JP2008017899A - Method of fluorescent diagnosis - Google Patents

Method of fluorescent diagnosis Download PDF

Info

Publication number
JP2008017899A
JP2008017899A JP2006190081A JP2006190081A JP2008017899A JP 2008017899 A JP2008017899 A JP 2008017899A JP 2006190081 A JP2006190081 A JP 2006190081A JP 2006190081 A JP2006190081 A JP 2006190081A JP 2008017899 A JP2008017899 A JP 2008017899A
Authority
JP
Japan
Prior art keywords
fluorescence
tumor
intensity
wavelength
photosensitive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006190081A
Other languages
Japanese (ja)
Inventor
Jiro Minehisa
次郎 峰久
Akira Kaneda
明 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006190081A priority Critical patent/JP2008017899A/en
Publication of JP2008017899A publication Critical patent/JP2008017899A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condition for laser irradiation, etc., necessary for the fluorescent diagnosis. <P>SOLUTION: 1-10 mg/m<SP>2</SP>of talaporfin sodium is administered to a living-body region 107 and accumulated on a tumor as a light-sensitive substance with the affinity to the tumor, and the living-body region 107 is irradiated with laser beams emitted from a semi-conductor laser device 101 at the intensity from 7 to 70 mW/cm<SP>2</SP>to excite the light-sensitive substance. Then, the fluorescence generated from the light-sensitive substance excited with the laser beams is observed, and the region where the tumor is present is determined based on the intensity of the fluorescence. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は腫瘍やその他病巣に親和性を持つ光感受性物質をあらかじめ生体へ投与し、腫瘍やその他病巣に集積した段階で、光感受性物質の吸収波長に合致した波長の光を照射して、光感受性物質を励起し、腫瘍やその他病巣からの蛍光を捉える光線力学的手法を用いた蛍光診断方法に関するものである。   In the present invention, a photosensitizer having an affinity for a tumor or other lesion is administered to a living body in advance, and at a stage where the photosensitizer is accumulated in the tumor or other lesion, light having a wavelength matching the absorption wavelength of the photosensitizer is irradiated. The present invention relates to a fluorescence diagnostic method using a photodynamic technique that excites a sensitive substance and captures fluorescence from a tumor or other lesion.

半導体レーザ素子を利用した半導体レーザ装置は、小型軽量であるため様々な産業分野で利用されている。また、他の発振方式、例えばダイレーザではレーザの波長の分布が広く、可視光波長帯を発振するダイレーザ装置で半値幅が十数nm以上になるのに対して、半導体レーザ装置を使用すれば半値幅が数nm(2nm〜3nm程度)と狭く、かつ波長の揃ったレーザ光を発振することができる。さらに、半導体レーザ装置は、レーザ光の波長を半導体レーザ素子の温度調整により容易に制御することができるという特徴を持つ。   A semiconductor laser device using a semiconductor laser element is used in various industrial fields because of its small size and light weight. In addition, in other oscillation systems such as a die laser, the laser wavelength distribution is wide, and in a die laser device that oscillates in the visible light wavelength band, the half-value width is more than a dozen nm or more. It is possible to oscillate laser light having a narrow value width of several nm (about 2 nm to 3 nm) and having a uniform wavelength. Further, the semiconductor laser device has a feature that the wavelength of the laser beam can be easily controlled by adjusting the temperature of the semiconductor laser element.

これらの特徴を有する半導体レーザ装置を用いた蛍光診断・治療装置が例えば特許文献1に記載されている。具体的には、特許文献1には、半導体レーザ素子の温度調整によって発振波長を制御することにより、光感受性物質の吸収波長と施術目的に適合した半値幅のレーザ光を得て、かかるレーザ光によって光感受性物質を効率良く励起することが記載されている。   For example, Patent Document 1 discloses a fluorescence diagnosis / treatment apparatus using a semiconductor laser device having these characteristics. Specifically, Patent Document 1 discloses that a laser beam having a half-value width suitable for an absorption wavelength of a photosensitive material and a treatment purpose is obtained by controlling an oscillation wavelength by adjusting a temperature of a semiconductor laser element. Describes that the photosensitive material can be excited efficiently.

特許第2596221号明細書Japanese Patent No. 2596221

しかしながら、特許文献1を含め従来の蛍光診断に関する技術は、現実に蛍光観察を行うために必要なレーザ光照射条件、薬剤濃度等の条件を何ら示唆していない。例えば、光感受性物質としてタラポルフィンナトナリウムが知られている。従来、タラポルフィンナトナリウムを光感受性物質として使用する場合の投与量は40mg/m程度であった。タラポルフィンナトナリウムは高価であるので、投与量の低減に対する要求がある。しかし、光感受性物質としてタラポルフィンナトナリウムを使用し、かつその投与量を低減した場合におけるレーザ光照射条件等の蛍光観察に必要な条件は、従来の技術では何ら示唆されていない。 However, conventional techniques relating to fluorescence diagnosis including Patent Document 1 do not suggest any conditions such as laser light irradiation conditions and drug concentrations necessary for actually performing fluorescence observation. For example, talaporfin sodium sodium is known as a photosensitive substance. Conventionally, the dose when using talaporfin natonarium as a photosensitive substance has been about 40 mg / m 2 . Since talaporfin sodium is expensive, there is a need for dose reduction. However, conventional techniques do not suggest any conditions necessary for fluorescence observation such as laser light irradiation conditions when talaporfin natonarium is used as a photosensitive substance and the dose is reduced.

本発明は、上記従来の問題に鑑み、現実に蛍光診断を行うために必要なレーザ光照射条件、薬剤濃度等の条件を規定することを課題とする。   In view of the above-described conventional problems, an object of the present invention is to define conditions such as laser light irradiation conditions and drug concentrations necessary for actually performing fluorescence diagnosis.

本発明は、被検者の標的領域中の腫瘍を蛍光によって診断する方法であって、前記被検者に前記腫瘍に親和性のある光感受性物質として1mg/m以上10mg/m以下のタラポルフィンナトナリウムを投与して前記腫瘍に集積させ、前記標的領域に5mW/cm以上70mW/cm以下の強度で中心波長が660nm以上664nm以下の半導体レーザの発生するレーザ光を照射して前記光感受性物質を励起し、前記レーザ光で励起された前記光感受性物質が発する蛍光を観察し、前記蛍光の強弱に基づいて前記標的領域中の前記腫瘍の存在部位を判断する、蛍光診断方法を提供する。 The present invention relates to a method for diagnosing a tumor in a target region of a subject by fluorescence, wherein the photosensitive substance having affinity for the tumor is 1 mg / m 2 or more and 10 mg / m 2 or less. by administering Talaporfin Natona helium is integrated into the tumor, by irradiating a laser beam center wavelength to the target area at 5 mW / cm 2 or more 70 mW / cm 2 or less of the intensity occurs in the following semiconductor laser 660nm or 664nm Fluorescence diagnostic method for exciting the photosensitizer, observing fluorescence emitted from the photosensitizer excited by the laser light, and determining the location of the tumor in the target region based on the intensity of the fluorescence I will provide a.

タラポルフィンナトナリウムの投与量が1mg/m以上10mg/mに低減されているが、標的領域中の腫瘍の存在部位を蛍光の強弱に基づいて特定できる。レーザ光の強度が70mW/cmを上回る場合にはレーザ光によって励起された光感受性物質が蛍光とともに活性酸素を発生し、周囲の生体組織へダメージを与えたり、自らの分子構造が変性し蛍光を発しなくなるフォトブリーチ現象が発生したりする。また、レーザ光の強度が7mW/cmを下回る場合には発生する蛍光が微弱になり観察が難しくなる。従って、レーザ光の強度は7mW/cm以上70mW/cm以下に設定される。 Although the dose of talaporfin natonarium has been reduced to 1 mg / m 2 or more and 10 mg / m 2 , the site of the tumor in the target region can be identified based on the intensity of fluorescence. When the intensity of the laser beam exceeds 70 mW / cm 2 , the photosensitizer excited by the laser beam generates active oxygen together with the fluorescence, causing damage to the surrounding biological tissue, or modifying its own molecular structure to cause the fluorescence. The photo bleach phenomenon that does not emit the light occurs. Further, when the intensity of the laser beam is less than 7 mW / cm 2 , the generated fluorescence becomes weak and observation becomes difficult. Therefore, the intensity of the laser beam is set at 7 mW / cm 2 or more 70 mW / cm 2 or less.

蛍光の観察にカメラを使用する場合、カメラの最低感度ないしは最低被写体照度が0.5lux以上であれば、光感受性物質としてのタラポルフィンナトナリウムの投与量を低減しても腫瘍の存在部位を蛍光の強弱に基づいて特定できる。   When a camera is used for fluorescence observation, if the minimum sensitivity of the camera or the minimum subject illumination is 0.5 lux or more, the tumor site is fluorescent even if the dose of talaporfin natonarium as a photosensitizer is reduced. It can be identified based on the strength of.

光感受性物質の投与直後は血液中に高濃度の光感受性物質が存在する。そのため、光感受性物質の投与直後は標的領域にレーザ光を照射しても腫瘍のみでなくは血管からも強い蛍光が発せられるので、蛍光の強弱に基づいて標的領域中の腫瘍の存在部位を判断するのは困難である。具体的には、光感受性物質の投与後12時間未満は蛍光の強弱に基づく腫瘍の存在部位の判断が困難である。また、光感受性物質の投与から時間が経過するのに伴って光感受性物質が排泄されるので、光感受性物質の投与後長時間が経過すると、腫瘍からの蛍光が弱まって周辺とのコントラストが低下し、腫瘍の存在部位の判断が困難となる。具体的には、光感受性物質の投与後24時間を経過すると、蛍光の強弱に基づく腫瘍の存在部位の判断が困難となる。従って、前記被検者への前記光感受性物質の投与後12時間以上24時間以内に前記レーザ光で励起された前記光感受性物質が発する蛍光の観察を行うことが好ましい。   Immediately after administration of the photosensitive substance, there is a high concentration of the photosensitive substance in the blood. Therefore, immediately after the photosensitizer is administered, even if the target area is irradiated with laser light, strong fluorescence is emitted not only from the tumor but also from the blood vessels. Therefore, the location of the tumor in the target area is determined based on the intensity of the fluorescence. It is difficult to do. Specifically, it is difficult to determine the location of the tumor based on the intensity of fluorescence for less than 12 hours after administration of the photosensitive substance. In addition, since the photosensitizer is excreted as time passes after administration of the photosensitizer, the fluorescence from the tumor is weakened and the contrast with the surroundings decreases after a long time after administration of the photosensitizer. This makes it difficult to determine the location of the tumor. Specifically, when 24 hours have passed after administration of the photosensitive substance, it is difficult to determine the site of the tumor based on the intensity of fluorescence. Therefore, it is preferable to observe fluorescence emitted from the photosensitive substance excited by the laser beam within 12 hours to 24 hours after administration of the photosensitive substance to the subject.

光感受性物質を励起する光の波長はその物質ごとに定まっている。また、多くの光感受性物質は波長400nm付近に強い光の吸収帯を持っている。しかし、波長400nm付近の励起光は生体組織自体からの自然蛍光を発生し、光感受性物質からの蛍光のコントランスを低減する。また、血液中に含まれるヘモグロビンの吸収帯域は600nmから650nm以下の範囲にあり、波長650nm以下の光はヘモグロビンに吸収されやすく、生体組織への深達性に劣っている。また、光感受性物質にタラポルフィンナトナリウムを使用した場合には、生体内からの蛍光ピークは672nmであり、レーザ光波長がこのピーク波長に近い場合にはレーザ光と蛍光を分離することが困難になる。従って、半導体レーザ光の半値幅が数nmであることかから、ヘモグロビンの吸収帯域から外れ、蛍光ピーク以下の波長である660nm以上664nm以下でタラポルフィンナトナリウムを励起して蛍光観察を行うことが好ましい。   The wavelength of light that excites the photosensitive substance is determined for each substance. Many photosensitive materials have a strong light absorption band near a wavelength of 400 nm. However, excitation light in the vicinity of a wavelength of 400 nm generates natural fluorescence from the living tissue itself and reduces the fluorescence contrast from the photosensitive substance. In addition, the absorption band of hemoglobin contained in blood is in the range of 600 nm to 650 nm or less, and light having a wavelength of 650 nm or less is easily absorbed by hemoglobin, which is inferior in depth to living tissue. Further, when talaporfin natonarium is used as a photosensitive substance, the fluorescence peak from the living body is 672 nm, and it is difficult to separate the laser beam and the fluorescence when the laser beam wavelength is close to this peak wavelength. become. Therefore, since the half-value width of the semiconductor laser light is several nm, it is possible to perform fluorescence observation by exciting the talaporfin sodium sodium at a wavelength of 660 nm or more and 664 nm or less, which is a wavelength below the fluorescence peak, out of the hemoglobin absorption band. preferable.

本発明により、半導体レーザを光源として用い、かつ光感受性物質であるタラポルフィンナトナリウムの投与量を低減した場合の光線力学的手法による蛍光観察の条件が示されたので、当該腫瘍細胞を蛍光により特定し、切除ないし壊死させることにより癌等の治療効果の向上が期待できる。   According to the present invention, the conditions of fluorescence observation by a photodynamic technique when a semiconductor laser is used as a light source and the dose of talaporfin sodium sodium which is a photosensitive substance is reduced are shown. By identifying and excising or necrotizing, improvement in the therapeutic effect of cancer and the like can be expected.

図1は、実施の形態にかかる蛍光診断法で使用する医療用レーザ装置(蛍光診断装置)の一例を示すブロック図である。図1において、101は半導体レーザで、動作温度0℃における動作時の発振波長が664nm、半値幅±1nmの特性を持っている。102は半導体レーザ101が発振したレーザ光を導光する光ファイバ、103は光ファイバ102で導光されたレーザ光をコリメートし、レーザ光を平行光とするコリメートレンズ、104は平行光になったレーザ光のスペクトルから蛍光の波長成分を取り除く波長整形用のバンドパスフィルタで、波長662nmから波長665nmは透過率80%以上、波長666nm以上では透過率1%未満となっている。105はバンドパスフィルタ104を透過したレーザ光を観察領域である生体組織(被検者の標的領域)107へ均等に照射するための光学レンズ、106は光学レンズ105を透過したレーザ光を観察対象である光感受性物質が投与された生体組織107の方向へ反射させるための反射鏡、108は生体組織107の蛍光から励起レーザ光の波長成分を取り除くノッチフィルタ、109はノッチフィルタ108を透過した生体組織からの蛍光を結像させるための対物レンズ、110は対物レンズ110によって結像したイメージを撮影するCCDカメラであり、撮影された画像は画像表示装置111に表示される。   FIG. 1 is a block diagram illustrating an example of a medical laser apparatus (fluorescence diagnosis apparatus) used in the fluorescence diagnosis method according to the embodiment. In FIG. 1, reference numeral 101 denotes a semiconductor laser, which has characteristics such that an oscillation wavelength during operation at an operating temperature of 0 ° C. is 664 nm and a half-value width is ± 1 nm. 102 is an optical fiber that guides the laser light oscillated by the semiconductor laser 101, 103 is a collimator lens that collimates the laser light guided by the optical fiber 102, and makes the laser light parallel light, and 104 is parallel light. A wavelength-shaping bandpass filter that removes the fluorescence wavelength component from the spectrum of the laser light. The wavelength 662 nm to wavelength 665 nm has a transmittance of 80% or more, and the wavelength 666 nm or more has a transmittance of less than 1%. Reference numeral 105 denotes an optical lens for uniformly irradiating the biological tissue (target area of the subject) 107, which is an observation area, with the laser light that has passed through the bandpass filter 104, and reference numeral 106 denotes an observation target of the laser light that has passed through the optical lens 105. Is a reflecting mirror for reflecting in the direction of the living tissue 107 to which the photosensitive substance is administered, 108 is a notch filter for removing the wavelength component of the excitation laser light from the fluorescence of the living tissue 107, and 109 is a living body that has passed through the notch filter 108. An objective lens 110 for imaging the fluorescence from the tissue is a CCD camera that captures an image formed by the objective lens 110, and the captured image is displayed on the image display device 111.

以下、本実施の形態の蛍光診断法を説明する。   Hereinafter, the fluorescence diagnostic method of the present embodiment will be described.

まず、被検者に腫瘍との親和性を有する光感受性物質を投与し、生体組織107中の腫瘍に光感受性物質を集積させる。   First, a photosensitive substance having affinity for a tumor is administered to the subject, and the photosensitive substance is accumulated in the tumor in the living tissue 107.

本実施の形態では光感受性物質としてクロリン系のタラポルフィンナトリウム(商品名レザフィリン;明治製菓株式会社製)を用いる。タラポルフィンナトリウムは極大吸収波長が664nmであり、672nmに蛍光の中心波長を持つ。また、本実施の形態では、1mg/m以上10mg/m以下のタラポルフィンナトナリウムを被検者に投与する。このように本実施の形態では従来(通常、40mg/m程度)よりもタラポルフィンナトナリウムの投与量を大幅に低減している。 In this embodiment, chlorin-based talaporfin sodium (trade name Rezaphyrin; manufactured by Meiji Seika Co., Ltd.) is used as a photosensitive substance. Talaporfin sodium has a maximum absorption wavelength of 664 nm and a central wavelength of fluorescence at 672 nm. In the present embodiment, 1 mg / m 2 or more and 10 mg / m 2 or less of talaporfin sodium are administered to the subject. As described above, in this embodiment, the dose of talaporfin natonarium is significantly reduced as compared with the conventional case (usually about 40 mg / m 2 ).

次に、半導体レーザ101の発生するレーザ光を照射して光感受性物質を励起する。そして、レーザ光で励起された光感受性物質が発する蛍光を観察し、蛍光の強弱に基づいて生体組織107中の腫瘍の存在部位を判断する。   Next, the photosensitive material is excited by irradiation with laser light generated by the semiconductor laser 101. Then, the fluorescence emitted from the photosensitive substance excited by the laser light is observed, and the location of the tumor in the living tissue 107 is determined based on the intensity of the fluorescence.

図2は、腫瘍ないしは病変組織での光感受性物質の濃度C1と、腫瘍の周辺の正常組織での濃度C2を模式的に示す。光感受性物質の投与直後は血液中に高濃度の光感受性物質が存在する。そのため、光感受性物質の投与直後は生体組織107にレーザ光を照射しても腫瘍のみでなくは血管からも強い蛍光が発せられるので、蛍光の強弱に基づいて標的領域中の腫瘍の存在部位を判断するのは困難である。具体的には、光感受性物質の投与後12時間未満は蛍光の強弱に基づく腫瘍の存在部位の判断が困難である。また、光感受性物質の投与から時間が経過するのに伴って血液中から光感受性物質が排泄されるので、光感受性物質の投与後長時間が経過すると、腫瘍からの蛍光が弱まり、蛍光の検出が困難になるのと同時に周辺とのコントラストが低下し、腫瘍の存在部位の判断が困難となる。具体的には、光感受性物質の投与後24時間を経過すると、蛍光の強弱に基づく腫瘍の存在部位の判断が困難となる。そのため、レーザ光の照射及び蛍光の観察は、被検者への光感受性物質の投与後12時間以上24時間以内に実行される。   FIG. 2 schematically shows the concentration C1 of the photosensitive substance in the tumor or lesion tissue and the concentration C2 in the normal tissue around the tumor. Immediately after administration of the photosensitive substance, there is a high concentration of the photosensitive substance in the blood. Therefore, immediately after administration of the photosensitive substance, even if the living tissue 107 is irradiated with laser light, strong fluorescence is emitted not only from the tumor but also from the blood vessels. Therefore, based on the intensity of the fluorescence, the site of the tumor in the target region is determined. It is difficult to judge. Specifically, it is difficult to determine the location of the tumor based on the intensity of fluorescence for less than 12 hours after administration of the photosensitive substance. In addition, since the photosensitizer is excreted from the blood as time passes after administration of the photosensitizer, the fluorescence from the tumor becomes weaker after a long time after administration of the photosensitizer, and the fluorescence is detected. At the same time, the contrast with the surrounding area decreases, making it difficult to determine the location of the tumor. Specifically, when 24 hours have passed after administration of the photosensitive substance, it is difficult to determine the site of the tumor based on the intensity of fluorescence. Therefore, laser light irradiation and fluorescence observation are performed within 12 hours to 24 hours after administration of the photosensitive substance to the subject.

以下、レーザ光の照射及び蛍光の観察について詳述する。   Hereinafter, laser irradiation and fluorescence observation will be described in detail.

本実施の形態では、半導体レーザ101は中心波長664nm、半値幅2nm(663nm〜665nm)のレーザ光を発振する。レーザ光は光ファイバ102によってコリメートレンズ103へ導光される。コリメートレンズ103は光ファイバ102から照射されたレーザ光を平行光にコリメートする。   In this embodiment, the semiconductor laser 101 oscillates a laser beam having a center wavelength of 664 nm and a half width of 2 nm (663 nm to 665 nm). The laser light is guided to the collimating lens 103 by the optical fiber 102. The collimating lens 103 collimates the laser light emitted from the optical fiber 102 into parallel light.

コリメートされたレーザ光はバンドパスフィルタ104に入射する。図3はバンドパスフィルタ104の透過率特性を、励起されたレーザ光および蛍光の波長特性と共に模式的に示したものである。201は励起用レーザ光の強度を、202は前記励起用レーザ光の波長成分の一部を除去するバンドパスフィルタ104の透過率の波長特性を、203は励起された光感受性物質が発する蛍光強度の波長特性をそれぞれ示している。バンドパスフィルタ104によってレーザ光の波長的に拡がっている裾野がカットされる。具体的には、コリメートされたレーザ光はバンドパスフィルタ104により波長660nm未満および波長666nm以上の成分が1/100以下に減光される。   The collimated laser light is incident on the band pass filter 104. FIG. 3 schematically shows the transmittance characteristics of the band-pass filter 104 together with the wavelength characteristics of the excited laser light and fluorescence. 201 is the intensity of the excitation laser beam, 202 is the wavelength characteristic of the transmittance of the bandpass filter 104 that removes part of the wavelength component of the excitation laser beam, and 203 is the fluorescence intensity emitted by the excited photosensitive substance. The wavelength characteristics of each are shown. The band-pass filter 104 cuts the base of the laser light that spreads in terms of wavelength. Specifically, the collimated laser light is attenuated by the band-pass filter 104 to a component having a wavelength of less than 660 nm and a wavelength of 666 nm or more to 1/100 or less.

バンドパスフィルタ104を透過したレーザ光は光学レンズ105と反射鏡106によって生体組織107に照射される。生体組織107に照射されるレーザ光の強度は7mW/cm以上70mW/cm以下である。レーザ光強度が15mW/cm以上の場合にはレーザ光によって励起された光感受性物質が蛍光とともに活性酸素を発生し、周囲の生体組織へダメージを与えたり、自らの分子構造が変性し蛍光を発しなくなるフォトブリーチ現象が発生したりする。従ってパワー密度が高くなることは蛍光観察には適さなくなる。また、7mW/cm未満の場合では発生する蛍光が微弱になり観察が難しくなる。励起用レーザ光で照射された光感受性物質が投与された生体組織107からはその蓄積した光感受性物質の濃度に対応した強度の蛍光が発生する。 The laser light transmitted through the band pass filter 104 is irradiated to the living tissue 107 by the optical lens 105 and the reflecting mirror 106. The intensity of the laser beam irradiated to a living tissue 107 is 7 mW / cm 2 or more 70 mW / cm 2 or less. When the laser light intensity is 15 mW / cm 2 or more, the photosensitive substance excited by the laser light generates active oxygen together with the fluorescence, damages the surrounding living tissue, or the molecular structure of the device denatures to emit the fluorescence. The photo bleach phenomenon that does not occur may occur. Therefore, a high power density is not suitable for fluorescence observation. In addition, in the case of less than 7 mW / cm 2 , the generated fluorescence becomes weak and observation becomes difficult. Fluorescence having an intensity corresponding to the accumulated concentration of the photosensitive substance is generated from the living tissue 107 to which the photosensitive substance irradiated with the excitation laser light is administered.

生体組織107から発生した蛍光および生体組織107で反射された励起用レーザ光はノッチフィルタ108を取り付けたCCDカメラ110によって撮影され、画像表示手段111に表示される。この画像中での蛍光の強弱に基づいて生体組織107内の腫瘍の存在部位が判断される。   The fluorescence generated from the living tissue 107 and the excitation laser beam reflected by the living tissue 107 are photographed by the CCD camera 110 to which the notch filter 108 is attached and displayed on the image display means 111. Based on the intensity of the fluorescence in the image, the location of the tumor in the living tissue 107 is determined.

図4はノッチフィルタ108の波長特性を、レーザ光および蛍光と共に模式的に示したものである。301は励起レーザ光強度の波長特性を、302は励起レーザ光により励起された光感受性物質が発する蛍光強度の波長特性を、303は励起用レーザ光をカットするノッチフィルタの透過率の波長特性をそれぞれ示している。ノッチフィルタ108によって蛍光からレーザ光がカットされる。具体的には、レーザ光301および蛍光302のうち波長660nm〜波長666nmの領域が1/1000以下(光学濃度OD3以上)に減光される。一方、波長666nmよりも長波長の蛍光成分はほとんど減光されずにノッチフィルタ108を透過する。レーザ光はバンドパスフィルタ104で波長660nm未満および波長666nm以上の波長成分は1/100以下に減光されているため、既に蛍光よりも十分に強度が弱くなっている。このように励起レーザ光の波長成分を取り除かれた蛍光は対物レンズ109を取り付けたCCDカメラ110によって蛍光画像として撮影される。   FIG. 4 schematically shows the wavelength characteristics of the notch filter 108 together with laser light and fluorescence. 301 is the wavelength characteristic of the excitation laser light intensity, 302 is the wavelength characteristic of the fluorescence intensity emitted by the photosensitive material excited by the excitation laser light, and 303 is the wavelength characteristic of the transmittance of the notch filter that cuts the excitation laser light. Each is shown. The laser light is cut from the fluorescence by the notch filter 108. Specifically, the region of wavelength 660 nm to wavelength 666 nm of the laser beam 301 and the fluorescence 302 is attenuated to 1/1000 or less (optical density OD3 or more). On the other hand, a fluorescent component having a wavelength longer than 666 nm passes through the notch filter 108 without being attenuated. The intensity of the laser light is already sufficiently weaker than that of fluorescence because the wavelength component of the wavelength less than 660 nm and the wavelength of 666 nm or more is attenuated to 1/100 or less by the bandpass filter 104. Thus, the fluorescence from which the wavelength component of the excitation laser light has been removed is photographed as a fluorescence image by the CCD camera 110 to which the objective lens 109 is attached.

本実施の形態では、前述のように光感受性物質としてのタラポルフィンナトナリウムの投与量を1mg/m以上10mg/m以下に低減している。この投与量の低減により励起される蛍光の強度は弱まる傾向にある。しかし、CCDカメラ110の最低感度ないしは最低被写体照度が0.5lux以上であれば、腫瘍の存在部位を蛍光の強弱に基づいて確実に特定できる。 In the present embodiment, as described above, the dose of talaporfin sodium sodium as a photosensitive substance is reduced to 1 mg / m 2 or more and 10 mg / m 2 or less. The intensity of fluorescence excited by this reduction in dosage tends to be weakened. However, if the minimum sensitivity of the CCD camera 110 or the minimum subject illuminance is 0.5 lux or more, the site where the tumor is present can be reliably identified based on the intensity of fluorescence.

なお、CCDカメラ110を肉眼でも観察することができ、この場合は観察者の視力など必要に応じて対物レンズ109を取り外してもよく、交換してもよい。また、CCDカメラをより感度の高いカメラを使用してもよい。   The CCD camera 110 can be observed with the naked eye. In this case, the objective lens 109 may be removed or replaced as necessary, such as the visual acuity of the observer. A CCD camera with higher sensitivity may be used.

下記の表1および図5は、光感受性物質の濃度と励起レーザ光の強度の積と蛍光の強度の関係を示す。この表1および図5に示すように、光感受性物質の濃度の増加、および励起レーザ光の強度の増加に伴って蛍光の強度が増加する。また、光感受性物質の濃度と励起レーザ光の強度は補完的な関係にある。例えば光感受性物質の濃度を半分に低減した場合、励起レーザ光の強度を約2倍にすると蛍光の強度はほぼ一定に維持される。逆に、励起レーザ光の強度を半分に低減した場合、光感受性物質の濃度を約2倍にすると蛍光の強度はほぼ一定に維持される。   Table 1 and FIG. 5 below show the relationship between the product of the concentration of the photosensitive substance and the intensity of the excitation laser light and the intensity of the fluorescence. As shown in Table 1 and FIG. 5, the intensity of fluorescence increases as the concentration of the photosensitive substance increases and the intensity of the excitation laser light increases. Further, the concentration of the photosensitive substance and the intensity of the excitation laser beam are in a complementary relationship. For example, when the concentration of the photosensitive substance is reduced to half, the intensity of the fluorescence is maintained almost constant when the intensity of the excitation laser light is increased approximately twice. On the other hand, when the intensity of the excitation laser light is reduced to half, the intensity of the fluorescence is maintained almost constant when the concentration of the photosensitive substance is doubled.

Figure 2008017899
Figure 2008017899

本発明の蛍光診断法は、神経膠腫(しんけいこうしゅ;グリオーマ)をはじめとする悪性腫瘍の領域検出に利用することができる。すなわち、正常部位へ浸潤した腫瘍細胞からの蛍光を捉えることで、当該腫瘍細胞を切除ないし壊死させることができ、癌などの治療効果の向上が期待できる。   The fluorescence diagnostic method of the present invention can be used for detection of areas of malignant tumors including gliomas. That is, by capturing fluorescence from tumor cells infiltrating into a normal site, the tumor cells can be excised or necrotized, and an improvement in the therapeutic effect of cancer or the like can be expected.

本発明の実施の形態にかかる蛍光診断法で使用する蛍光診断装置の一例を示すブロック図。The block diagram which shows an example of the fluorescence diagnostic apparatus used with the fluorescence diagnostic method concerning embodiment of this invention. 光感受性物質についての投与後の経過時間と濃度の関係を示す模式的なグラフ。The typical graph which shows the elapsed time and density | concentration after administration about a photosensitive substance. レーザ光および蛍光の波長分布とバンドパスフィルタの波長特性を示す模式図。The schematic diagram which shows the wavelength distribution of a laser beam and fluorescence, and the wavelength characteristic of a band pass filter. レーザ光および蛍光の波長分布とノッチフィルタの波長特性を示す模式図。The schematic diagram which shows the wavelength distribution of a laser beam and fluorescence, and the wavelength characteristic of a notch filter. 光感受性物質の濃度と励起レーザ光の強度の積と蛍光の強度の関係を示すグラフ。The graph which shows the relationship between the product of the density | concentration of a photosensitive material, the intensity | strength of excitation laser beam, and the fluorescence intensity.

符号の説明Explanation of symbols

101 半導体レーザ
102 光ファイバ
103 コリメートレンズ
104 バンドパスフィルタ
105 光学レンズ
106 反射鏡
107 生体組織
108 ノッチフィルタ
109 対物レンズ
110 CCDカメラ
201 励起レーザ光強度の波長特性
202 バンドパスフィルタ104の透過率の波長特性
203 蛍光強度の波長特性
301 励起レーザ光強度の波長特性
302 蛍光強度の波長特性
303 ノッチフィルタの透過率の波長特性
DESCRIPTION OF SYMBOLS 101 Semiconductor laser 102 Optical fiber 103 Collimating lens 104 Band pass filter 105 Optical lens 106 Reflector 107 Biological tissue 108 Notch filter 109 Objective lens 110 CCD camera 201 Wavelength characteristic of excitation laser light intensity 202 Wavelength characteristic of transmittance of the band pass filter 104 203 Wavelength characteristic of fluorescence intensity 301 Wavelength characteristic of excitation laser light intensity 302 Wavelength characteristic of fluorescence intensity 303 Wavelength characteristic of transmittance of notch filter

Claims (3)

被検者の標的領域中の腫瘍を蛍光によって診断する方法であって、
前記被検者に前記腫瘍に親和性のある光感受性物質として1mg/m以上10mg/m以下のタラポルフィンナトナリウムを投与して前記腫瘍に集積させ、
前記標的領域に7mW/cm以上70mW/cm以下の強度で中心波長が660nm以上664nm以下の半導体レーザの発生するレーザ光を照射して前記光感受性物質を励起し、
前記レーザ光で励起された前記光感受性物質が発する蛍光を観察し、前記蛍光の強弱に基づいて前記標的領域中の前記腫瘍の存在部位を判断する、
蛍光診断方法。
A method of diagnosing a tumor in a target area of a subject by fluorescence comprising:
1 mg / m 2 or more and 10 mg / m 2 or less of talaporfin natonarium is administered to the subject as a photosensitive substance having affinity for the tumor and accumulated in the tumor,
The central wavelength to a target area at 7 mW / cm 2 or more 70 mW / cm 2 or less of intensity by irradiating a laser beam generated by the following semiconductor laser 660nm or 664nm to excite the light-sensitive material,
Observing the fluorescence emitted by the photosensitive substance excited by the laser light, and determining the location of the tumor in the target region based on the intensity of the fluorescence,
Fluorescence diagnostic method.
前記蛍光の観察にカメラを使用し、かつ
前記カメラの最低被写体照度が0.5lux以上である、請求項1に記載の蛍光診断方法。
The fluorescence diagnostic method according to claim 1, wherein a camera is used for observation of the fluorescence, and a minimum subject illuminance of the camera is 0.5 lux or more.
前記被検者への前記光感受性物質の投与後12時間以上24時間以内に前記レーザ光で励起された前記光感受性物質が発する蛍光の観察を行う、請求項1に記載の蛍光診断方法。   The fluorescence diagnostic method according to claim 1, wherein the fluorescence emitted from the photosensitive substance excited by the laser light is observed within 12 to 24 hours after administration of the photosensitive substance to the subject.
JP2006190081A 2006-07-11 2006-07-11 Method of fluorescent diagnosis Pending JP2008017899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190081A JP2008017899A (en) 2006-07-11 2006-07-11 Method of fluorescent diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190081A JP2008017899A (en) 2006-07-11 2006-07-11 Method of fluorescent diagnosis

Publications (1)

Publication Number Publication Date
JP2008017899A true JP2008017899A (en) 2008-01-31

Family

ID=39074349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190081A Pending JP2008017899A (en) 2006-07-11 2006-07-11 Method of fluorescent diagnosis

Country Status (1)

Country Link
JP (1) JP2008017899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188900A (en) * 2010-03-12 2011-09-29 Seiko Epson Corp Biological substance measuring apparatus, biological substance measuring method, and method of measuring in-vivo circulating tumor cell
WO2013115209A1 (en) * 2012-01-30 2013-08-08 シーシーエス株式会社 Illumination device for tumor detection and illumination device for examinations
JP2020046208A (en) * 2018-09-14 2020-03-26 株式会社東芝 Optical sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188900A (en) * 2010-03-12 2011-09-29 Seiko Epson Corp Biological substance measuring apparatus, biological substance measuring method, and method of measuring in-vivo circulating tumor cell
WO2013115209A1 (en) * 2012-01-30 2013-08-08 シーシーエス株式会社 Illumination device for tumor detection and illumination device for examinations
CN104066385A (en) * 2012-01-30 2014-09-24 Ccs株式会社 Illumination device for tumor detection and illumination device for examinations
JPWO2013115209A1 (en) * 2012-01-30 2015-05-11 シーシーエス株式会社 Illumination device for tumor detection and illumination device for examination
JP2020046208A (en) * 2018-09-14 2020-03-26 株式会社東芝 Optical sensor

Similar Documents

Publication Publication Date Title
KR101172745B1 (en) Combined apparatus for detection of multi-spectrum optical imaging coming out of organic body and light therapy
WO2011007461A1 (en) Aperture stop
US11202918B2 (en) Eye treatment system
JPH10225437A (en) Fluorescence detector
JP2011104199A (en) Endoscope apparatus
JPH10113327A (en) Endoscope device
JP2002219129A (en) Apparatus for observing tissue perfusion and its functional usage method
JP2007303990A (en) Fluorescence diagnostic apparatus
JP2007260192A (en) Optical irradiation probe, eye ground observing apparatus using the probe, eye ground operation apparatus, and endoscope
WO2016039000A1 (en) Imaging device
JP6184086B2 (en) Phototherapy device
JP2000189527A (en) Laser diagnosic and treatment method and apparatus therefor
JP2008043383A (en) Fluorescence observation endoscope instrument
WO2017137350A1 (en) Wavelength tuneable led light source
JP2008017899A (en) Method of fluorescent diagnosis
CN113648547A (en) Photodynamic accurate diagnosis and treatment device under guidance of multimode image and working method thereof
JP5418707B2 (en) Aperture stop
CN109276230A (en) A kind of short-wave infrared tumor imaging system and method
JP2008259591A (en) Light source device for fluorescence observation and fluorescence observation instrument using the same
WO2019215796A1 (en) Treatment support device
JP3896190B2 (en) Photodynamic therapy device
JP2009140827A (en) External light source apparatus
JP7160093B2 (en) Medical imaging device
JP2007020759A (en) Endoscope distal end hood
JP2004113322A (en) Ophthalmological therapy instrument