JP2008020239A - Magnetic device - Google Patents

Magnetic device Download PDF

Info

Publication number
JP2008020239A
JP2008020239A JP2006190285A JP2006190285A JP2008020239A JP 2008020239 A JP2008020239 A JP 2008020239A JP 2006190285 A JP2006190285 A JP 2006190285A JP 2006190285 A JP2006190285 A JP 2006190285A JP 2008020239 A JP2008020239 A JP 2008020239A
Authority
JP
Japan
Prior art keywords
magnetic field
base material
magnetic
detection means
field detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006190285A
Other languages
Japanese (ja)
Inventor
Yusuke Uemichi
雄介 上道
Takuya Aizawa
卓也 相沢
Satoru Nakao
知 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006190285A priority Critical patent/JP2008020239A/en
Publication of JP2008020239A publication Critical patent/JP2008020239A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturizable magnetic device having excellent reliability, capable of lowering cost easily. <P>SOLUTION: This magnetic device 10 is equipped with the first base material 11 comprising a magnetic body, a magnetic field detection means 12 and a magnetic field application means 13 arranged to sandwich the first base material 11. The first base material 11 is constituted of an elastic body expandable/contractible by a pressure change, and for example, the magnetic field detection means 12 is arranged on one surface 11a side thereof, and the magnetic field application means 13 is arranged on the other surface 11b side thereof. The magnetic field detection means 12 is preferably a magnetic element wherein a resistance value or the like is changed by fluctuation of the magnetic field. The magnetic field application means 13 applied the magnetic field to the magnetic field detection means 12 through the first base material 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気センサを備えた磁気デバイス、詳しくは、圧力センサとして適用可能な磁気デバイスに関する。   The present invention relates to a magnetic device including a magnetic sensor, and more particularly to a magnetic device applicable as a pressure sensor.

従来、圧力を検出するための装置として、ブルドン管を利用した機械式の圧力センサが知られている。こうした機械式の圧力センサは、構成が複雑で、かつ大型であるという課題があった。そこで、機械式の圧力センサに代えて、近年では電子式の圧力センサが主流になりつつある。   Conventionally, a mechanical pressure sensor using a Bourdon tube is known as a device for detecting pressure. Such a mechanical pressure sensor has a problem that its configuration is complicated and large. Therefore, electronic pressure sensors are becoming mainstream in recent years instead of mechanical pressure sensors.

この電子式の圧力センサとしては、半導体基板などに圧力によって湾曲するダイアフラムを形成し、このダイアフラムの湾曲を検出することによって、圧力変化を検知するものが挙げられる。こうした電子式の圧力センサは、半導体微細加工技術を用いて形成することができ、機械的な可動部分が少なく、小型化も容易である。例えば、特許文献1には、金属製のダイアフラムの一面側と他面側のそれぞれに区画された空間を形成し、圧力変動によるダイアフラムの湾曲をホール素子によって検出する構成の圧力センサが記載されている。
特開平7−92047号公報
Examples of the electronic pressure sensor include a sensor that detects a change in pressure by forming a diaphragm that is curved by pressure on a semiconductor substrate or the like, and detecting the curvature of the diaphragm. Such an electronic pressure sensor can be formed using a semiconductor microfabrication technique, has few mechanical moving parts, and can be easily downsized. For example, Patent Document 1 describes a pressure sensor configured to form a space partitioned on one side and the other side of a metal diaphragm, and to detect the curvature of the diaphragm due to pressure fluctuation by a Hall element. Yes.
JP-A-7-92047

しかしながら、上述したような従来の電子式の圧力センサは、均一な厚みのダイアフラムを得るために、半導体基板を両面とも正確に位置合わせして異方性エッチングを行ってダイアフラムを形成するなど、製造コストがかるという課題があった。また、こうした半導体基板を薄板化したダイアフラムは過度の圧力によって破損しやすく、強度や耐久性の面でも課題があった。さらに、圧力に対する出力電圧のばらつきの補正や、温度変動による補正を行うための補償回路も必要となるなど、構成が複雑で高価であるという課題があった。   However, in order to obtain a diaphragm having a uniform thickness, the conventional electronic pressure sensor as described above is manufactured by accurately aligning both sides of a semiconductor substrate and performing anisotropic etching to form a diaphragm. There was a problem of cost. Moreover, the diaphragm which thinned such a semiconductor substrate was easy to be damaged by excessive pressure, and there existed a subject also in the surface of intensity | strength and durability. Furthermore, there is a problem that the configuration is complicated and expensive, such as a compensation circuit for correcting variations in output voltage with respect to pressure and correction due to temperature fluctuations.

本発明は、上記事情に鑑みてなされたもので、ダイアフラムを不要にすることによって、機械的な耐久性に優れた構造を持ち、かつ構造が簡略で信頼性の高い磁気デバイスを提供することを目的とする。   The present invention has been made in view of the above circumstances, and by providing a magnetic device having a structure excellent in mechanical durability and having a simple structure and high reliability by eliminating a diaphragm. Objective.

本発明の請求項1に記載の磁気デバイスは、弾性体からなる第一基材と、該第一基材を挟むように配される磁場検出手段と磁場印加手段とを少なくとも備えたことを特徴とする。
本発明の請求項2に記載の磁気デバイスは、請求項1において、剛性体からなる第二基材が、前記第一基材の磁場検出手段側に配されることを特徴とする。
本発明の請求項3に記載の磁気デバイスは、請求項1または2において、剛性体からなる第三基材が、前記第一基材の磁場印加手段側に配されることを特徴とする。
本発明の請求項4に記載の磁気デバイスは、請求項2において、前記磁場検出手段は、前記第一基材および/または前記第二基材の内部に配されることを特徴とする。
本発明の請求項5に記載の磁気デバイスは、請求項3において、前記磁場印加手段は、前記第一基材および/または前記第三基材の内部に配されることを特徴とする。
本発明の請求項6に記載の磁気デバイスは、請求項1において、前記第一基材は、内部空間を備えることを特徴とする。
The magnetic device according to claim 1 of the present invention includes at least a first base material made of an elastic body, a magnetic field detection means and a magnetic field application means arranged so as to sandwich the first base material. And
A magnetic device according to a second aspect of the present invention is the magnetic device according to the first aspect, characterized in that a second base material made of a rigid body is disposed on the magnetic field detection means side of the first base material.
A magnetic device according to a third aspect of the present invention is characterized in that, in the first or second aspect, a third base material made of a rigid body is disposed on the magnetic field application means side of the first base material.
A magnetic device according to a fourth aspect of the present invention is the magnetic device according to the second aspect, wherein the magnetic field detection means is arranged inside the first base material and / or the second base material.
A magnetic device according to a fifth aspect of the present invention is the magnetic device according to the third aspect, wherein the magnetic field applying means is arranged inside the first base material and / or the third base material.
A magnetic device according to a sixth aspect of the present invention is the magnetic device according to the first aspect, wherein the first base material includes an internal space.

本発明の磁気デバイスによれば、第一基材を挟むように磁場検出手段と磁場印加手段とを配することによって、弾性体である第一基材が圧力によって押し縮められると、磁場検出手段と磁場印加手段との距離が接近し、磁場印加手段から磁場検出手段に印加される磁場強度が変化する。この磁場強度の変化による磁場検出手段の抵抗値変化を検出することによって、第一基材に加わった圧力の変化を確実に検出することができるものである。   According to the magnetic device of the present invention, by arranging the magnetic field detection means and the magnetic field application means so as to sandwich the first base material, when the first base material, which is an elastic body, is compressed by pressure, the magnetic field detection means The magnetic field strength applied from the magnetic field applying means to the magnetic field detecting means changes. By detecting the change in the resistance value of the magnetic field detection means due to the change in the magnetic field strength, the change in the pressure applied to the first base material can be reliably detected.

こうした磁気デバイスは、弾性体である第一基材に磁場検出手段と磁場印加手段とを配するだけで製造できるので、製造コストを低減できる。また、ダイアフラムを不要にすることで、機械的な耐久性に優れている。さらに、補償回路を不要にすることによって、構造が簡略でかつ信頼性の高い、圧力センサとして適用可能な磁気デバイスを提供することが可能になる。   Since such a magnetic device can be manufactured simply by providing a magnetic field detecting means and a magnetic field applying means on the first base material that is an elastic body, the manufacturing cost can be reduced. In addition, by eliminating the need for a diaphragm, the mechanical durability is excellent. Furthermore, by eliminating the need for a compensation circuit, it is possible to provide a magnetic device that can be applied as a pressure sensor with a simple structure and high reliability.

以下、本発明に係る磁気デバイスを圧力センサとして用いた場合の一実施形態を図面に基づいて説明する。なお、本発明はこのような実施形態に限定されるものではない。   Hereinafter, an embodiment in which a magnetic device according to the present invention is used as a pressure sensor will be described with reference to the drawings. The present invention is not limited to such an embodiment.

図1(a)は、本発明の磁気デバイス(圧力センサ)の一例を示す断面図である。本発明の磁気デバイス10は、弾性体からなる第一基材11と、この第一基材11を挟むように配される磁場検出手段12および磁場印加手段13とを備えている。第一基材11は、圧力変化によって伸縮可能な弾性体によって構成され、例えば一面11a側に磁場検出手段12が、他面11b側に磁場印加手段13が配される。   Fig.1 (a) is sectional drawing which shows an example of the magnetic device (pressure sensor) of this invention. The magnetic device 10 of the present invention includes a first base material 11 made of an elastic body, and a magnetic field detection means 12 and a magnetic field application means 13 arranged so as to sandwich the first base material 11. The first base material 11 is composed of an elastic body that can be expanded and contracted by a change in pressure. For example, the magnetic field detecting means 12 is disposed on the one surface 11a side, and the magnetic field applying means 13 is disposed on the other surface 11b side.

磁場検出手段12は、磁場の変動によって抵抗値などが変化する磁気素子であればよい。また、磁場印加手段13は、第一基材11を介して磁場検出手段12に対して磁場を印加する。   The magnetic field detection means 12 may be a magnetic element whose resistance value changes due to fluctuations in the magnetic field. The magnetic field application unit 13 applies a magnetic field to the magnetic field detection unit 12 via the first base material 11.

このような構成の磁気デバイス(圧力センサ)によれば、図1(a)に示す状態の磁気デバイス10に対して、例えば第一基材11の一面11aに圧力がかかると、図1(b)に示すように、弾性体からなる第一基材11は、圧力Pによって押し縮められ、磁場印加手段13と磁場検出手段12との間隔Tは狭められる。   According to the magnetic device (pressure sensor) having such a configuration, for example, when pressure is applied to the one surface 11a of the first base material 11 with respect to the magnetic device 10 in the state illustrated in FIG. ), The first base material 11 made of an elastic body is compressed by the pressure P, and the interval T between the magnetic field applying means 13 and the magnetic field detecting means 12 is narrowed.

図2(a)に示すように、第一基材11が押し縮められる前には、磁場印加手段13から磁場強度M1の磁場が磁場検出手段12に印加されていたとすると、圧力が加えられて第一基材11が押し縮められ磁場印加手段13が磁場検出手段12に接近すると、図2(b)に示すように、磁場印加手段13から磁場検出手段12に印加される磁場強度M2は、圧力が加えられる前の磁場強度M1よりも大きくなる。   As shown in FIG. 2A, if the magnetic field having the magnetic field intensity M1 is applied from the magnetic field applying unit 13 to the magnetic field detecting unit 12 before the first base material 11 is compressed, pressure is applied. When the first base material 11 is compressed and the magnetic field application means 13 approaches the magnetic field detection means 12, the magnetic field intensity M2 applied from the magnetic field application means 13 to the magnetic field detection means 12 as shown in FIG. It becomes larger than the magnetic field strength M1 before the pressure is applied.

この時、磁場検出手段12に一定のセンス電流Aを流しておくと、磁場印加手段13と磁場検出手段12との間隔Tの変化(接近)によって磁場強度が増大すれば、磁場検出手段12の抵抗値Rが変化する。この磁場検出手段12の抵抗値Rの変化をセンス電流Aの変化として検出することで、第一基材11が押し縮められたこと、すなわち第一基材11にかかった圧力を検出することができる。   At this time, if a constant sense current A is allowed to flow through the magnetic field detection means 12, if the magnetic field strength increases due to the change (approach) of the interval T between the magnetic field application means 13 and the magnetic field detection means 12, the magnetic field detection means 12 The resistance value R changes. By detecting the change in the resistance value R of the magnetic field detection means 12 as the change in the sense current A, it is possible to detect that the first base material 11 has been compressed, that is, the pressure applied to the first base material 11. it can.

このように、本発明の磁気デバイス10によれば、第一基材11を挟むように磁場検出手段12と磁場印加手段13とを配することによって、弾性体である第一基材11が圧力によって押し縮められると、磁場検出手段12と磁場印加手段13との距離が接近し、磁場印加手段13から磁場検出手段12に印加される磁場強度が変化する。この磁場強度の変化による磁場検出手段12の抵抗値変化を検出することによって、第一基材11に加わった圧力の変化を確実に検出することができる。   As described above, according to the magnetic device 10 of the present invention, the first base material 11 that is an elastic body is pressurized by arranging the magnetic field detection means 12 and the magnetic field application means 13 so as to sandwich the first base material 11. The distance between the magnetic field detection means 12 and the magnetic field application means 13 approaches, and the strength of the magnetic field applied from the magnetic field application means 13 to the magnetic field detection means 12 changes. By detecting the change in the resistance value of the magnetic field detection means 12 due to the change in the magnetic field intensity, it is possible to reliably detect the change in the pressure applied to the first substrate 11.

磁気デバイス10は、弾性体である第一基材11の一面側と他面側にそれぞれ磁場検出手段12と磁場印加手段13とが配された簡易な構成であるので、ローコストに圧力を検出するセンサを構成できる。また、機械的な可動部分が少ないので、不具合の発生が少なく信頼性の高い圧力センサとして適用可能な磁気デバイス10を提供することができる。   Since the magnetic device 10 has a simple configuration in which the magnetic field detection means 12 and the magnetic field application means 13 are arranged on the one surface side and the other surface side of the first base material 11 that is an elastic body, the pressure is detected at a low cost. A sensor can be configured. Moreover, since there are few mechanical movable parts, the magnetic device 10 which can be applied as a highly reliable pressure sensor with less occurrence of problems can be provided.

第一基材11は、弾性体、例えば、スポンジなど多孔質の樹脂、ゴムなどから構成されれば良い。特に、シリコンゴムなどの耐熱性、耐寒性、撥水性に優れた弾性体を第一基材11に用いることによって、高温環境、屋外環境など、様々な環境下で確実に圧力を検出することができる。   The 1st base material 11 should just be comprised from porous bodies, such as an elastic body, for example, sponge, rubber | gum. In particular, by using an elastic body excellent in heat resistance, cold resistance, and water repellency such as silicon rubber for the first base material 11, pressure can be reliably detected under various environments such as a high temperature environment and an outdoor environment. it can.

磁場印加手段13は、一定強度の磁場を安定して発生し、磁場検出手段12に向けて磁場を印加できるものであればどのようなものでもよい。磁場印加手段13としては、例えば、コイルなどの電磁石、永久磁石などから構成されれば良い。特に、永久磁石を用いることによって、外部の電源などを用いることなく、安定した一定強度の磁場をローコストに形成することができる。   The magnetic field applying unit 13 may be any unit as long as it can stably generate a magnetic field with a constant intensity and apply a magnetic field toward the magnetic field detecting unit 12. The magnetic field applying unit 13 may be constituted by, for example, an electromagnet such as a coil, a permanent magnet, or the like. In particular, by using a permanent magnet, a stable and constant magnetic field can be formed at low cost without using an external power source or the like.

磁場検出手段12は、外部磁場(磁場印加手段によって印加される磁場)の強度変化を検出できるものであれば、どのようなものであってもよいが、例えば、磁気効果(MR)素子が好適に用いられる。こうした磁気効果(MR)素子は、半導体プロセスなどによってローコストに製造でき、かつ高精度に磁場の変化を検出可能である。   The magnetic field detection unit 12 may be any device as long as it can detect an intensity change of an external magnetic field (a magnetic field applied by the magnetic field application unit). For example, a magnetic effect (MR) element is preferable. Used for. Such a magnetic effect (MR) element can be manufactured at a low cost by a semiconductor process or the like, and can detect a change in a magnetic field with high accuracy.

磁場検出手段12として磁気効果(MR)素子を用いた場合、図2(a)に示すような第一基材11に圧力がかかっていない状態では、磁場検出手段12の磁化方向Bは、例えば、垂直方向Lに沿っている。そして、図2(b)に示すように、第一基材11に圧力が印加されて第一基材11が押し縮められ、磁場印加手段13が磁場検出手段12に接近すると、磁場検出手段12にかかる磁場の増加によって、磁場検出手段12の磁化方向Bが垂直方向Lに対して傾く。磁場検出手段12は、この磁化方向Bの傾きθに応じて抵抗値Rがほぼ定量的に変化するので、磁場検出手段12の抵抗値Rを測定することによって、第一基材11にかかる圧力値を検出することができる。   When a magnetic effect (MR) element is used as the magnetic field detection means 12, the magnetization direction B of the magnetic field detection means 12 is, for example, in a state where no pressure is applied to the first base material 11 as shown in FIG. , Along the vertical direction L. Then, as shown in FIG. 2B, when pressure is applied to the first base material 11 to compress the first base material 11, and the magnetic field application means 13 approaches the magnetic field detection means 12, the magnetic field detection means 12. The magnetization direction B of the magnetic field detection means 12 is tilted with respect to the vertical direction L due to the increase of the magnetic field applied to. Since the magnetic field detection means 12 changes the resistance value R almost quantitatively in accordance with the inclination θ of the magnetization direction B, the pressure applied to the first substrate 11 by measuring the resistance value R of the magnetic field detection means 12. The value can be detected.

磁気効果(MR)素子を磁場検出手段12として用いる場合には、図3に示すように、第一基材11を段階的に縮めて(圧縮して)いき、それぞれの圧縮段階での第一基材11の厚みTと、磁場検出手段12の抵抗値Rを測定していく。こうした第一基材11の厚みTと、磁場検出手段12の抵抗値Rとの関係をプロットした例が図4に示すグラフである。   When a magnetic effect (MR) element is used as the magnetic field detection means 12, the first base material 11 is contracted (compressed) step by step as shown in FIG. The thickness T of the base material 11 and the resistance value R of the magnetic field detection means 12 are measured. An example in which the relationship between the thickness T of the first base material 11 and the resistance value R of the magnetic field detection means 12 is plotted is the graph shown in FIG.

こうしたグラフから、ある材質の第一基材11の縮み量と磁場検出手段12の抵抗値Rとの関数を得ることができる。そして、弾性体の圧力による縮み量は、同一材質、同一寸法のものであれば同じと考えられるので、弾性体の圧力による縮み量がわかっていれば、磁場検出手段12の抵抗値Rにこうした関数を適用することで、第一基材11に加わった圧力値を容易に得ることができる。   From such a graph, a function of the amount of shrinkage of the first base material 11 of a certain material and the resistance value R of the magnetic field detection means 12 can be obtained. Since the amount of contraction due to the pressure of the elastic body is considered to be the same if it is of the same material and the same size, if the amount of contraction due to the pressure of the elastic body is known, the resistance value R of the magnetic field detection means 12 By applying the function, the pressure value applied to the first base material 11 can be easily obtained.

図5は、本発明の磁気デバイスの他の実施形態を示す斜視図である。なお、この図5では第一基材は透過状態で表現している。この実施形態における磁気デバイス20では、弾性体からなる第一基材21の一面21a側に磁場印加手段23と、第三基材26とが配されている。また、第一基材21の他面21b側に磁場検出手段22と、第二基材25とが配されている。第二基材25や第三基材26は剛性体からなり、例えば、硬質樹脂や金属の基板などであればよい。   FIG. 5 is a perspective view showing another embodiment of the magnetic device of the present invention. In FIG. 5, the first base material is shown in a transmissive state. In the magnetic device 20 in this embodiment, the magnetic field applying means 23 and the third base material 26 are arranged on the one surface 21a side of the first base material 21 made of an elastic body. Further, the magnetic field detection means 22 and the second base material 25 are arranged on the other surface 21 b side of the first base material 21. The 2nd base material 25 and the 3rd base material 26 consist of a rigid body, and should just be a hard resin, a metal board | substrate, etc., for example.

こうした第二基材25や第三基材26を第一基材21に接して備えることによって、第一基材21に加わる圧力をより正確に受け止めることができる。また、圧力を受け止めて測定する範囲を、第二基材25や第三基材26の大きさを変えることによって任意に設定することができる。さらには、剛性体からなる第二基材25や第三基材26で第一基材21を覆うことで、磁気デバイス20全体の強度や耐久性を向上させることができる。   By providing the second base material 25 and the third base material 26 in contact with the first base material 21, the pressure applied to the first base material 21 can be received more accurately. Further, the range in which the pressure is received and measured can be arbitrarily set by changing the size of the second base material 25 or the third base material 26. Furthermore, the intensity | strength and durability of the magnetic device 20 whole can be improved by covering the 1st base material 21 with the 2nd base material 25 and the 3rd base material 26 which consist of a rigid body.

また、この実施形態では、磁場検出手段22として、絶縁性の基板22a上にメアンダ形状を成す導電体22bを形成した磁気抵抗素子を用いている。こうしたメアンダ形状の導電体22bをもつ磁気抵抗素子は、ローコストに製造が可能で、かつ磁場の変化を確実に検出することができる。   In this embodiment, as the magnetic field detection means 22, a magnetoresistive element in which a conductor 22b having a meander shape is formed on an insulating substrate 22a is used. A magnetoresistive element having such a meander-shaped conductor 22b can be manufactured at a low cost and can reliably detect a change in the magnetic field.

以下、本発明の磁気デバイスの好ましい構成例を列記する。図6に示す磁気デバイス30では、弾性体からなる第一基材31の一面31a側に第三基材32が配され、この第三基材32の内部に磁場印加手段33が配されている。また、第一基材31の他面31b側に第二基材34が配され、この第二基材34の内部に磁場検出手段35が配されている。   Hereinafter, preferable configuration examples of the magnetic device of the present invention will be listed. In the magnetic device 30 shown in FIG. 6, the third base material 32 is disposed on the one surface 31 a side of the first base material 31 made of an elastic body, and the magnetic field applying means 33 is disposed inside the third base material 32. . A second base material 34 is disposed on the other surface 31 b side of the first base material 31, and a magnetic field detection means 35 is disposed inside the second base material 34.

図7に示す磁気デバイス40では、弾性体からなる第一基材41の一面41a側に第三基材42が配され、この第三基材42の内部に磁場印加手段43が配されている。また、第一基材41の他面41b側に第二基材44が配されるとともに、第一基材41の他面41b寄りで第一基材41の内部に磁場検出手段45が配されている。   In the magnetic device 40 shown in FIG. 7, the third base material 42 is disposed on the one surface 41 a side of the first base material 41 made of an elastic body, and the magnetic field applying means 43 is disposed inside the third base material 42. . Further, the second base material 44 is disposed on the other surface 41b side of the first base material 41, and the magnetic field detection means 45 is disposed in the first base material 41 near the other surface 41b of the first base material 41. ing.

図8に示す磁気デバイス50では、弾性体からなる第一基材51の一面51a側に第三基材52が配されるとともに、第一基材51の一面51a寄りで第一基材51の内部に磁場印加手段53が配されている。また、第一基材51の他面51b側に第二基材54が配され、この第二基材54の内部に磁場検出手段55が配されている。   In the magnetic device 50 shown in FIG. 8, the third base material 52 is disposed on the one surface 51 a side of the first base material 51 made of an elastic body, and the first base material 51 near the one surface 51 a of the first base material 51. Magnetic field applying means 53 is arranged inside. A second base material 54 is disposed on the other surface 51 b side of the first base material 51, and magnetic field detection means 55 is disposed inside the second base material 54.

図9に示す磁気デバイス60では、弾性体からなる第一基材61の一面61a側に第三基材62が配されるとともに、第一基材61の一面61a寄りで第一基材61の内部に磁場印加手段63が配されている。また、第一基材61の他面61b側に第二基材64が配されるとともに、第一基材61の他面61b寄りで第一基材61の内部に磁場検出手段65が配されている。   In the magnetic device 60 shown in FIG. 9, the third base material 62 is disposed on the one surface 61 a side of the first base material 61 made of an elastic body, and the first base material 61 is close to the one surface 61 a of the first base material 61. Magnetic field applying means 63 is arranged inside. A second base 64 is disposed on the other surface 61b side of the first base 61, and a magnetic field detection means 65 is disposed in the first base 61 near the other surface 61b of the first base 61. ing.

図10に示す磁気デバイス70では、弾性体からなる第一基材71の一面71a側に第三基材72が配され、この第三基材72の内部に磁場印加手段73が配されている。また、第一基材71の他面71b寄りで第一基材71の内部に磁場検出手段75が配されている。   In the magnetic device 70 shown in FIG. 10, a third base material 72 is arranged on the one surface 71 a side of the first base material 71 made of an elastic body, and a magnetic field applying means 73 is arranged inside the third base material 72. . Further, a magnetic field detecting means 75 is disposed inside the first base material 71 near the other surface 71 b of the first base material 71.

図11に示す磁気デバイス80では、弾性体からなる第一基材81の一面81a寄りで第一基材81の内部に磁場印加手段83が配されている。また、第一基材81の他面81b側に第二基材84が配され、この第二基材84の内部に磁場検出手段85が配されている。   In the magnetic device 80 shown in FIG. 11, a magnetic field applying unit 83 is disposed inside the first base material 81 near the one surface 81 a of the first base material 81 made of an elastic body. The second base 84 is disposed on the other surface 81 b side of the first base 81, and the magnetic field detection means 85 is disposed inside the second base 84.

図12に示す磁気デバイス90では、弾性体からなる第一基材91の一面91a寄りで第一基材91の内部に磁場印加手段93が配されている。また、第一基材91の他面91b寄りで第一基材91の内部に磁場検出手段95が配されている。   In the magnetic device 90 shown in FIG. 12, magnetic field applying means 93 is disposed inside the first base material 91 near the one surface 91 a made of an elastic body. Further, a magnetic field detecting means 95 is arranged inside the first base material 91 near the other surface 91b of the first base material 91.

図13に示す磁気デバイス100では、弾性体からなる第一基材101の一面101a寄りで第一基材101の内部に、複数の磁場印加手段103a,103bが配されている。また、第一基材101の他面101b寄りで第一基材101の内部に磁場検出手段105が配されている。複数の磁場印加手段103a,103bを設けることによって、磁場検出手段105により強い磁場を安定して印加することができる。   In the magnetic device 100 shown in FIG. 13, a plurality of magnetic field applying means 103 a and 103 b are arranged inside the first base material 101 near the one surface 101 a made of an elastic body. In addition, magnetic field detection means 105 is arranged inside the first base material 101 near the other surface 101 b of the first base material 101. By providing a plurality of magnetic field applying means 103a and 103b, a strong magnetic field can be stably applied by the magnetic field detecting means 105.

図14に示す磁気デバイス110では、弾性体からなる第一基材111の一面111a側に第三基材112が配され、この第三基材112の内部に磁場印加手段113が配されている。また、第一基材111の他面111b側に第二基材114が配され、この第二基材114の内部に磁場検出手段115が配されている。そして、第一基材111は内部空間111aを備えている。第一基材111に内部空間111aを形成することによって、磁気デバイス110を軽量化できる。また、内部空間111aを気密空間にすれば、封入されるガスの圧力を調節することによって、外部圧力による第一基材111の収縮量を自在に調節することもできる。   In the magnetic device 110 shown in FIG. 14, a third substrate 112 is disposed on the one surface 111 a side of the first substrate 111 made of an elastic body, and a magnetic field applying unit 113 is disposed inside the third substrate 112. . A second base material 114 is disposed on the other surface 111 b side of the first base material 111, and a magnetic field detection means 115 is disposed inside the second base material 114. And the 1st base material 111 is provided with internal space 111a. By forming the internal space 111a in the first base material 111, the magnetic device 110 can be reduced in weight. In addition, if the internal space 111a is an airtight space, the amount of contraction of the first base material 111 due to the external pressure can be freely adjusted by adjusting the pressure of the enclosed gas.

図15に示す磁気デバイス120では、弾性体からなる第一基材121の一面121a側に第三基材122が配され、この第三基材122の内部および第一基材121の内部に跨るように磁場印加手段123が配されている。また、第一基材121の他面121b側に第二基材124が配され、この第二基材124の内部および第二基材124の内部に跨るように磁場検出手段125が配されている。   In the magnetic device 120 shown in FIG. 15, the third base material 122 is disposed on the one surface 121 a side of the first base material 121 made of an elastic body, and straddles the inside of the third base material 122 and the inside of the first base material 121. In this way, magnetic field applying means 123 is arranged. A second base material 124 is disposed on the other surface 121b side of the first base material 121, and a magnetic field detection means 125 is disposed so as to straddle the inside of the second base material 124 and the inside of the second base material 124. Yes.

本発明の磁気デバイスの一例を示す断面図である。It is sectional drawing which shows an example of the magnetic device of this invention. 本発明の磁気デバイスの作用を示す説明図である。It is explanatory drawing which shows the effect | action of the magnetic device of this invention. 第一基材の厚みと磁場検出手段の抵抗値との関係の測定例を示す説明図である。It is explanatory drawing which shows the example of a measurement of the relationship between the thickness of a 1st base material, and the resistance value of a magnetic field detection means. 第一基材の厚みと磁場検出手段の抵抗値との関係を示したグラフである。It is the graph which showed the relationship between the thickness of a 1st base material, and the resistance value of a magnetic field detection means. 本発明の磁気デバイスの他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention. 本発明の磁気デバイスの他の一例を示す断面図である。It is sectional drawing which shows another example of the magnetic device of this invention.

符号の説明Explanation of symbols

10 磁気デバイス(圧力センサ)、11 第一基材、12 磁場検出手段、13 磁場印加手段。


DESCRIPTION OF SYMBOLS 10 Magnetic device (pressure sensor), 11 1st base material, 12 Magnetic field detection means, 13 Magnetic field application means.


Claims (6)

弾性体からなる第一基材と、該第一基材を挟むように配される磁場検出手段と磁場印加手段とを少なくとも備えたことを特徴とする磁気デバイス。   A magnetic device comprising at least a first base material made of an elastic body, a magnetic field detection means and a magnetic field application means arranged so as to sandwich the first base material. 剛性体からなる第二基材が、前記第一基材の磁場検出手段側に配されることを特徴とする請求項1記載の磁気デバイス。   The magnetic device according to claim 1, wherein the second base material made of a rigid body is disposed on the magnetic field detection means side of the first base material. 剛性体からなる第三基材が、前記第一基材の磁場印加手段側に配されることを特徴とする請求項1または2に記載の磁気デバイス。   The magnetic device according to claim 1, wherein a third base material made of a rigid body is disposed on the magnetic field applying means side of the first base material. 前記磁場検出手段は、前記第一基材および/または前記第二基材の内部に配されることを特徴とする請求項2記載の磁気デバイス。   The magnetic device according to claim 2, wherein the magnetic field detection means is disposed inside the first base material and / or the second base material. 前記磁場印加手段は、前記第一基材および/または前記第三基材の内部に配されることを特徴とする請求項3記載の磁気デバイス。   The magnetic device according to claim 3, wherein the magnetic field applying unit is disposed inside the first base material and / or the third base material. 前記第一基材は、内部空間を備えることを特徴とする請求項1記載の磁気デバイス。

The magnetic device according to claim 1, wherein the first substrate has an internal space.

JP2006190285A 2006-07-11 2006-07-11 Magnetic device Withdrawn JP2008020239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190285A JP2008020239A (en) 2006-07-11 2006-07-11 Magnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190285A JP2008020239A (en) 2006-07-11 2006-07-11 Magnetic device

Publications (1)

Publication Number Publication Date
JP2008020239A true JP2008020239A (en) 2008-01-31

Family

ID=39076298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190285A Withdrawn JP2008020239A (en) 2006-07-11 2006-07-11 Magnetic device

Country Status (1)

Country Link
JP (1) JP2008020239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992444B2 (en) 2008-02-28 2011-08-09 Seiko Epson Corporation Pressure detection device and pressure detection method
JPWO2020110237A1 (en) * 2018-11-28 2021-09-02 三菱電機株式会社 Contact state recognition device and robot system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992444B2 (en) 2008-02-28 2011-08-09 Seiko Epson Corporation Pressure detection device and pressure detection method
US8590386B2 (en) 2008-02-28 2013-11-26 Seiko Epson Corporation Pressure detection device and pressure detection method
JPWO2020110237A1 (en) * 2018-11-28 2021-09-02 三菱電機株式会社 Contact state recognition device and robot system

Similar Documents

Publication Publication Date Title
JP4989849B2 (en) Variable reluctance position detector
US7490522B2 (en) Magnetostrictive multilayer sensor and method for producing a sensor
JP5027191B2 (en) Pressure sensor and adjustment method thereof
JP2006502381A5 (en)
JP2009528530A (en) Position sensor having varying magnetization direction and method of manufacturing the same
JP6377817B2 (en) Non-contact magnetic linear position sensor
KR20160128996A (en) Magnetoelastic sensor
US20120152027A1 (en) Sensitive Differential Pressure Sensor and Method
JP2017524983A (en) System with piezoresistive position sensor
WO2017209170A1 (en) Liquid level detecting device
CN110345938B (en) Wafer-level magnetic sensor and electronic equipment
JP2008020239A (en) Magnetic device
US9157823B2 (en) Pressure gauge and method of measuring pressure
JP4921327B2 (en) Magnetic linear measuring device
Fuji et al. An ultra-sensitive spintronic strain-gauge sensor with gauge factor of 5000 and demonstration of a Spin-MEMS Microphone
Kisić et al. Performance analysis of a flexible polyimide based device for displacement sensing
JP2007132947A (en) Method and system of applying electric power to pressure and temperature sensing element
Waber et al. Fabrication and characterization of a piezoresistive humidity sensor with a stress-free package
KR101537902B1 (en) Rotation angle detector
US9766142B1 (en) Magnetic force sensor systems and methods
JP2005221418A (en) Pressure sensor
JP5959686B1 (en) Magnetic detector
JP5240657B2 (en) Sensing element, sensing device, orientation detection device, and information device
US20160084723A1 (en) Pressure Sensor
JP6218942B2 (en) Displacement detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006