JP2008019293A - Polyester containing terpene phenol unit - Google Patents

Polyester containing terpene phenol unit Download PDF

Info

Publication number
JP2008019293A
JP2008019293A JP2006189871A JP2006189871A JP2008019293A JP 2008019293 A JP2008019293 A JP 2008019293A JP 2006189871 A JP2006189871 A JP 2006189871A JP 2006189871 A JP2006189871 A JP 2006189871A JP 2008019293 A JP2008019293 A JP 2008019293A
Authority
JP
Japan
Prior art keywords
formula
represented
polyester
resin
terpene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006189871A
Other languages
Japanese (ja)
Other versions
JP5095147B2 (en
Inventor
Kaori Shirato
香織 白土
Takeshi Hirai
剛 平井
Takahiro Iijima
孝浩 飯島
Naohiro Takamura
直宏 高村
Teruaki Sugawara
輝明 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd, JSR Corp filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2006189871A priority Critical patent/JP5095147B2/en
Priority to TW096122256A priority patent/TWI395766B/en
Priority to CN2007800258613A priority patent/CN101495539B/en
Priority to PCT/JP2007/063316 priority patent/WO2008007584A1/en
Priority to KR1020087031565A priority patent/KR101042481B1/en
Publication of JP2008019293A publication Critical patent/JP2008019293A/en
Application granted granted Critical
Publication of JP5095147B2 publication Critical patent/JP5095147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/56Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds other than from esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/918Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Photolithography (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new polyester used as a photosensitive resin having flexibility. <P>SOLUTION: The polyester has a terpene skeleton represented by general formula (1) (wherein, X represents a terpene diphenoxy group; Y represents a residue after removing carboxy groups from a tetrabasic acid dianhydride; R represents an H or a CH<SB>3</SB>; R' represents an H or a residue of a carboxy group-blocking agent; and n represents an integer of 1-40). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、テルペンフェノール単位を骨格中に含むポリエステルに関し、より詳細には、例としてアルカリ現像が可能な感光性樹脂として用いることができる新規なポリエステルに関するものである。   The present invention relates to a polyester containing a terpene phenol unit in the skeleton, and more particularly to a novel polyester that can be used as a photosensitive resin capable of alkali development as an example.

従来、プリント配線板におけるレジスト材料やソルダーレジスト等の永久保護マスクとして、感光性樹脂が用いられている。感光性樹脂は、適当な光重合開始剤の存在下で光照射により硬化するものであり、例えば、下記特許文献1には、カルドフェノール樹脂骨格を有するエポキシアクリレート化合物が提案されている。   Conventionally, a photosensitive resin has been used as a permanent protective mask such as a resist material or a solder resist in a printed wiring board. The photosensitive resin is cured by light irradiation in the presence of a suitable photopolymerization initiator. For example, Patent Document 1 below proposes an epoxy acrylate compound having a cardophenol resin skeleton.

また、かかる感光性樹脂に関し、下記特許文献2には、未硬化状態でアルカリ水溶液に可溶であり、硬化後に不溶となることで、アルカリ現像を可能にしたアルカリ可溶型感光性樹脂として、上記特許文献1のエポキシアクリレート化合物にカルボン酸無水物を付加反応させた化合物が提案されている。
特開平7−48424号公報 特開平5−70528号公報
In addition, regarding such a photosensitive resin, the following Patent Document 2 discloses an alkali-soluble photosensitive resin that is soluble in an alkaline aqueous solution in an uncured state and becomes insoluble after curing, thereby enabling alkali development. A compound obtained by subjecting the epoxy acrylate compound of Patent Document 1 to an addition reaction of a carboxylic acid anhydride has been proposed.
JP 7-48424 A JP-A-5-70528

上記従来の化合物は、その骨格中に含まれるカルドフェノールが剛直構造であり、しかも両末端がグリシジルエーテル化されたエポキシ樹脂の末端に単にアクリル酸又はメタクリル酸を付加させたエポキシアクリレート樹脂であるため、可撓性に劣るという欠点がある。   The above-mentioned conventional compound is an epoxy acrylate resin in which the cardophenol contained in the skeleton has a rigid structure, and both ends are simply added with acrylic acid or methacrylic acid at the ends of an epoxy resin that is glycidyl etherified. There is a disadvantage that it is inferior in flexibility.

本発明の課題は、可撓性を持つ感光性樹脂として用いられる新規なポリエステルを提供することにある。   An object of the present invention is to provide a novel polyester used as a flexible photosensitive resin.

本発明の第1の発明に係るポリエステルは、下記一般式(1)で表されるものである。

Figure 2008019293
The polyester according to the first aspect of the present invention is represented by the following general formula (1).
Figure 2008019293

式中、Xは下記式(2)又は(3)で表されるテルペンジフェノキシ基であり、1分子中に式(2)と式(3)が混合して含まれてもよい。また、Yはカルボキシル基を4個有する有機化合物のカルボキシル基を除いた残基、RはH又はCH、R’はH又はカルボキシル基封鎖剤の残基を示し、nは1〜40の整数を示す。

Figure 2008019293
In the formula, X is a terpene diphenoxy group represented by the following formula (2) or (3), and one molecule may contain a mixture of the formula (2) and the formula (3). Y is a residue excluding a carboxyl group of an organic compound having four carboxyl groups, R is H or CH 3 , R ′ is a residue of H or a carboxyl group blocking agent, and n is an integer of 1 to 40 Indicates.
Figure 2008019293

また、本発明の第2の発明に係るポリエステルは、下記一般式(4)で表されるエポキシ(メタ)アクリレート及び下記一般式(5)で表されるエポキシ(メタ)アクリレートの少なくとも一方と、下記一般式(6)で表される四塩基酸二無水物との縮重合により得られる重量平均分子量が3,000〜100,000であるポリエステルである。

Figure 2008019293
In addition, the polyester according to the second invention of the present invention includes at least one of an epoxy (meth) acrylate represented by the following general formula (4) and an epoxy (meth) acrylate represented by the following general formula (5); A polyester having a weight average molecular weight of 3,000 to 100,000 obtained by condensation polymerization with a tetrabasic acid dianhydride represented by the following general formula (6).
Figure 2008019293

式中、RはH又はCHを示す。

Figure 2008019293
In the formula, R represents H or CH 3 .
Figure 2008019293

式中、Yはカルボキシル基を4個有する有機化合物のカルボキシル基を除いた残基を示す。   In formula, Y shows the residue except the carboxyl group of the organic compound which has four carboxyl groups.

本発明によれば、骨格中に含まれるテルペンフェノール単位の可撓性とともに、該テルペンフェノール単位が四塩基酸二無水物との間でのエステル結合を介して連結されたポリエステルであることから、可撓性(フレキシブル性)を有する感光性樹脂が得られる。   According to the present invention, together with the flexibility of the terpene phenol unit contained in the skeleton, the terpene phenol unit is a polyester linked via an ester bond with a tetrabasic acid dianhydride, A photosensitive resin having flexibility (flexibility) is obtained.

本発明に係るポリエステルは、上記一般式(4)及び/又は(5)で表されるテルペンジフェノールジグリシジルエーテルジ(メタ)アクリレートと、上記一般式(6)で表される四塩基酸二無水物とのエステル化反応(縮重合反応)により製造することができる。   The polyester according to the present invention comprises a terpene diphenol diglycidyl ether di (meth) acrylate represented by the general formula (4) and / or (5) and a tetrabasic acid diacid represented by the general formula (6). It can be produced by an esterification reaction (an condensation polymerization reaction) with an anhydride.

上記ジ(メタ)アクリレートは、テルペンジフェノール、即ちテルペンフェノール樹脂をジグリシジルエーテル化してエポキシ樹脂を合成し、該エポキシ樹脂の両末端にアクリル酸又はメタクリル酸を付加させることにより合成することができる。式(4)、(5)中、R=Hの場合がジアクリレート、R=CHの場合がジメタクリレートであり、両者をまとめてジ(メタ)アクリレートと称する。このようにして得られるエポキシアクリレート樹脂は、酸価が10mgKOH/g未満であり、エポキシ当量が10,000〜20,000であることが好ましい。 The di (meth) acrylate can be synthesized by synthesizing terpene diphenol, that is, terpene phenol resin by diglycidyl ether to synthesize an epoxy resin, and adding acrylic acid or methacrylic acid to both ends of the epoxy resin. . In formulas (4) and (5), the case of R = H is diacrylate, and the case of R = CH 3 is dimethacrylate, and both are collectively referred to as di (meth) acrylate. The epoxy acrylate resin thus obtained preferably has an acid value of less than 10 mg KOH / g and an epoxy equivalent of 10,000 to 20,000.

ここで、酸価は、サンプル1gを三角フラスコに秤量し、ジオキサン50mlに溶解させ、フェノールフタレインを指示薬として0.1MKOH水溶液で滴定し、無色からピンク色に変色した点を終点とする測定により求められる。また、エポキシ当量は、所定量(〜5g)のサンプルをビーカーに秤量し、クロロホルム50mlに溶解させ、臭化テトラエチルアンモニウムの20%酢酸溶液5mlを加え、クリスタルバイオレットを指示薬として、0.1N過塩素酸酢酸溶液で滴定し、紫から青紫に変色した点を終点とする測定により求められる。   Here, the acid value was measured by weighing 1 g of a sample in an Erlenmeyer flask, dissolving in 50 ml of dioxane, titrating with 0.1 M KOH aqueous solution using phenolphthalein as an indicator, and changing the color from colorless to pink. Desired. The epoxy equivalent is a predetermined amount (˜5 g) of a sample weighed in a beaker, dissolved in 50 ml of chloroform, added with 5 ml of a 20% acetic acid solution of tetraethylammonium bromide, and 0.1 N perchlorine with crystal violet as an indicator. Titration with an acid-acetic acid solution is performed by measuring the point at which the color changed from purple to blue-violet.

上記テルペンジフェノールは、下記式(7)又は式(8)で表されるものであり、式(7)で表される1,3−テルペンフェノール樹脂と、式(8)で表される2,8−テルペンフェノール樹脂は、それぞれ単独で用いることもでき、両者の混合物を用いることもできる。通常は、両者の混合物が用いられ、その混合比は、重量比で、式(7):式(8)=80〜60:20〜40であることが好ましい。

Figure 2008019293
The terpene diphenol is represented by the following formula (7) or formula (8), and is represented by the 1,3-terpene phenol resin represented by formula (7) and 2 represented by formula (8). , 8-terpene phenol resin can be used alone, or a mixture of both can be used. Usually, a mixture of the two is used, and the mixing ratio is preferably a weight ratio of formula (7): formula (8) = 80-60: 20-40.
Figure 2008019293

上記エポキシ樹脂の合成方法としては、一般のエポキシ樹脂の合成を適用することができ、例えば、上記テルペンジフェノールに塩基性触媒の存在下でエピクロロヒドリンを反応させることにより合成することができ、これにより、下記式(9)や式(10)で表されるテルペンジフェノールジグリシジルエーテルが得られる。このようにして得られるエポキシ樹脂はエポキシ当量が260〜300であることが好ましい。

Figure 2008019293
As a method for synthesizing the epoxy resin, synthesis of a general epoxy resin can be applied. For example, the epoxy resin can be synthesized by reacting the terpene diphenol with epichlorohydrin in the presence of a basic catalyst. Thus, terpene diphenol diglycidyl ether represented by the following formula (9) or formula (10) is obtained. The epoxy resin thus obtained preferably has an epoxy equivalent of 260 to 300.
Figure 2008019293

上記四塩基酸二無水物としては、例えば、下記に例示した7つの芳香族四塩基酸二無水物が挙げられるが、これらに限定されるものではない。特に好ましくは、下記式(11)、(12)、(13)で示されるものである。

Figure 2008019293
Examples of the tetrabasic dianhydride include, but are not limited to, seven aromatic tetrabasic dianhydrides exemplified below. Particularly preferred are those represented by the following formulas (11), (12) and (13).
Figure 2008019293

上記エステル化反応の方法は、特に限定されるものではなく、例えば、上記ジ(メタ)アクリレートを有機溶剤に加熱溶解させ、四塩基酸二無水物を添加して撹拌反応させることにより、上記一般式(1)で表されるエポキシ(メタ)アクリレートと四塩基酸二無水物との縮重合樹脂である本発明のポリエステルを合成することができる。   The method of the esterification reaction is not particularly limited. For example, the above-mentioned general can be obtained by dissolving the di (meth) acrylate with heating in an organic solvent, adding a tetrabasic acid dianhydride, and reacting with stirring. The polyester of the present invention, which is a condensation polymerization resin of an epoxy (meth) acrylate represented by the formula (1) and a tetrabasic acid dianhydride, can be synthesized.

このようにして得られるポリエステルの重量平均分子量は、上記エステル化反応における溶剤量、反応基質量を変更することで調整可能であり、本発明では、重量平均分子量が3,000〜100,000であることが好ましく、より好ましくは5,000〜25,000である。また、重量平均分子量とも関係するが、上記式(1)中、nは1〜40であることが好ましい。重量平均分子量が上記範囲より小さいと、充分なる可撓性、密着性が得られず、逆に大きすぎると、光硬化性と未硬化状態でのアルカリ溶解性が不良になる。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量である。また、該ポリエステルは、未硬化状態での良好なアルカリ溶解性のため、酸価が60〜70mgKOH/gであることが好ましい。   The weight average molecular weight of the polyester thus obtained can be adjusted by changing the solvent amount and the reactive group mass in the esterification reaction. In the present invention, the weight average molecular weight is 3,000 to 100,000. It is preferable that it is 5,000 to 25,000. Moreover, although it is related also with a weight average molecular weight, in said formula (1), it is preferable that n is 1-40. When the weight average molecular weight is smaller than the above range, sufficient flexibility and adhesion cannot be obtained. On the other hand, when the weight average molecular weight is too large, photocurability and alkali solubility in an uncured state become poor. Here, the weight average molecular weight is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC, elution solvent: tetrahydrofuran). The polyester preferably has an acid value of 60 to 70 mgKOH / g for good alkali solubility in an uncured state.

上記エステル化反応により得られるポリエステルは、式(1)において、R’が全てHであり、即ち、各四塩基酸二無水物の残基部分に2個又は3個のカルボキシル基を持っており、これによりアルカリ水溶液に対する優れた可溶性を備えている。かかるアルカリ可溶性を調整するために、上記カルボキシル基は封鎖剤で封鎖されてもよい。カルボキシル基の封鎖量を変更することで、本ポリエステルの酸価を制御することが可能であり、特に限定しないが、酸価は20〜80mgKOH/gであることが好ましく、より好ましくは30〜70mgKOH/gである。なお、四塩基酸二無水物の種類にもよいが、R’は50モル%以上がHであることが、アルカリ現像性を確保する上で好ましく、より好ましくは70モル%以上がHである。   In the polyester obtained by the esterification reaction, in formula (1), R ′ is all H, that is, each tetrabasic acid dianhydride has 2 or 3 carboxyl groups in the residue. Thus, it has excellent solubility in an aqueous alkali solution. In order to adjust the alkali solubility, the carboxyl group may be blocked with a blocking agent. It is possible to control the acid value of the present polyester by changing the blocking amount of the carboxyl group, and although not particularly limited, the acid value is preferably 20 to 80 mgKOH / g, more preferably 30 to 70 mgKOH. / G. In addition, although it is good also in the kind of tetrabasic acid dianhydride, it is preferable that R 'is 50 mol% or more in order to ensure alkali developability, More preferably, 70 mol% or more is H. .

かかるカルボキシル基封鎖剤としては、末端カルボキシル基と反応可能な官能基を有するものであれば特に限定されず、例えば、グリシジルエーテル、カルボジイミドなどの公知の種々の末端封鎖剤が挙げられる。好ましくは、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、レゾルシングリシジルエーテル等のグリシジルエーテルであり、この場合、封鎖されたポリエステルのエポキシ当量が60,000以上であることが好ましい。   Such a carboxyl group blocking agent is not particularly limited as long as it has a functional group capable of reacting with a terminal carboxyl group, and examples thereof include various known terminal blocking agents such as glycidyl ether and carbodiimide. Preferred are glycidyl ethers such as phenyl glycidyl ether, butylphenyl glycidyl ether, and resorcing ricidyl ether. In this case, the epoxy equivalent of the blocked polyester is preferably 60,000 or more.

以上よりなるポリエステルは、光重合可能なアクリル酸又はメタクリル酸部分を持つため、適当な光重合開始剤の存在下に光重合可能であり、光重合により架橋、硬化することで、アルカリ水溶液に対して溶解しにくくなる。一方、未硬化状態ではアルカリ水溶液に溶解するため、皮膜に部分的に光照射することにより、硬化部分を残し、未硬化部分をアルカリ水溶液で溶解除去可能なアルカリ現像性を発揮する。また、このポリエステルは、各種基材との密着性が良好で、硬化収縮も小さく、耐熱性に優れる(高Tg)とともに、硬い皮膜の形成が可能である。更に、骨格中に含まれるテルペンフェノール単位が比較的柔軟な構造を持つとともに、該テルペンフェノール単位が四塩基酸二無水物との間でのエステル結合を介して連結されたポリエステルであることから、可撓性を有する。   Since the polyester comprising the above has a photopolymerizable acrylic acid or methacrylic acid moiety, it can be photopolymerized in the presence of a suitable photopolymerization initiator, and can be cross-linked and cured by photopolymerization to produce an alkaline aqueous solution. It becomes difficult to dissolve. On the other hand, since it dissolves in an aqueous alkali solution in an uncured state, the film is partially irradiated with light to exhibit alkali developability that leaves a cured portion and dissolves and removes the uncured portion with an aqueous alkali solution. In addition, this polyester has good adhesion to various base materials, small curing shrinkage, excellent heat resistance (high Tg), and can form a hard film. Furthermore, since the terpene phenol unit contained in the skeleton has a relatively flexible structure and the terpene phenol unit is a polyester linked via an ester bond with a tetrabasic acid dianhydride, It has flexibility.

このポリエステルは、それ自体単独で重合させてもよく、あるいはまた、各種光重合性モノマーとともに混合して用いてもよく、ガラスや各種フィルムへのコーティング剤として、またガラスや各種フィルムに塗布する塗料の原料として、更には、プリント配線板用レジストやカラーレジストなどのレジスト材料のバインダーとして好適に用いることができる。   This polyester may be polymerized by itself, or may be used in combination with various photopolymerizable monomers, as a coating agent for glass and various films, and a paint applied to glass and various films. Furthermore, it can be suitably used as a binder for resist materials such as printed wiring board resists and color resists.

以下、実施例を挙げて、本発明の実施の態様を更に具体的に説明するが、本発明は、下記実施例に限定されるものではない。   Hereinafter, although an example is given and an embodiment of the present invention is explained still more concretely, the present invention is not limited to the following example.

(合成例1:テルペンジフェノールジグリシジルエーテル)
冷却管および攪拌機を備えた5L四つ口フラスコに、テルペンジフェノール(1,3−テルペンフェノール樹脂:2,8−テルペンフェノール樹脂=70:30(重量比)、ヤスハラケミカル株式会社製「YP−90」)1070gと、エピクロロヒドリン1520g、DMSO1700gを仕込み攪拌を開始した。50℃に加熱して溶解させたのち、苛性ソーダ290gを加え、65℃から90℃で10時間加熱反応させた。反応の進行及び終点はエポキシ当量を測定することで行い、エポキシ当量が目的に達した後、DMSOを90〜100℃にて減圧留去した。その後、トルエンに50〜70℃で再溶解させ、更に蒸留水を加え水洗、静置分離を行い、有機層を減圧下で脱溶剤して、上記式(9)と式(10)で表せるエポキシ樹脂の混合物を1260g得た。得られたエポキシ樹脂のエポキシ当量は260であった。
(Synthesis Example 1: Terpene diphenol diglycidyl ether)
To a 5 L four-necked flask equipped with a condenser and a stirrer, terpene diphenol (1,3-terpene phenol resin: 2,8-terpene phenol resin = 70: 30 (weight ratio), “YP-90 manufactured by Yashara Chemical Co., Ltd.” “) 1070 g, epichlorohydrin 1520 g and DMSO 1700 g were charged and stirring was started. After heating to 50 ° C. and dissolution, 290 g of caustic soda was added, and a reaction was performed by heating at 65 ° C. to 90 ° C. for 10 hours. The progress and end point of the reaction were carried out by measuring the epoxy equivalent, and after the epoxy equivalent reached the purpose, DMSO was distilled off under reduced pressure at 90-100 ° C. Thereafter, redissolved in toluene at 50 to 70 ° C., further added with distilled water, washed with water, left to stand and separated, and the organic layer was desolvated under reduced pressure. 1260 g of a resin mixture was obtained. The epoxy equivalent of the obtained epoxy resin was 260.

このものの核磁気共鳴スペクトル(1H−NMR:CDCl溶媒中、テトラメチルシラン基準、ppm)において、図1に示すように、δ6.8〜7.3にテルペン骨格のベンゼン環由来のピーク(8H)、δ3.3、δ3.9〜4.2にエポキシ部由来のピーク(6H)、δ0.7〜0.9にテルペン骨格から出ているイソプロピル基の2個のメチル基由来のピーク(6H)が認められた。 In the nuclear magnetic resonance spectrum (1H-NMR: in CDCl 3 solvent, tetramethylsilane standard, ppm) of this product, as shown in FIG. 1, a peak derived from the benzene ring of the terpene skeleton (8H ), Δ3.3, δ3.9 to 4.2, peaks derived from the epoxy moiety (6H), and δ0.7 to 0.9, peaks derived from the two methyl groups of the isopropyl group emerging from the terpene skeleton (6H). ) Was recognized.

また、このものの赤外線吸収スペクトル(IR)において、図2に示すように、1241cm−1に芳香族エーテル、エポキシ環に基づく吸収、1036、828cm−1に芳香族エーテルに基づく吸収が認められた。 Further, in the infrared absorption spectrum of the (IR), as shown in FIG. 2, an aromatic ether 1241Cm -1, absorption based on epoxy ring, absorption based on aromatic ether 1036,828Cm -1 was observed.

以上の結果から、このものが式(9)と式(10)で表されるテルペンジフェノールジグリシジルエーテルの混合物であることが確認された。   From the above results, it was confirmed that this was a mixture of terpene diphenol diglycidyl ethers represented by formula (9) and formula (10).

(合成例2:テルペンジフェノールジグリシジルジメタクリレート)
冷却管、攪拌機を備えた5L四つ口フラスコに、合成例1で得られたエポキシ樹脂の混合物1000gとハイドロキノンモノメチルエーテル1.0g、メタクリル酸350gを仕込み攪拌を開始した。60℃にて溶解させた後、臭化テトラエチルアンモニウム8gを加え、酸価が8mgKOH/g、かつエポキシ当量が17000になるまで70〜90℃で加熱反応を続けた。15時間後、酸価、およびエポキシ当量にて終点を確認後、冷却を行い、下記式(14)と式(15)で表せるエポキシメタアクリレート樹脂の混合物を1300g得た。得られたエポキシメタクリレート樹脂のエポキシ当量は17000、酸価は8mgKOH/g、水酸基価は165mgKOH/gであった。

Figure 2008019293
(Synthesis Example 2: Terpene diphenol diglycidyl dimethacrylate)
A 5 L four-necked flask equipped with a condenser and a stirrer was charged with 1000 g of the epoxy resin mixture obtained in Synthesis Example 1, 1.0 g of hydroquinone monomethyl ether and 350 g of methacrylic acid, and stirring was started. After dissolving at 60 ° C., 8 g of tetraethylammonium bromide was added, and the heating reaction was continued at 70 to 90 ° C. until the acid value was 8 mg KOH / g and the epoxy equivalent was 17000. After 15 hours, the end point was confirmed by the acid value and the epoxy equivalent, followed by cooling to obtain 1300 g of a mixture of epoxy methacrylate resins represented by the following formula (14) and formula (15). The epoxy equivalent of the obtained epoxy methacrylate resin was 17000, the acid value was 8 mgKOH / g, and the hydroxyl value was 165 mgKOH / g.
Figure 2008019293

このものの1H−NMRスペクトル(CDCl溶媒中、テトラメチルシラン基準、ppm)において、図3に示すように、δ5.6、δ6.1にメタクリル酸の二重結合部由来のピーク(4H)、δ3.9〜4.4にエポキシの開環で上記式(9)と式(10)のものにおけるδ3.3、δ3.9〜4.2のピークがシフトしたピーク(10H)が認められた。 In the 1H-NMR spectrum (CDCl 3 solvent, based on tetramethylsilane, ppm) of this product, as shown in FIG. 3, peaks (4H) derived from methacrylic acid double bonds at δ5.6 and δ6.1, A peak (10H) in which the peaks of δ3.3 and δ3.9 to 4.2 in the above formulas (9) and (10) were shifted by the ring opening of epoxy was observed at δ3.9 to 4.4. .

また、このもののIRスペクトルにおいて、図4に示すように、1720cm−1にエステル結合に基づく吸収が認められた。 Further, in the IR spectrum of this product, absorption based on an ester bond was observed at 1720 cm −1 as shown in FIG.

以上の結果から、このものが式(14)と式(15)で表されるテルペンジフェノールジグリシジルジメタクリレートの混合物であることが確認された。   From the above results, it was confirmed that this was a mixture of terpene diphenol diglycidyl dimethacrylate represented by the formulas (14) and (15).

(合成例3:テルペンジフェノールジグリシジルジアクリレート)
合成例2のメタクリル酸の替わりにアクリル酸293gを仕込み、その他は同様に反応を行って、下記式(16)と式(17)で表せるエポキシアクリレート樹脂の混合物1200gを得た。得られたエポキシアクリレート樹脂のエポキシ当量は16500、酸価は6mgKOH/g、水酸基価は171mgKOH/gであった。

Figure 2008019293
(Synthesis Example 3: Terpene diphenol diglycidyl diacrylate)
In place of methacrylic acid in Synthesis Example 2, 293 g of acrylic acid was charged, and the others were reacted in the same manner to obtain 1200 g of an epoxy acrylate resin mixture represented by the following formulas (16) and (17). The epoxy equivalent of the obtained epoxy acrylate resin was 16500, the acid value was 6 mgKOH / g, and the hydroxyl value was 171 mgKOH / g.
Figure 2008019293

(合成例4:テルペン骨格を有するメタクリロイル基含有ポリエステル)
冷却管、攪拌機を備えた5L四つ口フラスコに、合成例2で得られたエポキシメタアクリレート樹脂の混合物670gとメチルイソブチルケトン1300gを仕込み、攪拌を開始した。60℃にて加熱溶解後、上記式(11)で表される無水ピロメリット酸(ダイセル化学工業株式会社製)220gを加えて、80℃にて攪拌反応を行い、酸価が67.9mgKOH/g、酸価の変動が2mgKOH/g以下となるまで反応をおこなった。反応終了後、反応溶液に蒸留水を加え、水洗・静置分離を行った後、有機層を回収し、減圧下50〜70℃で溶剤を留去後、下記式(18)で表されるポリエステル樹脂(但し、Xは上記式(2)又は(3)で表されるテルペンジフェノキシ基、RはCH、R’はH、nは20である。)を860g得た。
(Synthesis Example 4: Methacryloyl group-containing polyester having a terpene skeleton)
A 5 L four-necked flask equipped with a condenser and a stirrer was charged with 670 g of the epoxy methacrylate resin mixture obtained in Synthesis Example 2 and 1300 g of methyl isobutyl ketone, and stirring was started. After heating and dissolving at 60 ° C., 220 g of pyromellitic anhydride (manufactured by Daicel Chemical Industries, Ltd.) represented by the above formula (11) is added, and a stirring reaction is performed at 80 ° C. The acid value is 67.9 mgKOH / g, The reaction was continued until the variation of the acid value was 2 mgKOH / g or less. After completion of the reaction, distilled water is added to the reaction solution, followed by washing with water and standing separation. The organic layer is recovered, and the solvent is distilled off at 50 to 70 ° C. under reduced pressure, and then represented by the following formula (18). 860 g of a polyester resin (where X is a terpene diphenoxy group represented by the above formula (2) or (3), R is CH 3 , R ′ is H, and n is 20) was obtained.

本樹脂のゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量は18000であった。また、酸価は61.2mgKOH/gであった。

Figure 2008019293
The weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC, elution solvent: tetrahydrofuran) of this resin was 18000. The acid value was 61.2 mgKOH / g.
Figure 2008019293

このものの1H−NMRスペクトル(CDCl溶媒中、テトラメチルシラン基準、ppm)において、図5に示すように、δ6.9〜7.6にテルペン骨格のベンゼン環及びピロリメット酸のベンゼン環由来のピーク、δ5.8、δ6.2にメタクリル酸の二重結合部由来のピーク、δ1.1〜2.2にテルペンジフェノールのシクロヘキサン骨格由来のピーク、δ0.7〜0.9にテルペン骨格から出ているイソプロピル基の2個のメチル基由来のピークが認められた。 In the 1H-NMR spectrum (CDCl 3 solvent, based on tetramethylsilane, ppm) of this product, as shown in FIG. 5, peaks derived from the benzene ring of the terpene skeleton and the benzene ring of pyromellitic acid at δ 6.9 to 7.6. , Δ5.8 and δ6.2 are peaks derived from the double bond portion of methacrylic acid, δ1.1 to 2.2 are peaks derived from the cyclohexane skeleton of terpene diphenol, and δ0.7 to 0.9 are emitted from the terpene skeleton. Peaks derived from the two methyl groups of the isopropyl group were observed.

また、このもののIRスペクトルにおいて、図6に示すように、1735cm−1にエステル結合に基づく吸収、1735、1241、1102cm−1に芳香族エステルに基づく吸収が認められた。 Also, in the IR spectrum of the as shown in FIG. 6, the absorption based on an ester bond to 1735 cm -1, absorption based on aromatic ester 1735,1241,1102Cm -1 was observed.

以上の結果から、このものが式(18)で表されるテルペン骨格を有するメタクリロイル基含有ポリエステルであることが確認された。   From the above results, it was confirmed that this was a methacryloyl group-containing polyester having a terpene skeleton represented by the formula (18).

(合成例5:テルペン骨格を有するアクリロイル基含有ポリエステル)
合成例4に用いたエポキシメタアクリレート樹脂の替わりに合成例3で得られたエポキシアクリレート樹脂の混合物660gを仕込み、その他は合成例4と同様に反応を行って、上記式(18)で表されるポリエステル樹脂(但し、Xは上記式(2)又は(3)で表されるテルペンジフェノキシ基、RはH、R’はH、nは17である。)を840g得た。
(Synthesis Example 5: acryloyl group-containing polyester having a terpene skeleton)
In place of the epoxy methacrylate resin used in Synthesis Example 4, 660 g of a mixture of the epoxy acrylate resin obtained in Synthesis Example 3 was charged, and the others were reacted in the same manner as in Synthesis Example 4 and represented by the above formula (18). 840 g of a polyester resin (where X is a terpene diphenoxy group represented by the above formula (2) or (3), R is H, R ′ is H, and n is 17) was obtained.

本樹脂のゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量15000であった。また、酸価は60.9mgKOH/gであった。   It was the polystyrene conversion weight average molecular weight 15000 measured by the gel permeation chromatography (GPC, elution solvent: tetrahydrofuran) of this resin. The acid value was 60.9 mgKOH / g.

(合成例6:テルペン骨格を有するメタクリロイル基含有ポリエステルのカルボキシル基キャップ)
冷却管、攪拌機を備えた1L四つ口フラスコに、合成例4で得られたポリエステル樹脂275g、プロピレングリコールモノメチルアセテート275gを仕込み、攪拌を開始し、60℃にて溶解後、臭化テトラエチルアンモニウム1.5gを加え、カルボキシル基封鎖剤としてフェニルグリシジルエーテル(商品名:エピオールP(日本油脂株式会社製))30gを加えて、80〜90℃にて加熱攪拌した。酸価の変動が2mgKOH/g以下となるまで反応を続け、酸価が目標に達した後、室温まで冷却して、上記式(18)で表されるポリエステル樹脂(但し、Xは上記式(2)又は(3)で表されるテルペンジフェノキシ基、RはCH、R’はH又はCOCHCH(OH)CH(但し、Hが78%で、封鎖剤残基が22%)、nは20である。)を300g得た。
(Synthesis Example 6: carboxyl group cap of methacryloyl group-containing polyester having a terpene skeleton)
A 1 L four-necked flask equipped with a condenser and a stirrer was charged with 275 g of the polyester resin obtained in Synthesis Example 4 and 275 g of propylene glycol monomethyl acetate, and the stirring was started. 0.5 g was added, 30 g of phenylglycidyl ether (trade name: Epiol P (manufactured by NOF Corporation)) was added as a carboxyl group blocking agent, and the mixture was heated and stirred at 80 to 90 ° C. The reaction is continued until the fluctuation of the acid value becomes 2 mgKOH / g or less, and after the acid value reaches the target, it is cooled to room temperature, and the polyester resin represented by the above formula (18) (where X is the above formula ( 2) or a terpene diphenoxy group represented by (3), R is CH 3 , R ′ is H or C 6 H 5 OCH 2 CH (OH) CH 2 (wherein H is 78% and a blocking agent residue) Is 22%) and n is 20.

この樹脂のゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量は21000であった。また、酸価は52.1mgKOH/gであった。   The polystyrene-reduced weight average molecular weight of this resin measured by gel permeation chromatography (GPC, elution solvent: tetrahydrofuran) was 21,000. The acid value was 52.1 mgKOH / g.

このものの1H−NMRスペクトル(CDCl溶媒中、テトラメチルシラン基準、ppm)において、図7に示すように、上記合成例4で得られたポリエステル樹脂に加えて、δ6.9〜7.6にカルボン酸封鎖に用いたフェニルグリシジルエーテルのベンゼン環由来のピークが認められた。 In the 1H-NMR spectrum (CDCl 3 solvent, based on tetramethylsilane, ppm) of this product, as shown in FIG. 7, in addition to the polyester resin obtained in Synthesis Example 4, δ 6.9 to 7.6 A peak derived from the benzene ring of phenylglycidyl ether used for blocking the carboxylic acid was observed.

また、このもののIRスペクトルにおいて、図8に示すように、1047cm−1に芳香族エーテルに基づく吸収が認められた。すなわち、フェニルグリシジルエーテルの導入で上記合成例4で得られたポリエステル樹脂よりも1047cm−1の吸収が大きくなっていた。 Further, in the IR spectrum of this product, as shown in FIG. 8, absorption based on an aromatic ether was observed at 1047 cm −1 . That is, the absorption of 1047 cm −1 was larger than that of the polyester resin obtained in Synthesis Example 4 by the introduction of phenylglycidyl ether.

(合成例7:テルペン骨格を有するアクリロイル基含有ポリエステルのカルボキシル基キャップ)
合成例4で得られたポリエステル樹脂の替わりに合成例5で得られたポリエステル樹脂300gを仕込み、その他は合成例6と同様に反応を行って、下記式(18)で表されるポリエステル樹脂(但し、Xは上記式(2)又は(3)で表されるテルペンジフェノキシ基、RはH、R’はH又はCOCHCH(OH)CH(但し、Hが80%で、封鎖剤残基が20%)、nは17である。)を340g得た。
(Synthesis Example 7: carboxyl group cap of acryloyl group-containing polyester having a terpene skeleton)
In place of the polyester resin obtained in Synthesis Example 4, 300 g of the polyester resin obtained in Synthesis Example 5 was charged, and the others were reacted in the same manner as in Synthesis Example 6 to obtain a polyester resin represented by the following formula (18) ( However, X is a terpene diphenoxy group represented by the above formula (2) or (3), R is H, R ′ is H or C 6 H 5 OCH 2 CH (OH) CH 2 (where H is 80% And 340 g of a sequestering residue of 20%) and n of 17.

この樹脂のゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量は、25000であった。また、酸価は50.0mgKOH/gであった。   The weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC, elution solvent: tetrahydrofuran) of this resin was 25000. The acid value was 50.0 mgKOH / g.

(合成例8:テルペン骨格を有するメタクリロイル基含有ポリエステル)
冷却管、攪拌機を備えた5L四つ口フラスコに、合成例2で得られたエポキシメタアクリレート樹脂の混合物670gとメチルイソブチルケトン1470gを仕込み、攪拌を開始した。60℃にて加熱溶解後、上記式(12)で表されるオキシジフタル酸二無水物(マナック株式会社製)313gを加えて、80℃にて攪拌反応を行い、酸価が53.3mgKOH/gとなるまで反応をおこなった。反応終了後、反応溶液に蒸留水を加え、水洗・静置分離を行った後、有機層を回収し、減圧下50〜70℃で溶剤を留去後、下記式(19)で表されるポリエステル樹脂(但し、Xは上記式(2)又は(3)で表されるテルペンジフェノキシ基、RはCH、R’はH、nは8である。)を800g得た。
(Synthesis Example 8: methacryloyl group-containing polyester having a terpene skeleton)
Into a 5 L four-necked flask equipped with a condenser and a stirrer, 670 g of the epoxy methacrylate resin mixture obtained in Synthesis Example 2 and 1470 g of methyl isobutyl ketone were charged, and stirring was started. After heating and dissolving at 60 ° C., 313 g of oxydiphthalic dianhydride (manac Co., Ltd.) represented by the above formula (12) was added, and the mixture was stirred at 80 ° C., and the acid value was 53.3 mgKOH / g. The reaction was continued until After completion of the reaction, distilled water is added to the reaction solution, followed by washing with water and standing separation. The organic layer is recovered, and the solvent is distilled off at 50 to 70 ° C. under reduced pressure, and then represented by the following formula (19). 800 g of a polyester resin (where X is a terpene diphenoxy group represented by the above formula (2) or (3), R is CH 3 , R ′ is H, and n is 8) was obtained.

本樹脂のゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量は9000であった。

Figure 2008019293
The weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC, elution solvent: tetrahydrofuran) of this resin was 9000.
Figure 2008019293

(合成例9:テルペン骨格を有するメタクリロイル基含有ポリエステル)
冷却管、攪拌機を備えた5L四つ口フラスコに、合成例2で得られたエポキシメタアクリレート樹脂の混合物670gとメチルイソブチルケトン1660gを仕込み、攪拌を開始した。60℃にて加熱溶解後、上記式(13)で表されるエチレングリコールビスアンヒドロトリメリテート(新日本理科株式会社製)434gを加えて、80℃にて攪拌反応を行い、酸価が46.2mgKOH/gとなるまで反応をおこなった。反応終了後、反応溶液に蒸留水を加え、水洗・静置分離を行った後、有機層を回収し、減圧下50〜70℃で溶剤を留去後、下記式(20)で表されるポリエステル樹脂(但し、Xは上記式(2)又は(3)で表されるテルペンジフェノキシ基、RはCH、R’はH、nは12である。)を900g得た。
(Synthesis Example 9: methacryloyl group-containing polyester having a terpene skeleton)
Into a 5 L four-necked flask equipped with a condenser and a stirrer, 670 g of the epoxy methacrylate resin mixture obtained in Synthesis Example 2 and 1660 g of methyl isobutyl ketone were charged, and stirring was started. After heating and dissolving at 60 ° C., 434 g of ethylene glycol bisanhydro trimellitate represented by the above formula (13) (manufactured by New Japan Science Co., Ltd.) is added and stirred at 80 ° C., and the acid value is The reaction was continued until 46.2 mg KOH / g. After completion of the reaction, distilled water is added to the reaction solution, and after washing and standing separation, the organic layer is recovered, the solvent is distilled off at 50 to 70 ° C. under reduced pressure, and then represented by the following formula (20). 900 g of a polyester resin (where X is a terpene diphenoxy group represented by the above formula (2) or (3), R is CH 3 , R ′ is H, and n is 12) was obtained.

本樹脂のゲルパーミエーションクロマトグラフィー(GPC、溶出溶媒:テトラヒドロフラン)で測定したポリスチレン換算重量平均分子量は13000であった。

Figure 2008019293
The weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC, elution solvent: tetrahydrofuran) of this resin was 13,000.
Figure 2008019293

(実施例)
上記合成例3〜9の各樹脂について、樹脂100重量部に、溶剤としてプロピレングリコールモノメチルアセテート100重量部と、光重合開始剤(チバガイギー社製「irgacure184」)3重量部を添加し、膜厚(乾燥後)=100μmで基材上に塗布した。そして、120℃で5時間減圧乾燥した後、80W/cmの高圧水銀灯を1灯で焦点距離=8cmにて積算照度が2000mjとなるようにUV照射して硬化させた。得られた硬化皮膜について、アルカリ溶解性、基材との密着性、硬化収縮率、耐熱性、鉛筆硬度、可撓性を評価した。各評価方法は次の通りである。
(Example)
For each resin of Synthesis Examples 3 to 9, 100 parts by weight of propylene glycol monomethyl acetate as a solvent and 3 parts by weight of a photopolymerization initiator (“Irgacure 184” manufactured by Ciba Geigy) are added to 100 parts by weight of the resin. After drying) = 100 μm was applied on the substrate. Then, after drying under reduced pressure at 120 ° C. for 5 hours, UV irradiation was performed so that the integrated illuminance was 2000 mj with a single high pressure mercury lamp of 80 W / cm at a focal length of 8 cm. About the obtained cured film, alkali solubility, adhesiveness with a base material, cure shrinkage rate, heat resistance, pencil hardness, and flexibility were evaluated. Each evaluation method is as follows.

・アルカリ溶解性:2.5%NaOH水溶液に硬化前の皮膜と硬化後の皮膜を浸漬して溶解性を評価した。 -Alkali solubility: The film before hardening and the film after hardening were immersed in 2.5% NaOH aqueous solution, and solubility was evaluated.

・基材との密着性:基材(ガラス板)上の皮膜を貫通して、素地面に達する切り傷を碁盤目状につけ、この碁盤目の上に粘着テープをはり、はがした後の残った部分の数を数えた(100個の碁盤目に対する残数xを「x/100」として表示)。 -Adhesion with the base material: Cut through the film on the base material (glass plate), make cuts that reach the ground surface in a grid pattern, apply adhesive tape on the grid pattern, and remain after peeling (The remaining number x for 100 grids is displayed as “x / 100”).

・硬化収縮率:硬化前、後の試験サンプルをJIS K0061−1992に基づき比重を測定し、下記式により体積収縮率を算出した。 -Curing shrinkage ratio: specific gravity was measured based on JIS K0061-1992 for the test samples before and after curing, and the volume shrinkage ratio was calculated by the following formula.

体積収縮率(%)={(硬化後の比重−硬化前の比重)/硬化後の比重}×100
・耐熱性:UBM社製「Rheogel E−4000」を用い、tanσ=損失弾性率/動的弾性率として、動的粘弾性測定方法によりtanσの極大値を与えるガラス転移点(Tg)を求めた。
Volume shrinkage (%) = {(specific gravity after curing−specific gravity before curing) / specific gravity after curing} × 100
-Heat resistance: “Rheogel E-4000” manufactured by UBM was used, and the glass transition point (Tg) giving the maximum value of tanσ was determined by the dynamic viscoelasticity measurement method as tanσ = loss elastic modulus / dynamic elastic modulus. .

・鉛筆硬度:JIS K5600−5−4に準拠して、皮膜上に、規定した寸法、硬度の鉛筆を押し当てた結果生じる傷またはその他欠陥に対する皮膜の抵抗性を評価した。 Pencil hardness: Based on JIS K5600-5-4, the resistance of the film to scratches or other defects generated as a result of pressing a pencil having a prescribed size and hardness on the film was evaluated.

・可撓性:基材としてブリキ板(150×50×0.3mm)を用いて作製した試験サンプルにつき、屈曲試験器を用いて塗面が心棒に対して外側になるようにして差し込み、すみやかに心棒の回りに約180度折り曲げた。その後、試験サンプルを取り出し、目視により割れ、はがれを調べた。それぞれ3枚の試験サンプルについて、塗膜に割れ、はがれが認められないときは、折り曲げに耐える可撓性有りとして合格と判定した。直径の大きな心棒から順に判定し、合格した最小直径を表1に示した。

Figure 2008019293
・ Flexibility: For a test sample prepared using a tin plate (150 × 50 × 0.3 mm) as a base material, insert it with a bending tester so that the coating surface is outside the mandrel, and quickly It was bent about 180 degrees around the mandrel. Thereafter, the test sample was taken out and examined for cracking and peeling by visual observation. For each of the three test samples, when the coating film was not cracked or peeled off, it was determined to be acceptable as being flexible enough to withstand bending. Table 1 shows the minimum diameter that was judged in order from the mandrel with the largest diameter.
Figure 2008019293

表1に示すように、本実施例に係る各ポリエステルは、基材との密着性が良好であり、硬化収縮が小さく、耐熱性に優れるとともに皮膜が硬く、しかも皮膜は可撓性に優れるものであった。また、未硬化部分はアルカリ水溶液に可溶であり、光硬化により不溶解性となるため、アルカリ現像が可能なものであった。   As shown in Table 1, each polyester according to this example has good adhesion to the substrate, small curing shrinkage, excellent heat resistance and a hard film, and the film has excellent flexibility. Met. Further, the uncured portion was soluble in an alkaline aqueous solution and became insoluble by photocuring, so that alkali development was possible.

本発明のポリエステルは、ガラスやフィルム等の各種基板へのコーティングに、また、これら基板に塗布する塗料の原料として、更には、プリント配線板用レジストやカラーレジストなどのレジスト材料のバインダーとして好適に用いることができる。   The polyester of the present invention is suitable for coating on various substrates such as glass and film, as a raw material for coatings applied to these substrates, and further as a binder for resist materials such as resists for printed wiring boards and color resists. Can be used.

合成例1のエポキシ樹脂についての1H−NMRスペクトルの測定結果を示すグラフである。4 is a graph showing the measurement results of 1H-NMR spectrum for the epoxy resin of Synthesis Example 1. 合成例1のエポキシ樹脂についてのIRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of IR spectrum about the epoxy resin of the synthesis example 1. 合成例2のエポキシメタクリレート樹脂についての1H−NMRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of the 1H-NMR spectrum about the epoxy methacrylate resin of the synthesis example 2. 合成例2のエポキシメタクリレート樹脂についてのIRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of IR spectrum about the epoxy methacrylate resin of the synthesis example 2. 合成例4のポリエステル樹脂についての1H−NMRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of the 1H-NMR spectrum about the polyester resin of the synthesis example 4. 合成例4のポリエステル樹脂についてのIRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of IR spectrum about the polyester resin of the synthesis example 4. 合成例6のポリエステル樹脂についての1H−NMRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of the 1H-NMR spectrum about the polyester resin of the synthesis example 6. 合成例6のポリエステル樹脂についてのIRスペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of IR spectrum about the polyester resin of the synthesis example 6.

Claims (2)

下記一般式(1)で表されるポリエステル。
Figure 2008019293
(式中、Xは下記式(2)又は(3)で表されるテルペンジフェノキシ基であり、1分子中に式(2)と式(3)が混合して含まれてもよい。また、Yはカルボキシル基を4個有する有機化合物のカルボキシル基を除いた残基、RはH又はCH、R’はH又はカルボキシル基封鎖剤の残基を示し、nは1〜40の整数を示す。)
Figure 2008019293
Polyester represented by the following general formula (1).
Figure 2008019293
(In the formula, X is a terpene diphenoxy group represented by the following formula (2) or (3), and one molecule may contain a mixture of formula (2) and formula (3). , Y is a residue excluding a carboxyl group of an organic compound having four carboxyl groups, R is H or CH 3 , R ′ is a residue of H or a carboxyl group blocking agent, and n is an integer of 1 to 40 Show.)
Figure 2008019293
下記一般式(4)で表されるエポキシ(メタ)アクリレート及び下記一般式(5)で表されるエポキシ(メタ)アクリレートの少なくとも一方と、下記一般式(6)で表される四塩基酸二無水物との縮重合により得られる重量平均分子量が3,000〜100,000であるポリエステル。
Figure 2008019293
(式中、RはH又はCHを示す。)
Figure 2008019293
(式中、Yはカルボキシル基を4個有する有機化合物のカルボキシル基を除いた残基を示す。)
At least one of an epoxy (meth) acrylate represented by the following general formula (4) and an epoxy (meth) acrylate represented by the following general formula (5), and a tetrabasic acid diacid represented by the following general formula (6) A polyester having a weight average molecular weight of 3,000 to 100,000 obtained by condensation polymerization with an anhydride.
Figure 2008019293
(In the formula, R represents H or CH 3. )
Figure 2008019293
(In the formula, Y represents a residue excluding the carboxyl group of an organic compound having four carboxyl groups.)
JP2006189871A 2006-07-10 2006-07-10 Polyester containing terpene phenol units Expired - Fee Related JP5095147B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006189871A JP5095147B2 (en) 2006-07-10 2006-07-10 Polyester containing terpene phenol units
TW096122256A TWI395766B (en) 2006-07-10 2007-06-21 Polyester containing terpene phenols (TERPENE PHENOL) units
CN2007800258613A CN101495539B (en) 2006-07-10 2007-07-03 Polyester containing terpene phenol unit
PCT/JP2007/063316 WO2008007584A1 (en) 2006-07-10 2007-07-03 Polyester containing terpene phenol unit
KR1020087031565A KR101042481B1 (en) 2006-07-10 2007-07-03 Polyester containing terpene phenol unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189871A JP5095147B2 (en) 2006-07-10 2006-07-10 Polyester containing terpene phenol units

Publications (2)

Publication Number Publication Date
JP2008019293A true JP2008019293A (en) 2008-01-31
JP5095147B2 JP5095147B2 (en) 2012-12-12

Family

ID=38923146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189871A Expired - Fee Related JP5095147B2 (en) 2006-07-10 2006-07-10 Polyester containing terpene phenol units

Country Status (5)

Country Link
JP (1) JP5095147B2 (en)
KR (1) KR101042481B1 (en)
CN (1) CN101495539B (en)
TW (1) TWI395766B (en)
WO (1) WO2008007584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198690A (en) * 2013-03-29 2014-10-23 本州化学工業株式会社 New diepoxy compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752648B2 (en) * 2006-07-10 2011-08-17 Jsr株式会社 Radiation-sensitive composition for forming colored layer, color filter, and color liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119209A (en) * 1998-10-09 2000-04-25 Nippon Kayaku Co Ltd Aromatic polyfunctional vinyl ether, polymerizable composition and its hardened material
JP2000155438A (en) * 1998-11-19 2000-06-06 Dainippon Printing Co Ltd Image receiving sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119209A (en) * 1998-10-09 2000-04-25 Nippon Kayaku Co Ltd Aromatic polyfunctional vinyl ether, polymerizable composition and its hardened material
JP2000155438A (en) * 1998-11-19 2000-06-06 Dainippon Printing Co Ltd Image receiving sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198690A (en) * 2013-03-29 2014-10-23 本州化学工業株式会社 New diepoxy compound

Also Published As

Publication number Publication date
CN101495539B (en) 2011-08-10
TWI395766B (en) 2013-05-11
KR20090016492A (en) 2009-02-13
JP5095147B2 (en) 2012-12-12
TW200804455A (en) 2008-01-16
KR101042481B1 (en) 2011-06-16
CN101495539A (en) 2009-07-29
WO2008007584A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
TWI432900B (en) Photosensitive resin composition
CN1918514B (en) Photosensitive resin composition and cured product thereof
JP6275620B2 (en) Photosensitive resin composition and cured product thereof
JP5449666B2 (en) Alkali-soluble resin and method for producing the same, and photosensitive resin composition, cured product, and color filter using alkali-soluble resin
EP0421086B1 (en) Epoxy acrylate resins and photosensitive resin compositions therefrom
JP2004224993A (en) Self-polymerization type photopolymerization initiator and photosensitive resin composition by using the same
KR101468341B1 (en) Method for producing photosensitive resin and photosensitive resin composition
WO2005012384A1 (en) Modified epoxy resin, process for production thereof, photosensitive resin compositions and photosensitive elements
JPWO2019073806A1 (en) Resin, photosensitive resin composition, resin cured film and image display device
JP5095147B2 (en) Polyester containing terpene phenol units
JP4400926B2 (en) Photosensitive resin composition and cured product thereof
JPH0411626A (en) Resin composition, solder resist resin composition, and cured product
TWI690543B (en) Alkali soluble resin
JP4738259B2 (en) Photosensitive resin composition and cured product thereof
JP2006210811A (en) Manufacturing method for printed wiring board
JP4812974B2 (en) Curable resin, curable resin composition and cured product thereof
JP2013041114A (en) Photosensitive resin composition
JP5135659B2 (en) Energy ray curable resin production method and energy ray curable resin composition
JP2000338665A (en) Photosensitive material
TW201437245A (en) Epoxy acrylate resin and manufacturing method thereof, acid anhydride adduct of epoxy acrylate, curable resin composition, alkali developable photosensitive resin composition and cured product thereof
TW200403269A (en) Resin composition containing fluorene
JP2003137945A (en) Radically polymerizable resin, radically polymerizable resin composition and photosensitive resin composition for forming image
JP2002241467A (en) Epoxycarboxylate compound and photosensitive resin composition using the same
TW200815917A (en) Photosensitive resin composition suitable for alkali development
JP2000221678A (en) Alkali-developable photosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees