JP2008016208A - Electrode catalyst and fuel cell - Google Patents

Electrode catalyst and fuel cell Download PDF

Info

Publication number
JP2008016208A
JP2008016208A JP2006183100A JP2006183100A JP2008016208A JP 2008016208 A JP2008016208 A JP 2008016208A JP 2006183100 A JP2006183100 A JP 2006183100A JP 2006183100 A JP2006183100 A JP 2006183100A JP 2008016208 A JP2008016208 A JP 2008016208A
Authority
JP
Japan
Prior art keywords
carbon material
electrode catalyst
carbon
catalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006183100A
Other languages
Japanese (ja)
Inventor
Tamaki Miura
環 三浦
Yasunari Hisamitsu
泰成 久光
Yasuhiko Osawa
康彦 大澤
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006183100A priority Critical patent/JP2008016208A/en
Publication of JP2008016208A publication Critical patent/JP2008016208A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst having high dispersibility of catalyst particles and improved catalyst efficiency and to provide a fuel cell having high power generation efficiency. <P>SOLUTION: The electrode catalyst 20 has a carbon material 21 and catalyst particles 22 carried on the carbon material 21. The carbon material 21 has a diameter Lc(002) of a crystallite 23 of 1.0-10 nm and an R value of 0.5-1.0. The carbon material 21 has crystal structure having a spacing of planes (d002) of 0.34-0.38 nm. The carbon material 21 has a specific surface area of 1.0-1000 m<SP>2</SP>/g. The carbon material 21 has a decomposition temperature in air of 600-850°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電極触媒及び燃料電池に関する。   The present invention relates to an electrode catalyst and a fuel cell.

近年、クリーンで発電効率の高い次世代の発電装置が望まれており、酸素及び水素の持つ化学エネルギーを直接電気エネルギーに変換する燃料電池に対する期待が高まっている。現在、燃料電池の種類として、リン酸型、アルカリ型、溶融炭酸塩型、固体電解質型及び固体高分子型等が知られている。中でも固体高分子型燃料電池は、小規模かつポータブルな電源としての用途、例えば電気自動車用電源や家庭用発電システム、に適すると考えられている。このため、その実用化に向けて、現在精力的に開発が進められている。   In recent years, a next-generation power generation device that is clean and has high power generation efficiency is desired, and there is an increasing expectation for a fuel cell that directly converts chemical energy of oxygen and hydrogen into electric energy. Currently, phosphoric acid type, alkaline type, molten carbonate type, solid electrolyte type, solid polymer type and the like are known as types of fuel cells. Among them, the polymer electrolyte fuel cell is considered to be suitable for use as a small-scale and portable power source, for example, a power source for electric vehicles and a power generation system for home use. For this reason, development is energetically advanced toward its practical application.

燃料電池電池では、担体として用いられる炭素材料と、この炭素材料に担持した白金等の触媒成分とを含む電極触媒が使用されている(特許文献1参照。)。触媒成分は、担体に分散して担持されている方が触媒活性が高い。
特開2004−99355号公報
In the fuel cell, an electrode catalyst including a carbon material used as a carrier and a catalyst component such as platinum supported on the carbon material is used (see Patent Document 1). The catalyst component has higher catalytic activity when dispersed and supported on the carrier.
JP 2004-99355 A

しかしながら、従来の燃料電池に用いられる電極触媒では、担体として使用する炭素材料に黒鉛化したカーボンを用いるほど触媒成分の分散性が低下する傾向がある。   However, in the conventional electrode catalyst used in the fuel cell, the dispersibility of the catalyst component tends to decrease as graphitized carbon is used as the carbon material used as the carrier.

本発明は、上記課題を解決するためになされたものであり、本発明に係る電極触媒は、炭素材料と、炭素材料に担持された触媒粒子とを有する電極触媒であって、炭素材料は、結晶子径Lc(002)が1.0〜10[nm]であり、R値が0.5〜1.0であることを特徴とする。   The present invention has been made in order to solve the above problems, and the electrode catalyst according to the present invention is an electrode catalyst having a carbon material and catalyst particles supported on the carbon material, The crystallite diameter Lc (002) is 1.0 to 10 [nm], and the R value is 0.5 to 1.0.

本発明に係る燃料電池は、本発明に係る電極触媒を用いることを特徴とする。   The fuel cell according to the present invention uses the electrode catalyst according to the present invention.

本発明によれば、担体である炭素材料が等方性の構造をとることにより触媒粒子の分散性が良く、触媒効率が改善された電極触媒が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the carbon material which is a support | carrier has an isotropic structure, The dispersibility of a catalyst particle is good, and the electrode catalyst with which the catalyst efficiency was improved is provided.

本発明によれば、発電効率に優れた燃料電池が提供される。   According to the present invention, a fuel cell excellent in power generation efficiency is provided.

以下、本発明の実施の形態に係る電極触媒及び燃料電池を説明する。   Hereinafter, an electrode catalyst and a fuel cell according to embodiments of the present invention will be described.

図1は、本発明の実施の形態に係る燃料電池から構成される燃料電池スタック1の外観を示す斜視図である。図2は、図1に示す燃料電池スタック1の詳細な構成を示す展開図である。図3は、本発明の実施の形態に係る燃料電池の積層方向に沿う断面図である。図4(a)は、本発明の実施の形態に係る電極触媒の概念図である。図4(b)は、炭素材料の結晶子の斜視図である。図4(c)は、結晶子の側面側からみた略示図である。   FIG. 1 is a perspective view showing an appearance of a fuel cell stack 1 composed of fuel cells according to an embodiment of the present invention. FIG. 2 is a development view showing a detailed configuration of the fuel cell stack 1 shown in FIG. FIG. 3 is a cross-sectional view along the stacking direction of the fuel cell according to the embodiment of the present invention. FIG. 4A is a conceptual diagram of an electrode catalyst according to an embodiment of the present invention. FIG. 4B is a perspective view of a crystallite of a carbon material. FIG. 4C is a schematic view seen from the side surface side of the crystallite.

図2に示すように、燃料電池スタック1は、電気化学反応により発電を行う基本単位となる単セル2を複数積層して構成される。各単セル2は0.8[V]程度の起電力を生じ、これらの単セル2が、導体としての燃料電池用セパレータ3を介して直列に接続されて規定の出力電圧を発生させる。ここでは、単セル2を燃料電池用セパレータ3で挟持した一組を燃料電池4とし、燃料電池用セパレータ3に挟まれた部分がそれぞれ単セル2として機能する。そして、燃料電池スタック1内で積層されるこれらの要素は、積層方向両端にそれぞれ設けられた一対のエンドフランジ5を締結ボルト6によって締結することにより固定される。また、図1、2に示すように、燃料電池スタック1には、各単セル2に水素ガス等の水素を含有する燃料ガスを供給するための水素供給ラインと、酸化剤ガスとして空気を供給する空気供給ラインと、冷却水を供給する冷却水供給ラインが設けられている。なお、以下の例では、便宜上、図3にしたがって上下を規定する。すなわち燃料電池スタック1の積層方向を上下方向と規定する。   As shown in FIG. 2, the fuel cell stack 1 is configured by laminating a plurality of single cells 2 serving as a basic unit for generating power by an electrochemical reaction. Each single cell 2 generates an electromotive force of about 0.8 [V], and these single cells 2 are connected in series via a fuel cell separator 3 as a conductor to generate a specified output voltage. Here, a set of the single cells 2 sandwiched between the fuel cell separators 3 is referred to as a fuel cell 4, and the portions sandwiched between the fuel cell separators 3 function as the single cells 2. These elements stacked in the fuel cell stack 1 are fixed by fastening a pair of end flanges 5 respectively provided at both ends in the stacking direction with fastening bolts 6. As shown in FIGS. 1 and 2, the fuel cell stack 1 is supplied with a hydrogen supply line for supplying a fuel gas containing hydrogen such as hydrogen gas to each single cell 2 and air as an oxidant gas. An air supply line for supplying cooling water and a cooling water supply line for supplying cooling water are provided. In the following example, the upper and lower sides are defined according to FIG. 3 for convenience. That is, the stacking direction of the fuel cell stack 1 is defined as the vertical direction.

図2に示す燃料電池4では、図3に示す断面図のように、電解質膜11の一方の面に酸化剤極、他方の面に燃料極としての触媒層がそれぞれ接合されて、酸化剤極触媒層12と燃料極触媒層13とを構成している。酸化剤極触媒層12及び燃料極触媒層13の外側には、それぞれ酸化剤ガス拡散層14及び燃料ガス拡散層15が配置されている。電解質膜11としては、固体高分子型電解質膜であるスルホン酸基を有するパーフルオロカーボン重合体膜(Nafion1128(登録商標)、デュポン株式会社)等を使用することができる。酸化剤ガス拡散層14及び燃料ガス拡散層15は、カーボン繊維を用いて形成されており、カーボンクロス、カーボンペーパ等と呼ばれている多孔質炭素膜である。この多孔質炭素膜は、直径10〜50[μm]程度の空孔を有しており、それぞれ反応ガス(水素を含有する燃料ガスとしての水素、及び酸素を含有する酸化剤ガスとしての空気。)の拡散を最適化し、反応ガスと各触媒層12、13との接触を容易にする。また、各ガス拡散層14、15は導電性を有し、各触媒層12、13と電気的に接続されている。酸化剤ガス拡散層14及び燃料ガス拡散層15の両側には、酸化剤ガスセパレータ18(3)と燃料ガスセパレータ19(3)とが各々配置され、酸化剤ガス拡散層14と酸化剤ガスセパレータ18との間に酸化剤ガス流路16を、また、燃料ガス拡散層15と燃料ガスセパレータ19との間に燃料ガス流路17が形成される。各セパレータ18、19は、プレート状に成形したカーボンや金属の表面にガス流路及び冷却水流路が形成されたものであり、各触媒層12、13に反応ガスの供給を行い、さらには、外部回路に電流を流す役割も果たす。なお、酸化剤ガス流路16を流通する酸化剤ガスと、燃料ガス流路17を流通する燃料ガスは、同一方向に流通するように構成されている。この燃料電池4では、酸化剤極触媒層12側に、酸素を含む酸化剤ガスとして空気を供給し、燃料極触媒層13側に水素を含む燃料ガスとして水素ガスを供給すると、主に、電解質膜11と酸化剤極触媒層12、及び電解質膜11と燃料極触媒層13との間の接触面において電気化学反応が進行し、電力が生成する。   In the fuel cell 4 shown in FIG. 2, as shown in the cross-sectional view shown in FIG. 3, an oxidant electrode is bonded to one surface of the electrolyte membrane 11 and a catalyst layer as a fuel electrode is bonded to the other surface. A catalyst layer 12 and a fuel electrode catalyst layer 13 are formed. An oxidant gas diffusion layer 14 and a fuel gas diffusion layer 15 are disposed outside the oxidant electrode catalyst layer 12 and the fuel electrode catalyst layer 13, respectively. As the electrolyte membrane 11, a perfluorocarbon polymer membrane having a sulfonic acid group (Nafion 1128 (registered trademark), DuPont), which is a solid polymer electrolyte membrane, or the like can be used. The oxidant gas diffusion layer 14 and the fuel gas diffusion layer 15 are formed using carbon fibers, and are porous carbon films called carbon cloth, carbon paper, or the like. This porous carbon film has pores with a diameter of about 10 to 50 [μm], and each of them has a reactive gas (hydrogen as a fuel gas containing hydrogen and air as an oxidant gas containing oxygen). ) To optimize the contact between the reaction gas and the catalyst layers 12 and 13. The gas diffusion layers 14 and 15 have conductivity and are electrically connected to the catalyst layers 12 and 13. An oxidant gas separator 18 (3) and a fuel gas separator 19 (3) are disposed on both sides of the oxidant gas diffusion layer 14 and the fuel gas diffusion layer 15, respectively. An oxidant gas channel 16 is formed between the fuel gas diffusion layer 15 and the fuel gas channel 17 between the fuel gas diffusion layer 15 and the fuel gas separator 19. Each of the separators 18 and 19 has a gas flow path and a cooling water flow path formed on the surface of carbon or metal formed into a plate shape, and supplies a reaction gas to each of the catalyst layers 12 and 13. It also plays the role of passing current through the external circuit. Note that the oxidant gas flowing through the oxidant gas flow channel 16 and the fuel gas flowing through the fuel gas flow channel 17 are configured to flow in the same direction. In this fuel cell 4, when air is supplied as an oxidant gas containing oxygen to the oxidant electrode catalyst layer 12 side and hydrogen gas is supplied as a fuel gas containing hydrogen to the fuel electrode catalyst layer 13 side, the electrolyte mainly An electrochemical reaction proceeds at the contact surfaces between the membrane 11 and the oxidant electrode catalyst layer 12 and between the electrolyte membrane 11 and the fuel electrode catalyst layer 13, and electric power is generated.

各触媒層12、13は、担体である炭素材料と、炭素材料に担持された触媒粒子とを有する電極触媒によって構成され、この炭素材料は、X線回折で得られる002回折線から求められる結晶子のc軸方向の厚みである結晶子径Lc(002)が1.0〜10[nm]であり、炭素材料の表面の結晶性を示すR値、すなわち、ラマン分光法により測定したグラファイト構造における六員環平面構造の固有振動モードG1ピークと、黒鉛構造の乱れにより生じるモードD1ピークの各ピーク強度の比(=D1ピーク/G1ピーク)が0.5〜1.0である。   Each of the catalyst layers 12 and 13 is composed of an electrode catalyst having a carbon material as a support and catalyst particles supported on the carbon material, and the carbon material is a crystal obtained from a 002 diffraction line obtained by X-ray diffraction. The crystallite diameter Lc (002), which is the thickness of the child in the c-axis direction, is 1.0 to 10 [nm], and the R value indicating the crystallinity of the surface of the carbon material, that is, the graphite structure measured by Raman spectroscopy The ratio of the peak intensities (= D1 peak / G1 peak) of the natural vibration mode G1 peak of the six-membered ring planar structure to the mode D1 peak caused by the disorder of the graphite structure is 0.5 to 1.0.

図4に本発明の実施の形態に係る電極触媒の概念図を示す。図4に示すように、本発明の実施の形態に係る電極触媒20の粒子は、各々が炭素材料21と、炭素材料21に担持された触媒粒子22とを有する。炭素材料21は、複数の結晶子23からなり、各結晶子23は炭素六角網面23a〜23dの積み重なりにより構成されている。結晶子23は、炭素六角網面23a〜23dの積層方向、すなわち、c軸方向に厚みLcを有する。炭素六角網面23a〜23dは、それぞれ平均面間隔dの間隔を有する。触媒粒子22は、結晶子23の端部(エッジサイト)に担持されている。触媒粒子22が結晶子23の端部に担持されることにより、触媒粒子22は結晶子23と他の結晶子23との間に画成された空間に位置する。   FIG. 4 shows a conceptual diagram of the electrode catalyst according to the embodiment of the present invention. As shown in FIG. 4, the particles of the electrode catalyst 20 according to the embodiment of the present invention each have a carbon material 21 and catalyst particles 22 supported on the carbon material 21. The carbon material 21 includes a plurality of crystallites 23, and each crystallite 23 is configured by stacking carbon hexagonal mesh surfaces 23a to 23d. The crystallite 23 has a thickness Lc in the stacking direction of the carbon hexagonal mesh surfaces 23a to 23d, that is, in the c-axis direction. Each of the carbon hexagonal mesh surfaces 23a to 23d has an average surface interval d. The catalyst particles 22 are supported on the ends (edge sites) of the crystallites 23. Since the catalyst particles 22 are supported on the ends of the crystallites 23, the catalyst particles 22 are located in a space defined between the crystallites 23 and the other crystallites 23.

本発明の実施の形態に係る電極触媒の炭素材料は、結晶子径Lc(002)が1.0〜10[nm]と小さく、R値が0.5〜1.0であるため、担体である炭素材料は触媒粒子を担持できる小さな結晶子を多く含み、かつ耐酸化性の高い担体とすることができる。また、この炭素材料は等方性の構造をとる。小さな結晶子がより規則的に等方的に存在すると、触媒粒子は一定間隔で担体に担持されるため分散性が良くなり、加熱により触媒粒子22が凝集することが抑制され、触媒効率が改善される。なお、炭素材料としては、黒鉛、カーボンブラック、等方性カーボンそのもの、もしくは不活処理等により高比表面積化した材料があげられる。また、通常の熱処理で炭素材料を調製するだけでなく、炭素材料を母材として表面処理により、最表面での結晶性を変化させた場合も含む。   The carbon material of the electrode catalyst according to the embodiment of the present invention has a crystallite diameter Lc (002) as small as 1.0 to 10 [nm] and an R value of 0.5 to 1.0. A certain carbon material contains a large number of small crystallites capable of supporting catalyst particles, and can be used as a support having high oxidation resistance. This carbon material has an isotropic structure. When small crystallites are present more regularly and isotropically, the catalyst particles are supported on the carrier at regular intervals, so that the dispersibility is improved, and the aggregation of the catalyst particles 22 by heating is suppressed, and the catalyst efficiency is improved. Is done. Examples of the carbon material include graphite, carbon black, isotropic carbon itself, or a material having a high specific surface area by inactivation treatment or the like. Moreover, not only the carbon material is prepared by ordinary heat treatment, but also includes the case where the crystallinity at the outermost surface is changed by surface treatment using the carbon material as a base material.

ここで、等方性の構造をもつ炭素材料とは、炭素原子の六角網面が積層した基本構造を維持しながら材料として等方性を実現したものをさす。等方性の炭素材料としては、例えばナノメーターサイズの炭素六角網面を方向性なく集合させることによりつくられたガラス状カーボンや、難黒鉛化性カーボン、異方性のある粒子を方向性なく集合させることで調整した等方性高密度グラファイトがあげられる。このように、高温下で処理することで耐酸化性を高めた炭素材料であると同時に、等方性をとることで触媒粒子の分散性を高めることにより、少ない触媒量でも高い触媒活性が得られる。なお、等方性の構造をもつ炭素材料として、非晶質炭素、カーボンブラックでも対象となる場合がある。   Here, the carbon material having an isotropic structure refers to a material that is isotropic while maintaining a basic structure in which hexagonal network surfaces of carbon atoms are stacked. Isotropic carbon materials include, for example, glassy carbon produced by assembling nanometer-sized carbon hexagonal network surfaces without orientation, non-graphitizable carbon, anisotropic particles without orientation. Isotropic high-density graphite adjusted by assembling. In this way, it is a carbon material that has been improved in oxidation resistance by being treated at a high temperature, and at the same time, high catalytic activity can be obtained even with a small amount of catalyst by increasing the dispersibility of the catalyst particles by taking isotropic properties. It is done. In addition, as a carbon material having an isotropic structure, amorphous carbon and carbon black may be targeted.

触媒粒子は白金を含むことが好ましい。触媒の成分として白金を含む場合には、高い触媒活性を有する電極触媒が得られる。   The catalyst particles preferably contain platinum. When platinum is included as a catalyst component, an electrode catalyst having high catalytic activity can be obtained.

炭素材料は、面間隔d002が0.34〜0.38[nm]である結晶構造を有することが好ましい。等方性の炭素材料の場合には高配向構造はとらないため、黒鉛の面間隔d002は0.3354[nm]より大きく非晶質炭素ほどは大きくはない範囲を対象とする。   The carbon material preferably has a crystal structure in which the interplanar spacing d002 is 0.34 to 0.38 [nm]. In the case of an isotropic carbon material, since a highly oriented structure is not taken, the interplanar spacing d002 of graphite is within a range larger than 0.3354 [nm] and not as large as amorphous carbon.

炭素材料は、比表面積が1.0〜1000[m/g]であることが好ましい。等方性のグラファイトの場合、粒子サイズにもよるが1.0[m/g]程度の比表面積を示す。カーボンブラック等で効果の指摘される比表面積は1000[m/g]よりやや小さい数字である。このため、等方性の炭素材料そのもの、もしくは賦活処理等により高比表面積化した材料も含めて、比表面積が1.0〜1000[m/g]であることが好ましい。なお、通常の熱処理で炭素材料を調製するだけでなく、炭素材料を母材として表面処理により比表面積を増加させた場合も本範囲に入る。 The carbon material preferably has a specific surface area of 1.0 to 1000 [m 2 / g]. In the case of isotropic graphite, it has a specific surface area of about 1.0 [m 2 / g] depending on the particle size. The specific surface area that is pointed out as effective in carbon black or the like is a number slightly smaller than 1000 [m 2 / g]. For this reason, it is preferable that a specific surface area is 1.0-1000 [m < 2 > / g] including the isotropic carbon material itself or the material which increased the specific surface area by the activation process. In addition, not only the carbon material is prepared by ordinary heat treatment, but also the case where the specific surface area is increased by surface treatment using the carbon material as a base material falls within this range.

炭素材料は、空気中での分解温度が600〜850[℃]であることが好ましい。100[ml/min]の空気流中10[℃/min]の昇温速度で1200[℃]まで加熱した場合、コークス系黒鉛材料の分解温度は830〜850[℃]、効果の指摘されるカーボンブラックの分解温度は630〜720[℃]である。等方性カーボンそのもの、もしくは賦活処理等により高比表面積化した材料も含めてこの範囲とする。   The carbon material preferably has a decomposition temperature in air of 600 to 850 [° C.]. When heated to 1200 [° C.] at a heating rate of 10 [° C./min] in an air flow of 100 [ml / min], the decomposition temperature of the coke-based graphite material is 830 to 850 [° C.], indicating the effect. The decomposition temperature of carbon black is 630 to 720 [° C.]. This range includes isotropic carbon itself or materials having a high specific surface area by activation treatment or the like.

このように、本発明の実施の形態に係る電極触媒では、担体である炭素材料が等方性の構造をとることにより、触媒粒子の分散性が良く、触媒効率が改善された電極触媒が提供される。そして、この電極触媒を触媒層として用いた場合には、発電効率に優れた燃料電池が提供される。   As described above, the electrode catalyst according to the embodiment of the present invention provides an electrode catalyst having good dispersibility of catalyst particles and improved catalyst efficiency by adopting an isotropic structure of the carbon material as a support. Is done. And when this electrode catalyst is used as a catalyst layer, a fuel cell excellent in power generation efficiency is provided.

以下、実施例1〜実施例2及び比較例1〜比較例2により本発明について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples 1 to 2 and Comparative Examples 1 to 2, but the scope of the present invention is not limited thereto.

1.試料の調製
炭素材料として、実施例1では結晶化カーボンブラックを、実施例2では易黒鉛化性カーボンを、比較例1ではカーボンブラックを、比較例2では黒鉛を用いた。用いた炭素材料の構造モデルを図5に示す。図5(a)に示す結晶化カーボンブラック30は、炭素六角網面の積み重なりからなる結晶子30aが同心円状に配列して一次粒子を形成し、外殻が角張っている構造を有する。図5(b)に示す易黒鉛化性カーボン31は、異方性組織からなる結晶子31aが等方的に配列した構造を有する。図5(c)に示すカーボンブラック32は、炭素六角網面の積み重なりからなる結晶子32aが無定形に配列して一次粒子を形成している構造を有する。図5(d)に示す黒鉛33は炭素六角網面からなる結晶子33aが規則的に配列した構造を有する。
1. Sample Preparation As the carbon material, crystallized carbon black was used in Example 1, graphitizable carbon was used in Example 2, carbon black was used in Comparative Example 1, and graphite was used in Comparative Example 2. A structural model of the carbon material used is shown in FIG. The crystallized carbon black 30 shown in FIG. 5 (a) has a structure in which crystallites 30a formed by stacking carbon hexagonal mesh faces are arranged concentrically to form primary particles, and the outer shell is angular. The graphitizable carbon 31 shown in FIG. 5 (b) has a structure in which crystallites 31a having an anisotropic structure are arranged isotropically. The carbon black 32 shown in FIG. 5 (c) has a structure in which crystallites 32a formed by stacking carbon hexagonal network surfaces are arranged in an amorphous form to form primary particles. Graphite 33 shown in FIG. 5 (d) has a structure in which crystallites 33a composed of carbon hexagonal mesh surfaces are regularly arranged.

試料の調製は、まず、0.1[wt%]HPtCl水溶液500[g]に炭素材料を0.5[g]投入し、超音波ホモジナイザーで10[分間]分散・混合し、分散溶液(25[℃]、pH2)を調製した。次に、分散溶液に0.01[wt%]ヒドラジン水溶液を滴下速度0.1[pH/min]で滴下し、pH7となるまで滴下を行った。これを1[時間]攪拌後、ろ過して固形分を分離し、純水にて数回洗浄した。さらに、80[℃]において8[時間]乾燥し、Ptを担持したカーボン粉末(電極触媒)を得た。 For the preparation of the sample, first, 0.5 [g] of a carbon material is added to 500 [g] of 0.1 [wt%] H 2 PtCl 6 aqueous solution, and dispersed and mixed by an ultrasonic homogenizer for 10 [minutes]. A solution (25 [° C.], pH 2) was prepared. Next, a 0.01 [wt%] hydrazine aqueous solution was dropped into the dispersion solution at a dropping rate of 0.1 [pH / min], and dropping was performed until the pH reached 7. After stirring this for 1 [hour], the solid content was separated by filtration and washed several times with pure water. Furthermore, it was dried at 80 [° C.] for 8 [hours] to obtain carbon powder (electrode catalyst) carrying Pt.

各炭素材料のR値、Lc(002)、d(002)、分解温度を表1に示す。また、各炭素材料を用いて調製したカーボン粉末について、電極触媒性能を示す質量活性を測定し、その結果を表1に示す。なお、各測定値は次に示す方法によって測定した。   Table 1 shows the R value, Lc (002), d (002), and decomposition temperature of each carbon material. Moreover, about the carbon powder prepared using each carbon material, the mass activity which shows an electrode catalyst performance was measured, and the result is shown in Table 1. Each measured value was measured by the following method.

2.比表面積[m/g]の測定
比表面積は、粉体単位重量あたりの表面積を表す。測定に際して、装置は、堀場製作所製 連続流動式表面積計 SA−9601を用い、窒素吸着BET一点法により測定した。
2. Measurement of specific surface area [m 2 / g] The specific surface area represents the surface area per unit weight of the powder. At the time of measurement, the apparatus was measured by a nitrogen adsorption BET single point method using a continuous flow type surface area meter SA-9601 manufactured by Horiba Seisakusho.

3.R値の測定
R値は、炭素材料の表面の結晶性を示す。R値は、ラマン分光法により測定したグラファイト構造における六員環平面構造の固有振動モードG1ピークと、黒鉛構造の乱れにより生じるモードD1ピークの各ピーク強度の比(=D1ピーク/G1ピーク)である。R値の測定には、レーザーラマン分光分析装置 HOLOLAB 5000Rを用い、励起波長:532[nm]で行った。
3. Measurement of R value The R value indicates the crystallinity of the surface of the carbon material. The R value is the ratio of the peak intensities (= D1 peak / G1 peak) of the natural vibration mode G1 peak of the six-membered ring planar structure in the graphite structure measured by Raman spectroscopy and the mode D1 peak caused by the disorder of the graphite structure. is there. The R value was measured using a laser Raman spectrometer HOLOLAB 5000R at an excitation wavelength of 532 [nm].

4.Lc(002)、d002の測定
Lc(002)、d002は、結晶構造の発達具合を表し、各々X線回折測定結果より算出する。Lcはc軸方向、Laはab面方向の結晶子径を示し、d002は面間隔を示す。測定には、マックサイエンス社製 X線回折装置(MXP18VAHF)を用い、電流:40[kV]、電流:300[mA]、X線波長:CuKα、内部標準:Siで測定を行った。
4). Measurement of Lc (002) and d002 Lc (002) and d002 represent the degree of development of the crystal structure, and are calculated from the results of X-ray diffraction measurement. Lc represents the crystallite diameter in the c-axis direction, La represents the crystallite diameter in the ab plane direction, and d002 represents the interplanar spacing. For the measurement, an X-ray diffractometer (MXP18VAHF) manufactured by Mac Science Co., Ltd. was used, and measurement was performed with current: 40 [kV], current: 300 [mA], X-ray wavelength: CuKα, and internal standard: Si.

5.分解温度の測定
分解温度は、炭素材料の酸化消耗度を示す。分解温度の測定は、熱重量−示差熱同時分析により行った。測定には、セイコーインスツルメント製 熱重量-示差熱同時分析装置TG−DTA6300を用い、温度:室温〜1200[℃]、雰囲気:空気(100[ml/min])、昇温速度:10[℃/min]で測定した。
5. Measurement of decomposition temperature The decomposition temperature indicates the degree of oxidation consumption of the carbon material. The decomposition temperature was measured by simultaneous thermogravimetric-differential thermal analysis. For the measurement, a thermogravimetric-differential thermal simultaneous analyzer TG-DTA6300 manufactured by Seiko Instruments Inc. was used, temperature: room temperature to 1200 [° C.], atmosphere: air (100 [ml / min]), temperature increase rate: 10 [ [° C./min].

6.質量活性の測定
質量活性は電極触媒性能を示す。一般に、セル電圧0.9[V]におけるPt1[g]あたりの電流値で表され、数値が大きいほど電極触媒の性能が高いことを示す。測定にはMEA(Membrain Electrode Assembly:膜−電極接合体)を次に示す手順により作製し、作製したMEAを用いて燃料電池単セルを作製し、単セルの性能の測定を行い質量活性を算出した。
6). Measurement of mass activity Mass activity indicates electrocatalytic performance. Generally, it is represented by a current value per Pt1 [g] at a cell voltage of 0.9 [V], and the larger the value, the higher the performance of the electrode catalyst. For measurement, MEA (Membrane Electrode Assembly: membrane-electrode assembly) is produced by the following procedure, a fuel cell single cell is produced using the produced MEA, the performance of the single cell is measured, and the mass activity is calculated. did.

<MEAの作製>
まず、各実施例及び比較例で調製したPt担持カーボン粉末を電極触媒として、これに精製水とイソプロピルアルコールを加え、更に所定量のナフィオン(登録商標)溶液を加えてホモジナイザーで良く分散させ、更に脱泡操作を加えることによって触媒スラリーを作製した。これをガス拡散層であるカーボンペーパー(東レ製 TGP−H−060)の片面にスクリーン印刷法によって所定量印刷し、60[℃]で24[時間]乾燥させることにより、ガス拡散層上にカソード触媒層を作製した。また、50[%]Pt担持カーボンを電極触媒として用い、カソードと同様な方法を用いてガス拡散層上にアノード触媒層を作製した。
<Production of MEA>
First, using Pt-supported carbon powder prepared in each Example and Comparative Example as an electrode catalyst, purified water and isopropyl alcohol were added thereto, and a predetermined amount of Nafion (registered trademark) solution was added and well dispersed with a homogenizer. A catalyst slurry was prepared by adding a defoaming operation. A predetermined amount is printed on one side of carbon paper (Toray TGP-H-060 manufactured by Toray Industries, Inc.) as a gas diffusion layer by a screen printing method, and dried at 60 [° C.] for 24 hours, whereby a cathode is formed on the gas diffusion layer. A catalyst layer was prepared. In addition, an anode catalyst layer was prepared on the gas diffusion layer by using the same method as that for the cathode, using 50 [%] Pt-supported carbon as an electrode catalyst.

次に、これらのガス拡散層を用いて、それぞれの触媒層を内側にして電解質膜を挟持した後、120[℃]、0.2[MPa]で3[分間]ホットプレスを行うことによってMEAを作製した。なお、得られたMEAは、アノード、カソードともにPt使用量を見かけの電極面積1[cm]あたり0.5[mg]とし、電極面積は300[cm]とした。また、電解質膜としてNafion112(登録商標)を用いた。 Next, using these gas diffusion layers, each catalyst layer is sandwiched between the electrolyte membranes, and then subjected to hot pressing at 120 [° C.] and 0.2 [MPa] for 3 [minutes] to perform MEA. Was made. In the obtained MEA, the amount of Pt used for both the anode and cathode was 0.5 [mg] per apparent electrode area 1 [cm 2 ], and the electrode area was 300 [cm 2 ]. In addition, Nafion 112 (registered trademark) was used as the electrolyte membrane.

<性能の測定>
作製したMEAを用いて燃料電池単セルを作製し、アノード側には燃料として水素を供給し、カソード側には空気を供給した。両ガスともに供給圧力は大気圧とし、水素は80[℃]、空気は60[℃]で飽和加湿し、燃料電池本体の温度は80[℃]に設定した。そして、水素利用率は70[%]、空気利用率は40[%]として、電流−セル電圧特性を調べ、質量活性[μA・mg−Pt]とした。

Figure 2008016208
<Measurement of performance>
A fuel cell single cell was produced using the produced MEA, hydrogen was supplied as fuel to the anode side, and air was supplied to the cathode side. The supply pressure of both gases was atmospheric pressure, hydrogen was 80 [° C.], air was saturated and humidified at 60 [° C.], and the temperature of the fuel cell body was set to 80 [° C.]. Then, the hydrogen utilization rate was 70 [%], the air utilization rate was 40 [%], the current-cell voltage characteristics were examined, and the mass activity [μA · mg-Pt] was obtained.
Figure 2008016208

表1より、用いた炭素材料のLc(002)が1.0〜10[nm]の範囲にあり、R値が0.5〜1.0の範囲にある実施例では、質量活性が150以上と高い値が得られた。これに対し、この数値範囲からはずれる比較例では質量活性が低かった。これは、カーボンの耐食性が高く、白金の分散性が落ちていないためと考えられる。   From Table 1, Lc (002) of the used carbon material is in the range of 1.0 to 10 [nm], and in the examples where the R value is in the range of 0.5 to 1.0, the mass activity is 150 or more. A high value was obtained. On the other hand, the mass activity was low in the comparative examples that deviated from this numerical range. This is probably because the corrosion resistance of carbon is high and the dispersibility of platinum is not lowered.

実施例1〜実施例2及び比較例1〜比較例2の結果より、本発明の実施の形態に係る電極触媒では、Lc(002)が1.0〜10[nm]であり、R値が0.5〜1.0であるため、担体である炭素材料が等方性の構造をとることにより、触媒粒子の分散性が良く、触媒効率が改善された電極触媒が提供されることがわかった。そして、この電極触媒を触媒層として用いた場合には、発電効率に優れた燃料電池が提供されることがわかった。   From the results of Examples 1 to 2 and Comparative Examples 1 to 2, in the electrode catalyst according to the embodiment of the present invention, Lc (002) is 1.0 to 10 [nm], and the R value is Since the carbon material as the support has an isotropic structure, it is found that an electrode catalyst having good dispersibility of catalyst particles and improved catalyst efficiency is provided. It was. And when this electrode catalyst was used as a catalyst layer, it turned out that the fuel cell excellent in power generation efficiency is provided.

以上、本発明の実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the embodiment of the present invention has been described above, it should not be understood that the description and drawings that constitute part of the disclosure of the embodiment limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態に係る燃料電池から構成される燃料電池スタックの外観を示す斜視図である。It is a perspective view which shows the external appearance of the fuel cell stack comprised from the fuel cell which concerns on embodiment of this invention. 燃料電池スタックの詳細な構成を示す展開図である。It is an expanded view which shows the detailed structure of a fuel cell stack. 本発明の実施の形態に係る燃料電池の積層方向に沿う断面図である。It is sectional drawing in alignment with the lamination direction of the fuel cell which concerns on embodiment of this invention. (a)本発明の実施の形態に係る電極触媒の概念図である。(b)炭素材料の結晶子の斜視図である。(c)結晶子の側面側からみた略示図である。(A) It is a conceptual diagram of the electrode catalyst which concerns on embodiment of this invention. (B) It is a perspective view of the crystallite of a carbon material. (C) It is the schematic diagram seen from the side surface side of a crystallite. (a)実施例1における炭素材料の構造モデルを示す図である。(b)実施例2における炭素材料の構造モデルを示す図である。(c)比較例1における炭素材料の構造モデルを示す図である。(d)比較例2における炭素材料の構造モデルを示す図である。(A) It is a figure which shows the structural model of the carbon material in Example 1. FIG. (B) It is a figure which shows the structural model of the carbon material in Example 2. FIG. (C) It is a figure which shows the structural model of the carbon material in the comparative example 1. FIG. (D) It is a figure which shows the structural model of the carbon material in the comparative example 2. FIG.

符号の説明Explanation of symbols

20 電極触媒
21 炭素材料
22 触媒粒子
23 結晶子
20 Electrocatalyst 21 Carbon material 22 Catalyst particle 23 Crystallite

Claims (6)

炭素材料と、前記炭素材料に担持された触媒粒子とを有する電極触媒であって、
前記炭素材料は、結晶子径Lc(002)が1.0〜10[nm]であり、R値が0.5〜1.0であることを特徴とする電極触媒。
An electrode catalyst having a carbon material and catalyst particles supported on the carbon material,
The carbon material has a crystallite diameter Lc (002) of 1.0 to 10 [nm] and an R value of 0.5 to 1.0.
前記触媒粒子は白金を含むことを特徴とする請求項1に記載の電極触媒。   The electrode catalyst according to claim 1, wherein the catalyst particles include platinum. 前記炭素材料は、面間隔d002が0.34〜0.38[nm]である結晶構造を有することを特徴とする請求項1又は請求項2に記載の電極触媒。   3. The electrode catalyst according to claim 1, wherein the carbon material has a crystal structure in which a surface interval d002 is 0.34 to 0.38 [nm]. 前記炭素材料は、比表面積が1.0〜1000[m/g]であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の電極触媒。 4. The electrode catalyst according to claim 1, wherein the carbon material has a specific surface area of 1.0 to 1000 [m 2 / g]. 前記炭素材料は、空気中での分解温度が600〜850[℃]であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の電極触媒。   The electrode catalyst according to any one of claims 1 to 4, wherein the carbon material has a decomposition temperature in air of 600 to 850 [° C]. 請求項1乃至請求項5のいずれかに係る電極触媒を用いることを特徴とする燃料電池。   A fuel cell using the electrode catalyst according to any one of claims 1 to 5.
JP2006183100A 2006-07-03 2006-07-03 Electrode catalyst and fuel cell Pending JP2008016208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006183100A JP2008016208A (en) 2006-07-03 2006-07-03 Electrode catalyst and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006183100A JP2008016208A (en) 2006-07-03 2006-07-03 Electrode catalyst and fuel cell

Publications (1)

Publication Number Publication Date
JP2008016208A true JP2008016208A (en) 2008-01-24

Family

ID=39073044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183100A Pending JP2008016208A (en) 2006-07-03 2006-07-03 Electrode catalyst and fuel cell

Country Status (1)

Country Link
JP (1) JP2008016208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185498A1 (en) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 Electrode for fuel cell and method for manufacturing same
EP3147976A4 (en) * 2014-03-19 2017-11-08 Nippon Steel & Sumitomo Metal Corporation Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material
CN111540917A (en) * 2019-02-06 2020-08-14 丰田自动车株式会社 Catalyst for fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185498A1 (en) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 Electrode for fuel cell and method for manufacturing same
JP6063039B2 (en) * 2013-05-16 2017-01-18 トヨタ自動車株式会社 Fuel cell electrode and manufacturing method thereof
JPWO2014185498A1 (en) * 2013-05-16 2017-02-23 トヨタ自動車株式会社 Fuel cell electrode and manufacturing method thereof
EP3147976A4 (en) * 2014-03-19 2017-11-08 Nippon Steel & Sumitomo Metal Corporation Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material
US10096837B2 (en) 2014-03-19 2018-10-09 Nippon Steel & Sumitomo Metal Corporation Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material
CN111540917A (en) * 2019-02-06 2020-08-14 丰田自动车株式会社 Catalyst for fuel cell

Similar Documents

Publication Publication Date Title
US7745037B2 (en) Membrane electrode assembly for solid polymer electrolyte fuel cell
KR100696463B1 (en) High concentration carbon impregnated catalyst, method for preparing the same, catalyst electrode using the same and fuel cell having the catalyst electrode
KR100684854B1 (en) Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same
KR100715155B1 (en) Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
US20180123140A1 (en) N-doped carbon nanomaterials as catalysts for oxygen reduction reaction in acidic fuel cells
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JP5141104B2 (en) Manufacturing method of fuel cell
JP2007220384A (en) Catalyst carrier, electrode catalyst for fuel battery, fuel battery electrode, and fuel battery as well as fuel battery cell
KR100728124B1 (en) Catalyst for water gas shift for fuel cell system, method of preparing same and fuel cell system comprising same
JP2006318707A (en) Electrode structure of solid polymer fuel cell
JP4553861B2 (en) Fuel cell
JPWO2006083035A1 (en) FUEL CELL MODULE AND FUEL CELL INCLUDING THE FUEL CELL MODULE
JP5384515B2 (en) Fuel cell electrode having two kinds of hydrophilicity, method for producing the same, membrane electrode assembly including the same, and fuel cell
US8278012B2 (en) Membrane electrode assembly for fuel cell, and fuel cell system including the same
JP2008016208A (en) Electrode catalyst and fuel cell
KR100541977B1 (en) Carbon nanoball supported Pt/Ru alloy electrode catalysts for direct methanol fuel cell and their preparation method
JP2008270169A (en) Fuel cell
JP2009043688A (en) Fuel cell
JP5110835B2 (en) Catalyst electrode for fuel cell, membrane / electrode assembly using the same, and fuel cell
JP2008235156A (en) Electrode catalyst layer for fuel cell, and fuel cell using it
JP4578941B2 (en) Method for producing electrode structure of polymer electrolyte fuel cell
JP2008171771A (en) Electrode catalyst, and fuel cell
JP2008034236A (en) Electrode material
Choudhury Phosphoric acid fuel cell technology
JP2005174768A (en) Membrane electrode assembly, its manufacturing method, and its usage