JP2008016542A - Solid-state imaging apparatus - Google Patents

Solid-state imaging apparatus Download PDF

Info

Publication number
JP2008016542A
JP2008016542A JP2006184393A JP2006184393A JP2008016542A JP 2008016542 A JP2008016542 A JP 2008016542A JP 2006184393 A JP2006184393 A JP 2006184393A JP 2006184393 A JP2006184393 A JP 2006184393A JP 2008016542 A JP2008016542 A JP 2008016542A
Authority
JP
Japan
Prior art keywords
solid
state imaging
charge storage
imaging device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006184393A
Other languages
Japanese (ja)
Inventor
Atsushi Kamashita
敦 釜下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006184393A priority Critical patent/JP2008016542A/en
Publication of JP2008016542A publication Critical patent/JP2008016542A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging apparatus capable of inhibiting reduction in the maximum electric charge which can be stored irrespective of reduction in an area of a photoelectric converter. <P>SOLUTION: The solid-state imaging apparatus includes a photo diode 101 which generates and stores signal charge in response to incident light. The photo diode 101 is constituted of a p-type well 121 formed on an Si substrate 120 serving as an n-type substrate, and a charge storage layer 122 formed on the p-type well 121 and having polarity different from that of the p-type well 121. The charge storage layer 122 is formed of a plurality of horizontal charge storage layers 112 placed at predetermined intervals in the depthwise direction of the Si substrate 120 and extending in a direction approximately parallel to the surface of the Si substrate 120, and a vertical charge storage layer 113 extending in a direction approximately orthogonal to the surface of the Si substrate 120 and connecting the plurality of horizontal charge storage layers 112. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は固体撮像装置に関する。   The present invention relates to a solid-state imaging device.

従来、入射光に応じて発生した電気信号を増幅して出力する増幅型撮像素子を採用した固体撮像装置が知られている(下記公報参照)。   2. Description of the Related Art Conventionally, a solid-state imaging device that employs an amplification type imaging device that amplifies and outputs an electric signal generated according to incident light is known (see the following publication).

この固体撮像装置は、各画素にフォトダイオードと、その光電荷を転送する転送スイッチと、フローティング拡散部を有するソースホロワと、フローティング拡散部をリセットするリセットスイッチと、ソースホロワのドレインに接続された選択スイッチとを有している。また、各スイッチを駆動する駆動回路と、駆動信号線と、電源線と、各画素から信号を出力するための垂直出力線及び水平出力線とを備えている。
特開平11−196331号公報
This solid-state imaging device includes a photodiode, a transfer switch for transferring the photoelectric charge to each pixel, a source follower having a floating diffusion portion, a reset switch for resetting the floating diffusion portion, and a selection switch connected to the drain of the source follower. And have. In addition, a drive circuit that drives each switch, a drive signal line, a power supply line, and a vertical output line and a horizontal output line for outputting a signal from each pixel are provided.
Japanese Patent Application Laid-Open No. 11-196331

近年、固体撮像装置の小型化の要請から、撮像素子のサイズが小さくなる傾向にある。   In recent years, the size of an image sensor tends to be reduced due to a demand for downsizing of a solid-state imaging device.

しかし、撮像素子のサイズが小さくなると、その受光面の面積も小さくなるので、蓄積できる最大電荷量も少なくなる。   However, when the size of the image sensor is reduced, the area of the light receiving surface is also reduced, so that the maximum charge amount that can be accumulated is reduced.

この発明はこのような事情に鑑みてなされたもので、その課題は光電変換部の面積の減少にもかかわらず、蓄積できる最大電荷量の減少を抑制することができる固体撮像装置を提供することである。   The present invention has been made in view of such circumstances, and a problem thereof is to provide a solid-state imaging device capable of suppressing a decrease in the maximum charge amount that can be accumulated despite a decrease in the area of the photoelectric conversion unit. It is.

上記課題を解決するため請求項1記載の発明は、入射光に応じた信号電荷を生成し、蓄積する光電変換部を備えている固体撮像装置において、前記光電変換部は、半導体基板に形成された第1の導電型領域中に形成され、前記第1の導電型領域と極性の異なる第2の導電型領域を有し、前記第2の導電型領域は、前記半導体基板の深さ方向へ所定間隔に配置され、前記半導体基板の表面とほぼ平行な方向へ延びる複数の水平拡散部と、前記半導体基板の表面とほぼ直交する方向へ延び、前記複数の水平拡散部を接続する垂直拡散部とを有することを特徴とする。   In order to solve the above-described problem, the invention described in claim 1 is a solid-state imaging device including a photoelectric conversion unit that generates and accumulates signal charges according to incident light, and the photoelectric conversion unit is formed on a semiconductor substrate. The second conductivity type region is formed in the first conductivity type region and has a polarity different from that of the first conductivity type region, and the second conductivity type region extends in the depth direction of the semiconductor substrate. A plurality of horizontal diffusion portions arranged at predetermined intervals and extending in a direction substantially parallel to the surface of the semiconductor substrate, and a vertical diffusion portion extending in a direction substantially orthogonal to the surface of the semiconductor substrate and connecting the plurality of horizontal diffusion portions It is characterized by having.

請求項2記載の発明は、請求項1記載の固体撮像装置において、前記水平拡散部は前記半導体基板の深さ方向で対向配置されていることを特徴とする。   According to a second aspect of the present invention, in the solid-state imaging device according to the first aspect, the horizontal diffusion portions are arranged to face each other in the depth direction of the semiconductor substrate.

請求項3記載の発明は、請求項1又は2記載の固体撮像装置において、前記垂直拡散部は第1の導電型領域上に形成された転送ゲート電極の近傍に配置されていることを特徴とする。   According to a third aspect of the present invention, in the solid-state imaging device according to the first or second aspect, the vertical diffusion portion is disposed in the vicinity of the transfer gate electrode formed on the first conductivity type region. To do.

この発明によれば光電変換部の面積の減少にもかかわらず、蓄積できる最大電荷量の減少を抑制することができる。   According to the present invention, it is possible to suppress a decrease in the maximum amount of charge that can be accumulated despite a decrease in the area of the photoelectric conversion unit.

以下、この発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2はこの発明の一実施形態に係る固体撮像装置の回路図、図1はその固体撮像装置の最小要素を示す平面図である。   FIG. 2 is a circuit diagram of a solid-state imaging device according to an embodiment of the present invention, and FIG. 1 is a plan view showing the minimum elements of the solid-state imaging device.

この固体撮像装置は、フォトダイオード(光変換部)101と転送スイッチ102とソースフォロア103とリセットスイッチ105と行選択スイッチ104と電源線Vddと垂直出力線106とを備えている。この固体撮像装置はCMOS(Complementary Metal Oxide Semiconductor)型エリアセンサである。   The solid-state imaging device includes a photodiode (light conversion unit) 101, a transfer switch 102, a source follower 103, a reset switch 105, a row selection switch 104, a power supply line Vdd, and a vertical output line 106. This solid-state imaging device is a CMOS (Complementary Metal Oxide Semiconductor) type area sensor.

フォトダイオード101は光電変換を行う。   The photodiode 101 performs photoelectric conversion.

転送スイッチ102はフォトダイオード101で発生した光電荷をフローティング拡散部103aに転送する。転送スイッチ102のゲート電極は垂直走査回路107の転送端子ΦTX(n,n+1)に接続されている。   The transfer switch 102 transfers the photocharge generated by the photodiode 101 to the floating diffusion portion 103a. The gate electrode of the transfer switch 102 is connected to the transfer terminal ΦTX (n, n + 1) of the vertical scanning circuit 107.

ソースフォロア103はフローティング拡散部103aを有する。   The source follower 103 has a floating diffusion portion 103a.

リセットスイッチ105はフローティング拡散部103aをリセットする。リセットスイッチ105のゲートは垂直走査回路107のリセット端子ΦRES(n,n+1)に接続されている。   The reset switch 105 resets the floating diffusion unit 103a. The gate of the reset switch 105 is connected to the reset terminal ΦRES (n, n + 1) of the vertical scanning circuit 107.

行選択スイッチ104のソースはソースフォロア103のドレインに接続されている。選択スイッチ104のゲート電極は垂直走査回路107のセレクト端子ΦSEL(n,n+1)に接続されている。   The source of the row selection switch 104 is connected to the drain of the source follower 103. The gate electrode of the selection switch 104 is connected to the select terminal ΦSEL (n, n + 1) of the vertical scanning circuit 107.

光量電荷の蓄積中、転送スイッチ102はオフの状態であり、画素アンプを構成するソースフォロア103のゲートにはフォトダイオード101で発生した電荷は転送されない。なお、蓄積開始前にリセットスイッチ105がオンになり、ソースフォロア103のゲートに適当な電圧が印加され、初期化される(ダークレベル)。   During the accumulation of the light amount charge, the transfer switch 102 is in an OFF state, and the charge generated in the photodiode 101 is not transferred to the gate of the source follower 103 constituting the pixel amplifier. Note that the reset switch 105 is turned on before the accumulation is started, and an appropriate voltage is applied to the gate of the source follower 103 to initialize it (dark level).

行選択スイッチ104がオンになると、負荷電流源108とソースフォロア103とで構成される回路が動作状態になる。転送スイッチ102をオンにすると、フォトダイオード101に蓄積された電荷がソースフォロア103のゲートに転送される。   When the row selection switch 104 is turned on, a circuit composed of the load current source 108 and the source follower 103 enters an operating state. When the transfer switch 102 is turned on, the charge accumulated in the photodiode 101 is transferred to the gate of the source follower 103.

ここで、垂直出力線106に選択行の出力が発生する。選択行の出力は転送ゲート109a,109bを介して信号蓄積部110に一時的に蓄積される。信号蓄積部110に蓄積された選択行の出力は水平走査回路111によって出力部V0から順次読み出される。   Here, the output of the selected row is generated on the vertical output line 106. The output of the selected row is temporarily stored in the signal storage unit 110 via the transfer gates 109a and 109b. The output of the selected row accumulated in the signal accumulation unit 110 is sequentially read out from the output unit V0 by the horizontal scanning circuit 111.

図4は図1のIV―IV線に沿う断面を示す概念図である。   FIG. 4 is a conceptual diagram showing a cross section taken along line IV-IV in FIG.

フォトダイオード101は、N型基板であるSi基板(半導体基板)120に形成されたP型ウエル(第1導電型領域)121と、P型ウエル121に形成され、P型ウエル121と極性の異なる電荷蓄積層(第2導電型領域)122とを有する。   The photodiode 101 is formed in a P-type well (first conductivity type region) 121 formed on a Si substrate (semiconductor substrate) 120 that is an N-type substrate, and in a P-type well 121, and has a polarity different from that of the P-type well 121. A charge storage layer (second conductivity type region) 122.

電荷蓄積層122は、Si基板120の表面とほぼ平行な方向へ延びる3層の水平電荷蓄積層(水平拡散部)112と、3層の電荷蓄積層112を接続する垂直電荷蓄積層(垂直拡散部)113とを有する。3層の水平電荷蓄積層112は、Si基板120の深さ方向(図4の紙面上下方向)へ所定間隔をおいて対向配置されている。垂直電荷蓄積層113はSi基板120の表面とほぼ直交する方向へ延びている。   The charge storage layer 122 includes three horizontal charge storage layers (horizontal diffusion portions) 112 extending in a direction substantially parallel to the surface of the Si substrate 120 and a vertical charge storage layer (vertical diffusion) connecting the three charge storage layers 112. Part) 113. The three horizontal charge storage layers 112 are arranged to face each other at a predetermined interval in the depth direction of the Si substrate 120 (the vertical direction in the drawing of FIG. 4). The vertical charge storage layer 113 extends in a direction substantially orthogonal to the surface of the Si substrate 120.

P型ウエル121の上面には素子分離用のLOCOS酸化膜125、ポリシリコンゲート電極(転送ゲート電極)126等が形成されている。   An LOCOS oxide film 125 for element isolation, a polysilicon gate electrode (transfer gate electrode) 126, and the like are formed on the upper surface of the P-type well 121.

図3は比較例に係るフォトダイオードの断面を示す概念図である。   FIG. 3 is a conceptual diagram showing a cross section of a photodiode according to a comparative example.

フォトダイオード501はN型基板であるSi基板520に形成されたP型ウエル521と、P型ウエル521に形成され、P型ウエル521と極性の異なる電荷蓄積層512とを有する。電荷蓄積層512はSi基板520の表面とほぼ平行な方向へ延びる。   The photodiode 501 includes a P-type well 521 formed in an Si substrate 520 which is an N-type substrate, and a charge storage layer 512 formed in the P-type well 521 and having a polarity different from that of the P-type well 521. The charge storage layer 512 extends in a direction substantially parallel to the surface of the Si substrate 520.

電荷蓄積層の容量をCj、PN接合の空乏層幅をW、PN接合面積をAjとしたとき、電荷蓄積層の容量Cj、PN接合の空乏層幅W及びPN接合面積Ajには式1の関係がある。   When the capacitance of the charge storage layer is Cj, the depletion layer width of the PN junction is W, and the PN junction area is Aj, the capacitance Cj of the charge storage layer, the depletion layer width W of the PN junction, and the PN junction area Aj There is a relationship.

Cj=Ksε0Aj/W (式1)
ただし、Ks:シリコンの誘電率、ε0:真空誘電率である。
Cj = Ksε0Aj / W (Formula 1)
Where Ks: dielectric constant of silicon and ε0: vacuum dielectric constant.

式1から、PN接合面積Ajが大きくなると電荷蓄積層の容量Cjが大きくなり、より多くの電荷を蓄積できることがわかる。   From Equation 1, it can be seen that as the PN junction area Aj increases, the capacitance Cj of the charge storage layer increases and more charges can be stored.

したがって、この実施形態のフォトダイオード101のPN接合面積Ajは比較例のもに比べて大きいため、フォトダイオード101はフォトダイオード501よりも多くの電荷を蓄積できることがわかる。   Therefore, since the PN junction area Aj of the photodiode 101 of this embodiment is larger than that of the comparative example, it can be seen that the photodiode 101 can store more charge than the photodiode 501.

次に、図5〜9を用いて固体撮像装置の製造方法を説明する。   Next, a method for manufacturing a solid-state imaging device will be described with reference to FIGS.

図5〜9は固体撮像装置の製造過程の断面を示す概念図である。   5 to 9 are conceptual diagrams showing cross sections of the manufacturing process of the solid-state imaging device.

まず、N型基板であるSi基板120の表面にP型ウエル121を形成する(図5参照)。   First, a P-type well 121 is formed on the surface of an Si substrate 120 which is an N-type substrate (see FIG. 5).

次に、P型ウエル121上にLOCOS酸化膜125とポリシリコンゲート電極126とを形成する(図6参照)。
その後、例えばフォトリソグラフィでフォトレジスト130Aをパターニングし、フォトレジスト130Aとポリシリコンゲート電極126とをマスクにしてP型ウエル121を覆い、31+140を注入して、P型ウエル121上にN型拡散層からなる水平電荷蓄積層112を形成する。このとき、イオン140の加速エネルギーを変えることによってN型拡散層からなる3層の水平電荷蓄積層112を形成する(図7参照)。3層の水平電荷蓄積層112は、前述したようにそれぞれ深さ方向へ所定間隔をおいて対向配置されるとともに、Si基板120の表面とほぼ平行な方向へ延びている。
Next, a LOCOS oxide film 125 and a polysilicon gate electrode 126 are formed on the P-type well 121 (see FIG. 6).
Thereafter, the photoresist 130A is patterned by, for example, photolithography, the P-type well 121 is covered using the photoresist 130A and the polysilicon gate electrode 126 as a mask, 31 P + 140 is implanted, and N on the P-type well 121 is formed. A horizontal charge storage layer 112 made of a type diffusion layer is formed. At this time, by changing the acceleration energy of the ions 140, the three horizontal charge storage layers 112 made of an N-type diffusion layer are formed (see FIG. 7). As described above, the three horizontal charge storage layers 112 are opposed to each other at a predetermined interval in the depth direction, and extend in a direction substantially parallel to the surface of the Si substrate 120.

水平電荷蓄積層112を形成し、フォトレジスト130Aを剥離した後、フォトレジスト130Bをパターニングし、フォトレジスト130Bとポリシリコンゲート電極126とをマスクにしてP型ウエル121を覆い、31+140を注入して、N型拡散層からなる垂直電荷蓄積層113を形成する(図8参照)。垂直電荷蓄積層113はSi基板120の表面とほぼ直交する方向へ延びる。垂直電荷蓄積層113によって3層の水平電荷蓄積層112が接続される。電荷蓄積層113はポリシリコンゲート電極126の近傍に配置されている。 The horizontal charge storage layer 112 is formed, the photoresist 130A is peeled off, the photoresist 130B is patterned, the P-type well 121 is covered with the photoresist 130B and the polysilicon gate electrode 126 as a mask, and 31 P + 140 is formed. Implantation is performed to form a vertical charge storage layer 113 made of an N-type diffusion layer (see FIG. 8). The vertical charge storage layer 113 extends in a direction substantially orthogonal to the surface of the Si substrate 120. Three horizontal charge storage layers 112 are connected by the vertical charge storage layer 113. The charge storage layer 113 is disposed in the vicinity of the polysilicon gate electrode 126.

垂直電荷蓄積層113を形成し、フォトレジスト130Bを剥離した後、フォトレジスト130Cをパターニングし、フォトレジスト130Cとポリシリコンゲート電極126とをマスクにしてP型ウエル121を覆い、11+140を注入し、3層の水平電荷蓄積層112の上部に空乏化防止層(P+ 領域)128を形成する(図9参照)。 After the vertical charge storage layer 113 is formed and the photoresist 130B is peeled off, the photoresist 130C is patterned, the P-type well 121 is covered with the photoresist 130C and the polysilicon gate electrode 126 as a mask, and 11 B + 140 is formed. The depletion prevention layer (P + region) 128 is formed on the three horizontal charge storage layers 112 (see FIG. 9).

次に、フォトレジスト(図示せず)をパターニングし、そのフォトレジストとポリシリコンゲート電極126とをマスクにしてP型ウエル121を覆い、75As+140を注入して、浮遊拡散層となるN型拡散層127を形成する。 Next, a photoresist (not shown) is patterned, and the P-type well 121 is covered using the photoresist and the polysilicon gate electrode 126 as a mask, and 75 As + 140 is implanted to form a floating diffusion layer. A mold diffusion layer 127 is formed.

その後、図示しないが、P型ウエル121の表面に保護膜を形成するとともに、外部へ引出し用の電極パターンの保護膜を開口する。更に、開口を介して配線を行い、固体撮像装置が完成する。   Thereafter, although not shown, a protective film is formed on the surface of the P-type well 121, and a protective film of an electrode pattern for extraction is opened to the outside. Furthermore, wiring is performed through the opening to complete the solid-state imaging device.

この実施形態によれば、電荷蓄積層122の容量を大きくして電荷の蓄積量を増加させることができるので、フォトダイオード101の面積減少にもかかわらず、蓄積できる最大電荷量の減少を抑制することができる。また、水平電荷蓄積層112は深さ方向の位置が異なるだけであり、同じマスクを用いてイオン140を注入することができるので、製造コストを低減することができる。更に、電荷蓄積層122をポリシリコンゲート電極126の近傍に配置したので、電荷をすみやかに転送することができる。   According to this embodiment, the capacity of the charge storage layer 122 can be increased and the amount of stored charge can be increased, so that the decrease in the maximum amount of charge that can be stored despite the area reduction of the photodiode 101 is suppressed. be able to. Further, the horizontal charge storage layer 112 is different only in the position in the depth direction, and the ions 140 can be implanted using the same mask, so that the manufacturing cost can be reduced. Furthermore, since the charge storage layer 122 is disposed in the vicinity of the polysilicon gate electrode 126, charges can be transferred promptly.

図1はその固体撮像装置の最小要素の平面図である。FIG. 1 is a plan view of the minimum element of the solid-state imaging device. 図2はこの発明の一実施形態に係る固体撮像装置の回路図である。FIG. 2 is a circuit diagram of a solid-state imaging device according to an embodiment of the present invention. 図3は比較例に係るフォトダイオードの断面を示す概念図である。FIG. 3 is a conceptual diagram showing a cross section of a photodiode according to a comparative example. 図4は図1のIV―IV線に沿う断面を示す概念図である。FIG. 4 is a conceptual diagram showing a cross section taken along line IV-IV in FIG. 図5は固体撮像装置の製造過程の断面を示す概念図である。FIG. 5 is a conceptual diagram showing a cross section of the manufacturing process of the solid-state imaging device. 図6は固体撮像装置の製造過程の断面を示す概念図である。FIG. 6 is a conceptual diagram showing a cross section of the manufacturing process of the solid-state imaging device. 図7は固体撮像装置の製造過程の断面を示す概念図である。FIG. 7 is a conceptual diagram showing a cross section of the manufacturing process of the solid-state imaging device. 図8は固体撮像装置の製造過程の断面を示す概念図である。FIG. 8 is a conceptual diagram showing a cross section of the manufacturing process of the solid-state imaging device. 図9は固体撮像装置の製造過程の断面を示す概念図である。FIG. 9 is a conceptual diagram showing a cross section of the manufacturing process of the solid-state imaging device.

符号の説明Explanation of symbols

101:フォトダイオード(光変換部)、112:水平電荷蓄積層(水平拡散部)、113:垂直電荷蓄積層(垂直拡散部)、120:Si基板(半導体基板)、121:P型ウエル(第1導電型領域)122:電荷蓄積層(第2導電型領域)、126:ポリシリコンゲート電極(ゲート電極)。   101: Photodiode (light conversion unit), 112: Horizontal charge storage layer (horizontal diffusion unit), 113: Vertical charge storage layer (vertical diffusion unit), 120: Si substrate (semiconductor substrate), 121: P-type well (first well) 1 conductivity type region) 122: charge storage layer (second conductivity type region), 126: polysilicon gate electrode (gate electrode).

Claims (3)

入射光に応じた信号電荷を生成し、蓄積する光電変換部を備えている固体撮像装置において、
前記光電変換部は、半導体基板に形成された第1の導電型領域中に形成され、前記第1の導電型領域と極性の異なる第2の導電型領域を有し、
前記第2の導電型領域は、前記半導体基板の深さ方向へ所定間隔に配置され、前記半導体基板の表面とほぼ平行な方向へ延びる複数の水平拡散部と、前記半導体基板の表面とほぼ直交する方向へ延び、前記複数の水平拡散部を接続する垂直拡散部とを有することを特徴とする固体撮像装置。
In a solid-state imaging device including a photoelectric conversion unit that generates and accumulates signal charges according to incident light,
The photoelectric conversion unit is formed in a first conductivity type region formed on a semiconductor substrate, and has a second conductivity type region having a polarity different from that of the first conductivity type region,
The second conductivity type regions are arranged at a predetermined interval in the depth direction of the semiconductor substrate, and have a plurality of horizontal diffusion portions extending in a direction substantially parallel to the surface of the semiconductor substrate, and substantially orthogonal to the surface of the semiconductor substrate. A solid-state imaging device, wherein the solid-state imaging device has a vertical diffusion portion extending in a direction to connect the plurality of horizontal diffusion portions.
前記水平拡散部は前記半導体基板の深さ方向で対向配置されていることを特徴とする請求項1記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the horizontal diffusion portions are arranged to face each other in a depth direction of the semiconductor substrate. 前記垂直拡散部は第1の導電型領域上に形成された転送ゲート電極の近傍に配置されていることを特徴とする請求項1又は2記載の固体撮像装置。   3. The solid-state imaging device according to claim 1, wherein the vertical diffusion portion is disposed in the vicinity of a transfer gate electrode formed on the first conductivity type region.
JP2006184393A 2006-07-04 2006-07-04 Solid-state imaging apparatus Withdrawn JP2008016542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184393A JP2008016542A (en) 2006-07-04 2006-07-04 Solid-state imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184393A JP2008016542A (en) 2006-07-04 2006-07-04 Solid-state imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008016542A true JP2008016542A (en) 2008-01-24

Family

ID=39073298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184393A Withdrawn JP2008016542A (en) 2006-07-04 2006-07-04 Solid-state imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008016542A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300826A (en) * 2007-05-29 2008-12-11 Samsung Electronics Co Ltd Multi-well cmos image sensor and its fabrication process
JP2010114274A (en) * 2008-11-06 2010-05-20 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus
KR101021094B1 (en) 2011-01-19 2011-03-14 클레어픽셀 주식회사 Image Sensor
US8614759B2 (en) 2008-06-09 2013-12-24 Sony Corporation Solid-state imaging device, drive method thereof and electronic apparatus
KR20210018238A (en) 2018-06-06 2021-02-17 소니 세미컨덕터 솔루션즈 가부시키가이샤 Imaging device, electronic device
WO2022158170A1 (en) * 2021-01-21 2022-07-28 ソニーセミコンダクタソリューションズ株式会社 Photodetector and electronic device
US12027538B2 (en) 2018-09-25 2024-07-02 Sony Semiconductor Solutions Corporation Imaging element and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300826A (en) * 2007-05-29 2008-12-11 Samsung Electronics Co Ltd Multi-well cmos image sensor and its fabrication process
US8614759B2 (en) 2008-06-09 2013-12-24 Sony Corporation Solid-state imaging device, drive method thereof and electronic apparatus
US11817473B2 (en) 2008-06-09 2023-11-14 Sony Group Corporation Solid-state imaging device, drive method thereof and electronic apparatus
JP2010114274A (en) * 2008-11-06 2010-05-20 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus
KR101021094B1 (en) 2011-01-19 2011-03-14 클레어픽셀 주식회사 Image Sensor
KR20210018238A (en) 2018-06-06 2021-02-17 소니 세미컨덕터 솔루션즈 가부시키가이샤 Imaging device, electronic device
US12027538B2 (en) 2018-09-25 2024-07-02 Sony Semiconductor Solutions Corporation Imaging element and electronic apparatus
WO2022158170A1 (en) * 2021-01-21 2022-07-28 ソニーセミコンダクタソリューションズ株式会社 Photodetector and electronic device

Similar Documents

Publication Publication Date Title
JP6541080B2 (en) Solid-state imaging device
JP6095258B2 (en) Solid-state imaging device and imaging system using solid-state imaging device
EP2065938B1 (en) Solid-state imaging device and camera
US7217961B2 (en) Solid-state image pickup device and method for producing the same
US8803062B2 (en) Photoelectric conversion device having a light-shielding film
JP5063223B2 (en) Photoelectric conversion device and imaging system
US8053272B2 (en) Semiconductor device fabrication method
JP6406585B2 (en) Imaging device
US8754458B2 (en) Semiconductor device, manufacturing method thereof, solid-state imaging device, manufacturing method thereof, and electronic unit
US8399914B2 (en) Method for making solid-state imaging device
JP2011159757A (en) Solid-state imaging device and manufacturing method thereof, driving method of solid-state imaging device, and electronic device
JP2006073737A (en) Solid-stage image sensing device and camera
KR20110010058A (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2011091367A (en) Photoelectric conversion apparatus and imaging system using the same
JP5508356B2 (en) Solid-state imaging device and driving method thereof, solid-state imaging device manufacturing method, and electronic information device
JP2008004682A (en) Solid-state imaging device, and method of driving and manufacturing the same
JP2010245100A (en) Solid-state imaging element
JP2011159758A (en) Solid-state imaging device and method of manufacturing the same, and electronic equipment
JP2007088305A (en) Solid-state imaging device, manufacturing method thereof and camera
JP2008016542A (en) Solid-state imaging apparatus
US20120002070A1 (en) Solid-state image sensor and camera
TW201628176A (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2012009697A (en) Solid-state imaging element
US7459332B2 (en) CMOS image sensor and method for manufacturing the same
JP2009140983A (en) Solid-state imaging device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006