JP2008019579A - Fixture for tension member and tension member with fixture - Google Patents

Fixture for tension member and tension member with fixture Download PDF

Info

Publication number
JP2008019579A
JP2008019579A JP2006190693A JP2006190693A JP2008019579A JP 2008019579 A JP2008019579 A JP 2008019579A JP 2006190693 A JP2006190693 A JP 2006190693A JP 2006190693 A JP2006190693 A JP 2006190693A JP 2008019579 A JP2008019579 A JP 2008019579A
Authority
JP
Japan
Prior art keywords
plate
tension member
tension
absorbing plate
shock absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006190693A
Other languages
Japanese (ja)
Other versions
JP4591891B2 (en
Inventor
Toru Iwakawa
徹 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Eisei Center Co Ltd
Original Assignee
Nippon Eisei Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Eisei Center Co Ltd filed Critical Nippon Eisei Center Co Ltd
Priority to JP2006190693A priority Critical patent/JP4591891B2/en
Publication of JP2008019579A publication Critical patent/JP2008019579A/en
Application granted granted Critical
Publication of JP4591891B2 publication Critical patent/JP4591891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixture for a tension member capable of easily conforming the introduction of tension, while absorbing impact energy, by relieving impact applied to the tension member by earthquake motion. <P>SOLUTION: This fixture 1 for the tension member is provided for fixing the tension member 10 composed of a cable material 2 and a socket 3 on its both ends to a structure 9 of a building by gripping the socket 3, and has a fixing plate 4 fixed to and installed in the structure 9, a bearing pressure plate 5 arranged on the fixing plate 4, contacting with the outer periphery of an impact absorbing plate 6 and having an opening part 15 for passing the cable material 2, and the impact absorbing plate 6 arranged between the socket 3 and the bearing pressure plate 5 and bendably deformable by the tension generated in the cable material 2, and has a bendably deformable void of the impact absorbing plate 6 between the impact absorbing plate 6 and the bearing pressure plate 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、引張部材用固定具、及び固定具付き引張部材に係り、特に、引張部材端部のソケットと支圧板との間に衝撃吸収板を設けた引張部材用固定具、及び固定具を装備した引張部材に関する。   The present invention relates to a tension member fixing tool and a tension member with a fixing tool, and in particular, to a tension member fixing tool provided with an impact absorbing plate between a socket and a bearing plate at the end of the tension member. It relates to the equipped tensile member.

建造物の構造体における構成部材として、或いは構造体相互の接続部材として引張材が用いられる。ここで、建造物とは、建築物、土木構造物、工作物、送電鉄塔等の構造体により骨組みが構成される対象を総称する。また、構造体とは、柱材、梁材、ブレース材、基礎コンクリート等の建造物の骨組みを構成する部材をいう。また、引張材とは、ケーブル材、鋼棒、フラットバー、丸形鋼管、角形鋼管、アングル材やチャンネル材等の形鋼等からなり、部材長さに対してその断面の幅が極めて小さい部材をいう。これらの引張材は、圧縮力や曲げモーメントは負担せず、引張力のみ負担する点が特徴である。   A tensile material is used as a structural member in a structure of a building or as a connection member between structures. Here, the building is a general term for objects whose framework is constituted by a structure such as a building, a civil engineering structure, a work, a power transmission tower. Moreover, a structure means the member which comprises the framework of structures, such as a pillar material, a beam material, a brace material, and foundation concrete. Also, the tensile material is a cable material, steel bar, flat bar, round steel pipe, square steel pipe, angle steel, shape material such as channel material, etc. Say. These tensile materials are characterized in that they do not bear compressive force or bending moment but bear only tensile force.

引張材は、部材長さに対してその断面の幅の比が極めて小さいという特性から、その中間部において曲がることが可能である。すなわち、引張材は、構造体の接続される2点間が直線的に結べない場合であっても、引張材を曲線状になじませて取り付けられる特性、すなわち可撓性を有する。例えば、ケーブル材の場合は、鋼線をより合わせて構成された部材であり、このより合わせにより、容易に曲がることを可能とした部材である。この、ケーブル材には、構造用ストランドロープ、構造用スパイラルロープ等が含まれる。一般にワイヤーロープと称されるものもケーブル材に含まれる。また、鋼棒は、中実の丸鋼をいい、PC鋼棒も含まれる。一般にロッドと称されるものも鋼棒に含まれる。   The tensile material can be bent at an intermediate portion due to the characteristic that the ratio of the cross-sectional width to the member length is extremely small. That is, the tensile material has a characteristic that it can be attached by fitting the tensile material in a curved shape, that is, flexibility even when the two points to which the structure is connected cannot be linearly connected. For example, in the case of a cable material, it is a member that is formed by combining steel wires, and is a member that can be easily bent by this combination. The cable material includes a structural strand rope, a structural spiral rope, and the like. What is generally called a wire rope is also included in the cable material. The steel bar refers to a solid round steel, and includes a PC steel bar. What is generally called a rod is also included in the steel bar.

引張材は、その両端部に接続用のソケットが取り付けられる。引張材は、曲げモーメントを負担しないことから、断面内の曲げ剛性は問題とならず、コンパクトな断面とするのが一般的である。したがって、引張材を構造体に接続するには、その端部に接続用の部品が必要となる。例えば、ケーブル材では、ソケットの形状として、オープンソケット、クローズドソケット、前面支圧型式、ナット方式等が知られている。さらに、簡易なソケットとして、ネジエンド或いはアイ圧縮止めが知られている。本明細書では、ケーブル材だけではなく、総ての引張材について、その部材端部に取り付く接続用の部品を「ソケット」と総称する。   Sockets for connection are attached to both ends of the tensile material. Since the tensile material does not bear a bending moment, the bending rigidity in the cross section does not become a problem, and it is general to have a compact cross section. Therefore, in order to connect the tensile material to the structure, a connecting component is required at the end thereof. For example, in a cable material, as a shape of a socket, an open socket, a closed socket, a front surface support type, a nut method, and the like are known. Furthermore, screw ends or eye compression stoppers are known as simple sockets. In this specification, not only the cable material but also all the tensile materials are collectively referred to as “sockets” for connecting parts that are attached to the end portions of the members.

引張材を構造体における構成部材として用いる例として、構造体の剛性を高める構成部材として用いる場合がある。例えば、斜張橋、ブレース材である。また、空間を覆う構成部材として用いる場合がある。例えば、引張材と圧縮材とを組み合わせた梁材で屋根を架構するテンション構造、リング状の境界支持構造体に張られるケーブルネット構造である。このうち、構造体の剛性を高める構成部材として用いる場合には、引張材が地震動による衝撃を受けて抵抗する。一方、空間を覆う構成部材として用いる場合には、風圧力による振動が発生し、地震動による衝撃に対しては、構成部材全体で吸収する。   As an example of using a tensile material as a structural member in a structure, there is a case where the tensile material is used as a structural member that increases the rigidity of the structure. For example, cable-stayed bridges and brace materials. Moreover, it may be used as a component covering the space. For example, there are a tension structure in which a roof is constructed with a beam material in which a tensile material and a compression material are combined, and a cable net structure stretched on a ring-shaped boundary support structure. Among these, when used as a structural member for increasing the rigidity of the structure, the tensile material resists by receiving an impact due to the earthquake motion. On the other hand, when used as a constituent member that covers a space, vibration due to wind pressure is generated, and an impact due to earthquake motion is absorbed by the entire constituent member.

一方、引張材を構造体相互の接続部材として用いる例として、建造物の耐震補強用に柱材と基礎コンクリートを接合する場合や、既存の橋梁の桁同士を接続して地震動による脱落を防止する場合がある。引張材は、このような既存の建造物の耐震補強方法として、直線的に接続できない場合にも接続可能である点が評価され採用されている。例えば、耐震補強により柱材を基礎コンクリートに接合する場合には、柱材の外面と基礎の外面とは段差があるのが一般的であり、引張材の可撓性が有効となる。   On the other hand, as an example of using a tensile material as a connection member between structures, when connecting a column material and foundation concrete for seismic reinforcement of a building, or connecting existing bridge girders to prevent falling off due to earthquake motion There is a case. Tensile materials have been evaluated and adopted as a seismic reinforcement method for such existing buildings, because they can be connected even when they cannot be connected linearly. For example, when joining a column material to foundation concrete by seismic reinforcement, there is generally a step between the outer surface of the column material and the outer surface of the foundation, and the flexibility of the tensile material is effective.

引張材には、一般的に初期張力を導入する。上述したように、引張材は、その中間部において曲がることが可能な可撓性を有する。したがって、接続される双方の構造体に取り付けただけでは、自重による撓みや接続するボルトのクリアランス等により弛みが発生する。この状態では、引張材に発生する地震動による衝撃に対して弛みが消滅するまで引張材として機能しないという問題が生じる。また、ケーブル材は、多数の素線をより合わせて構成されることから初期伸びが生じる。この初期伸びは、プレストレッチングをすることで除去される。そこで、一般的には、施工時において、引張材の取り付け後に初期張力を導入する。一般的な引張材への初期張力の導入方法には、ターンバックル等の長さ調節機構により初期張力を導入する方法と、油圧ジャッキにより張力を管理する方法とがある。また、引張材は、張力導入後に、時間の経過とともにクリープ歪やリラクゼーション(応力弛緩)により張力の一部が抜ける場合がある。   An initial tension is generally introduced into the tensile material. As described above, the tensile material has flexibility that can be bent at an intermediate portion thereof. Therefore, if it is only attached to both of the structures to be connected, slackening occurs due to deflection due to its own weight, clearance of the bolts to be connected, and the like. In this state, there arises a problem that the material does not function as a tensile material until the slack disappears with respect to the impact caused by the earthquake motion generated in the tensile material. In addition, since the cable material is formed by combining a large number of strands, initial elongation occurs. This initial elongation is removed by prestretching. Therefore, generally, at the time of construction, initial tension is introduced after the tension material is attached. As a method for introducing an initial tension to a general tensile material, there are a method for introducing an initial tension by a length adjusting mechanism such as a turnbuckle and a method for managing the tension by a hydraulic jack. In addition, after the tension is introduced, a part of the tension material may be lost due to creep strain or relaxation (stress relaxation).

引張材は、通常、溶接が不要であることや経済性等の理由から引張強度の高い素材が用いられる。例えば、ケーブル材では、引張強さで1470N級から1770N級に至るまでの鋼種が使用される。これらの素材は、通常の構造体に用いられる鋼材(400N級、490N級)と比べて著しく高い。また、棒鋼の一種であるPC鋼棒では、引張強さで1720N級から1860N級に至るまでの鋼種が使用される。   As the tensile material, a material having high tensile strength is usually used for reasons such as no need for welding and economy. For example, in the cable material, steel types ranging from 1470N class to 1770N class in tensile strength are used. These materials are significantly higher than steel materials (400N class, 490N class) used for ordinary structures. Moreover, in the PC steel bar which is a kind of bar steel, steel types ranging from 1720N class to 1860N class in tensile strength are used.

ここで、粘弾性材とは、流体のような粘性とスプリングのような弾性を合わせもった力学的挙動をする高分子材料をいう。この粘弾性材に応力が加わった場合、その荷重履歴に伴う非線形な挙動により地震等の衝撃エネルギを吸収する。また、低降伏点鋼とは、降伏荷重が小さく変形能力に優れた超塑性合金からなる鋼材をいう。この低降伏点鋼に応力が加わった場合、その荷重履歴に伴う非線形な挙動により地震等の衝撃エネルギを吸収する。これらの粘弾性材及び低降伏点鋼は、建造物に免震ダンパーや制振ダンパーとして採用されている。   Here, the viscoelastic material refers to a polymer material that has a mechanical behavior that combines a fluid-like viscosity and a spring-like elasticity. When stress is applied to this viscoelastic material, impact energy such as an earthquake is absorbed by non-linear behavior associated with the load history. The low yield point steel refers to a steel material made of a superplastic alloy having a small yield load and excellent deformation ability. When stress is applied to this low yield point steel, it absorbs impact energy such as earthquakes by the non-linear behavior associated with its load history. These viscoelastic materials and low yield point steel are used as seismic isolation dampers and damping dampers in buildings.

一方、特許文献1には、木造建築物における柱と土台の固定方法が開示されている。   On the other hand, Patent Literature 1 discloses a method for fixing a pillar and a base in a wooden building.

特開2001−279830号公報JP 2001-279830 A

引張材に地震動による衝撃が加わった場合、この衝撃により引張材に過大な応力が発生し、引張材の破断や接合部の破壊が発生する恐れがある。また、上述のように、引張材は高強度鋼を使用することから、脆性破壊や疲労破壊の恐れもある。すなわち、引張材を構造体の剛性を高める構成部材として用いる場合には、構造体の剛性の高い部位である引張材に地震による衝撃が過度に集中し易い。また、構造体相互の接続部材として用いる場合には、既存の構造体に付加される構造であり、応力の伝達や分担が不明確である。したがって、想定される以上の地震による衝撃が発生する可能性がある。   When an impact due to seismic motion is applied to the tensile material, an excessive stress is generated in the tensile material due to the impact, and the tensile material may be broken or the joint may be broken. Further, as described above, since the tensile material uses high-strength steel, there is a risk of brittle fracture or fatigue fracture. That is, when a tensile material is used as a structural member that increases the rigidity of the structure, an impact caused by an earthquake tends to be excessively concentrated on the tensile material that is a portion having a high rigidity of the structure. Further, when used as a connection member between structures, it is a structure added to an existing structure, and transmission and sharing of stress are unclear. Therefore, there is a possibility that an impact caused by an earthquake more than expected is generated.

また、従来の引張材は、主として空間を覆う構成部材として用いられる。この場合には、構成部材の剛性は極めて低く、変形により地震動によるエネルギを吸収する。しかし、構造体の剛性を高める構成部材として用いる場合や構造体相互の接続部材として用いる場合には、引張材の剛性が高いにもかかわらず、地震動によるエネルギを吸収する機構を備えたものは少ない。   Moreover, the conventional tension | pulling material is mainly used as a structural member which covers space. In this case, the rigidity of the structural member is extremely low, and the energy due to the earthquake motion is absorbed by the deformation. However, when used as a structural member that increases the rigidity of a structure or as a connection member between structures, few have a mechanism for absorbing energy due to earthquake motion even though the rigidity of the tensile material is high. .

また、引張材の初期張力の導入の際、導入された張力を簡易に確認する方法はない。また、導入された張力がクリープ歪やリラクゼーション(応力弛緩)により一部が抜けた場合にも簡単に確認する方法はない。   Further, there is no method for easily confirming the introduced tension when the initial tension of the tensile material is introduced. In addition, there is no simple method for confirming when a part of the introduced tension is lost due to creep strain or relaxation (stress relaxation).

本願の目的は、かかる課題を解決し、地震動により引張材に加わる衝撃を緩和し、衝撃エネルギを吸収し、簡易な張力導入の確認が可能な引張部材用固定具を提供することである。   An object of the present application is to solve such a problem, and to provide a tension member fixing tool capable of relieving an impact applied to a tensile material due to a seismic motion, absorbing impact energy, and confirming simple introduction of tension.

上記目的を達成するため、本発明に係る引張部材用固定具は、引張材とその両端のソケットからなる引張部材を、ソケットを掴むことで建造物の構造体に固定させる引張部材用固定具であって、構造体に固定されて取り付く固定板と、固定板に設けられ、衝撃吸収板の外周と接し、引張材が通過する開口を有する支圧板と、ソケットと、支圧板との間に設けられ、引張材に生じる応力により曲げ変形可能な衝撃吸収板と、を備え、衝撃吸収板と支圧板との間に、衝撃吸収板の曲げ変形が可能な空隙があることを特徴とする。   In order to achieve the above object, a tension member fixture according to the present invention is a tension member fixture for fixing a tension member composed of a tension member and sockets at both ends thereof to a structure of a building by grasping the socket. A fixed plate that is fixed to the structure and attached; a support plate provided on the fixed plate, in contact with the outer periphery of the shock absorbing plate, and having an opening through which a tensile material passes; a socket and a support plate. And an impact absorbing plate that can be bent and deformed by a stress generated in the tensile material, and there is a gap between the impact absorbing plate and the bearing plate that allows the impact absorbing plate to be bent and deformed.

また、引張部材用固定具は、衝撃吸収板は、低降伏点鋼からなり、交換可能なことが好ましく、衝撃吸収板と、支圧板との間の空隙には粘弾性材が設けられ、引張材と支圧板との間の空隙には粘弾性材が設けられていることが好ましい。   Further, in the tension member fixture, the shock absorbing plate is made of low yield point steel and is preferably replaceable. A viscoelastic material is provided in the gap between the shock absorbing plate and the bearing plate, It is preferable that a viscoelastic material is provided in the space between the material and the bearing plate.

また、引張部材用固定具は、衝撃吸収板は、ソケット側に起立していることが好ましく、衝撃吸収板は、引張材への初期張力導入により略平板となるように起立していることが好ましい。   Further, in the tension member fixture, it is preferable that the shock absorbing plate is erected on the socket side, and the shock absorbing plate is erected so as to become a substantially flat plate by introducing initial tension to the tensile material. preferable.

また、引張部材用固定具は、支圧板は、その衝撃吸収板と対向する面が筒状の凹面であることが好ましく、支圧板は、その衝撃吸収板と対向する面が球状の凹面であることが好ましい。   Further, in the tension member fixture, the pressure bearing plate preferably has a cylindrical concave surface facing the shock absorbing plate, and the pressure bearing plate has a spherical concave surface facing the shock absorbing plate. It is preferable.

さらに、本発明に係る引張部材は、上記引張部材用固定具が装着されている。   Furthermore, the tension member according to the present invention is equipped with the tension member fixture.

上記構成により、引張部材用固定具は、引張部材のソケットと支圧板との間に衝撃吸収板が設けられる。この衝撃吸収板は、地震時の衝撃に対し曲げ変形することで、この衝撃を吸収し、緩衝材としての役割を果たす。これにより、構造体の剛性の高い部位である引張材に地震による衝撃が過度に集中することを避けることが可能となる。また、設計上想定されていない過大な衝撃に対し、衝撃吸収板の変形により構造体全体の応力の再分配を促す。その結果、衝撃を構造体全体で吸収し、局所的な応力集中を緩和することが可能となる。   With the above configuration, the tension member fixture is provided with an impact absorbing plate between the socket of the tension member and the bearing plate. This shock absorbing plate absorbs this shock by bending deformation with respect to the shock at the time of an earthquake, and plays a role as a cushioning material. Thereby, it becomes possible to avoid that the impact by an earthquake concentrates too much on the tension material which is a site | part with high rigidity of a structure. In addition, an excessive impact that is not assumed in design is urged to redistribute the stress of the entire structure by deformation of the shock absorbing plate. As a result, the impact can be absorbed by the entire structure and local stress concentration can be reduced.

また、引張部材用固定具は、衝撃吸収板自体を低降伏点鋼とすることで、地震時の荷重履歴に伴う非線形な挙動により、地震動の衝撃エネルギの吸収を可能とする。さらに、支圧板と衝撃吸収板との空隙に粘弾性材を設けること及び引張材と支圧板との空隙に粘弾性材を設けることで、荷重履歴に伴う非線形な挙動により、地震動の衝撃エネルギの吸収を可能とする。これら低降伏点鋼および粘弾性材に地震動の衝撃エネルギを集中させることで、建造物の構造体の揺れや振動を減少させ、構造体の損傷を低減させることが可能となる。   Moreover, the fixture for tension members makes it possible to absorb the impact energy of the seismic motion due to the non-linear behavior accompanying the load history at the time of the earthquake by making the impact absorbing plate itself a low yield point steel. Furthermore, by providing a viscoelastic material in the gap between the bearing plate and the shock absorbing plate and a viscoelastic material in the gap between the tensile material and the bearing plate, the impact energy of the seismic motion is reduced due to the nonlinear behavior associated with the load history. Allow absorption. By concentrating the impact energy of seismic motion on these low yield point steels and viscoelastic materials, it is possible to reduce the shaking and vibration of the structure of the building and reduce the damage to the structure.

また、引張部材用固定具は、衝撃吸収板が、引張材への初期張力導入により略平板となるように起立している。つまり、あらかじめ初期張力の導入による衝撃吸収板の曲げ変形量を算出し、それと略同一の値になるように衝撃吸収板をソケット側に起立させる。これにより、衝撃吸収板が略平板となっているか否かを目視することで容易に張力確認が可能となる。導入された初期張力がクリープ歪やリラクゼーション(応力弛緩)により抜けた場合にも、同様に張力確認が可能となる。   Further, the tension member fixture is erected so that the impact absorbing plate becomes a substantially flat plate by the introduction of the initial tension to the tensile material. That is, the amount of bending deformation of the shock absorbing plate due to the introduction of the initial tension is calculated in advance, and the shock absorbing plate is erected on the socket side so as to be substantially the same value as that. Accordingly, it is possible to easily check the tension by visually observing whether or not the shock absorbing plate is a substantially flat plate. Even when the introduced initial tension is lost due to creep strain or relaxation (stress relaxation), the tension can be confirmed in the same manner.

以上のように、本発明に係る引張部材用固定具によれば、地震動により引張材に加わる衝撃を緩和し、衝撃エネルギを吸収し、簡易な張力導入の確認が可能となる。   As described above, according to the tension member fixture according to the present invention, the impact applied to the tensile material due to the earthquake motion can be reduced, the impact energy can be absorbed, and simple introduction of the tension can be confirmed.

以下に、図面を用いて本発明に係る実施の形態につき、詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1に本発明に係る引張部材用固定具の一つの実施の形態の概略の構成を示す。図1(a)は引張部材用固定具1の正面図であり、図1(b)は、A−A方向から見た側面図であり、図1(c)は、B−B方向から見た底面図である。本実施の形態では、引張材としてケーブル材2を用いる。引張部材用固定具1は、固定板4、支圧板5、衝撃吸収板6から構成され、端部にソケット3が取り付いたケーブル材2を、ボルト7により構造体9に固定する。また、支圧板5と衝撃吸収板6との間の空隙には、板状粘弾性材8aが装着され、ケーブル材2と支圧板5との空隙には、筒状粘弾性材8bが装着される。なお、この引張部材用固定具1と、ソケット3が取り付いたケーブル材2とを一体として引張部材10と称す。   FIG. 1 shows a schematic configuration of an embodiment of a tension member fixture according to the present invention. FIG. 1A is a front view of the tension member fixture 1, FIG. 1B is a side view seen from the AA direction, and FIG. 1C is a view seen from the BB direction. FIG. In the present embodiment, the cable material 2 is used as the tensile material. The tension member fixture 1 includes a fixing plate 4, a bearing plate 5, and an impact absorbing plate 6. The cable member 2 having a socket 3 attached to an end thereof is fixed to a structure 9 with bolts 7. Further, a plate-like viscoelastic material 8 a is attached to the gap between the bearing plate 5 and the shock absorbing plate 6, and a tubular viscoelastic material 8 b is attached to the gap between the cable member 2 and the bearing plate 5. The The tension member fixture 1 and the cable member 2 to which the socket 3 is attached are collectively referred to as a tension member 10.

固定板4は、本実施の形態では矩形の板材である。また、固定板4には支圧板5が取り付けられ、ボルト7により構造体9に固定される。固定板4は、支圧板5とボルト7とが装着可能な形状であれば、矩形以外の形状、例えば円形や多角形であっても良い。構造体9の種別としては、木材、鉄骨、基礎コンクリート等があるが、本実施形態では、その種別の如何は問わない。このボルト7は、構造体9が木材である場合には、例えば、ラグスクリューボルトであり、構造体9が鉄骨である場合には、例えば、高力ボルトであり、構造体9が基礎コンクリートである場合には、アンカーボルトである。   The fixed plate 4 is a rectangular plate material in the present embodiment. In addition, a support plate 5 is attached to the fixed plate 4 and is fixed to the structure 9 with bolts 7. The fixed plate 4 may have a shape other than a rectangle, for example, a circle or a polygon, as long as the support plate 5 and the bolt 7 can be attached. The type of the structure 9 includes wood, steel frame, foundation concrete, and the like, but in this embodiment, the type is not limited. The bolt 7 is, for example, a lag screw bolt when the structural body 9 is wood, and is a high-strength bolt, for example, when the structural body 9 is a steel frame, and the structural body 9 is basic concrete. In some cases, it is an anchor bolt.

支圧板5は、本実施の形態では、溶接用厚板鋼板を機械加工し、固定板4に溶接接合したものである。この支圧板5は、固定板4と一体として、例えば、鋳造や機械加工により製作しても良い。この支圧板5には、ケーブル材2が通過するケーブル開口部15が設けられる。また、支圧板5は、ケーブル材2のソケット3に対して衝撃吸収板6を介して前面(ケーブル材2側)から支圧する。すなわち、ケーブル材2の定着方式としては、前面支圧方式である。また、支圧板5の衝撃吸収板6に対向する面は、衝撃吸収板6の曲げ変形を可能とするために、筒状の凹面となっている。また、支圧板5は、衝撃吸収板6の外周と接する支圧面16を、筒状の凹面の左右2箇所に有する。   In the present embodiment, the support plate 5 is obtained by machining a thick steel plate for welding and welding it to the fixed plate 4. The bearing plate 5 may be manufactured integrally with the fixed plate 4 by, for example, casting or machining. The bearing plate 5 is provided with a cable opening 15 through which the cable material 2 passes. In addition, the support plate 5 supports the socket 3 of the cable member 2 from the front surface (cable member 2 side) via the impact absorbing plate 6. That is, the fixing method of the cable material 2 is a front surface support method. Further, the surface of the bearing plate 5 that faces the shock absorbing plate 6 is a cylindrical concave surface so that the shock absorbing plate 6 can be bent and deformed. Further, the bearing plate 5 has bearing surfaces 16 in contact with the outer periphery of the shock absorbing plate 6 at two locations on the left and right sides of the cylindrical concave surface.

図2に支圧板5の他の実施の形態の概略の構成を示す。図2(a)は、支圧板5をプレートの溶接により組み立てた場合の正面図である。また、図2(b)は、図2(a)のA−A断面図である。支圧板5は、天板5a、側板5b、補強板5c、底板5d(図2(b)参照)、曲面板5eから構成され、それぞれ溶接されて組み立てられる。また、筒状粘弾性材8bを装着するための筒状板5fを取り付けても良い。補強板5cは、衝撃吸収板6の支持点Pを固定端とするため、側板5bの拘束材として取り付けられる。支圧板5は、ケーブル材2を通過させるため、側板5bにケーブル開口部15aを、曲面板5eにケーブル開口部15bを有する。曲面板5eは、衝撃吸収板6の変形が可能となる空隙を設けるためアーチ状となっている。曲面板5eの両端には、側板5bの一部が支圧面16となり、衝撃吸収板6の外周と接する。   FIG. 2 shows a schematic configuration of another embodiment of the bearing plate 5. Fig.2 (a) is a front view at the time of assembling the bearing plate 5 by plate welding. Moreover, FIG.2 (b) is AA sectional drawing of Fig.2 (a). The bearing plate 5 includes a top plate 5a, a side plate 5b, a reinforcing plate 5c, a bottom plate 5d (see FIG. 2B), and a curved plate 5e, which are assembled by welding. Moreover, you may attach the cylindrical board 5f for mounting | wearing with the cylindrical viscoelastic material 8b. The reinforcing plate 5c is attached as a restraining material for the side plate 5b in order to use the support point P of the shock absorbing plate 6 as a fixed end. In order to allow the cable member 2 to pass through, the support plate 5 has a cable opening 15a on the side plate 5b and a cable opening 15b on the curved plate 5e. The curved plate 5e has an arch shape in order to provide a gap that allows the shock absorbing plate 6 to be deformed. At both ends of the curved plate 5 e, a part of the side plate 5 b serves as a bearing surface 16 and contacts the outer periphery of the shock absorbing plate 6.

衝撃吸収板6は、本実施の形態では、通常の構造体に用いられる鋼材(400N級、490N級)からなる平板である。図3に衝撃吸収板6の概略の構成を示す。図3は、図2(a)のB−B断面図である。図3(a)に本実施の形態での衝撃吸収板6を示す。図中斜線で示したのが、衝撃吸収板6の範囲である。図3(a)の実施例では、衝撃吸収板6は、ケーブル開口部15の縁Rが切断された矩形の板である。破線3は、ソケット3が衝撃吸収板6に接触する範囲を示す。図中Pで示す線が、補強板5cにより側板5bの変形を拘束する支持線である。図中Qで示す線が、天板5a及び底板5dにより側板5bの変形を拘束する支持線である。したがって、衝撃吸収板6は、図中の線P及び線Qを固定端とし、ケーブル開口部15の縁Rを自由端とする平板となる。   In the present embodiment, the shock absorbing plate 6 is a flat plate made of a steel material (400N class, 490N class) used for a normal structure. FIG. 3 shows a schematic configuration of the shock absorbing plate 6. FIG. 3 is a cross-sectional view taken along the line BB in FIG. FIG. 3A shows the shock absorbing plate 6 in the present embodiment. The hatched area in the figure indicates the range of the shock absorbing plate 6. In the embodiment of FIG. 3A, the shock absorbing plate 6 is a rectangular plate in which the edge R of the cable opening 15 is cut. A broken line 3 indicates a range where the socket 3 contacts the shock absorbing plate 6. A line indicated by P in the figure is a support line that restrains deformation of the side plate 5b by the reinforcing plate 5c. A line indicated by Q in the figure is a support line that restrains deformation of the side plate 5b by the top plate 5a and the bottom plate 5d. Therefore, the shock absorbing plate 6 is a flat plate having the line P and the line Q in the figure as fixed ends and the edge R of the cable opening 15 as a free end.

また、図3(b)に衝撃吸収板6の他の実施例を示す。図中斜線で示したのが、衝撃吸収板6の範囲である。この実施例では、衝撃吸収板6は、ケーブル開口部15の縁Rをそれぞれ有するブロックに分離された2つ矩形の板からなる。破線3は、ソケット3が衝撃吸収板6に接触する範囲を示す。図中Pで示す線が、補強板5cにより側板5bの変形を拘束する支持線である。図中Qで示す線が、天板5a及び底板5dにより側板5bの変形を拘束する支持線である。したがって、衝撃吸収板6は、図中の線P及び線Qを固定端とし、ケーブル開口部15の縁Rを自由端とする2つの平板となる。   FIG. 3B shows another embodiment of the impact absorbing plate 6. The hatched area in the figure indicates the range of the shock absorbing plate 6. In this embodiment, the shock absorbing plate 6 is composed of two rectangular plates separated into blocks each having an edge R of the cable opening 15. A broken line 3 indicates a range where the socket 3 contacts the shock absorbing plate 6. A line indicated by P in the figure is a support line that restrains deformation of the side plate 5b by the reinforcing plate 5c. A line indicated by Q in the figure is a support line that restrains deformation of the side plate 5b by the top plate 5a and the bottom plate 5d. Therefore, the shock absorbing plate 6 is two flat plates having the line P and the line Q in the figure as fixed ends and the edge R of the cable opening 15 as a free end.

ケーブル材2が地震動により引張力を受けると、ソケット3が衝撃吸収板6を押す。このとき、衝撃吸収板6は、破線3に囲まれたソケット3の端部から圧縮力を受けて変形する。この衝撃吸収板6の変形の形状は、図3(a)及び(b)それぞれにつき、上記の境界条件の下での平板曲げによる変形曲線となる。   When the cable member 2 receives a tensile force due to the earthquake motion, the socket 3 pushes the shock absorbing plate 6. At this time, the shock absorbing plate 6 is deformed by receiving a compressive force from the end of the socket 3 surrounded by the broken line 3. The deformation shape of the shock absorbing plate 6 is a deformation curve due to flat plate bending under the above-described boundary conditions for each of FIGS. 3 (a) and 3 (b).

衝撃吸収板6の他の実施の形態は、低降伏点鋼からなる平板を用いた場合である。低降伏点鋼は、極軟鋼とも称され、添加元素を極力低減した純鉄に近いものであり、圧延後に軟化焼鈍等の熱処理により降伏点を下げた鋼種である。低降伏点鋼には、降伏点が235N級の低降伏点鋼と100N級の極低降伏点鋼とがあるが、いずれであっても良い。この低降伏点鋼を用いた衝撃吸収板6は、地震時にケーブル材2に発生する引張力により曲げ変形するが、変形により他の部材より早期に降伏し、繰り返し荷重履歴により地震の入力エネルギを吸収する。すなわち、地震時の揺れや変形を低減させるダンパーとして機能する。特に、引張材を構造体相互の接続部材とし、建造物の耐震補強用に柱材11と基礎コンクリート12を接合する場合には、この衝撃吸収板6に集中的に地震の入力エネルギを集中させることで、建造物の構造体の地震による損傷を低減することが可能となる。   Another embodiment of the shock absorbing plate 6 is a case where a flat plate made of low yield point steel is used. Low yield point steel is also called ultra-soft steel, and is close to pure iron with the additive elements reduced as much as possible, and is a steel type whose yield point is lowered by heat treatment such as soft annealing after rolling. The low yield point steel includes a low yield point steel having a yield point of 235N class and an ultra low yield point steel having a class N of 100N, either of which may be used. The shock absorbing plate 6 using this low yield point steel is bent and deformed by the tensile force generated in the cable material 2 at the time of an earthquake, but yields earlier than other members due to the deformation, and the input energy of the earthquake is obtained by repeated load history. Absorb. In other words, it functions as a damper that reduces shaking and deformation during an earthquake. In particular, when a tensile member is used as a connecting member between structures and the column member 11 and the foundation concrete 12 are joined for the seismic reinforcement of a building, the input energy of the earthquake is concentrated on the shock absorbing plate 6 in a concentrated manner. Thus, it is possible to reduce damage to the structure of the building due to the earthquake.

但し、衝撃吸収板6は、地震動により塑性化した場合には交換する必要がある。本実施の形態では、後述するラムチェアー等の冶具を用いてケーブル材2の張力を解除し、この衝撃吸収板6を交換する。すなわち、衝撃吸収板6は、支圧板5に固定せず、初期張力の導入による摩擦力によりその位置を固定する。この衝撃吸収板6の位置を機械的に固定するために、支圧板5又は衝撃吸収板6の一方の表面に「臍」を設け、他方に「臍孔」を設け差し込んでも良い。あるいは、支圧板5又は衝撃吸収板6の双方の対向する表面に「臍孔」を設け、そこに棒材を挿入しても良い。これらの手段により、支圧板5と衝撃吸収板6とのずれを防止することが可能となる。   However, the shock absorbing plate 6 needs to be replaced when it is plasticized by the earthquake motion. In the present embodiment, the tension of the cable member 2 is released using a jig such as a ram chair, which will be described later, and the impact absorbing plate 6 is replaced. That is, the position of the shock absorbing plate 6 is not fixed to the bearing plate 5 but is fixed by the frictional force due to the introduction of the initial tension. In order to mechanically fix the position of the shock absorbing plate 6, a “umbilical” may be provided on one surface of the bearing plate 5 or the shock absorbing plate 6, and a “umbilical hole” may be provided and inserted on the other. Alternatively, “umbilical holes” may be provided on the opposing surfaces of both the bearing plate 5 and the shock absorbing plate 6 and a bar may be inserted there. By these means, it is possible to prevent the displacement of the bearing plate 5 and the shock absorbing plate 6.

ケーブル材2は、本実施の形態では、構造用ストランドロープを用いる。ストランドロープは、7本から41本の素線をより合わせたストランドを、更により合わせてロープ状にしたものをいう。一般的には、心の周囲に6本の側ストランドをより合わせる。構造用ストランドロープは、より線を更によることから、柔軟性に富み可撓性が大きいことを特徴とする。素線は、高炭素鋼線からなり、引張強さは、主として1470N級、1670N級、1770N級等が用いられる。この素線は、冷間加工後に亜鉛めっきが施される。このケーブル材2は、構造用スパイラルロープ、或いは他の形式のケーブル材料であっても良い。さらに、PC鋼棒を含む鋼棒、フラットバー、丸形鋼管、角形鋼管、アングル材やチャンネル材等の形鋼等であっても良い。このケーブル材2の両端にはソケット3が取り付く。   In the present embodiment, the cable material 2 uses a structural strand rope. The strand rope means a strand shape in which 7 to 41 strands are further combined to form a rope shape. In general, six side strands are more closely aligned around the heart. The structural strand rope is characterized by high flexibility and high flexibility due to the additional strands. The element wire is made of a high carbon steel wire, and the tensile strength is mainly 1470N class, 1670N class, 1770N class or the like. This strand is galvanized after cold working. The cable material 2 may be a structural spiral rope or other type of cable material. Furthermore, a steel bar including a PC steel bar, a flat bar, a round steel pipe, a square steel pipe, a shape steel such as an angle material or a channel material, or the like may be used. Sockets 3 are attached to both ends of the cable member 2.

ソケット3は、ケーブル材2の端部を定着する円柱形の定着部品である。このソケット3の断面形状は、円柱形に限らず、例えば、多角柱、円錐形であっても良い。ケーブル材2のソケット3は、一般的に、ソケット3の円錐内部にワイヤーロープの素線を茶せん状(箒状)にばらし、亜鉛−銅合金を鋳込む方式と、ケーブル材2にソケット3を装着し、プレス、ロータリースウェージ等でソケット3を圧着する方式とがある。前者は、素線と亜鉛−銅合金とは付着により、亜鉛−銅合金とソケット3の円錐内部とは面圧と摩擦力により定着力を得る機構である。一方、後者は、圧着時に生じるソケット3の内面とケーブル材2の表面との食い込みにより定着力を得る機構である。本実施の形態では、構造用ストランドロープに後者の方式によりソケット3を定着するが、前者の方式であっても良い。   The socket 3 is a cylindrical fixing component that fixes the end of the cable member 2. The cross-sectional shape of the socket 3 is not limited to a cylindrical shape, and may be, for example, a polygonal column or a conical shape. In general, the socket 3 of the cable material 2 includes a method in which the strands of the wire rope are separated into a tea-like shape (a bowl shape) inside the cone of the socket 3 and a zinc-copper alloy is cast, and the socket 3 is attached to the cable material 2. There is a method of mounting and crimping the socket 3 with a press, a rotary swage or the like. The former is a mechanism that obtains fixing force by adhesion between the wire and the zinc-copper alloy, and the zinc-copper alloy and the inside of the cone of the socket 3 by surface pressure and frictional force. On the other hand, the latter is a mechanism that obtains a fixing force by biting between the inner surface of the socket 3 and the surface of the cable member 2 that occur during crimping. In this embodiment, the socket 3 is fixed to the structural strand rope by the latter method, but the former method may be used.

ソケット3は、引張材が鋼棒の場合には、内面がネジ加工された円筒状のナットである。この場合、鋼棒の端部に切られたネジにより鋼棒と係合する。したがって、本実施の形態にそのまま適用可能である。また、引張材が、フラットバー、丸形鋼管、角形鋼管、アングル材やチャンネル材等の形鋼等であっても、それらの端部に溶接接合、ねじ止め、或いは、ソケット3を貫通させてエンドプレートにより止める等の方法により、本実施の形態にそのまま適用可能である。   The socket 3 is a cylindrical nut whose inner surface is threaded when the tensile material is a steel rod. In this case, the steel bar is engaged with a screw cut at the end of the steel bar. Therefore, the present embodiment can be applied as it is. In addition, even if the tensile material is a flat bar, round steel pipe, square steel pipe, angle steel, shape steel such as channel material, etc., welded joints, screws, or sockets 3 are passed through the end portions thereof. The present embodiment can be applied as it is by a method such as stopping by an end plate.

図4に、衝撃吸収板6の他の実施の形態の概略の正面図を示す。衝撃吸収板6は、ケーブル材2への初期張力の導入により略平板となるようにソケット3側に起立している。すなわち、ケーブル材2には、初期張力Fが導入され、衝撃吸収板6はこの初期張力Fにより変形する。その変形曲線は、簡単な力学モデルによる計算又は実験等により、あらかじめ予測が可能である。衝撃吸収板6にこの変形曲線とは逆向きのむくりDを与えておくことで、変形後には略平板となる。このむくりDの形状は、本実施の形態では、筒状であるが、起立する形状であれば、例えば、球面上、円弧状、楕円状、折れ線状であっても良い。また、必ずしも衝撃吸収板6の変形曲線と同様な逆変形のむくりDでなくても良い。すなわち、図4のむくり量dを、初期張力Fによる衝撃吸収板6の最大変形量と略同一に設定すれば良い。さらに、本実施の形態では、このむくりDは図4に示すように衝撃吸収板6の一部に設けている。このむくりDは、衝撃吸収板6の支圧面16と接する部分以外の設けても良い。このむくりDを設けることで、初期張力Fの導入の際に、衝撃吸収板6が略平板となっているか否かを目視することで容易に張力確認が可能となる。同様に、導入された初期張力Fがクリープ歪やリラクゼーション(応力弛緩)により抜けた場合にも張力確認が可能となる。 FIG. 4 shows a schematic front view of another embodiment of the shock absorbing plate 6. The shock absorbing plate 6 stands on the socket 3 side so as to become a substantially flat plate by introducing an initial tension to the cable member 2. That is, the initial tension F 0 is introduced into the cable member 2, and the shock absorbing plate 6 is deformed by the initial tension F 0 . The deformation curve can be predicted in advance by calculation or experiment using a simple dynamic model. By giving the shock absorbing plate 6 a peel D in the direction opposite to the deformation curve, it becomes a substantially flat plate after the deformation. In the present embodiment, the shape of the peel D is a cylindrical shape, but may be a spherical shape, an arc shape, an elliptical shape, or a polygonal line shape as long as it stands up. Further, the deformation D may not be the same as the deformation curve D of the shock absorbing plate 6. That is, the Mukuri amount d of FIG. 4, may be the initial tension F 0 maximum deformation amount of the shock absorbing plate 6 by and set to be substantially the same. Further, in the present embodiment, the peel D is provided on a part of the shock absorbing plate 6 as shown in FIG. This peel D may be provided at a portion other than the portion in contact with the bearing surface 16 of the shock absorbing plate 6. The Mukuri D by providing the, upon introduction of the initial tension F 0, the shock absorbing plate 6 is possible to easily tension confirmed by visual observation whether a substantially flat plate. Similarly, the tension can be confirmed even when the introduced initial tension F 0 is lost due to creep strain or relaxation (stress relaxation).

図5に、支圧板5の他の実施の形態の概略の構成を図示する。図5(a)は、図1(a)のC−C断面図である。図5(b)は、図5(a)のA−A断面図である。本実施の形態は、支圧板5の衝撃吸収板6と対向する面が球状の凹面の場合である。すなわち、支圧板5と衝撃吸収板6との間の空隙18が球体の一部を切断した形状の場合である。図5(b)に示すように、この実施の形態では、支圧板5は衝撃吸収板6の全外周と接する。また、図中Pで示す線が、支圧板5により衝撃吸収板6の変形を拘束する固定端となる。したがって、衝撃吸収板6は、Pで示す線を固定端とし、ケーブル開口部15の縁Rを自由端とする矩形の平板となる。この支圧板5の実施の形態では、板状粘弾性材8aは、支圧板5と衝撃吸収板6との間の空隙18に閉鎖され外部に露出しない。   FIG. 5 illustrates a schematic configuration of another embodiment of the bearing plate 5. Fig.5 (a) is CC sectional drawing of Fig.1 (a). FIG.5 (b) is AA sectional drawing of Fig.5 (a). In the present embodiment, the surface of the bearing plate 5 that faces the shock absorbing plate 6 is a spherical concave surface. That is, this is a case where the gap 18 between the bearing plate 5 and the shock absorbing plate 6 has a shape obtained by cutting a part of a sphere. As shown in FIG. 5B, in this embodiment, the pressure bearing plate 5 is in contact with the entire outer periphery of the shock absorbing plate 6. In addition, a line indicated by P in the figure is a fixed end that restrains the deformation of the shock absorbing plate 6 by the bearing plate 5. Therefore, the shock absorbing plate 6 is a rectangular flat plate having the line indicated by P as a fixed end and the edge R of the cable opening 15 as a free end. In this embodiment of the bearing plate 5, the plate-like viscoelastic material 8 a is closed to the gap 18 between the bearing plate 5 and the shock absorbing plate 6 and is not exposed to the outside.

図6に、粘弾性材8の概略の構成の説明図を示す。図6は、斜視図であり、支圧板5を破線とし、粘弾性材8に関連した部分を、分かりやすく実線で示した図である。粘弾性材8には、板状粘弾性材8a及び筒状粘弾性材8bがある。上述した引張部材用固定具1の各実施の形態では、支圧板5と衝撃吸収板6との間の空隙18に板状粘弾性材8aが挿入され、ケーブル材2と支圧板5との間の空隙19に筒状粘弾性材8bが挿入される。これらの粘弾性材8は、どちらか一方に取り付けられていても良く、両方に取り付けられていても良い。   FIG. 6 is an explanatory diagram of a schematic configuration of the viscoelastic material 8. FIG. 6 is a perspective view, in which the bearing plate 5 is indicated by a broken line, and a portion related to the viscoelastic material 8 is indicated by a solid line for easy understanding. The viscoelastic material 8 includes a plate-like viscoelastic material 8a and a cylindrical viscoelastic material 8b. In each of the embodiments of the tension member fixture 1 described above, a plate-like viscoelastic material 8 a is inserted into the gap 18 between the bearing plate 5 and the shock absorbing plate 6, and between the cable member 2 and the bearing plate 5. The cylindrical viscoelastic material 8 b is inserted into the gap 19. These viscoelastic materials 8 may be attached to either one or both.

板状粘弾性材8aは、衝撃吸収板6が引張力Fにより強制変形することで、圧縮応力Cを受ける。上述したように、この板状粘弾性材8aに応力が加わった場合、その荷重履歴に伴う非線形な挙動により地震等の衝撃エネルギを吸収する。すなわち、ケーブル材2に張力が加わった場合、支圧板5はほとんど変形しないのに対して、衝撃吸収板6は曲げ変形し、その空隙18の体積は減少する。この体積の減少により、板状粘弾性材8aは、圧縮応力Cを受け塑性変形する。さらに、地震動による繰り返し荷重が作用することで、板状粘弾性材8aは、地震によりケーブル材2に発生する衝撃エネルギを吸収し、構造体の揺れや変形を減少させ、構造体の損傷を低減させる。支圧板5と衝撃吸収板6との間の空隙18は、衝撃吸収板6の変形が可能なスペースがあれば良い。また、板状粘弾性材8aは、長さに対して厚さの薄い板状であり、圧縮応力Cにより端部にはみ出す量は少ない。したがって、圧縮変形により地震動のエネルギを吸収することが可能となる。   The plate-like viscoelastic material 8a receives the compressive stress C when the impact absorbing plate 6 is forcibly deformed by the tensile force F. As described above, when stress is applied to the plate-like viscoelastic material 8a, impact energy such as earthquake is absorbed by the non-linear behavior associated with the load history. That is, when tension is applied to the cable member 2, the bearing plate 5 hardly deforms, whereas the shock absorbing plate 6 is bent and deformed, and the volume of the gap 18 is reduced. Due to the decrease in volume, the plate-like viscoelastic material 8a undergoes plastic deformation under the compressive stress C. Furthermore, the plate-like viscoelastic material 8a absorbs the impact energy generated in the cable material 2 due to the earthquake, and the vibration and deformation of the structure are reduced and the damage to the structure is reduced by the repeated load caused by the earthquake motion. Let The gap 18 between the pressure bearing plate 5 and the shock absorbing plate 6 only needs to have a space in which the shock absorbing plate 6 can be deformed. Further, the plate-like viscoelastic material 8a has a plate shape with a small thickness with respect to the length, and the amount of the plate-like viscoelastic material 8a protruding to the end due to the compressive stress C is small. Therefore, it becomes possible to absorb the energy of seismic motion by compressive deformation.

筒状粘弾性材8bは、ケーブル材2と支圧板5との相対的なずれによりせん断応力Sを受ける。すなわち、ケーブル材2は支圧板5に対して、衝撃吸収板6の変形によるずれと、引張力Fによるケーブル材2自体の伸びによるずれとが発生する。支圧板5は固定されているため、筒状粘弾性材8bにはせん断力Sが発生する。上述したように、この筒状粘弾性材8bに応力が加わった場合、その荷重履歴に伴う非線形な挙動により地震等の衝撃エネルギを吸収する。地震動による繰り返し荷重が作用することで、筒状粘弾性材8bは、地震によりケーブル材2に発生する衝撃エネルギを吸収し、構造体の揺れや変形を減少させ、構造体の損傷を低減させる。ケーブル材2と支圧板5との間の空隙19とは、ケーブル材2を支圧板5のケーブル開口部15に通過されるためのクリアランスである。このクリアランスは、ケーブル材2が地震時や強風時に、ソケット3と衝撃吸収板6との接点を支点としたケーブル材2の回転移動を吸収する。したがって、ケーブル材2に発生する回転によるずれせん断応力Sが発生する場合もある。   The cylindrical viscoelastic material 8 b receives a shear stress S due to a relative displacement between the cable material 2 and the bearing plate 5. That is, the cable member 2 is displaced from the bearing plate 5 due to the deformation of the shock absorbing plate 6 and the displacement due to the extension of the cable member 2 itself due to the tensile force F. Since the bearing plate 5 is fixed, a shearing force S is generated in the cylindrical viscoelastic material 8b. As described above, when stress is applied to the cylindrical viscoelastic material 8b, impact energy such as earthquake is absorbed by the non-linear behavior associated with the load history. When the repeated load due to the earthquake motion acts, the cylindrical viscoelastic material 8b absorbs impact energy generated in the cable material 2 due to the earthquake, reduces shaking and deformation of the structure, and reduces damage to the structure. The gap 19 between the cable member 2 and the bearing plate 5 is a clearance for allowing the cable member 2 to pass through the cable opening 15 of the bearing plate 5. This clearance absorbs the rotational movement of the cable material 2 with the contact point between the socket 3 and the shock absorbing plate 6 as a fulcrum when the cable material 2 is in an earthquake or a strong wind. Therefore, the shear shear stress S due to the rotation generated in the cable material 2 may occur.

図7に、本発明に係る引張部材用固定具付き引張部材20の一つの実施の形態の概略の構成を示す。図7(a)は、正面図であり、図7(b)は、A−A方向から見た側面図である。本実施形態では、引張部材用固定具付き引張部材20は、木造の柱材11と基礎コンクリート12とを接続する引張部材用固定具付きケーブル材2である。   FIG. 7 shows a schematic configuration of one embodiment of a tension member 20 with a tension member fixture according to the present invention. Fig.7 (a) is a front view, FIG.7 (b) is the side view seen from the AA direction. In the present embodiment, the tension member 20 with the tension member fixture is the cable member 2 with the tension member fixture that connects the wooden column member 11 and the foundation concrete 12.

木造の柱材11と基礎コンクリート12は、図7(b)に示すように、一般的には、段差がある。この柱材11と基礎コンクリート12を接続する補強材として、ケーブル材2の可撓性を利用した引張部材用固定具付き引張部材20を用いる。本実施の形態では、基礎コンクリート12への固定手段として引張部材用固定具1を用いる。引張部材用固定具1は、柱材11への固定手段に用いても良く、柱材11及び基礎コンクリート12の双方への固定手段として用いても良い。   As shown in FIG. 7B, the wooden column 11 and the foundation concrete 12 generally have a step. As a reinforcing material for connecting the column member 11 and the foundation concrete 12, a tensile member 20 with a fixing member for a tensile member using the flexibility of the cable member 2 is used. In the present embodiment, the tension member fixture 1 is used as a fixing means to the foundation concrete 12. The tension member fixture 1 may be used as a fixing means to the pillar material 11 or may be used as a fixing means to both the pillar material 11 and the foundation concrete 12.

引張部材用固定具付き引張部材20は、木造の建造物の耐震補強として、柱材11と基礎コンクリート12とを接続し、地震時における柱材11の引抜を防止するものである。柱材11側は、ケーブル材2の端部のソケット3を、直接固定板14に取り付け、固定板14は柱材11にボルト17により固定される。ソケット3の素材は、溶接用鋼材(低炭素鋼)で固定板14に溶接接合される。ソケット3の素材が、亜鉛−銅合金等で溶接が難しい場合には、引張部材用固定具1であっても良い。ケーブル材2は、柱材11と基礎コンクリート12との段差を吸収して基礎コンクリート12側の引張部材用固定具1により基礎コンクリート12に固定される。   The tension member 20 with a fixing member for a tension member connects the column material 11 and the foundation concrete 12 as earthquake-proof reinforcement of a wooden structure, and prevents the column material 11 from being pulled out during an earthquake. On the column member 11 side, the socket 3 at the end of the cable member 2 is directly attached to the fixing plate 14, and the fixing plate 14 is fixed to the column member 11 with bolts 17. The material of the socket 3 is welded to the fixed plate 14 by welding steel (low carbon steel). When the material of the socket 3 is a zinc-copper alloy or the like and is difficult to weld, the tension member fixture 1 may be used. The cable member 2 absorbs a step between the column member 11 and the foundation concrete 12 and is fixed to the foundation concrete 12 by the tension member fixture 1 on the foundation concrete 12 side.

本実施の形態での引張部材用固定具付き引張部材20の取り付け方法について説明する。まず、ソケット13及びソケット3を取り付けたケーブル材2を用意する。ケーブル材2は、構造用ストランドロープをあらかじめ所定の長さに切断し、両端にソケット3,13を取り付けたものである。次に、ソケット13側に固定板14を取り付け、ソケット3側に引張部材用固定具1を取り付け、引張部材用固定具付き引張部材20とする。次に、ソケット13が取り付いた固定板14を、ボルト17により所定の位置の柱材11に固定する。次に、ソケット3が取り付いた固定板4を、初期張力の導入を考慮した所定の位置にボルト7により固定する。その際に、衝撃吸収板6は、張力導入の際に所定の位置に差し込むため、外しておく。さらに、ラムチェアー等の冶具を用いて、ケーブル材2に初期張力を導入する。ケーブル材2が細径の場合には、ボルト7を固定する段階で固定板4を下方に引張り、ケーブル材2に初期張力をかけて柱材11に固定しても良い。   A method of attaching the tension member 20 with the tension member fixture in the present embodiment will be described. First, the cable member 2 to which the socket 13 and the socket 3 are attached is prepared. The cable material 2 is obtained by cutting a structural strand rope into a predetermined length in advance and attaching sockets 3 and 13 to both ends. Next, the fixing plate 14 is attached to the socket 13 side, the tension member fixture 1 is attached to the socket 3 side, and the tension member 20 with the tension member fixture is obtained. Next, the fixing plate 14 to which the socket 13 is attached is fixed to the pillar material 11 at a predetermined position by a bolt 17. Next, the fixing plate 4 to which the socket 3 is attached is fixed with a bolt 7 at a predetermined position in consideration of introduction of initial tension. At that time, the shock absorbing plate 6 is removed because it is inserted into a predetermined position when the tension is introduced. Furthermore, initial tension is introduced into the cable member 2 using a jig such as a ram chair. When the cable member 2 has a small diameter, the fixing plate 4 may be pulled downward when the bolt 7 is fixed, and the cable member 2 may be fixed to the column member 11 by applying an initial tension.

図8に、本実施の形態での固定具付き引張部材への初期張力の導入方法の一例を図示する。張力導入用の冶具として、ラムチェアー21、ネジが切られたテンションバー22及びテンションバー22と係合するナット23が用いられる。ラムチェアー21は、支圧板5の一部に取り付けられる反力台である。ソケット3の端部にテンションバー取付口25が設けられ、テンションバー22の一端がソケット3に取り付けられる。テンションバー22の他端はラムチェアー21を貫通してナット23と係合する。初期張力は、ラムチェアー21から反力をとりながらナット23を回転し、ソケット3をテンションバー22により引き込むことで導入する。導入される初期張力は、ナット23の回転数により管理することが可能である。また、初期張力の管理は、上述した、衝撃吸収板6のむくみ量dを目視する方法であっても良い。すなわち、ナット23の回転により初期張力が導入され、衝撃吸収板6が略平板となることで所定の初期張力が導入されたことを確認する方法である。ナット23の回転により、支圧板5とソケット3との間に間隙が生じ、その間隙に衝撃吸収板6を挿入する。この間隙が、衝撃吸収板6の板厚以上である場合には、シムプレート24を支圧板5と衝撃吸収板6との間に差し込み間隔を調整する。   FIG. 8 illustrates an example of a method for introducing an initial tension to a tension member with a fixture according to the present embodiment. A ram chair 21, a threaded tension bar 22, and a nut 23 that engages with the tension bar 22 are used as a jig for introducing tension. The ram chair 21 is a reaction force table attached to a part of the bearing plate 5. A tension bar attaching port 25 is provided at the end of the socket 3, and one end of the tension bar 22 is attached to the socket 3. The other end of the tension bar 22 passes through the ram chair 21 and engages with the nut 23. The initial tension is introduced by rotating the nut 23 while taking the reaction force from the ram chair 21 and pulling the socket 3 by the tension bar 22. The initial tension to be introduced can be managed by the number of rotations of the nut 23. Further, the management of the initial tension may be a method of visually checking the amount of swelling d of the impact absorbing plate 6 described above. That is, the initial tension is introduced by the rotation of the nut 23, and the shock absorbing plate 6 is a substantially flat plate to confirm that a predetermined initial tension is introduced. Due to the rotation of the nut 23, a gap is generated between the bearing plate 5 and the socket 3, and the shock absorbing plate 6 is inserted into the gap. When this gap is equal to or greater than the thickness of the shock absorbing plate 6, the shim plate 24 is inserted between the bearing plate 5 and the shock absorbing plate 6 to adjust the interval.

引張部材用固定具付き引張部材20の初期張力の導入方法は、本実施の形態では、ナット23を回転させてソケット3を引き込む方法であるが、他の方法であっても良い。例えば、センタホールジャッキを用いて油圧により張力を管理する方法等である。また、簡易な引張部材用固定具付き引張部材20の場合には、人力により初期張力を導入しても良い。   In the present embodiment, the method of introducing the initial tension of the tension member 20 with the tension member fixing member is a method of rotating the nut 23 to retract the socket 3, but other methods may be used. For example, there is a method of managing tension by hydraulic pressure using a center hole jack. In the case of a simple tension member 20 with a tension member fixing member, the initial tension may be introduced manually.

本発明に係る引張部材用固定具の一つの実施の形態の概略の構成を示す正面図、側面図及び底面図である。It is the front view, side view, and bottom view which show the schematic structure of one embodiment of the fixture for tension members concerning the present invention. 支圧板の他の実施の形態の概略の構成を示す正面図及び断面図である。It is the front view and sectional drawing which show the schematic structure of other embodiment of a bearing plate. 衝撃吸収板の実施の形態の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of embodiment of an impact-absorbing board. 衝撃吸収板の他の実施の形態の概略の構成を示す正面図である。It is a front view which shows the schematic structure of other embodiment of an impact-absorbing board. 支圧板の他の実施の形態の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of other embodiment of a bearing plate. 粘弾性材の概略の構成を説明した斜視図である。It is the perspective view explaining the schematic structure of the viscoelastic material. 本発明に係る引張部材用固定具付き引張部材の一つの実施の形態の概略の構成を示す正面図及び側面図である。It is the front view and side view which show the outline structure of one embodiment of the tension member with a fixing member for tension members concerning the present invention. 固定具付き引張部材の初期張力の導入方法の一例の概略の構成を示す正面図である。It is a front view showing the outline composition of an example of the introduction method of the initial tension of the tension member with a fixture.

符号の説明Explanation of symbols

1 引張部材用固定具、2 ケーブル材、3,13 ソケット、4,14 固定板、5 支圧板、5a 天板、5b 側板、5c 補強板、5d 底板、5e 曲面板、5f 筒状板、6 衝撃吸収板、7,17 ボルト、8 粘弾性材、8a 板状粘弾性材、8b 筒状粘弾性材、9 構造体、10 引張部材、11 柱材、12 基礎コンクリート、15 支圧板のケーブル開口部、15a 側板のケーブル開口部、15b 曲面板のケーブル開口部、16 支圧面、18 支圧板と衝撃吸収板との間の空隙、19 ケーブル材と支圧板との間の空隙、20 引張部材用固定具付き引張部材、21 ラムチェアー、22 テンションバー、23 ナット、24 シムプレート、25 テンションバー取付口、F 引張力、F初期張力、C 圧縮応力、P,Q 支持線、R 縁、D むくり、d むくり量、S せん断応力。 DESCRIPTION OF SYMBOLS 1 Fixing tool for tension members, 2 Cable material, 3,13 Socket, 4,14 Fixing plate, 5 Bearing plate, 5a Top plate, 5b Side plate, 5c Reinforcement plate, 5d Bottom plate, 5e Curved plate, 5f Cylindrical plate, 6 Shock absorber plate, 7, 17 bolt, 8 viscoelastic material, 8a plate viscoelastic material, 8b cylindrical viscoelastic material, 9 structure, 10 tension member, 11 pillar material, 12 foundation concrete, 15 cable opening of bearing plate 15a, cable opening of side plate, 15b cable opening of curved plate, 16 bearing surface, 18 gap between bearing plate and shock absorbing plate, 19 gap between cable material and bearing plate, 20 for tension member Tensile member with fixture, 21 Ram chair, 22 Tension bar, 23 Nut, 24 Shim plate, 25 Tension bar mounting port, F Tensile force, F 0 initial tension, C Compressive stress, P, Q Support line, R edge, D Peeled d Mukuri amount, S shear stress.

Claims (9)

引張材とその両端のソケットからなる引張部材を、ソケットを掴むことで建造物の構造体に固定させる引張部材用固定具であって、
構造体に固定されて取り付く固定板と、
固定板に設けられ、衝撃吸収板の外周と接し、引張材が通過する開口を有する支圧板と、
ソケットと、支圧板との間に設けられ、引張材に生じる応力により曲げ変形可能な衝撃吸収板と、を備え、
衝撃吸収板と支圧板との間に、衝撃吸収板の曲げ変形が可能な空隙があることを特徴とする引張部材用固定具。
A tension member fixture for fixing a tension member composed of a tension member and sockets at both ends thereof to a structure of a building by grasping the socket,
A fixing plate fixed to the structure and attached;
A support plate provided on the fixed plate, in contact with the outer periphery of the shock absorbing plate, and having an opening through which the tensile material passes;
An impact absorbing plate provided between the socket and the bearing plate and capable of bending deformation due to stress generated in the tensile material;
A fixture for a tension member, characterized in that there is a gap between the impact absorbing plate and the bearing plate that allows the impact absorbing plate to bend and deform.
請求項1に記載の引張部材用固定具において、衝撃吸収板は、低降伏点鋼からなり、交換可能なことを特徴とする引張部材用固定具。   2. The tension member fixture according to claim 1, wherein the impact absorbing plate is made of low yield point steel and is replaceable. 請求項1又は2に記載の引張部材用固定具において、衝撃吸収板と、支圧板との間の空隙には、粘弾性材が設けられていることを特徴とする引張部材用固定具。   The tension member fixture according to claim 1 or 2, wherein a viscoelastic material is provided in a gap between the impact absorbing plate and the bearing plate. 請求項1又は3に記載の引張部材用固定具において、引張材と、支圧板との間の空隙には、粘弾性材が設けられていることを特徴とする引張部材用固定具。   The tension member fixture according to claim 1 or 3, wherein a viscoelastic material is provided in a gap between the tension member and the bearing plate. 請求項1乃至4のいずれか1に記載の引張部材用固定具において、衝撃吸収板は、ソケット側に起立していることを特徴とする引張部材用固定具。   The tension member fixture according to any one of claims 1 to 4, wherein the shock absorbing plate stands on the socket side. 請求項5に記載の引張部材用固定具において、衝撃吸収板は、引張材への初期張力導入により略平板となるように起立していることを特徴とする引張部材用固定具。   6. The tension member fixture according to claim 5, wherein the impact absorbing plate is erected so as to become a substantially flat plate by introducing an initial tension to the tensile material. 請求項1乃至6のいずれか1に記載の引張部材用固定具において、支圧板は、その衝撃吸収板と対向する面が筒状の凹面であることを特徴とする引張部材用固定具。   The tension member fixture according to any one of claims 1 to 6, wherein the bearing plate has a cylindrical concave surface facing the shock absorbing plate. 請求項1乃至6のいずれか1に記載の引張部材用固定具において、支圧板は、その衝撃吸収板と対向する面が球状の凹面であることを特徴とする引張部材用固定具。   The tension member fixture according to any one of claims 1 to 6, wherein the bearing plate has a spherical concave surface facing the shock absorbing plate. 請求項1乃至8のいずれか1に記載の引張部材用固定具が装着された引張部材。















The tension member with which the fixture for tension members of any one of Claims 1 thru | or 8 was mounted | worn.















JP2006190693A 2006-07-11 2006-07-11 Tensile member fixture and tension member with fixture Expired - Fee Related JP4591891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190693A JP4591891B2 (en) 2006-07-11 2006-07-11 Tensile member fixture and tension member with fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190693A JP4591891B2 (en) 2006-07-11 2006-07-11 Tensile member fixture and tension member with fixture

Publications (2)

Publication Number Publication Date
JP2008019579A true JP2008019579A (en) 2008-01-31
JP4591891B2 JP4591891B2 (en) 2010-12-01

Family

ID=39075745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190693A Expired - Fee Related JP4591891B2 (en) 2006-07-11 2006-07-11 Tensile member fixture and tension member with fixture

Country Status (1)

Country Link
JP (1) JP4591891B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217062A (en) * 2012-04-06 2013-10-24 Taisei Corp Beam string structure
JP2018096147A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Damping device for flange joined tower structure and tower structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125359U (en) * 1991-04-30 1992-11-16 株式会社竹中工務店 Fall prevention device for elastically supported seismic isolation structures
JPH11350610A (en) * 1999-04-05 1999-12-21 Yuji Kasahara Joining metal
JP2001279830A (en) * 2000-03-31 2001-10-10 Tesac Corp Fixing method for column and sill in wooden building
JP2004044165A (en) * 2002-07-10 2004-02-12 Tesac Corp Hold-down metal fitting and connecting method between foundation and column of building by making use of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125359U (en) * 1991-04-30 1992-11-16 株式会社竹中工務店 Fall prevention device for elastically supported seismic isolation structures
JPH11350610A (en) * 1999-04-05 1999-12-21 Yuji Kasahara Joining metal
JP2001279830A (en) * 2000-03-31 2001-10-10 Tesac Corp Fixing method for column and sill in wooden building
JP2004044165A (en) * 2002-07-10 2004-02-12 Tesac Corp Hold-down metal fitting and connecting method between foundation and column of building by making use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217062A (en) * 2012-04-06 2013-10-24 Taisei Corp Beam string structure
JP2018096147A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Damping device for flange joined tower structure and tower structure

Also Published As

Publication number Publication date
JP4591891B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR101632255B1 (en) Earthquake resisting design method on the basis of pc binding articulation construction method
CN106400954B (en) A kind of girder steel-Frame Joints of Concrete-Filled Steel Tube based on Damage Coutrol theory
KR101460258B1 (en) Moment frame connector
JP4139901B2 (en) Damping structure of wooden building and damping method of wooden building
EP2537999A1 (en) Fastening device
CN110005096B (en) Self-resetting concrete shear wall with built-in shape memory alloy
JP2008303573A (en) Seismically-reinforced cable
JP2007002515A (en) Seismically retrofitting structure for building
JP4888915B2 (en) Building structure using composite structural beams with beam ends made of PC
CN112081305A (en) Self-resetting square concrete filled steel tube column base node with friction type anchoring device
JP4861683B2 (en) Damping brace structure
JP3895337B2 (en) Tower structure
JP4591891B2 (en) Tensile member fixture and tension member with fixture
JP5467001B2 (en) Brace support structure
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
KR20200068205A (en) Seismic retrofit using strand and length adjustable truss
JP4683571B2 (en) Steel structure exposed column base structure
JP6765735B1 (en) Steel structure having a 3-axis compression beam-beam joint and its construction method
JP5037031B2 (en) Wall panel fixing structure and building
JPH10292486A (en) Through diaphragm body and connecting structure for steel structure using it
JP2004225411A (en) Anchoring bolt device for bridge pier or the like
JP4431986B2 (en) Seismic reinforcement structure of building and seismic reinforcement method
JP5002569B2 (en) Gate-type frame structure of a wooden building
CN106639026A (en) Component damage control fuse block based on moderate buckling control
JP5491070B2 (en) Seismic reinforcement members and earthquake-resistant buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees