of a material that transmits light, and the material of the other sliding material is made of a material that reflects light. These sliding materials may be referred to as "transparent sliding material" and "reflective sliding material", respectively. The transparent sliding material is transmitted from the light source, and the other sliding material is irradiated with light through the transparent film. At this time, the difference in refractive index between the transparent sliding material and the transparent film is appropriately set so that light is partially reflected and partially transmitted at the interface. When the difference in refractive index is small and reflection is not sufficiently generated, a partially reflective film may be formed on the surface of the transparent sliding material in contact with the transparent film.

透明膜を透過した光は反射摺動材で反射され、再び透明膜および透明摺動材を透過して光源方向に戻る。本実施の形態では、透明摺動材-透明膜界面で反射された光を「表面反射光」、反射摺動材で反射された光を「裏面反射光」という。表面反射光と裏面反射光は光路差が生じるため光干渉を生じ、反射摺動材表面を透明摺動材側から透明膜越しに光検出器(カメラ等)で観察すると、光干渉が観察される。この光干渉の色(波長と輝度)には光路差、すなわち透明膜厚さが影響するため、干渉色から透明膜厚さに関する情報が得られる。これが光干渉法の原理である。 The light transmitted through the transparent film is reflected by the reflective sliding material, passes through the transparent film and the transparent sliding material again, and returns to the light source direction. In the present embodiment, the light reflected at the transparent sliding material-transparent film interface is referred to as "front surface reflected light", and the light reflected by the reflective sliding material is referred to as "back surface reflected light". Light interference occurs between the front surface reflected light and the back surface reflected light due to an optical path difference, and when the surface of the reflected sliding material is observed from the transparent sliding material side through the transparent film with a light detector (camera, etc.), light interference is observed. Ru. Since the optical path difference, that is, the transparent film thickness affects the color (wavelength and brightness) of this optical interference, information on the transparent film thickness can be obtained from the interference color. This is the principle of optical interferometry.

<本実施の形態の測定原理>
本実施の形態に係る測定装置10は、上記の光干渉による膜厚の測定方法に対して、上述した問題を解決することを意図している。以下、本実施の形態に係る測定装置10の測定原理についてより詳細に説明する。本実施の形態では、測定に用いる単色光の波長の数を3波長とした形態を例示して説明する。
<Measurement principle of this embodiment>
The measuring device 10 according to the present embodiment is intended to solve the above-mentioned problem with respect to the above-mentioned method for measuring the film thickness by optical interference. Hereinafter, the measurement principle of the measuring device 10 according to the present embodiment will be described in more detail. In this embodiment, an embodiment in which the number of wavelengths of monochromatic light used for measurement is three wavelengths will be illustrated and described.

各単色光(j=1、2、3)の反射光輝度Iは、I1j、I2jを各々表面における反射光(表面反射光)の強さ、裏面における反射光(裏面反射光)の強さとし、λを波長、tを測定対象の光学膜厚として、以下の(式1)で表される。図2(a)は、3波長の各々を、λ=600nm、λ=560nm、λ=470nmとした場合の(式1)をプロットした図である。なお、以下の説明では、測定装置10の測定対象を、一例として油膜とした場合を例示して説明する。

Figure 2022045215000002

The reflected light brightness I j of each monochromatic light (j = 1, 2, 3) is the intensity of the reflected light ( front surface reflected light) on the front surface and the reflected light (back surface reflected light) on the back surface of I 1 j and I 2 j, respectively. It is expressed by the following (Equation 1), where λ j is the intensity and t is the optical film thickness to be measured. FIG. 2A is a plot of (Equation 1) in the case where each of the three wavelengths is λ 1 = 600 nm, λ 2 = 560 nm, and λ 3 = 470 nm. In the following description, the case where the measurement target of the measuring device 10 is an oil film as an example will be described.

Figure 2022045215000002

ここで、輝度については、データ処理上は0~255の整数値で扱うことが多いが、本実施の形態では、0から1の範囲の数値で定義する。また、各単色光の反射光輝度Iはそれぞれ撮影画像のRGB輝度に対応しており、カメラの分光感度に対しクロストーク現象が発生しない範囲で波長組合せを選択する。以下の説明では、3波長の各々を、λ=600nm、λ=560nm、λ=470nmとしている。 Here, the luminance is often treated as an integer value from 0 to 255 in data processing, but in the present embodiment, it is defined by a numerical value in the range of 0 to 1. Further, the reflected light brightness Ij of each monochromatic light corresponds to the RGB brightness of the captured image, and the wavelength combination is selected within the range where the crosstalk phenomenon does not occur with respect to the spectral sensitivity of the camera. In the following description, each of the three wavelengths is λ 1 = 600 nm, λ 2 = 560 nm, and λ 3 = 470 nm.

上記(式1)は、上述した従来技術における問題点のうち、乱反射問題および吸収問題による輝度の減少がない場合の式であり、乱反射問題および吸収問題を考慮した場合の反射光強度は、以下の(式2)のように変更される。

Figure 2022045215000003

ここで、Rは裏面における乱反射による減衰率、kは測定対象である油膜の吸収係数である。 The above (Equation 1) is an equation when there is no decrease in brightness due to the diffuse reflection problem and the absorption problem among the problems in the above-mentioned prior art, and the reflected light intensity when the diffuse reflection problem and the absorption problem are taken into consideration is as follows. It is changed as in (Equation 2) of.
Figure 2022045215000003

Here, R is the attenuation rate due to diffused reflection on the back surface, and k is the absorption coefficient of the oil film to be measured.

一方、色相Hは、RGB輝度(I、I、I)を用いて、以下の(式3)で定義される。

Figure 2022045215000004

ただし、(0≦H≦2π) On the other hand, the hue H is defined by the following (Equation 3) using RGB luminance ( Ir , Ig , Ib ).
Figure 2022045215000004

However, (0 ≦ H ≦ 2π)

従来技術においては、色相について各輝度の大小関係で場合分けした式を用いる場合もあるが、本実施の形態では、取り扱いの容易さを勘案して逆三角関数およびラジアンで色相を定義する。(式3)に示す色相の式に、上記の単色光による反射光を、I=I、I=I、I=Iとして代入すると、(式3)は以下に示す(式4)のようになる。

Figure 2022045215000005
In the prior art, there are cases where a formula is used in which the hue is classified according to the magnitude of each luminance, but in the present embodiment, the hue is defined by an inverse trigonometric function and a radian in consideration of ease of handling. Substituting the reflected light from the above monochromatic light into the hue equation shown in (Equation 3) as Ir = I 1 , Ig = I 2 , and I b = I 3 , (Equation 3) is shown below (Equation 3). It becomes like the formula 4).
Figure 2022045215000005

ここで、Rおよびkが波長によらず等しいと仮定し、さらに光量および受光感度を、表面反射光強度についてI11=I12=I13、裏面反射光強度についてI21=I22=I23が成立するように調整した場合、(式2)を(式4)に代入して整理すると以下の(式5)が得られる。

Figure 2022045215000006
Here, it is assumed that R and k are equal regardless of the wavelength, and the amount of light and the light receiving sensitivity are determined by I 11 = I 12 = I 13 for the front surface reflected light intensity and I 21 = I 22 = I 23 for the back surface reflected light intensity. When is adjusted so that is satisfied, the following (Equation 5) can be obtained by substituting (Equation 2) into (Equation 4) and rearranging.
Figure 2022045215000006

すなわち、光量および受光感度を事前に調整(キャリブレーション)すれば、(式5)に示すように、色相Hは各単色光の波長と光学膜厚のみに依存する。このため、本実施の形態に係る測定装置10によれば、上述した乱反射問題および吸収問題の影響を抑制することができる。このことは、色相HはRGB輝度の大きさとは無関係であるため、Rおよびkによって較正曲線における振幅(すなわち、RGB輝度の大きさ)が減少しても、I1j、I2jによって決定される振幅中心と、振幅の減衰率(R、k)が各単色光で等しければ、色相Hは変化しないことによる。 That is, if the amount of light and the light receiving sensitivity are adjusted (calibrated) in advance, the hue H depends only on the wavelength and the optical film thickness of each monochromatic light, as shown in (Equation 5). Therefore, according to the measuring device 10 according to the present embodiment, the influences of the diffused reflection problem and the absorption problem described above can be suppressed. This is determined by I 1j and I 2j even if the amplitude (ie, the magnitude of the RGB brightness) in the calibration curve is reduced by R and k because the hue H is independent of the magnitude of the RGB brightness. This is because the hue H does not change if the center of the amplitude and the attenuation rate (R, k) of the amplitude are equal for each monochromatic light.

図2(b)は、(式5)に基づいて、光学膜厚が0nm~1500nmの範囲で作成した、光学膜厚tと色相Hの較正曲線を示している。ここで、上述したように、本実施の形態では、波長をλ=600nm、λ=560nm、λ=470nmとしている。この較正曲線は、カメラ20、レンズ(顕微鏡18)の組み合わせによらず、選択した単色光の波長組み合わせから(式5)を用いて解析的に算出される。そのため、事前較正が不要となり、上述した、光学膜厚と色相の較正曲線が観測系(カメラ、レンズ、光源)固有のものとなるという較正曲線固有補正問題を解決することができる。 FIG. 2B shows a calibration curve of the optical film thickness t and the hue H created in the range of the optical film thickness of 0 nm to 1500 nm based on (Equation 5). Here, as described above, in the present embodiment, the wavelengths are λ 1 = 600 nm, λ 2 = 560 nm, and λ 3 = 470 nm. This calibration curve is analytically calculated using (Equation 5) from the wavelength combination of the selected monochromatic light regardless of the combination of the camera 20 and the lens (microscope 18). Therefore, pre-calibration becomes unnecessary, and the above-mentioned calibration curve-specific correction problem that the optical film thickness and hue calibration curves are unique to the observation system (camera, lens, light source) can be solved.

<色相から光学膜厚への一括換算:光学膜厚変換処理>
以上から、光学膜厚と色相の較正曲線が解析的に導出され、(式5)を用いて色相を光学膜厚に変換することができる。しかしながら、上述したように色相は約250nmの周期で折り返すため(図2(b)では、周期P1、P2、P3を示している)、一つの色相に対し複数の膜厚候補値が存在するという、上述した較正曲線周期問題と同様の問題は依然と解決されていない。つまり、(式5)を用いても換算可能範囲が折り返し周期内に限られてしまうという問題は残っている。そのため、本実施の形態では、色相が光学膜厚0nmから図2(b)に点線Rで示される1040nmまでの範囲で単調減少すること、さらに同値となる膜厚同士は約250nm離れていることに着目し、膜厚を一意に決定する新規な方法を採用している。ここで、色相の単調減少について付言すると、図2(b)に示すように、色相は約250nmの光学膜厚の周期(図2(b)に示す、P1、P2、P3の周期)で0~2πの範囲の値をとるが、各周期内では単調減少しているので、各周期の曲線を連続させた場合、光学膜厚全体が単調減少するということである。ただし、色相が単調減少する範囲、繰り返しの光学膜厚の周期は、3波長の組み合わせによって変化する。以下、この考え方に従った色相から光学膜厚への変換方法(以下、「光学膜厚変換処理」という場合がある)について詳細に説明する。
<Batch conversion from hue to optical film thickness: optical film thickness conversion process>
From the above, the calibration curve of the optical film thickness and the hue is analytically derived, and the hue can be converted into the optical film thickness by using (Equation 5). However, as described above, since the hue is folded back at a cycle of about 250 nm (in FIG. 2B, the cycles P1, P2, and P3 are shown), it is said that there are a plurality of film thickness candidate values for one hue. , The same problem as the calibration curve period problem described above has not been solved yet. That is, even if (Equation 5) is used, the problem that the convertible range is limited within the folding cycle remains. Therefore, in the present embodiment, the hue is monotonically decreased in the range from the optical film thickness of 0 nm to 1040 nm shown by the dotted line R in FIG. 2 (b), and the film thicknesses having the same value are separated by about 250 nm. A new method is adopted to uniquely determine the film thickness. Here, to add to the monotonous decrease in hue, as shown in FIG. 2 (b), the hue is 0 in the period of the optical film thickness of about 250 nm (the period of P1, P2, P3 shown in FIG. 2 (b)). It takes a value in the range of ~ 2π, but it decreases monotonically within each cycle, so when the curves of each cycle are continued, the entire optical film thickness decreases monotonically. However, the range in which the hue is monotonically reduced and the period of the repeated optical film thickness change depending on the combination of the three wavelengths. Hereinafter, a method for converting a hue to an optical film thickness according to this concept (hereinafter, may be referred to as “optical film thickness conversion process”) will be described in detail.

光学膜厚分布は試料の表面の凹凸、傾斜等によって決定されるが、解像度が十分に大きい場合はレーザーテクスチャなどの極端な段差やキズなどの欠陥を除けば、隣接画素間の光学膜厚の変化は高々数nm~10数nm範囲に留まると考えられる。その場合、ある参照画素(以下、「基準画素」)の光学膜厚とその隣接画素の色相が既知であれば、隣接画素の光学膜厚は色相から得られる複数の光学膜厚値候補のうち、基準画素の光学膜厚に最も近いもので一意に決定することができる。ただし、この決定方法は、基準画素の光学膜厚(以下、「基準膜厚」)の近傍で色相が単調変化することを前提条件としている。すなわち、最初に任意の基準画素の光学膜厚を所定の方法で決定しさえすれば、上記仮定の下に、基準画素から順に光学膜厚を決定していくことができる。つまり、最終的に基準画素の周囲の色相すべてについて、一意に光学膜厚に換算することができる。以下、本光学膜厚変換処理についてより具体的に説明する。 The optical film thickness distribution is determined by the unevenness, inclination, etc. of the surface of the sample, but if the resolution is sufficiently large, the optical film film between adjacent pixels can be measured except for extreme steps such as laser texture and defects such as scratches. It is considered that the change stays in the range of several nm to several ten and several nm at most. In that case, if the optical film thickness of a reference pixel (hereinafter, "reference pixel") and the hue of the adjacent pixel are known, the optical film thickness of the adjacent pixel is among a plurality of optical film thickness value candidates obtained from the hue. , The one closest to the optical film thickness of the reference pixel can be uniquely determined. However, this determination method is based on the precondition that the hue changes monotonically in the vicinity of the optical film thickness of the reference pixel (hereinafter, “reference film thickness”). That is, as long as the optical film thickness of an arbitrary reference pixel is first determined by a predetermined method, the optical film thickness can be determined in order from the reference pixel under the above assumption. That is, finally, all the hues around the reference pixel can be uniquely converted into the optical film thickness. Hereinafter, the present optical film thickness conversion process will be described more specifically.

[手順1]:任意の基準画素を選択し、基準画素の色相に対応する光学膜厚(以下、「基準膜厚」という場合がある)を決定する。ここで、基準膜厚の決定は、複数の光学膜厚値候補の中から、所定の手順に基づいて一つの光学膜厚に決定することをいう。所定の手順の1つは手動によるもので、例えば人間が基準画素の色相を視認し、あるいは経験則により、図2(b)の色相曲線と対比してどの色相の周期に入るかを決定し、その周期の光学膜厚を基準画素の光学膜厚として採用する。基準膜厚の決定方法には、手動によるもの以外に自動で決定する方法があるが、自動で基準膜厚を決定する方法(基準膜厚決定処理)については後述する。 [Procedure 1]: An arbitrary reference pixel is selected, and an optical film thickness corresponding to the hue of the reference pixel (hereinafter, may be referred to as “reference film thickness”) is determined. Here, the determination of the reference film thickness means to determine one optical film thickness from a plurality of optical film thickness value candidates based on a predetermined procedure. One of the predetermined procedures is manual, for example, a human visually recognizes the hue of the reference pixel, or by a rule of thumb, determines which hue cycle to enter in comparison with the hue curve of FIG. 2 (b). , The optical film thickness of that period is adopted as the optical film thickness of the reference pixel. As a method for determining the reference film thickness, there is a method for automatically determining the standard film thickness other than the manual method, and a method for automatically determining the standard film thickness (reference film thickness determination process) will be described later.

[手順2]:隣接する画素に移動し、色相に対応する光学膜厚値候補の中から移動元(基準画素)に近い光学膜厚を選択する。むろん、この選択は自動的に行うことができる。
[手順3]:[手順2]を直線的に実行し、干渉画像の端部に到達するまで繰り返す。
[手順4]:基準画素に戻り、[手順2]、[手順3]をすべての方向について繰り返し、干渉画像の全体について光学膜厚分布に換算する。
[Procedure 2]: Move to an adjacent pixel and select an optical film thickness close to the moving source (reference pixel) from the optical film thickness value candidates corresponding to the hue. Of course, this selection can be made automatically.
[Procedure 3]: [Procedure 2] is executed linearly and repeated until the end of the interference image is reached.
[Procedure 4]: Returning to the reference pixel, [Procedure 2] and [Procedure 3] are repeated in all directions to convert the entire interference image into an optical film thickness distribution.

図3(a)を参照して、上記光学膜厚変換処理の手順について具体的に説明する。図3(a)では、4個の画素PX1、PX2、PX3、PX4が横方向に並んでいる。 The procedure of the optical film thickness conversion process will be specifically described with reference to FIG. 3A. In FIG. 3A, four pixels PX1, PX2, PX3, and PX4 are arranged in the horizontal direction.

まず、[手順1]で基準画素を画素PX1に選択し、該基準画素の色相値を決定する。
図3(a)の例では、基準画素の色相値が3.14と決定された場合を例示している。色相値が決定されると対応する光学膜厚値候補が決定されるので、例えば視認によって人が光学膜厚値候補の中からいずれかを決定し、当該色相値が図2(b)に示す色相曲線のいずれの周期内にあるか決定する。その結果、光学膜厚の候補(767nm、511nm、256nm)の中から基準画素の色相値に対応する光学膜厚は、511nmと決定される。
First, in [Procedure 1], the reference pixel is selected as the pixel PX1, and the hue value of the reference pixel is determined.
In the example of FIG. 3A, the case where the hue value of the reference pixel is determined to be 3.14 is illustrated. When the hue value is determined, the corresponding optical film thickness value candidate is determined. Therefore, for example, a person determines one of the optical film thickness value candidates by visual inspection, and the hue value is shown in FIG. 2 (b). Determine which period of the hue curve it is in. As a result, the optical film thickness corresponding to the hue value of the reference pixel is determined to be 511 nm from the optical film thickness candidates (767 nm, 511 nm, 256 nm).

以下[手順2]に従って、基準画素であるPX1に隣接する画素PX2の色相値が2.09であると自動的に決定され、周期P2の範囲において光学膜厚が527nmであると自動的に決定される。以下、画素PX3、PX4についても同様である。 Hereinafter, according to [Procedure 2], the hue value of the pixel PX2 adjacent to the reference pixel PX1 is automatically determined to be 2.09, and the optical film thickness is automatically determined to be 527 nm in the range of the period P2. Will be done. Hereinafter, the same applies to the pixels PX3 and PX4.

上述の方法は、従来知られている白色光源に対する位相シフト法に近いが、位相シフト法では色相についてアンラッピング処理を行う必要があり、そのため後述するフィルタリング処理およびフィルタリング除去処理が煩雑になる。そこで、本実施の形態では、色相を変換せず色相のままで取り扱うこととしている。 The above-mentioned method is similar to the phase shift method for a white light source which is conventionally known, but the phase shift method requires unwrapping processing for hue, which complicates the filtering processing and the filtering removal processing described later. Therefore, in the present embodiment, the hue is not converted and is handled as it is.

<実施例>
図4を参照して、本実施の形態に係る測定装置10の効果について説明する。図4(a)は、図9(b)に示す部分摩耗を含む干渉画像を変換して得られた色相分布を示し、図4(b)は図4(a)に対し本実施の形態に係る光学膜厚変換処理を施して得られた光学膜厚分布を示している。なお、図4(b)では見やすさのため摺動部以外をマスキングしている。図9(b)に示すように、元の干渉画像においては摩耗によりRGB輝度が大きく低下しているにもかかわらず、色相を用いることでデータとして問題のないレベルの光学膜厚が得られていることがわかる。
<Example>
The effect of the measuring device 10 according to the present embodiment will be described with reference to FIG. 4 (a) shows the hue distribution obtained by converting the interference image including the partial wear shown in FIG. 9 (b), and FIG. 4 (b) shows the present embodiment with respect to FIG. 4 (a). The optical film thickness distribution obtained by performing the optical film thickness conversion process is shown. In FIG. 4B, parts other than the sliding portion are masked for easy viewing. As shown in FIG. 9B, although the RGB brightness of the original interference image is greatly reduced due to wear, the use of hue provides a level of optical film thickness that does not cause any problem as data. You can see that there is.

<基準膜厚決定処理>
ここで、基準画素を選定し、基準膜厚を決定する処理を自動的に実行する基準膜厚決定処理について説明する。図2(a)は、測定波長である3波長の各々を、λ=600nm、λ=560nm、λ=470nmとした場合の光学膜厚とRGB輝度の較正曲線を示した図であった。乱反射問題、あるいは吸収問題によるRGB輝度の低下がなく、光学膜厚がこの範囲に収まっている場合、干渉画像の各画素のRGB輝度はこの較正曲線上のいずれかのRGB輝度の組み合わせと一致するはずである。このことを踏まえ、注目画素のRGB輝度Ipjと、図2(a)に示すRGB較正曲線上の任意の光学膜厚tに対応する反射光のRGB輝度値I(t)の誤差ノルムv(t)を下記の(式6)で定義する。

Figure 2022045215000007
<Reference film thickness determination process>
Here, a reference film thickness determination process for selecting a reference pixel and automatically executing a process for determining the reference film thickness will be described. FIG. 2A is a diagram showing calibration curves of optical film thickness and RGB brightness when each of the three measurement wavelengths is λ 1 = 600 nm, λ 2 = 560 nm, and λ 3 = 470 nm. rice field. If there is no decrease in RGB brightness due to diffuse reflection or absorption problems and the optical film thickness is within this range, the RGB brightness of each pixel of the interference image matches any combination of RGB brightness on this calibration curve. Should be. Based on this, the error norm v between the RGB luminance I pj of the pixel of interest and the RGB luminance value I j (t) of the reflected light corresponding to the arbitrary optical film thickness t on the RGB calibration curve shown in FIG. 2 (a). (T) is defined by the following (Equation 6).
Figure 2022045215000007

いま、各画素の色相値から得られる複数の膜厚候補値を(式6)に代入して得られる複数の誤差ノルムのうち、最小となるものをその画素の最小誤差ノルム、それを与える膜厚候補値を暫定膜厚値と定義する。RGB輝度が全く低下していない画素ではこの最小誤差ノルムは0となり、この最小誤差ノルムを与える暫定膜厚値が実際の光学膜厚値となるはずである。 Now, among the plurality of error norms obtained by substituting the plurality of film thickness candidate values obtained from the hue values of each pixel into (Equation 6), the smallest one is the minimum error norm of the pixel, and the film giving it. The thickness candidate value is defined as the provisional film thickness value. This minimum error norm should be 0 for pixels in which the RGB luminance is not reduced at all, and the provisional film thickness value giving this minimum error norm should be the actual optical film thickness value.

しかしながら、実際はほとんどの画素は乱反射問題や吸収問題によってRGB輝度が低下していることに起因して最小誤差ノルムは0とならない。さらに輝度低下が大きければ間違った暫定膜厚値が選ばれている可能性があり、その場合は最小誤差ノルムも大きいと考えられる。逆に言えば、最小誤差ノルムが小さい画素は輝度低下が小さく信頼性が高いといえるため、そのような画素を基準画素に選択すればよい。具体的には以下の手順によって最も信頼性の高い基準画素を自動選択し、基準膜厚を自動決定する。
[手順1]:各画素の色相値から複数の膜厚候補値を算出する。これらを(式6)に代入して得られる複数の誤差ノルムのうち、最小となるものをその画素の最小誤差ノルム、それを与える膜厚候補値を暫定膜厚値として記憶する。
[手順2][手順1]の処理をすべての画素に対し行い、最も最小誤差ノルムが小さい画素を基準画素とし、その暫定膜厚値を基準膜厚値とする。
However, in reality, the minimum error norm is not 0 for most pixels because the RGB brightness is lowered due to the diffused reflection problem and the absorption problem. Further, if the decrease in brightness is large, it is possible that the wrong provisional film thickness value is selected, and in that case, the minimum error norm is also considered to be large. Conversely, it can be said that a pixel having a small minimum error norm has a small decrease in luminance and high reliability. Therefore, such a pixel may be selected as a reference pixel. Specifically, the most reliable reference pixel is automatically selected by the following procedure, and the reference film thickness is automatically determined.
[Procedure 1]: A plurality of film thickness candidate values are calculated from the hue values of each pixel. Of the plurality of error norms obtained by substituting these into (Equation 6), the smallest one is stored as the minimum error norm of the pixel, and the film film candidate value giving it is stored as a provisional film film value.
[Procedure 2] The processing of [Procedure 1] is performed on all the pixels, the pixel having the smallest minimum error norm is used as the reference pixel, and the provisional film thickness value thereof is used as the reference film thickness value.

上記基準膜厚決定処理により、信頼性の高い基準画素および基準膜厚値を自動で決定することが可能である。しかしながら、まれに特異画素を誤検出する可能性がある。その場合は、手動で輝度が低下していない画素を基準画素として選択し、その画素について上記[手順1]の処理を行い、光学膜厚値を自動決定すればよい。 By the above-mentioned reference film thickness determination process, it is possible to automatically determine a highly reliable reference pixel and a reference film thickness value. However, in rare cases, singular pixels may be erroneously detected. In that case, a pixel whose brightness has not been reduced may be manually selected as a reference pixel, the pixel may be subjected to the process of the above [Procedure 1], and the optical film thickness value may be automatically determined.

図3(b)を参照して、基準膜厚決定処理についてより具体的に説明する。図3(b)に示す例では、画素PX1の干渉色(RGB輝度:R=0.356、G=0.727、B=0.728)が色相に変換され、画素PX1の色相値が3.14となっている。この場合の光学膜厚の候補は図2(b)に示す周期P1、P2、P3に対応して、各々256nm、511nm、767nmとなる。このとき、これらの光学膜厚に対する誤差ノルムは、各々0.521、0.001、0.497となる。従って、画素PX1の最小誤差ノルムは0.001となる([手順1])。この場合の暫定膜厚値は511nmである。最小誤差ノルムをすべての画素について算出した結果、画素PX1の最小誤差ノルムが最も小さかったとすると、画素PX1が基準画素として選択され、基準膜厚は511nmと決定される。 The reference film thickness determination process will be described more specifically with reference to FIG. 3 (b). In the example shown in FIG. 3B, the interference color (RGB luminance: R = 0.356, G = 0.727, B = 0.728) of the pixel PX1 is converted into a hue, and the hue value of the pixel PX1 is 3. It is .14. Candidates for the optical film thickness in this case are 256 nm, 511 nm, and 767 nm, respectively, corresponding to the periods P1, P2, and P3 shown in FIG. 2 (b). At this time, the error norms for these optical film thicknesses are 0.521, 0.001, and 0.497, respectively. Therefore, the minimum error norm of the pixel PX1 is 0.001 ([Procedure 1]). The provisional film thickness value in this case is 511 nm. As a result of calculating the minimum error norm for all the pixels, assuming that the minimum error norm of the pixel PX1 is the smallest, the pixel PX1 is selected as the reference pixel, and the reference film thickness is determined to be 511 nm.

<色相フィルタリング処理>
上述した手順により、従来技術における問題を回避」しつつ、干渉画像を精度よく光学膜厚に換算することが可能となる。ここで、上記手順では、極端な段差などがなく画素間の光学膜厚の変化が数nm~10数nm留まっていることを前提としていた。しかしながら、実際にはカメラのノイズ、局所的なキズ、異物等によって色相が大きく乱れる画素が存在することがある(以下、「特異画素」)。例えば、図9(a)の干渉画像では摩耗こそ無いものの、構造欠陥により光学膜厚が急変する部分を多数含んでいる。このような場合、上記手順では隣接画素の情報をひきずるため、ある点が特異画素である場合、その画素における光学膜厚だけでなく、それ以降の画素の光学膜厚換算においても不正確な値が得られる。
<Hue filtering process>
By the above-mentioned procedure, it is possible to accurately convert the interference image into the optical film thickness while avoiding the problem in the prior art. Here, in the above procedure, it is assumed that there is no extreme step and the change in the optical film thickness between pixels remains at several nm to several ten and several nm. However, in reality, there may be pixels whose hue is greatly disturbed by camera noise, local scratches, foreign matter, etc. (hereinafter referred to as "unique pixels"). For example, although there is no wear in the interference image of FIG. 9A, there are many portions where the optical film thickness suddenly changes due to structural defects. In such a case, since the information of the adjacent pixel is dragged in the above procedure, when a certain point is a singular pixel, an inaccurate value is obtained not only in the optical film thickness of the pixel but also in the optical film thickness conversion of the subsequent pixels. Is obtained.

図5(a)を参照して、特異画素の影響について説明する。図5(a)<1>は、特異画素を含む干渉画像の一例であり、特異画素を基準画素とともに示している。図5(a)<2>は、図5(a)<1>に示す干渉画像から光学膜厚分布への変換過程を示している。図5(a)<2>に示すように。基準画素の位置Bから特異画素の位置Sにかけて直線状に光学膜厚への変換を行っていくと、位置Sから位置Bと反対側に光学膜厚の異常分布が広がっていく。従って、実用上はこの特異画素を除去することが必要となる。 The influence of the singular pixel will be described with reference to FIG. 5 (a). FIG. 5A <1> is an example of an interference image including singular pixels, and the singular pixels are shown together with the reference pixels. 5 (a) and <2> show the conversion process from the interference image shown in FIG. 5 (a) and <1> to the optical film thickness distribution. As shown in FIG. 5 (a) <2>. When the optical film thickness is linearly converted from the position B of the reference pixel to the position S of the singular pixel, the abnormal distribution of the optical film thickness spreads from the position S to the side opposite to the position B. Therefore, in practice, it is necessary to remove these peculiar pixels.

一般の画像処理においては、特異画素を除去するためにフィルタリング処理を施すことが多い。代表的なフィルタとしてガウシアンフィルタやメディアンフィルタが挙げられるが、これらはいずれも干渉画像のRGB輝度それぞれに対して個別に行うこととなる。通常の画像処理であればそのままで問題ないが、ここで取り扱う色相については通常のフィルタリング処理ではうまくいかない場合がある。なぜならば、色相はRGB輝度から彩度、明度の情報を除外し、R、G、Bの相対関係を抽出したものといえるが、干渉画像のRGB輝度に対するフィルタリング処理では彩度、明度の情報も含んでフィルタリングを行う。そのため、フィルタリング後の干渉画像における色相はそれらの影響を引きずってしまい、不自然な色の折り返しが発生するなど、光学膜厚換算に用いるには不適当な場合があるからである。このことは、乱反射問題、吸収問題等による輝度低下が大きい場合に特に顕著である。 In general image processing, filtering processing is often performed to remove peculiar pixels. Typical filters include a Gaussian filter and a median filter, both of which are to be performed individually for each of the RGB luminance of the interference image. If it is normal image processing, there is no problem as it is, but the hue handled here may not work well with normal filtering processing. This is because it can be said that the hue is obtained by excluding the saturation and brightness information from the RGB luminance and extracting the relative relationship between R, G, and B, but in the filtering process for the RGB luminance of the interference image, the saturation and brightness information is also included. Include and filter. Therefore, the hue in the interference image after filtering drags their influence, and unnatural color wrapping may occur, which may be unsuitable for use in terms of optical film thickness conversion. This is particularly remarkable when the brightness decrease due to the diffused reflection problem, the absorption problem, or the like is large.

そこで、本実施の形態では、干渉画像ではなく色相に対しガウシアンフィルタを適用する新たな方法を採用した。色相Hは、0≦H≦2πで定義されているため、色相に対し直接ガウシアンフィルタを適用してしまうと、0と2πの折り返し部分が本来は連続であるにもかかわらず離れてしまい、不適切な色相分布となってしまう。この問題を回避するため、本実施の形態では色相Hを、以下の(式7)に示すように正弦成分Hsと余弦成分Hcに分離する。

Figure 2022045215000008

Hs、Hcは、値が-1~1で定義され、かつ折り返しではないため、Hs、Hcに色相フィルタリング処理を行っても不連続は発生しない。そして、色相フィルタリング処理後の値をHs’、Hc’とすると、Hs’、Hc’を以下に示す(式8)で戻すことにより不連続を回避した色相フィルタリング処理後の色相H’が得られる。
Figure 2022045215000009
Therefore, in the present embodiment, a new method of applying a Gaussian filter to the hue instead of the interference image is adopted. Hue H is defined by 0 ≦ H ≦ 2π, so if a Gaussian filter is applied directly to the hue, the folded parts of 0 and 2π will be separated even though they are originally continuous, which is not possible. The hue distribution will be appropriate. In order to avoid this problem, in the present embodiment, the hue H is separated into a sine and cosine component Hs and a cosine component Hc as shown in the following (Equation 7).
Figure 2022045215000008

Since the values of Hs and Hc are defined by -1 to 1 and are not folded, discontinuity does not occur even if the hue filtering process is performed on Hs and Hc. Then, assuming that the values after the hue filtering process are Hs'and Hc', the hue H'after the hue filtering process that avoids the discontinuity can be obtained by returning Hs'and Hc'by the following (Equation 8). ..
Figure 2022045215000009

図9(a)に示す、多数の構造欠陥を含む干渉画像を変換して得られた色相フィルタリング処理前の色相分布(すなわち、(式5)による色相分布)を図5(b)<1>に、図5(b)<1>の色相分布に上記の手順で色相フィルタリング処理を行った色相分布(すなわち、(式8)に示す色相分布)を図5(b)<2>に示す。なお、本例ではフィルタとしてガウシアンフィルタを用いている。図5(b)<1>に示すように、色相フィルタリング処理前の色相分布には多数の色飛びが発生している。この色飛び自体は、欠陥部分の光学膜厚を示しているため一面では有意な情報であるが、換算誤差の要因となる。これに対し、図5(b)<2>を参照すると、色相フィルタリング処理により、これらの色飛びを、色相分布として問題のないレベルまで除去できている(つぶつぶが目だたなくなっている)ことがわかる。 FIG. 5 (b) <1> shows the hue distribution (that is, the hue distribution according to (Equation 5)) before the hue filtering process obtained by converting the interference image containing a large number of structural defects shown in FIG. 9 (a). 5 (b) <2> shows a hue distribution (that is, a hue distribution shown in (Equation 8)) obtained by subjecting the hue distribution of FIG. 5 (b) <1> to a hue filtering process according to the above procedure. In this example, a Gaussian filter is used as a filter. As shown in FIG. 5B <1>, a large number of color skips occur in the hue distribution before the hue filtering process. This color skipping itself is significant information on one side because it indicates the optical film thickness of the defective portion, but it causes a conversion error. On the other hand, referring to FIG. 5 (b) <2>, these color skips can be removed to a level where there is no problem in the hue distribution by the hue filtering process (the crushing is not noticeable). I understand.

<色相フィルタリングの復元処理:鮮明さ復元処理>
上記色相フィルタリング処理により色相画像に特異画素が含まれていても色相からの自動膜厚換算が可能となる。しかしながら、色相フィルタリング処理した後の光学膜厚分布の画像は、フィルタリングにより鮮明さが低下している。そのため、元の鮮明さへの復元を行うことが好ましい。以下、図6(a)を参照して、この鮮明さ復元処理について具体的に説明する。
<Hue filtering restoration process: sharpness restoration process>
The hue filtering process enables automatic film thickness conversion from hue even if the hue image contains singular pixels. However, the image of the optical film thickness distribution after the hue filtering process has reduced sharpness due to filtering. Therefore, it is preferable to restore the original sharpness. Hereinafter, this sharpness restoration process will be specifically described with reference to FIG. 6A.

まず、色相フィルタリング後の色相から光学膜厚を決定する。この決定は、上述した[手順1]~[手順4]に即して行う。図6(a)示す例では、画素PX1について520nm、画素PX2について530nm、画素PX3について550nmと決定されている。次に、各画素について、色相フィルタリング処理前の色相分布に対応する光学膜厚値候補の中から、色相フィルタリング処理後の色相から得た光学膜厚に最も近い光学膜厚の値を選択する。図6(a)に示す例では、画素PX1に対して511nm、画素PX2に対して527nm、画素PX3に対して579nmの値が選択されている。以上により、色相フィルタリング処理適用前の鮮明さを維持しつつ、特異画素が除かれた光学膜厚の分布画像を取得することができる。 First, the optical film thickness is determined from the hue after hue filtering. This determination is made in accordance with the above-mentioned [Procedure 1] to [Procedure 4]. In the example shown in FIG. 6A, the pixel PX1 is determined to be 520 nm, the pixel PX2 is determined to be 530 nm, and the pixel PX3 is determined to be 550 nm. Next, for each pixel, the value of the optical film thickness closest to the optical film thickness obtained from the hue after the hue filtering process is selected from the optical film film value candidates corresponding to the hue distribution before the hue filtering process. In the example shown in FIG. 6A, the values of 511 nm for the pixel PX1, 527 nm for the pixel PX2, and 579 nm for the pixel PX3 are selected. As described above, it is possible to acquire a distribution image of the optical film thickness from which peculiar pixels are removed while maintaining the sharpness before applying the hue filtering process.

図6(b)は、図9(a)に示す干渉画像に対して、上記色相フィルタリング処理を適用して取得された光学膜厚分布の画像を示している。図6(b)では、見やすさのために、非摺動面の測定に直接関係のない部分をマスキングで除去している。図6(b)を参照して明らかなように、多数の欠陥を含んでいる場合でも、上記色相フィルタリング処理を適用すれば精度の良い光学膜厚分布を取得することができる。 FIG. 6B shows an image of the optical film thickness distribution obtained by applying the above-mentioned hue filtering process to the interference image shown in FIG. 9A. In FIG. 6B, for the sake of visibility, the portion of the non-sliding surface that is not directly related to the measurement is removed by masking. As is clear with reference to FIG. 6B, even when a large number of defects are included, an accurate optical film thickness distribution can be obtained by applying the above-mentioned hue filtering process.

<膜厚欠損部補完処理>
上記色相フィルタリング処理を用いることにより、ほとんどの摺動面で光学膜厚換算が可能となるが、色相フィルタリング処理でも対応が困難な表面の状態がある。例えば、レーザーテクスチャなどによる極端な段差やキズなどの欠陥が含まれている場合である。
<Film thickness defect complement processing>
By using the above-mentioned hue filtering process, it is possible to convert the optical film thickness on most of the sliding surfaces, but there are some surface conditions that are difficult to handle even with the hue filtering process. For example, it is a case where a defect such as an extreme step or a scratch due to a laser texture is included.

図7を参照して、上記のような場合に有用な光学膜厚換算の方法、すなわち膜厚欠損部補完処理について説明する。まず図7<1>に示すように、任意の基準画素1を選択し、直線に沿って光学膜厚換算を行う。この際の光学膜厚換算は、上記光学膜厚換算処理の[手順1]~[手順4]の方法に従って行う。そして、光学膜厚が不連続となる画素に到達したらその部分で換算を打ち切る。以上の処理により特異画素を起点とした直線状のデータ欠損を含む光学膜厚分布が得られる。 With reference to FIG. 7, a method for converting an optical film thickness, that is, a film thickness defect complementing process, which is useful in the above cases, will be described. First, as shown in FIG. 7 <1>, an arbitrary reference pixel 1 is selected, and optical film thickness conversion is performed along a straight line. The optical film thickness conversion at this time is performed according to the methods of [Procedure 1] to [Procedure 4] of the above optical film thickness conversion process. Then, when the pixel reaches a pixel whose optical film thickness is discontinuous, the conversion is terminated at that portion. By the above processing, an optical film thickness distribution including linear data defects starting from a singular pixel can be obtained.

次に、図7<2>に示すように、基準画素1以外の、特異画素を避けてデータ欠損に到達できる基準画素2を選択し、基準画素2から再度直線に沿って換算を行う。この際、基準画素1に対する光学膜厚換算により光学膜厚値がわかっている点を基準点として選べば、光学膜厚値を手動で選択する必要がない。本処理により、基準画素1に対す光学膜厚換算におけるデータ欠損部分でも光学膜厚値が得られる。代わりに新たなデータ欠損部分が生じるが、当該新たなデータ欠損部分には、第1の基準画素による光学膜厚換算で決定している光学膜厚値をそのまま入力し、上記処理を、特異画素以外のデータ欠損部分がなくなるまで繰り返すことにより、図7<3>に示すように、特異画素を除いた領域の光学膜厚分布を取得することができる。 Next, as shown in FIG. 7 <2>, a reference pixel 2 other than the reference pixel 1 that can avoid the singular pixel and reach the data loss is selected, and conversion is performed again along the straight line from the reference pixel 2. At this time, if the point where the optical film thickness value is known by the optical film thickness conversion with respect to the reference pixel 1 is selected as the reference point, it is not necessary to manually select the optical film thickness value. By this processing, the optical film thickness value can be obtained even in the data missing portion in terms of the optical film thickness with respect to the reference pixel 1. Instead, a new data missing part occurs, but in the new data missing part, the optical film thickness value determined by the optical film thickness conversion by the first reference pixel is input as it is, and the above processing is performed on the peculiar pixel. As shown in FIG. 7 <3>, the optical film thickness distribution in the region excluding the singular pixel can be obtained by repeating until there is no data missing portion other than the above.

<測定処理>
図8を参照して、本実施の形態に係る測定装置10において実行される測定処理について説明する。図8は、測定装置10において実行される測定処理プログラムの処理の流れを示すフローチャートである。本測定処理プログラムは、例えば演算装置21が備える図示を省略するROM等の記憶手段に格納されており、図示を省略するCPUがROM等から本測定処理プログラムを読み出し、図示を省略するRAM等に展開して実行する。
<Measurement processing>
With reference to FIG. 8, the measurement process executed by the measuring device 10 according to the present embodiment will be described. FIG. 8 is a flowchart showing a processing flow of a measurement processing program executed by the measuring device 10. The measurement processing program is stored in, for example, a storage means such as a ROM (not shown) included in the arithmetic unit 21, and a CPU (not shown) reads the measurement processing program from the ROM or the like and stores the measurement processing program in a RAM or the like (not shown). Deploy and run.

図8を参照し、ステップS10で、カメラ20から干渉画像を取得する。 With reference to FIG. 8, in step S10, an interference image is acquired from the camera 20.

ステップS11で、ステップS10で取得した干渉画像を色相画像に変換する。 In step S11, the interference image acquired in step S10 is converted into a hue image.

ステップS12で、ステップS11で変換した色相画像に色相フィルタリング処理を行う。本色相フィルタリング処理では、色相を正弦成分、余弦成分に分離したうえで、フィルタとして例えばガウシアンフィルタを用いる。 In step S12, a hue filtering process is performed on the hue image converted in step S11. In this hue filtering process, after separating the hue into a sine component and a cosine component, for example, a Gaussian filter is used as a filter.

ステップS13で、上述した基準膜厚決定処理により、基準画素を選択し、基準膜厚を決定する。 In step S13, the reference pixel is selected by the reference film thickness determination process described above, and the reference film thickness is determined.

ステップS14で、上述した光学膜厚変換処理([手順1]~[手順4])を実行し、色相から光学膜厚への換算を行う。 In step S14, the above-mentioned optical film thickness conversion process ([Procedure 1] to [Procedure 4]) is executed to convert the hue to the optical film thickness.

ステップS15で、特異画素に起因する膜厚欠損部があるか判定し、当該判定が否定判定となった場合はステップS16に移行する。一方、当該判定が肯定判定となり、特異画素に起因する欠損部分が発生した場合には、膜厚欠損部補完処理を実行し、当該欠損部分が埋まるまで基準画素を変えて光学膜厚換算を繰り返す。なお、膜厚欠損部補完処理は必要に応じて行えばよい処理で、必ずしも必須の処理ではない。 In step S15, it is determined whether or not there is a film thickness defect due to the peculiar pixel, and if the determination is negative, the process proceeds to step S16. On the other hand, if the determination becomes affirmative and a defect portion due to a peculiar pixel occurs, the film thickness defect portion complement processing is executed, the reference pixel is changed until the defect portion is filled, and the optical film thickness conversion is repeated. .. It should be noted that the film thickness defect complementing process may be performed as needed, and is not necessarily an essential process.

ステップS16で、色相フィルタリング復元処理を行い、光学膜厚の画像の鮮明さを復元して、本測定処理プログラムを終了する。なお、色相フィルタリング復元処理は必要に応じて行えばよい処理で、必ずしも必須の処理ではない。 In step S16, the hue filtering restoration process is performed to restore the sharpness of the image of the optical film thickness, and the present measurement processing program is terminated. The hue filtering / restoring process may be performed as needed, and is not necessarily an essential process.

以上詳述したように、本実施の形態に係る測定装置によれば、干渉画像の色相を用いた場合でも、干渉画像全体の光学膜厚換算を高速に実行することできる。また、測定装置10における換算可能な光学膜厚のレンジは、色相が光学膜厚に対して単調減少する範囲、例えば測定波長の組み合わせが(λ=600nm、λ=560nm、λ=470nm)である場合は、0nm~1040nmとなる、このことによって、光学膜厚換算可能な光学膜厚範囲が、光学膜厚の1周期(約265nm)に限定されるという、較正曲線周期問題の解決が図られている。 As described in detail above, according to the measuring device according to the present embodiment, it is possible to perform high-speed conversion of the optical film thickness of the entire interference image even when the hue of the interference image is used. Further, the range of the convertible optical film thickness in the measuring device 10 is a range in which the hue monotonically decreases with respect to the optical film thickness, for example, the combination of measurement wavelengths is (λ 1 = 600 nm, λ 2 = 560 nm, λ 3 = 470 nm). ), It is 0 nm to 1040 nm, which solves the calibration curve cycle problem that the optical film thickness convertible optical film thickness range is limited to one cycle (about 265 nm) of the optical film thickness. Is planned.

ここで、図2(a)を参照すると、光学膜厚が0nm~200nmの範囲では、単調減少の勾配(傾き)が小さい区間があり、この区間では換算精度が悪化する恐れがある。その場合は、透明部材11の表面の半透明膜12の上にスペーサ層と呼ばれる透明膜を、例えば150nm~200nmの厚さで配置するとよい。このことにより、スペーサ層の厚さに屈折率を掛けた分だけ光学膜厚が実際よりも大きくなるため、精度が悪化する光学膜厚の範囲を回避することが可能である。 Here, referring to FIG. 2A, in the range of the optical film thickness of 0 nm to 200 nm, there is a section where the gradient (slope) of the monotonous decrease is small, and the conversion accuracy may deteriorate in this section. In that case, a transparent film called a spacer layer may be arranged on the translucent film 12 on the surface of the transparent member 11 with a thickness of, for example, 150 nm to 200 nm. As a result, the optical film thickness becomes larger than the actual thickness by the amount obtained by multiplying the thickness of the spacer layer by the refractive index, so that it is possible to avoid the range of the optical film thickness in which the accuracy deteriorates.

また、本実施の形態では隣接画素の情報を参照し、さらに必要に応じ膜厚欠損部補完処理を行うことから、局所的な光学膜厚ずれの発生による信頼性低下、という上記特異画素問題の発生も抑制されている。また、本実施の形態に係る測定装置10では、上記基準膜厚決定処理を採用すれば、処理全体が自動化されるので、実際には手動の較正作業が必要になるという、上記較正曲線手動補正問題についても改善されている。以上のように、本発明は、上述した従来技術の問題点の解決を図るとともに、摺動面における光学膜厚のリアルタイム観察の適用範囲、利便性、精度を向上させることが可能となっている。 Further, in the present embodiment, since the information of the adjacent pixels is referred to and the film thickness defect portion is complemented as necessary, the reliability is lowered due to the occurrence of local optical film thickness deviation, which is the above-mentioned peculiar pixel problem. The outbreak is also suppressed. Further, in the measuring device 10 according to the present embodiment, if the reference film thickness determination process is adopted, the entire process is automated, so that manual calibration work is actually required. The problem has also been improved. As described above, the present invention is capable of solving the above-mentioned problems of the prior art and improving the applicable range, convenience, and accuracy of real-time observation of the optical film thickness on the sliding surface. ..

10 測定装置
11 透明部材
12 半透明膜
13 反射部材
14 荷重機構
15 光源
16 バンドパスフィルタ
17 通路
18 顕微鏡
19 ハーフミラー
20 カメラ
21 演算装置
30 光学系
40 摺動系
P1、P2、P3 周期
PX1、PX2、PX3、PX4 画素
Pi 照射光
Pr 反射光
10 Measuring device 11 Transparent member 12 Translucent film 13 Reflective member 14 Load mechanism 15 Light source 16 Band pass filter 17 Passage 18 Microscope 19 Half mirror 20 Camera 21 Computing device 30 Optical system 40 Sliding system P1, P2, P3 Period PX1, PX2 , PX3, PX4 pixel Pi irradiation light Pr reflected light

Claims (7)

3波長以上の単色光を出射する光源と、
前記単色光を透過する第1の摺動部と、
前記第1の摺動部を透過した前記単色光の一部を反射し他部を透過する半透膜と、
前記半透膜を透過した前記単色光を反射する第2の摺動部と、
荷重を付与しながら前記第1の摺動部と前記第2の摺動部とを相対運動させる荷重付与部と、
前記半透膜で反射した前記単色光と前記第2の摺動部で反射した前記単色光を干渉させた干渉画像を取得する撮像部と、
前記干渉画像による前記単色光の波長域ごとの輝度分布画像を色相分布画像に変換し、予め定められた光学膜厚と色相値の対応関係に基づいて前記色相分布画像の画素ごとの色相値を光学膜厚に変換して光学膜厚分布画像を取得し、前記半透膜と前記第2の摺動部との間に形成された透明膜の光学膜厚分布を演算する演算部と、を含む
測定装置。
A light source that emits monochromatic light of three or more wavelengths,
The first sliding portion that transmits the monochromatic light and
A semipermeable membrane that reflects a part of the monochromatic light that has passed through the first sliding portion and transmits the other portion.
A second sliding portion that reflects the monochromatic light that has passed through the semipermeable membrane, and
A load-applying portion that causes the first sliding portion and the second sliding portion to move relative to each other while applying a load.
An image pickup unit that acquires an interference image in which the monochromatic light reflected by the semipermeable membrane and the monochromatic light reflected by the second sliding portion interfere with each other.
The brightness distribution image for each wavelength range of the monochromatic light based on the interference image is converted into a hue distribution image, and the hue value for each pixel of the hue distribution image is calculated based on a predetermined correspondence between the optical film thickness and the hue value. An arithmetic unit that acquires an optical film thickness distribution image by converting to an optical film thickness and calculates the optical film thickness distribution of the transparent film formed between the semitransparent film and the second sliding portion. Measuring equipment including.
前記演算部は、前記対応関係に複数の周期が存在することによって1の色相値に複数の光学膜厚が対応する場合に、予め定められた方法に基づいて前記色相分布画像における基準画素を選定し、前記基準画素の色相値の属する基準周期を決定して基準膜厚を決定し、以後隣接する画素の光学膜厚を前記基準周期の範囲で決定することによって、前記光学膜厚分布を演算する
請求項1に記載の測定装置。
The calculation unit selects a reference pixel in the hue distribution image based on a predetermined method when a plurality of optical film thicknesses correspond to one hue value due to the existence of a plurality of cycles in the correspondence. Then, the reference period to which the hue value of the reference pixel belongs is determined to determine the reference film thickness, and thereafter, the optical film thickness of the adjacent pixel is determined within the range of the reference period to calculate the optical film thickness distribution. The measuring device according to claim 1.
前記演算部は、色相分布画像に含まれる個々の画素について、各々の画素の色相値に対応する複数の光学膜厚候補を前記対応関係に基づいて選定し、各々の画素のRGB輝度と前記複数の光学膜厚候補の各々に対応するRGB輝度との誤差ノルムのうちの最小値である最小誤差ノルムを算出し、前記最小誤差ノルムの最も小さい画素を基準画素として選定し、前記基準画素の最小誤差ノルムに対応する光学膜厚を基準膜厚として決定する
請求項2に記載の測定装置。
The calculation unit selects a plurality of optical film thickness candidates corresponding to the hue values of each pixel for each pixel included in the hue distribution image based on the correspondence relationship, and the RGB brightness of each pixel and the plurality of pixels. The minimum error norm, which is the minimum value among the error norms with the RGB brightness corresponding to each of the optical film thickness candidates of, is calculated, the pixel with the smallest minimum error norm is selected as the reference pixel, and the minimum of the reference pixel is selected. The measuring device according to claim 2, wherein the optical film thickness corresponding to the error norm is determined as a reference film thickness.
前記演算部は、前記色相分布画像中に存在する特異画素に起因して、前記光学膜厚分布の演算において光学膜厚値の欠損が発生する場合には、前記光学膜厚値の欠損がなくなるまで基準画素を変えて前記光学膜厚分布の演算を繰り返し実行する
請求項2または請求項3に記載の測定装置。
The calculation unit eliminates the loss of the optical film thickness value when the loss of the optical film thickness value occurs in the calculation of the optical film thickness distribution due to the peculiar pixels existing in the hue distribution image. The measuring device according to claim 2 or 3, wherein the calculation of the optical film thickness distribution is repeatedly executed by changing the reference pixel up to.
前記演算部は、色相分布画像の各画素の色相値を正弦成分、余弦成分に分離し、前記正弦成分、前記余弦成分の各々に対して色相フィルタリング処理を行った後、逆正接をとって元に戻すことによって、前記色相分布画像における特異画素を除去するための色相フィルタリング処理をさらに実行する
請求項1から請求項4のいずれか1項に記載の測定装置。
The calculation unit separates the hue value of each pixel of the hue distribution image into a sine and cosine component, performs hue filtering processing on each of the sine and cosine component, and then takes an inverse tangent to the original. The measuring apparatus according to any one of claims 1 to 4, further performing a hue filtering process for removing singular pixels in the hue distribution image by returning to.
前記色相フィルタリング処理で用いるフィルタがガウシアンフィルタである
請求項5に記載の測定装置。
The measuring device according to claim 5, wherein the filter used in the hue filtering process is a Gaussian filter.
前記演算部は、前記色相フィルタリング処理前の色相分布に対応する光学膜厚値候補の中から、色相フィルタリング処理後の色相から得た光学膜厚に最も近い光学膜厚の値を選択することによって色相分布画像の鮮明さを復元する処理をさらに実行する
請求項5または請求項6に記載の測定装置。
The calculation unit selects an optical film thickness value closest to the optical film thickness obtained from the hue after the hue filtering process from the optical film thickness value candidates corresponding to the hue distribution before the hue filtering process. The measuring device according to claim 5 or 6, further performing a process of restoring the sharpness of the hue distribution image.
JP2020150784A 2020-09-08 2020-09-08 measuring device Active JP7294282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020150784A JP7294282B2 (en) 2020-09-08 2020-09-08 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020150784A JP7294282B2 (en) 2020-09-08 2020-09-08 measuring device

Publications (2)

Publication Number Publication Date
JP2022045215A true JP2022045215A (en) 2022-03-18
JP7294282B2 JP7294282B2 (en) 2023-06-20

Family

ID=80682157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020150784A Active JP7294282B2 (en) 2020-09-08 2020-09-08 measuring device

Country Status (1)

Country Link
JP (1) JP7294282B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071316A (en) * 2004-08-31 2006-03-16 Technos Kk Film thickness acquiring method
JP2008020318A (en) * 2006-07-12 2008-01-31 Tokyo Univ Of Agriculture & Technology Device and method for measuring film thickness
JP2017207316A (en) * 2016-05-17 2017-11-24 株式会社ジェイテクト Oil film thickness measuring device and measuring method
JP2020085769A (en) * 2018-11-29 2020-06-04 国立大学法人埼玉大学 Film thickness distribution measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071316A (en) * 2004-08-31 2006-03-16 Technos Kk Film thickness acquiring method
JP2008020318A (en) * 2006-07-12 2008-01-31 Tokyo Univ Of Agriculture & Technology Device and method for measuring film thickness
JP2017207316A (en) * 2016-05-17 2017-11-24 株式会社ジェイテクト Oil film thickness measuring device and measuring method
JP2020085769A (en) * 2018-11-29 2020-06-04 国立大学法人埼玉大学 Film thickness distribution measurement device

Also Published As

Publication number Publication date
JP7294282B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US9541381B2 (en) Surface topography interferometer with surface color
US20100007894A1 (en) Multilayer Structure Measuring Method and Multilayer Structure Measuring Apparatus
US20240004176A1 (en) Quantitative phase image generating method, quantitative phase image generating device, and program
CN109297414B (en) Confocal microscope and microscopy method for determining layer thicknesses
JPH109838A (en) Processing method of image and detecting method of defect of surface of substance
JP2005265655A (en) Spectral reflectance measuring device, film thickness measuring device and spectral reflectance measuring method
US9243889B2 (en) Device for optical coherence tomography
US5570431A (en) Process and apparatus for automatically characterizing, optimizing and checking a crack detection analysis method
TWI386617B (en) Reflective measurement method of film thickness by spectral image system
KR20070047309A (en) Transparent object height measurement
CN113281343B (en) System and method for detecting defects of multilayer transparent material
JP6697322B2 (en) Oil film thickness measuring device and measuring method
JP2013036872A (en) Raman spectrometer and raman spectroscopic measurement method
JP7294282B2 (en) measuring device
JP6813316B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP5958627B1 (en) Sliding device
CN107643269B (en) Cross handwriting time sequence identification method, system and computing device
JP2008020318A (en) Device and method for measuring film thickness
Turchette et al. Developing a more useful surface quality metric for laser optics
WO2022059710A1 (en) Defect inspecting device
Duque et al. A study of dispersion in chromatic confocal microscopy using digital image processing
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
US9282304B1 (en) Full-color images produced by white-light interferometry
JP2006113022A (en) Defect detection device and method on antireflection film
JP2017161278A (en) Method and apparatus for measuring refractive-index distribution of cylindrical optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7294282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150