JP2008014840A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2008014840A
JP2008014840A JP2006187175A JP2006187175A JP2008014840A JP 2008014840 A JP2008014840 A JP 2008014840A JP 2006187175 A JP2006187175 A JP 2006187175A JP 2006187175 A JP2006187175 A JP 2006187175A JP 2008014840 A JP2008014840 A JP 2008014840A
Authority
JP
Japan
Prior art keywords
switch
ultrasonic
ultrasonic transducer
transmission
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006187175A
Other languages
Japanese (ja)
Inventor
Shinya Hasebe
臣哉 長谷部
Yoshitomi Sameda
芳富 鮫田
Yukio Takahashi
幸夫 鷹箸
Tatsuo Fujimoto
龍雄 藤本
Mamoru Suzuki
守 鈴木
Sachiko Kono
祥子 甲野
Nozomi Nagai
望 長井
Kenichiro Yuasa
健一郎 湯浅
Toru Hiroyama
徹 廣山
Hiroshi Ishida
宏 石田
Noriyuki Nabeshima
徳行 鍋島
Itsuro Hori
逸郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Gas Co Ltd
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Original Assignee
Toshiba Corp
Tokyo Gas Co Ltd
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Gas Co Ltd, Aichi Tokei Denki Co Ltd, Toho Gas Co Ltd filed Critical Toshiba Corp
Priority to JP2006187175A priority Critical patent/JP2008014840A/en
Publication of JP2008014840A publication Critical patent/JP2008014840A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of heightening measurement accuracy of a flow rate by removing a measurement error. <P>SOLUTION: In this ultrasonic flowmeter, a pair of ultrasonic vibrators 2a, 2b are provided at a fixed distance on the upstream side and on the downstream side of a channel, and an ultrasonic wave is transmitted/received by switching the transmission/reception direction between the forward direction and the reverse direction, and a flow rate is determined based on an arrival time of the ultrasonic wave in each direction. The flowmeter includes a transmission circuit 4 for generating a transmission signal to be transmitted to one ultrasonic vibrator, a reception detection circuit 5 for detecting a reception signal from the other ultrasonic vibrator, and a transmission/reception changeover switch 3 for switching mutually one ultrasonic vibrator to/from the other ultrasonic vibrator. The flowmeter has equalized values, namely, a resistance value of a route for the transmission signal when transmitting/receiving the ultrasonic wave in the forward direction, a resistance value of a route for the reception signal when transmitting/receiving the ultrasonic wave in the forward direction, a resistance value of a route for the transmission signal when transmitting/receiving the ultrasonic wave in the reverse direction, and a resistance value of a route for the reception signal when transmitting/receiving the ultrasonic wave in the reverse direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超音波を利用してガスなどの流量を計測する超音波流量計に関する。   The present invention relates to an ultrasonic flowmeter that measures a flow rate of gas or the like using ultrasonic waves.

図6は、従来の超音波流量計の構成を示す図である。この超音波流量計は、流路1、一対の超音波振動子2a及び2b、送受信切替スイッチ3、送信回路4、受信検知回路5ならびに制御回路6から構成されている。   FIG. 6 is a diagram showing a configuration of a conventional ultrasonic flowmeter. This ultrasonic flow meter includes a flow path 1, a pair of ultrasonic transducers 2 a and 2 b, a transmission / reception changeover switch 3, a transmission circuit 4, a reception detection circuit 5, and a control circuit 6.

流路1には測定対象となる流体が流れる。一対の超音波振動子2a及び2bは、流路1の上流側と下流側に一定の距離をおいてそれぞれ配置されており、超音波振動子2aは、超音波振動子2bへ向けて(以下、「順方向」という)超音波を送信するとともに、超音波振動子2bから送信されてくる超音波を受信する。また、超音波振動子2bは、超音波振動子2aへ向けて(以下、「逆方向」という)超音波を送信するとともに、超音波振動子2aから送信されてくる超音波を受信する。   A fluid to be measured flows through the flow path 1. The pair of ultrasonic transducers 2a and 2b are respectively arranged at a certain distance on the upstream side and the downstream side of the flow path 1, and the ultrasonic transducer 2a is directed toward the ultrasonic transducer 2b (hereinafter referred to as “the ultrasonic transducer 2b”). (Referred to as “forward direction”) and ultrasonic waves transmitted from the ultrasonic transducer 2b. Further, the ultrasonic transducer 2b transmits ultrasonic waves toward the ultrasonic transducer 2a (hereinafter referred to as “reverse direction”) and receives ultrasonic waves transmitted from the ultrasonic transducer 2a.

送受信切替スイッチ3は、超音波を順方向に送信するか逆方向に送信するかを切り替える。具体的には、送受信切替スイッチ3は、送信回路4から送られてきた送信信号を超音波振動子2aに送って超音波振動子2bから得られる受信信号を受信検知回路5に送るか、または、送信回路4から送られてきた送信信号を超音波振動子2bに送って超音波振動子2aから得られる受信信号を受信検知回路5に送るかを切り替える。   The transmission / reception selector switch 3 switches whether the ultrasonic waves are transmitted in the forward direction or the reverse direction. Specifically, the transmission / reception selector switch 3 sends the transmission signal sent from the transmission circuit 4 to the ultrasonic transducer 2a and sends the reception signal obtained from the ultrasonic transducer 2b to the reception detection circuit 5, or Then, the transmission signal sent from the transmission circuit 4 is sent to the ultrasonic transducer 2b to switch whether the reception signal obtained from the ultrasonic transducer 2a is sent to the reception detection circuit 5.

図7は、送受信切替スイッチ3の具体的な構成を示す回路図である。送受信切替スイッチ3は、4個の第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34から構成されている。第1スイッチ31は、送信回路4と超音波振動子2aとの間に配置されており、送信回路4からの送信信号の超音波振動子2aへの送信を制御する。第2スイッチ32は、送信回路4と超音波振動子2bとの間に配置されており、送信回路4からの送信信号の超音波振動子2bへの送信を制御する。第3スイッチ33は、受信検知回路5と超音波振動子2aとの間に配置されており、超音波振動子2aからの受信信号の受信検知回路5への送信を制御する。第4スイッチ34は、受信検知回路5と超音波振動子2bとの間に配置されており、超音波振動子2bからの受信信号の受信検知回路5への送信を制御する。   FIG. 7 is a circuit diagram showing a specific configuration of the transmission / reception selector switch 3. The transmission / reception selector switch 3 includes four first switches 31, second switches 32, third switches 33, and fourth switches 34. The first switch 31 is disposed between the transmission circuit 4 and the ultrasonic transducer 2a, and controls transmission of a transmission signal from the transmission circuit 4 to the ultrasonic transducer 2a. The second switch 32 is disposed between the transmission circuit 4 and the ultrasonic transducer 2b, and controls transmission of a transmission signal from the transmission circuit 4 to the ultrasonic transducer 2b. The third switch 33 is disposed between the reception detection circuit 5 and the ultrasonic transducer 2a, and controls transmission of a reception signal from the ultrasonic transducer 2a to the reception detection circuit 5. The fourth switch 34 is disposed between the reception detection circuit 5 and the ultrasonic transducer 2b, and controls transmission of a reception signal from the ultrasonic transducer 2b to the reception detection circuit 5.

送信回路4は、制御回路6からのトリガ信号に応じて、送信側の超音波振動子2aまたは2bに送信信号を送って駆動する。受信検知回路5は受信側の超音波振動子2aまたは2bで受信された受信信号を検知し、制御回路6へ送る。制御回路6では、送信信号が送出されてから受信信号が受信されるまでの伝播時間を計測する。すなわち、流路1内の流体の流れが順方向であるか逆方向であるかによって超音波の伝播時間差が生じるので、制御回路6は、順方向と逆方向の伝播時間差を測定することにより流体の流速を求め、この求めた流速に基づいて流量を計測する。   The transmission circuit 4 is driven by sending a transmission signal to the ultrasonic transducer 2a or 2b on the transmission side according to the trigger signal from the control circuit 6. The reception detection circuit 5 detects a reception signal received by the ultrasonic transducer 2 a or 2 b on the reception side and sends it to the control circuit 6. The control circuit 6 measures the propagation time from when the transmission signal is transmitted until the reception signal is received. That is, since the propagation time difference of the ultrasonic wave is generated depending on whether the flow of the fluid in the flow path 1 is the forward direction or the reverse direction, the control circuit 6 measures the difference in the propagation time between the forward direction and the reverse direction. And the flow rate is measured based on the obtained flow rate.

ところで、超音波振動子2a及び2bの製造ばらつきにより、流体が流れていない場合であっても、超音波を順方向に送信する場合と逆方向に送信する場合とで超音波の伝播時間に差が生じる。   By the way, due to manufacturing variations of the ultrasonic transducers 2a and 2b, even when the fluid is not flowing, there is a difference in the propagation time of the ultrasonic wave between the case where the ultrasonic wave is transmitted in the forward direction and the case where the ultrasonic wave is transmitted in the reverse direction. Occurs.

このような問題を解消するために、特許文献1は、測定される流体が流れる管路の上流側及び下流側に対向してそれぞれ配設された送受波器を交互に切換えて超音波の送波ならびに受波を行い流体の流量を測定する超音波流量計において、送受波器に用いられる圧電振動子の直列共振インピーダンスより小さい出力インピーダンスを呈し一方の送受波器を付勢する送信回路と、送信回路の出力インピーダンスに略等しい入力インピーダンスを呈し他方の送受波器からの信号を受信する受信回路とを備え、各送受波器は直列共振状態近傍にて作動する超音波流量計を開示している。   In order to solve such a problem, Patent Document 1 discloses that ultrasonic waves are transmitted by alternately switching the transducers arranged facing the upstream side and the downstream side of the pipeline through which the fluid to be measured flows. In an ultrasonic flowmeter that performs wave and wave reception and measures the flow rate of fluid, a transmission circuit that exhibits an output impedance smaller than the series resonance impedance of a piezoelectric vibrator used in the transducer and energizes one transducer, An ultrasonic flowmeter that has an input impedance substantially equal to the output impedance of the transmission circuit and receives a signal from the other transducer, each transducer operating near a series resonance state; Yes.

この超音波流量計においては、送受波器に係る送信回路及び受信回路のインピーダンスは共に圧電振動子の直列共振インピーダンスより小さく、各送受波器は直列共振状態近傍にて作動する。したがって、送受波器に用いられる圧電振動子の周波数特性、温度特性及びバッキング材の構造などによりその特性が相違しても、超音波の伝搬方向切換えによる伝搬時間差に基づくオフセット量を小さくできる。   In this ultrasonic flowmeter, the impedances of the transmission circuit and the reception circuit related to the transducer are both smaller than the series resonance impedance of the piezoelectric vibrator, and each transducer operates near the series resonance state. Therefore, even if the characteristics differ depending on the frequency characteristics, temperature characteristics, and the structure of the backing material of the piezoelectric vibrator used in the transducer, the offset amount based on the propagation time difference due to switching of the ultrasonic wave propagation direction can be reduced.

特に送信回路と受信回路とのインピーダンス整合がとれるとオフセット量は最少になる。また、直列共振状態においては送信回路と受信回路は共に低インピーダンスになるので、干渉雑音の影響が軽減され信号対雑音比が改善される。さらに、受信回路には入力抵抗器を用いていないので、信号レベルの低下や熱雑音の発生がなく信号対雑音比の優れた信号が加えられ、口径の小さい管路における各種流体に用いて再現性や安定性が向上し測定誤差が低減した流量測定ができる。
実公平7−10253号公報
In particular, the offset amount is minimized when impedance matching between the transmission circuit and the reception circuit is achieved. In the series resonance state, both the transmission circuit and the reception circuit have low impedance, so that the influence of interference noise is reduced and the signal-to-noise ratio is improved. Furthermore, since no input resistor is used in the receiving circuit, a signal with a low signal level and no thermal noise is generated, and a signal with an excellent signal-to-noise ratio is added, which can be reproduced for various fluids in small-diameter pipes. The flow rate can be measured with improved performance and stability and reduced measurement errors.
No. 7-10253

上述した従来の超音波流量計では、特許文献1に示すように受信検知回路5(特許文献1では受信回路)の入力インピーダンスが低い場合は、超音波振動子の内部容量、送受信切替スイッチ3の内部抵抗及び送受信切替スイッチから超音波振動子までの配線抵抗によって信号の遅延時間が決定される。   In the conventional ultrasonic flowmeter described above, as shown in Patent Document 1, when the input impedance of the reception detection circuit 5 (reception circuit in Patent Document 1) is low, the internal capacitance of the ultrasonic transducer, the transmission / reception selector switch 3 The signal delay time is determined by the internal resistance and the wiring resistance from the transmission / reception selector switch to the ultrasonic transducer.

ところで、図7に示した送受信切替スイッチ3を構成する第1スイッチ31〜第4スイッチ34の各々は、内部抵抗を有する。また、第1スイッチ31または第3スイッチ33から超音波振動子2aまでの配線は、配線抵抗を有する。同様に、第2スイッチ32または第4スイッチ34から超音波振動子2bまでの配線は、配線抵抗を有する。   By the way, each of the 1st switch 31-the 4th switch 34 which comprises the transmission / reception change-over switch 3 shown in FIG. 7 has internal resistance. The wiring from the first switch 31 or the third switch 33 to the ultrasonic transducer 2a has a wiring resistance. Similarly, the wiring from the second switch 32 or the fourth switch 34 to the ultrasonic transducer 2b has a wiring resistance.

今、第1スイッチ31の内部抵抗値と第1スイッチ31から超音波振動子2aまでの配線抵抗値との和をR、第2スイッチ32の内部抵抗値と第2スイッチ32から超音波振動子2bまでの配線抵抗値との和をR+Ra、第3スイッチ33の内部抵抗値と第3スイッチ33から超音波振動子2aまでの配線抵抗値との和をR+Rb、第4スイッチ34の内部抵抗値と第4スイッチ34から超音波振動子2bまでの配線抵抗値との和をR+Rcとする。また、超音波振動子2aの内部容量をC+Ca、超音波振動子2bの内部容量をCとする。   Now, R is the sum of the internal resistance value of the first switch 31 and the wiring resistance value from the first switch 31 to the ultrasonic transducer 2a, the internal resistance value of the second switch 32 and the ultrasonic transducer from the second switch 32. The sum of the wiring resistance values up to 2b is R + Ra, the sum of the internal resistance value of the third switch 33 and the wiring resistance value from the third switch 33 to the ultrasonic transducer 2a is R + Rb, and the internal resistance value of the fourth switch 34. And R + Rc is the sum of the wiring resistance value from the fourth switch 34 to the ultrasonic transducer 2b. The internal capacitance of the ultrasonic transducer 2a is C + Ca, and the internal capacitance of the ultrasonic transducer 2b is C.

順方向に超音波を送受する場合、第1スイッチ31及び第4スイッチ34がオンにされ、逆方向に超音波を送受する場合、第2スイッチ32及び第3スイッチ33がオンにされるので、順方向遅れ時間及び逆方向遅れ時間はそれぞれ下記で表すことができる。   When transmitting and receiving ultrasonic waves in the forward direction, the first switch 31 and the fourth switch 34 are turned on. When transmitting and receiving ultrasonic waves in the reverse direction, the second switch 32 and the third switch 33 are turned on. Each of the forward delay time and the reverse delay time can be expressed as follows.

順方向遅れ時間∝(C+Ca)R+C(R+Rc)
逆方向遅れ時間∝C(R+Ra)+(C+Ca)(R+Rb)
したがって、順方向遅れ時間と逆方向遅れ時間との間には、
順逆の遅れ時間の差∝C(Ra+Rb−Rc)+CaRb
が生じる。
Forward delay time ∝ (C + Ca) R + C (R + Rc)
Reverse direction delay time C (R + Ra) + (C + Ca) (R + Rb)
Therefore, between the forward delay time and the reverse delay time,
Difference in forward / reverse delay time ∝C (Ra + Rb-Rc) + CaRb
Occurs.

この順逆の遅れ時間の差が一定であれば測定誤差は生じないが、超音波振動子2a及び2bの内部容量、送受信切替スイッチ3の内部抵抗値、及び送受信切替スイッチ3と超音波振動子2aまたは2bとの間の配線抵抗値は、たとえば温度によって変化するので、従来の超音波流量計では、温度による内部容量、内部抵抗値及び配線抵抗値の変化が測定誤差になって現れるという問題がある。   If the difference between the forward and reverse delay times is constant, no measurement error occurs, but the internal capacitances of the ultrasonic transducers 2a and 2b, the internal resistance value of the transmission / reception selector switch 3, and the transmission / reception selector switch 3 and the ultrasonic transducer 2a. Alternatively, the wiring resistance value between 2b and 2b varies depending on the temperature, for example, so that the conventional ultrasonic flowmeter has a problem that changes in internal capacitance, internal resistance value and wiring resistance value due to temperature appear as measurement errors. is there.

本発明は、上述した問題を解消するためになされたものであり、その課題は、温度変化による測定誤差をなくして流量の計測精度を向上させることができる超音波流量計を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultrasonic flowmeter that can improve measurement accuracy of flow rate by eliminating measurement error due to temperature change. .

上述した課題を解決するために、本発明は、流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を設け、流体の流れに沿った順方向と流れに逆らった逆方向とに送受方向を切り替えて超音波を送受し、各方向における超音波の到達時間に基づき流量を求める超音波流量計であって、一方の超音波振動子に送る送信信号を生成する送信回路と、他方の超音波振動子からの受信信号を検知する受信検知回路と、一方の超音波振動子及び他方の超音波振動子を相互に切り替えるための送受信切替スイッチとを備え、超音波を順方向に送受するときの送信信号の経路の抵抗値と、超音波を順方向に送受するときの受信信号の経路の抵抗値と、超音波を逆方向に送受するときの送信信号の経路の抵抗値と、超音波を逆方向に送受するときの受信信号の経路の抵抗値とを等しくしたことを特徴とする。   In order to solve the above-described problems, the present invention is provided with a pair of ultrasonic vibrators at a certain distance on the upstream side and the downstream side of the flow path, and is opposed to the forward direction and the flow along the fluid flow. This is an ultrasonic flowmeter that transmits and receives ultrasonic waves by switching the transmission and reception directions to the opposite direction, and determines the flow rate based on the arrival time of ultrasonic waves in each direction, and generates a transmission signal to be sent to one ultrasonic transducer Circuit, a reception detection circuit for detecting a reception signal from the other ultrasonic transducer, and a transmission / reception selector switch for switching one ultrasonic transducer and the other ultrasonic transducer to each other. The resistance value of the path of the transmission signal when transmitting and receiving the forward direction, the resistance value of the path of the reception signal when transmitting and receiving the ultrasonic wave in the forward direction, and the path value of the transmission signal when transmitting and receiving the ultrasonic wave in the reverse direction Resistance value and when sending and receiving ultrasound in the opposite direction Characterized by being equal to the resistance of the path of the signal signal.

本発明によれば、超音波を順方向に送受するときの送信信号の経路の抵抗値と、超音波を順方向に送受するときの受信信号の経路の抵抗値と、超音波を逆方向に送受するときの送信信号の経路の抵抗値と、超音波を逆方向に送受するときの受信信号の経路の抵抗値とを等しくしたので、超音波振動子の特性の違いに関係なく順逆の遅れ時間の差をゼロにすることができ、測定誤差を低減することができる。また、温度変化によって超音波振動子の内部容量が変化しても、また、送受信切替スイッチの内部抵抗及び送受信切替スイッチと超音波振動子との間の配線抵抗が変化しても順逆の遅れ時間の差が生じることがなく、測定誤差を低減することができる。   According to the present invention, the resistance value of the path of the transmission signal when transmitting and receiving the ultrasonic wave in the forward direction, the resistance value of the path of the reception signal when transmitting and receiving the ultrasonic wave in the forward direction, and the ultrasonic wave in the reverse direction Since the resistance value of the path of the transmission signal when transmitting and receiving is equal to the resistance value of the path of the reception signal when transmitting and receiving ultrasonic waves in the opposite direction, the forward and reverse delays are made regardless of the difference in the characteristics of the ultrasonic transducer. The time difference can be made zero, and the measurement error can be reduced. Even if the internal capacitance of the ultrasonic transducer changes due to temperature changes, or the internal resistance of the transmission / reception changeover switch and the wiring resistance between the transmission / reception changeover switch and the ultrasonic transducer change, the forward / reverse delay time Measurement error can be reduced.

以下、本発明の実施例を、図面を参照しながら詳細に説明する。なお、以下では、背景技術の欄で説明した超音波流量計と同一または相当する構成部分には、背景技術の欄で使用した符号と同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding components as those of the ultrasonic flowmeter described in the background art column are denoted by the same reference numerals as those used in the background art column.

本発明の実施例1に係る超音波流量計の構成及び動作は、送受信切替スイッチ3を除けば、背景技術の欄において図6を参照しながら説明した従来の超音波流量計の構成及び動作と同じである。以下では、従来の超音波流量計と異なる部分を中心に説明する。   The configuration and operation of the ultrasonic flow meter according to the first embodiment of the present invention are the same as the configuration and operation of the conventional ultrasonic flow meter described with reference to FIG. The same. Below, it demonstrates centering on a different part from the conventional ultrasonic flowmeter.

図1は、本発明の実施例1に係る超音波流量計に適用される送受信切替スイッチ3の構成を示す回路図である。この送受信切替スイッチ3は、第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34から構成されている。   FIG. 1 is a circuit diagram showing a configuration of a transmission / reception selector switch 3 applied to the ultrasonic flowmeter according to the first embodiment of the present invention. The transmission / reception selector switch 3 includes a first switch 31, a second switch 32, a third switch 33, and a fourth switch 34.

送受信切替スイッチ3を構成する第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34の各々は内部抵抗を有する。また、第1スイッチ31から超音波振動子2aまでの配線、第2スイッチ32から超音波振動子2bまでの配線、第3スイッチ33から超音波振動子2aまでの配線及び第4スイッチ34から超音波振動子2bまでの配線は、それぞれ配線抵抗を有する。   Each of the first switch 31, the second switch 32, the third switch 33, and the fourth switch 34 constituting the transmission / reception selector switch 3 has an internal resistance. Further, the wiring from the first switch 31 to the ultrasonic transducer 2a, the wiring from the second switch 32 to the ultrasonic transducer 2b, the wiring from the third switch 33 to the ultrasonic transducer 2a, and the wiring from the fourth switch 34 to the ultrasonic transducer 2a. Each wiring to the sonic transducer 2b has a wiring resistance.

実施例1に係る超音波流量計では、第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34として、内部抵抗の温度特性が揃ったスイッチが採用されている。また、第1スイッチ31から超音波振動子2aまでの配線、第2スイッチ32から超音波振動子2bまでの配線、第3スイッチ33から超音波振動子2aまでの配線及び第4スイッチ34から超音波振動子2bまでの配線の各々は、配線長が揃えられており、各配線は略同一の配線抵抗値を有するように構成されている。   In the ultrasonic flowmeter according to the first embodiment, switches having uniform temperature characteristics of internal resistance are employed as the first switch 31, the second switch 32, the third switch 33, and the fourth switch 34. Further, the wiring from the first switch 31 to the ultrasonic transducer 2a, the wiring from the second switch 32 to the ultrasonic transducer 2b, the wiring from the third switch 33 to the ultrasonic transducer 2a, and the wiring from the fourth switch 34 to the ultrasonic transducer 2a. Each of the wirings up to the sonic transducer 2b has the same wiring length, and each wiring is configured to have substantially the same wiring resistance value.

図2は、上記内部抵抗の温度特性及び配線長を揃えるために、第1スイッチ31、第2スイッチ32、第3スイッチ33、第4スイッチ34、送信回路4及び受信検知回路5を集積回路51(以下、「IC」と略する)で構成し、このIC51と超音波振動子2a及び2bとを基板に搭載して超音波流量計の一部を構成した例を示す。図2において、52はIC内の上層配線禁止領域を示し、53は基板上の配線を示し、54はIC内の上層配線を示し、55はIC内の下層配線を示す。   FIG. 2 shows that the first switch 31, the second switch 32, the third switch 33, the fourth switch 34, the transmission circuit 4 and the reception detection circuit 5 are integrated into an integrated circuit 51 in order to make the temperature characteristics and wiring lengths of the internal resistance uniform. (Hereinafter, abbreviated as “IC”), an example in which the IC 51 and the ultrasonic transducers 2a and 2b are mounted on a substrate and a part of the ultrasonic flowmeter is configured will be shown. In FIG. 2, 52 indicates an upper layer wiring prohibited area in the IC, 53 indicates wiring on the substrate, 54 indicates upper layer wiring in the IC, and 55 indicates lower layer wiring in the IC.

第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34は半導体スイッチから構成されており、同じ半導体ウエハ上に形成されている。これにより、第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34の各々の内部抵抗及び温度特性を略等しくすることができる。   The first switch 31, the second switch 32, the third switch 33, and the fourth switch 34 are composed of semiconductor switches, and are formed on the same semiconductor wafer. Thereby, the internal resistance and temperature characteristics of each of the first switch 31, the second switch 32, the third switch 33, and the fourth switch 34 can be made substantially equal.

また、IC51では、上層配線抵抗、下層配線抵抗、上層と下層との接続抵抗はそれぞれ異なるので、上層配線54の長さ、下層配線55の長さ及び配線幅が、第1スイッチ31から超音波振動子2aへの接続端子に至る経路、第2スイッチ32から超音波振動子2bへの接続端子に至る経路、第3スイッチ33から超音波振動子2aへの接続端子に至る経路及び第4スイッチ34から超音波振動子2bへの接続端子に至る経路の各々で略等しくなるように構成されている。   Further, in the IC 51, since the upper layer wiring resistance, the lower layer wiring resistance, and the connection resistance between the upper layer and the lower layer are different from each other, the length of the upper layer wiring 54, the length of the lower layer wiring 55, and the wiring width are changed from the first switch 31 to the ultrasonic wave. A path to the connection terminal to the transducer 2a, a path from the second switch 32 to the connection terminal to the ultrasonic transducer 2b, a path from the third switch 33 to the connection terminal to the ultrasonic transducer 2a, and a fourth switch It is configured to be substantially equal in each of the paths from 34 to the connection terminal to the ultrasonic transducer 2b.

また、上層と下層との接続数も、第1スイッチ31から超音波振動子2aへの接続端子に至る経路、第2スイッチ32から超音波振動子2bへの接続端子に至る経路、第3スイッチ33から超音波振動子2aへの接続端子に至る経路及び第4スイッチ34から超音波振動子2bへの接続端子に至る経路の各々で同じ数になるように構成されている。   Also, the number of connections between the upper layer and the lower layer is the path from the first switch 31 to the connection terminal to the ultrasonic transducer 2a, the path from the second switch 32 to the connection terminal to the ultrasonic transducer 2b, the third switch The same number is provided for each of the path from 33 to the connection terminal to the ultrasonic transducer 2a and the path from the fourth switch 34 to the connection terminal to the ultrasonic transducer 2b.

さらに、IC51の超音波振動子2aへの接続端子から超音波振動子2aまでの基板上の配線53の長さ及び配線幅は、IC51の超音波振動子2bへの接続端子から超音波振動子2bまでの基板上の配線53の長さ及び配線幅とそれぞれ略等しくなるように構成されている。   Furthermore, the length and the wiring width of the wiring 53 on the substrate from the connection terminal of the IC 51 to the ultrasonic transducer 2a to the ultrasonic transducer 2a are the same as those of the connection terminal of the IC 51 to the ultrasonic transducer 2b. The length and the wiring width of the wiring 53 on the substrate up to 2b are substantially equal to each other.

以上の構成により、第1スイッチ31から超音波振動子2aまでの送信信号の経路の配線抵抗値、第2スイッチ32から超音波振動子2bまでの送信信号の経路の配線抵抗値、第3スイッチ33から超音波振動子2aまでの受信信号の経路の配線抵抗値及び第4スイッチ34から超音波振動子2bまでの受信信号の経路の配線抵抗値の各々は、略同一の抵抗値Rを有するように調整されている。   With the above configuration, the wiring resistance value of the transmission signal path from the first switch 31 to the ultrasonic transducer 2a, the wiring resistance value of the transmission signal path from the second switch 32 to the ultrasonic transducer 2b, the third switch Each of the wiring resistance value of the path of the received signal from 33 to the ultrasonic transducer 2a and the wiring resistance value of the path of the received signal from the fourth switch 34 to the ultrasonic transducer 2b have substantially the same resistance value R. Have been adjusted so that.

今、第1スイッチ31の内部抵抗値と第1スイッチ31から超音波振動子2aまでの配線抵抗値との和、第2スイッチ32の内部抵抗値と第2スイッチ32から超音波振動子2bまでの配線抵抗値との和、第3スイッチ33の内部抵抗値と第3スイッチ33から超音波振動子2aまでの配線抵抗値との和、第4スイッチ34の内部抵抗値と第4スイッチ34から超音波振動子2bまでの配線抵抗値との和のすべてが抵抗値Rに調整されたものとする。また、超音波振動子2aの内部容量をC+Ca、超音波振動子2bの内部容量をCとする。   Now, the sum of the internal resistance value of the first switch 31 and the wiring resistance value from the first switch 31 to the ultrasonic transducer 2a, the internal resistance value of the second switch 32 and the second switch 32 to the ultrasonic transducer 2b. Of the third switch 33, the sum of the internal resistance value of the third switch 33 and the wiring resistance value from the third switch 33 to the ultrasonic transducer 2a, the internal resistance value of the fourth switch 34 and the fourth switch 34. It is assumed that all of the sum of the wiring resistance value up to the ultrasonic transducer 2b is adjusted to the resistance value R. The internal capacitance of the ultrasonic transducer 2a is C + Ca, and the internal capacitance of the ultrasonic transducer 2b is C.

順方向に超音波を送受する場合、第1スイッチ31及び第4スイッチ34がオンにされ、逆方向に超音波を送受する場合、第2スイッチ32及び第3スイッチ33がオンにされるので、順方向遅れ時間及び逆方向遅れ時間はそれぞれ下記で表すことができる。   When transmitting and receiving ultrasonic waves in the forward direction, the first switch 31 and the fourth switch 34 are turned on. When transmitting and receiving ultrasonic waves in the reverse direction, the second switch 32 and the third switch 33 are turned on. Each of the forward delay time and the reverse delay time can be expressed as follows.

順方向遅れ時間∝(C+Ca)R+CR
逆方向遅れ時間∝CR+(C+Ca)R
したがって、順方向遅れ時間と逆方向遅れ時間との差は、
順逆の遅れ時間の差=0
となる。
Forward delay time ∝ (C + Ca) R + CR
Reverse delay time ∝CR + (C + Ca) R
Therefore, the difference between the forward delay time and the reverse delay time is
Difference between forward and reverse delay time = 0
It becomes.

したがって、超音波振動子2a及び2bの特性の違いに関係なく順逆の遅れ時間の差をゼロにすることができるので、測定誤差を低減することができる。また、温度変化によって超音波振動子2a及び2bの内部容量が変化しても、また、第1スイッチ31〜第4スイッチ34の内部抵抗及び送受信切替スイッチ3と超音波振動子2a及び2bとの間の配線抵抗が変化しても順逆の遅れ時間の差が生じることがなく、測定誤差を低減することができる。   Therefore, the difference in forward and reverse delay times can be made zero regardless of the difference in the characteristics of the ultrasonic transducers 2a and 2b, so that the measurement error can be reduced. Further, even if the internal capacitances of the ultrasonic transducers 2a and 2b change due to temperature changes, the internal resistance of the first switch 31 to the fourth switch 34 and the transmission / reception selector switch 3 and the ultrasonic transducers 2a and 2b Even if the wiring resistance changes between them, there is no difference between the forward and reverse delay times, and the measurement error can be reduced.

図3は、本発明の実施例2に係る超音波流量計に適用される送受信切替スイッチ3の構成を示す回路図である。この送受信切替スイッチ3は、実施例1の送受信切替スイッチに、第1可変抵抗R1、第2可変抵抗R2、第3可変抵抗R3及び第4可変抵抗R4が追加されて構成されている。   FIG. 3 is a circuit diagram showing a configuration of the transmission / reception selector switch 3 applied to the ultrasonic flowmeter according to the second embodiment of the present invention. The transmission / reception selector switch 3 is configured by adding a first variable resistor R1, a second variable resistor R2, a third variable resistor R3, and a fourth variable resistor R4 to the transmission / reception selector switch of the first embodiment.

第1可変抵抗R1は、第1スイッチ31と超音波振動子2aとの間に配置されており、第1スイッチ31から超音波振動子2aに至る経路の配線抵抗値を調整するために使用される。第2可変抵抗R2は、第2スイッチ32と超音波振動子2bとの間に配置されており、第2スイッチ32から超音波振動子2bに至る経路の配線抵抗値を調整するために使用される。第3可変抵抗R3は、第3スイッチ33と超音波振動子2aとの間に配置されており、第3スイッチ33から超音波振動子2aに至る経路の配線抵抗値を調整するために使用される。第4可変抵抗R4は、第4スイッチ34と超音波振動子2bとの間に配置されており、第4スイッチ34から超音波振動子2bに至る経路の配線抵抗値を調整するために使用される。   The first variable resistor R1 is disposed between the first switch 31 and the ultrasonic transducer 2a, and is used to adjust the wiring resistance value of the path from the first switch 31 to the ultrasonic transducer 2a. The The second variable resistor R2 is disposed between the second switch 32 and the ultrasonic transducer 2b, and is used to adjust the wiring resistance value of the path from the second switch 32 to the ultrasonic transducer 2b. The The third variable resistor R3 is disposed between the third switch 33 and the ultrasonic transducer 2a, and is used to adjust the wiring resistance value of the path from the third switch 33 to the ultrasonic transducer 2a. The The fourth variable resistor R4 is disposed between the fourth switch 34 and the ultrasonic transducer 2b, and is used to adjust the wiring resistance value of the path from the fourth switch 34 to the ultrasonic transducer 2b. The

第1スイッチ31、第2スイッチ32、第3スイッチ33及び第4スイッチ34の各々は内部抵抗を有する。また、第1スイッチ31から超音波振動子2aに至る経路、第2スイッチ32から超音波振動子2bに至る経路、第3スイッチ33から超音波振動子2aに至る経路及び第4スイッチ34から超音波振動子2bに至る経路は、配線抵抗を有する。また、第1可変抵抗R1、第2可変抵抗R2、第3可変抵抗R3及び第4可変抵抗R4としては、抵抗の温度特性が揃ったものが採用される。   Each of the first switch 31, the second switch 32, the third switch 33, and the fourth switch 34 has an internal resistance. Further, the path from the first switch 31 to the ultrasonic transducer 2a, the path from the second switch 32 to the ultrasonic transducer 2b, the path from the third switch 33 to the ultrasonic transducer 2a, and the superordinate from the fourth switch 34 The path to the acoustic wave vibrator 2b has a wiring resistance. Further, as the first variable resistor R1, the second variable resistor R2, the third variable resistor R3, and the fourth variable resistor R4, those having the same temperature characteristics of the resistors are employed.

今、背景技術の欄で説明した超音波流量計と同様に、第1スイッチ31の内部抵抗値と第1スイッチ31から超音波振動子2aまでの配線抵抗値との和がR、第2スイッチ32の内部抵抗値と第2スイッチ32から超音波振動子2bまでの配線抵抗値との和がR+Ra、第3スイッチ33の内部抵抗値と第3スイッチ33から超音波振動子2aまでの配線抵抗値との和がR+Rb、第4スイッチ34の内部抵抗値と第4スイッチ34から超音波振動子2bまでの配線抵抗値との和がR+Rcであるとする。   The sum of the internal resistance value of the first switch 31 and the wiring resistance value from the first switch 31 to the ultrasonic transducer 2a is R and the second switch, as in the ultrasonic flow meter described in the background section. The sum of the internal resistance value of 32 and the wiring resistance value from the second switch 32 to the ultrasonic transducer 2b is R + Ra, the internal resistance value of the third switch 33 and the wiring resistance from the third switch 33 to the ultrasonic transducer 2a Assume that the sum of the values is R + Rb, and the sum of the internal resistance value of the fourth switch 34 and the wiring resistance value from the fourth switch 34 to the ultrasonic transducer 2b is R + Rc.

また、第1可変抵抗R1が抵抗値R、第2可変抵抗R2が抵抗値R−Ra、第3可変抵抗R3が抵抗値R−Rb及び第4可変抵抗R4が抵抗値R−Rcに調整されているものとする。さらに、超音波振動子2aの内部容量をC+Ca、超音波振動子2bの内部容量をCとする。   Further, the first variable resistor R1 is adjusted to the resistance value R, the second variable resistor R2 is adjusted to the resistance value R-Ra, the third variable resistor R3 is adjusted to the resistance value R-Rb, and the fourth variable resistor R4 is adjusted to the resistance value R-Rc. It shall be. Furthermore, the internal capacitance of the ultrasonic transducer 2a is C + Ca, and the internal capacitance of the ultrasonic transducer 2b is C.

順方向に超音波を送受する場合、第1スイッチ31及び第4スイッチ34がオンにされ、逆方向に超音波を送受する場合、第2スイッチ32及び第3スイッチ33がオンにされるので、順方向遅れ時間及び逆方向遅れ時間はそれぞれ下記で表すことができる。   When transmitting and receiving ultrasonic waves in the forward direction, the first switch 31 and the fourth switch 34 are turned on. When transmitting and receiving ultrasonic waves in the reverse direction, the second switch 32 and the third switch 33 are turned on. Each of the forward delay time and the reverse delay time can be expressed as follows.

順方向遅れ時間∝2(C+Ca)R+2CR
逆方向遅れ時間∝2CR+2(C+Ca)R
したがって、順方向遅れ時間と逆方向遅れ時間との差は、
順逆の遅れ時間の差=0
となる。
Forward delay time ∝2 (C + Ca) R + 2CR
Reverse delay time ∝2CR + 2 (C + Ca) R
Therefore, the difference between the forward delay time and the reverse delay time is
Difference between forward and reverse delay time = 0
It becomes.

したがって、超音波振動子2a及び2bの特性の違いに関係なく順逆の遅れ時間の差をゼロにすることができ、測定誤差を低減することができる。また、温度変化によって超音波振動子2a及び2bの内部容量が変化しても、また、第1スイッチ31〜第4スイッチ34の内部抵抗及び第1可変抵抗R1〜第4可変抵抗R4の値が変化しても順逆の遅れ時間に差が生じることがないので、測定誤差を低減することができる。   Therefore, regardless of the difference in the characteristics of the ultrasonic transducers 2a and 2b, the difference between the forward and reverse delay times can be made zero, and the measurement error can be reduced. Further, even if the internal capacitances of the ultrasonic transducers 2a and 2b change due to temperature changes, the values of the internal resistances of the first switch 31 to the fourth switch 34 and the first variable resistance R1 to the fourth variable resistance R4 are also changed. Even if it changes, there is no difference in forward and reverse delay times, so that measurement errors can be reduced.

図4は、本発明の実施例3に係る超音波流量計に適用される送受信切替スイッチ3の構成を示す回路図である。この送受信切替スイッチ3は、実施例1において、第1スイッチ31の内部抵抗値と第1スイッチ31から超音波振動子2aまでの配線抵抗値との和がR、第2スイッチ32の内部抵抗値と第2スイッチ32から超音波振動子2bまでの配線抵抗値との和がR+Ra、第3スイッチ33の内部抵抗値と第3スイッチ33から超音波振動子2aまでの配線抵抗値との和がR、第4スイッチ34の内部抵抗値と第4スイッチ34から超音波振動子2bまでの配線抵抗値との和がR+Raになるように構成されている。   FIG. 4 is a circuit diagram showing a configuration of the transmission / reception selector switch 3 applied to the ultrasonic flowmeter according to the third embodiment of the present invention. In the transmission / reception change-over switch 3, in Example 1, the sum of the internal resistance value of the first switch 31 and the wiring resistance value from the first switch 31 to the ultrasonic transducer 2 a is R, and the internal resistance value of the second switch 32. And the sum of the wiring resistance value from the second switch 32 to the ultrasonic transducer 2b is R + Ra, and the sum of the internal resistance value of the third switch 33 and the wiring resistance value from the third switch 33 to the ultrasonic transducer 2a is R, the sum of the internal resistance value of the fourth switch 34 and the wiring resistance value from the fourth switch 34 to the ultrasonic transducer 2b is R + Ra.

すなわち、この実施例3に係る超音波流量計では、第1スイッチ31及び第3スイッチ33として、内部抵抗の温度特性が揃ったスイッチが採用され、第2スイッチ32及び第4スイッチ34として、内部抵抗の温度特性が揃ったスイッチが採用されている。また、第1スイッチ31から超音波振動子2aまでの配線及び第3スイッチ33から超音波振動子2aまでの配線の配線長が揃えられており、各配線は略同一の配線抵抗値を有するように構成されるとともに、第2スイッチ32から超音波振動子2bまでの配線及び第4スイッチ34から超音波振動子2bまでの配線の配線長が揃えられており、各配線は略同一の配線抵抗値を有するように構成されている。   That is, in the ultrasonic flowmeter according to the third embodiment, the first switch 31 and the third switch 33 employ a switch having a uniform temperature characteristic of the internal resistance, and the second switch 32 and the fourth switch 34 have an internal Switches with uniform temperature characteristics of resistors are used. Also, the wiring lengths of the wiring from the first switch 31 to the ultrasonic transducer 2a and the wiring from the third switch 33 to the ultrasonic transducer 2a are aligned, so that each wiring has substantially the same wiring resistance value. The wiring lengths of the wiring from the second switch 32 to the ultrasonic transducer 2b and the wiring length from the fourth switch 34 to the ultrasonic transducer 2b are aligned, and each wiring has substantially the same wiring resistance. Configured to have a value.

今、第1スイッチ31の内部抵抗値と第1スイッチ31から超音波振動子2aまでの配線抵抗値との和がR、第2スイッチ32の内部抵抗値と第2スイッチ32から超音波振動子2bまでの配線抵抗値との和がR+Ra、第3スイッチ33の内部抵抗値と第3スイッチ33から超音波振動子2aまでの配線抵抗値との和がR、第4スイッチ34の内部抵抗値と第4スイッチ34から超音波振動子2bまでの配線抵抗値との和がR+Raであり、また、超音波振動子2aの内部容量をC+Ca、超音波振動子2bの内部容量をCとする。   Now, the sum of the internal resistance value of the first switch 31 and the wiring resistance value from the first switch 31 to the ultrasonic transducer 2 a is R, the internal resistance value of the second switch 32 and the ultrasonic transducer from the second switch 32. The sum of the wiring resistance values up to 2b is R + Ra, the sum of the internal resistance value of the third switch 33 and the wiring resistance value from the third switch 33 to the ultrasonic transducer 2a is R, and the internal resistance value of the fourth switch 34. And the wiring resistance value from the fourth switch 34 to the ultrasonic transducer 2b is R + Ra, the internal capacitance of the ultrasonic transducer 2a is C + Ca, and the internal capacitance of the ultrasonic transducer 2b is C.

順方向に超音波を送受する場合、第1スイッチ31及び第4スイッチ34がオンにされ、逆方向に超音波を送受する場合、第2スイッチ32及び第3スイッチ33がオンにされるので、順方向遅れ時間及び逆方向遅れ時間はそれぞれ下記で表すことができる。   When transmitting and receiving ultrasonic waves in the forward direction, the first switch 31 and the fourth switch 34 are turned on. When transmitting and receiving ultrasonic waves in the reverse direction, the second switch 32 and the third switch 33 are turned on. Each of the forward delay time and the reverse delay time can be expressed as follows.

順方向遅れ時間∝(C+Ca)R+C(R+Ra)
逆方向遅れ時間∝C(R+Ra)+(C+Ca)R
したがって、順方向遅れ時間と逆方向遅れ時間との差は、
順逆の遅れ時間の差=0
となる。
Forward delay time ∝ (C + Ca) R + C (R + Ra)
Reverse delay time ∝C (R + Ra) + (C + Ca) R
Therefore, the difference between the forward delay time and the reverse delay time is
Difference between forward and reverse delay time = 0
It becomes.

したがって、超音波振動子2a及び2bの特性の違いに関係なく順逆の遅れ時間の差をゼロにすることができ、測定誤差を低減することができる。また、送受信切替スイッチ、温度変化によって超音波振動子2a及び2bの内部容量が変化しても、また、第1スイッチ31〜第4スイッチ34の内部抵抗及び送受信切替スイッチ3と超音波振動子2a及び2bとの間の配線抵抗が変化しても順逆の遅れ時間に差が生じることがないので、測定誤差を低減することができる。   Therefore, regardless of the difference in the characteristics of the ultrasonic transducers 2a and 2b, the difference between the forward and reverse delay times can be made zero, and the measurement error can be reduced. Further, even if the internal capacitances of the ultrasonic transducers 2a and 2b change due to the temperature change, the internal resistance of the first switch 31 to the fourth switch 34 and the transmission / reception changeover switch 3 and the ultrasonic transducer 2a. And 2b, even if the wiring resistance changes, there is no difference between forward and reverse delay times, so that the measurement error can be reduced.

図5は、本発明の実施例4に係る超音波流量計の一部の構成を示す回路図である。この超音波流量計3は、従来の超音波流量計において、超音波振動子2aに並列に第1コンデンサC1が接続されるとともに、超音波振動子2bに並列に第2コンデンサC2が接続されて構成されている。   FIG. 5 is a circuit diagram showing a partial configuration of the ultrasonic flowmeter according to the fourth embodiment of the present invention. The ultrasonic flowmeter 3 is a conventional ultrasonic flowmeter in which a first capacitor C1 is connected in parallel to the ultrasonic transducer 2a, and a second capacitor C2 is connected in parallel to the ultrasonic transducer 2b. It is configured.

第1コンデンサC1は、超音波振動子2aの内部容量と同一の容量であって、その温度特性の逆特性を有する。ここで、逆特性とは、温度の上昇に伴って容量が増加する特性に対し、温度の上昇に伴って容量が減少する特性をいう。同様に、第2コンデンサC2は、超音波振動子2bの内部容量と同一の容量であって、その温度特性の逆特性を有する。   The first capacitor C1 has the same capacity as the internal capacity of the ultrasonic transducer 2a and has a reverse characteristic of its temperature characteristic. Here, the reverse characteristic is a characteristic in which the capacity decreases as the temperature rises, whereas the capacity increases as the temperature increases. Similarly, the second capacitor C2 has the same capacitance as the internal capacitance of the ultrasonic transducer 2b and has a reverse characteristic of its temperature characteristic.

今、第1スイッチ31の内部抵抗値と第1スイッチ31から超音波振動子2aまでの配線抵抗値との和をR、第2スイッチ32の内部抵抗値と第2スイッチ32から超音波振動子2bまでの配線抵抗値との和をR+Ra、第3スイッチ33の内部抵抗値と第3スイッチ33から超音波振動子2aまでの配線抵抗値との和をR、第4スイッチ34の内部抵抗値と第4スイッチ34から超音波振動子2bまでの配線抵抗値との和をR+Raとする。また、超音波振動子2aの内部容量をC+Ca、超音波振動子2bの内部容量をC、第1コンデンサの容量をC+Ca、第2コンデンサの容量をCとする。   Now, R is the sum of the internal resistance value of the first switch 31 and the wiring resistance value from the first switch 31 to the ultrasonic transducer 2a, the internal resistance value of the second switch 32 and the ultrasonic transducer from the second switch 32. The sum of the wiring resistance values up to 2b is R + Ra, the sum of the internal resistance value of the third switch 33 and the wiring resistance value from the third switch 33 to the ultrasonic transducer 2a is R, and the internal resistance value of the fourth switch 34. And the wiring resistance value from the fourth switch 34 to the ultrasonic transducer 2b is R + Ra. The internal capacitance of the ultrasonic transducer 2a is C + Ca, the internal capacitance of the ultrasonic transducer 2b is C, the capacitance of the first capacitor is C + Ca, and the capacitance of the second capacitor is C.

順方向に超音波を送受する場合、第1スイッチ31及び第4スイッチ34がオンにされ、逆方向に超音波を送受する場合、第2スイッチ32及び第3スイッチ33がオンにされるので、順方向遅れ時間及び逆方向遅れ時間はそれぞれ下記で表すことができる。   When transmitting and receiving ultrasonic waves in the forward direction, the first switch 31 and the fourth switch 34 are turned on. When transmitting and receiving ultrasonic waves in the reverse direction, the second switch 32 and the third switch 33 are turned on. Each of the forward delay time and the reverse delay time can be expressed as follows.

順方向遅れ時間∝(2C+2Ca)R+2C(R+Rc)
逆方向遅れ時間∝2C(R+Ra)+(2C+2Ca)(R+Rb)
したがって、順方向遅れ時間と逆方向遅れ時間との差は、
順逆の遅れ時間の差∝2C(Ra+Rb−Rc)+2CaRb
≒2C(Ra+Rb−Rc) (但し、C≫Ca)
となる。
Forward delay time ∝ (2C + 2Ca) R + 2C (R + Rc)
Reverse delay time ∝2C (R + Ra) + (2C + 2Ca) (R + Rb)
Therefore, the difference between the forward delay time and the reverse delay time is
Difference in forward / reverse delay time ∝2C (Ra + Rb−Rc) + 2CaRb
≒ 2C (Ra + Rb-Rc) (However, C >> Ca)
It becomes.

ここで、温度などによって超音波振動子2a及び2bの内部容量が変化しても、超音波振動子2a及び2bと並列に、その内部容量の温度特性と逆特性をもつ第1コンデンサC1及び第2コンデンサC2をそれぞれ接続することにより、2Cは温度によって変化しないので、測定誤差を低減することができる。   Here, even if the internal capacitances of the ultrasonic transducers 2a and 2b change depending on the temperature or the like, the first capacitor C1 and the first capacitor C1 having the inverse characteristics of the temperature characteristics of the internal capacitance in parallel with the ultrasonic transducers 2a and 2b. By connecting the two capacitors C2, respectively, the measurement error can be reduced since 2C does not change with temperature.

なお、この実施例4に係る超音波流量計では、従来の超音波流量計の超音波振動子2aに並列に第1コンデンサC1を接続し、超音波振動子2bに並列に第2コンデンサC2を接続して構成したが、上述した実施例1〜実施例3に係る超音波流量計の超音波振動子2aに並列に第1コンデンサC1を接続し、超音波振動子2bに並列に第2コンデンサC2を接続して構成することもできる。   In the ultrasonic flow meter according to Example 4, the first capacitor C1 is connected in parallel to the ultrasonic transducer 2a of the conventional ultrasonic flow meter, and the second capacitor C2 is connected in parallel to the ultrasonic transducer 2b. The first capacitor C1 is connected in parallel to the ultrasonic transducer 2a of the ultrasonic flowmeter according to the first to third embodiments described above, and the second capacitor is connected in parallel to the ultrasonic transducer 2b. C2 can also be connected.

本発明に係る超音波流量計は、ガスメータや水道メータといった流体の流量を測定する流量計に利用可能である。   The ultrasonic flow meter according to the present invention can be used for a flow meter for measuring a flow rate of a fluid such as a gas meter or a water meter.

本発明の実施例1に係る超音波流量計に適用される送受信切替スイッチの構成を示す回路図である。It is a circuit diagram which shows the structure of the transmission / reception selector switch applied to the ultrasonic flowmeter which concerns on Example 1 of this invention. 本発明の実施例1に係る超音波流量計において、送受信切替スイッチ、送信回路及び受信検知回路とをICで構成した例を示す図である。In the ultrasonic flowmeter which concerns on Example 1 of this invention, it is a figure which shows the example which comprised the transmission / reception changeover switch, the transmission circuit, and the reception detection circuit with IC. 本発明の実施例2に係る超音波流量計に適用される送受信切替スイッチの構成を示す回路図である。It is a circuit diagram which shows the structure of the transmission / reception selector switch applied to the ultrasonic flowmeter which concerns on Example 2 of this invention. 本発明の実施例3に係る超音波流量計に適用される送受信切替スイッチの構成を示す回路図である。It is a circuit diagram which shows the structure of the transmission / reception selector switch applied to the ultrasonic flowmeter which concerns on Example 3 of this invention. 本発明の実施例4に係る超音波流量計の一部の構成を示す回路図である。It is a circuit diagram which shows the structure of a part of ultrasonic flowmeter which concerns on Example 4 of this invention. 従来の超音波流量計の構成を示す図である。It is a figure which shows the structure of the conventional ultrasonic flowmeter. 図6に示した送受信切替スイッチの具体的な構成を示す回路図である。FIG. 7 is a circuit diagram showing a specific configuration of the transmission / reception selector switch shown in FIG. 6.

符号の説明Explanation of symbols

1 流路
2a、2b 超音波振動子
3 送受信切替スイッチ
4 送信回路
5 受信検知回路
6 制御回路
31〜34 第1スイッチ〜第4スイッチ
R1〜R4 第1可変抵抗〜第4可変抵抗
C1 第1コンデンサ
C2 第2コンデンサ
DESCRIPTION OF SYMBOLS 1 Flow path 2a, 2b Ultrasonic vibrator 3 Transmission / reception changeover switch 4 Transmission circuit 5 Reception detection circuit 6 Control circuits 31-34 1st switch-4th switch R1-R4 1st variable resistance-4th variable resistance C1 1st capacitor C2 Second capacitor

Claims (6)

流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を設け、流体の流れに沿った順方向と流れに逆らった逆方向とに送受方向を切り替えて超音波を送受し、各方向における超音波の到達時間に基づき流量を求める超音波流量計であって、
一方の超音波振動子に送る送信信号を生成する送信回路と、
他方の超音波振動子からの受信信号を検知する受信検知回路と、
前記一方の超音波振動子及び前記他方の超音波振動子を相互に切り替えるための送受信切替スイッチとを備え、
超音波を順方向に送受するときの送信信号の経路の抵抗値と、超音波を順方向に送受するときの受信信号の経路の抵抗値と、超音波を逆方向に送受するときの送信信号の経路の抵抗値と、超音波を逆方向に送受するときの受信信号の経路の抵抗値とを等しくしたことを特徴とする超音波流量計。
A pair of ultrasonic transducers are provided at a certain distance on the upstream and downstream sides of the flow path, and ultrasonic waves are transmitted and received by switching the transmission / reception direction between the forward direction along the fluid flow and the reverse direction against the flow. And an ultrasonic flowmeter for obtaining a flow rate based on the arrival time of the ultrasonic wave in each direction,
A transmission circuit for generating a transmission signal to be sent to one ultrasonic transducer;
A reception detection circuit for detecting a reception signal from the other ultrasonic transducer;
A transmission / reception changeover switch for mutually switching the one ultrasonic transducer and the other ultrasonic transducer;
The resistance value of the path of the transmission signal when transmitting and receiving ultrasonic waves in the forward direction, the resistance value of the path of the reception signal when transmitting and receiving ultrasonic waves in the forward direction, and the transmission signal when transmitting and receiving ultrasonic waves in the reverse direction The ultrasonic flowmeter is characterized in that the resistance value of the path of and the resistance value of the path of the reception signal when transmitting and receiving the ultrasonic wave in the opposite direction are made equal.
前記送受信切替スイッチは、前記送信回路からの送信信号の一方の超音波振動子への送信を制御する第1スイッチと、前記送信回路からの送信信号の他方の超音波振動子への送信を制御する第2スイッチと、前記一方の超音波振動子からの受信信号の前記受信検知回路への送信を制御する第3スイッチと、前記他方の超音波振動子からの受信信号の前記受信検知回路への送信を制御する第4スイッチとを備え、
前記第1スイッチの内部抵抗値と前記第1スイッチから前記一方の超音波振動子までの配線抵抗値の和と、前記第2スイッチの内部抵抗値と前記第2スイッチから前記他方の超音波振動子までの配線抵抗値の和と、前記第3スイッチの内部抵抗値と前記第3スイッチから前記一方の超音波振動子までの配線抵抗値の和と、前記第4スイッチの内部抵抗値と前記第4スイッチから前記他方の超音波振動子までの配線抵抗値の和とを等しくしたことを特徴とする請求項1記載の超音波流量計。
The transmission / reception selector switch controls transmission of a transmission signal from the transmission circuit to one ultrasonic transducer and transmission of the transmission signal from the transmission circuit to the other ultrasonic transducer. A second switch that controls, a third switch that controls transmission of a reception signal from the one ultrasonic transducer to the reception detection circuit, and a reception signal of the reception signal from the other ultrasonic transducer. A fourth switch for controlling the transmission of
The sum of the internal resistance value of the first switch and the wiring resistance value from the first switch to the one ultrasonic transducer, the internal resistance value of the second switch, and the other ultrasonic vibration from the second switch A sum of wiring resistance values to the child, an internal resistance value of the third switch, a sum of wiring resistance values from the third switch to the one ultrasonic transducer, an internal resistance value of the fourth switch, and the 2. The ultrasonic flowmeter according to claim 1, wherein a sum of wiring resistance values from the fourth switch to the other ultrasonic transducer is made equal.
前記送受信切替スイッチは、前記送信回路からの送信信号の一方の超音波振動子への送信を制御する第1スイッチと、前記送信回路からの送信信号の他方の超音波振動子への送信を制御する第2スイッチと、前記一方の超音波振動子からの受信信号の前記受信検知回路への送信を制御する第3スイッチと、前記他方の超音波振動子からの受信信号の前記受信検知回路への送信を制御する第4スイッチとを備え、
前記第1スイッチと前記一方の超音波振動子との間に第1可変抵抗を設け、前記第2スイッチと前記他方の超音波振動子との間に第2可変抵抗を設け、前記第3スイッチと前記一方の超音波振動子との間に第3可変抵抗を設け、前記第4スイッチと前記他方の超音波振動子との間に第4可変抵抗を設け、
前記第1可変抵抗、第2可変抵抗、第3可変抵抗及び第4可変抵抗を可変することにより、前記第1スイッチの内部抵抗値と前記第1スイッチから前記一方の超音波振動子までの抵抗値の和と、前記第2スイッチの内部抵抗値と前記第2スイッチから前記他方の超音波振動子までの抵抗値の和と、前記第3スイッチの内部抵抗値と前記第3スイッチから前記一方の超音波振動子までの抵抗値の和と、前記第4スイッチの内部抵抗値と前記第4スイッチから前記他方の超音波振動子までの抵抗値の和とを等しくしたことを特徴とする請求項1記載の超音波流量計。
The transmission / reception selector switch controls transmission of a transmission signal from the transmission circuit to one ultrasonic transducer and transmission of the transmission signal from the transmission circuit to the other ultrasonic transducer. A second switch that controls, a third switch that controls transmission of a reception signal from the one ultrasonic transducer to the reception detection circuit, and a reception signal of the reception signal from the other ultrasonic transducer. A fourth switch for controlling the transmission of
A first variable resistor is provided between the first switch and the one ultrasonic transducer, a second variable resistor is provided between the second switch and the other ultrasonic transducer, and the third switch And a third variable resistor between the first ultrasonic transducer and a fourth variable resistor between the fourth switch and the other ultrasonic transducer,
By varying the first variable resistor, the second variable resistor, the third variable resistor, and the fourth variable resistor, the internal resistance value of the first switch and the resistance from the first switch to the one ultrasonic transducer A sum of values, an internal resistance value of the second switch, a sum of resistance values from the second switch to the other ultrasonic transducer, an internal resistance value of the third switch, and the one from the third switch The sum of resistance values to the ultrasonic transducer, the internal resistance value of the fourth switch, and the sum of resistance values from the fourth switch to the other ultrasonic transducer are made equal. Item 2. The ultrasonic flowmeter according to Item 1.
流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を設け、流体の流れに沿った順方向と流れに逆らった逆方向とに送受方向を切り替えて超音波を送受し、各方向における超音波の到達時間に基づき流量を求める超音波流量計であって、
一方の超音波振動子に送る送信信号を生成する送信回路と、
他方の超音波振動子からの受信信号を検知する受信検知回路と、
前記一方の超音波振動子及び前記他方の超音波振動子を相互に切り替えるための送受信切替スイッチとを備え、
超音波を順方向に送受するときの送信信号の経路の抵抗値と超音波を順方向に送受するときの受信信号の経路の抵抗値との和と、超音波を逆方向に送受するときの送信信号の経路の抵抗値と超音波を逆方向に送受するときの受信信号の経路の抵抗値との和とを等しくしたことを特徴とする超音波流量計。
A pair of ultrasonic transducers are provided at a certain distance on the upstream side and downstream side of the flow path, and ultrasonic waves are transmitted and received by switching the transmission / reception direction between the forward direction along the fluid flow and the reverse direction against the flow. And an ultrasonic flowmeter for obtaining a flow rate based on the arrival time of the ultrasonic wave in each direction,
A transmission circuit for generating a transmission signal to be sent to one ultrasonic transducer;
A reception detection circuit for detecting a reception signal from the other ultrasonic transducer;
A transmission / reception changeover switch for mutually switching the one ultrasonic transducer and the other ultrasonic transducer;
The sum of the resistance value of the path of the transmission signal when transmitting and receiving ultrasonic waves in the forward direction and the resistance value of the path of the reception signal when transmitting and receiving ultrasonic waves in the forward direction, and when transmitting and receiving ultrasonic waves in the reverse direction An ultrasonic flowmeter characterized in that a sum of a resistance value of a transmission signal path and a resistance value of a reception signal path when transmitting and receiving ultrasonic waves in the opposite direction is made equal.
前記送受信切替スイッチは、前記送信回路からの送信信号の一方の超音波振動子への送信を制御する第1スイッチと、前記送信回路からの送信信号の他方の超音波振動子への送信を制御する第2スイッチと、前記一方の超音波振動子からの受信信号の前記受信検知回路への送信を制御する第3スイッチと、前記他方の超音波振動子からの受信信号の前記受信検知回路への送信を制御する第4スイッチとを備え、
前記第1スイッチの内部抵抗値と前記第1スイッチから前記一方の超音波振動子までの配線抵抗値と前記第4スイッチの内部抵抗値と前記第4スイッチから前記他方の超音波振動子までの配線抵抗値との和が、前記第2スイッチの内部抵抗値と前記第2スイッチから前記他方の超音波振動子までの配線抵抗値と前記第3スイッチの内部抵抗値と前記第3スイッチから前記一方の超音波振動子までの配線抵抗値との和に等しくしたことを特徴とする請求項4記載の超音波流量計。
The transmission / reception selector switch controls transmission of a transmission signal from the transmission circuit to one ultrasonic transducer and transmission of the transmission signal from the transmission circuit to the other ultrasonic transducer. A second switch that controls, a third switch that controls transmission of a reception signal from the one ultrasonic transducer to the reception detection circuit, and a reception signal of the reception signal from the other ultrasonic transducer. A fourth switch for controlling the transmission of
The internal resistance value of the first switch, the wiring resistance value from the first switch to the one ultrasonic transducer, the internal resistance value of the fourth switch, and from the fourth switch to the other ultrasonic transducer The sum of the wiring resistance value is the internal resistance value of the second switch, the wiring resistance value from the second switch to the other ultrasonic transducer, the internal resistance value of the third switch, and the third switch The ultrasonic flowmeter according to claim 4, wherein the ultrasonic flowmeter is equal to a sum of wiring resistance values to one ultrasonic transducer.
流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を設け、流体の流れに沿った順方向と流れに逆らった逆方向とに送受方向を切り替えて超音波を送受し、各方向における超音波の到達時間に基づき流量を求める超音波流量計であって、
一方の超音波振動子に送る送信信号を生成する送信回路と、
他方の超音波振動子からの受信信号を検知する受信検知回路と、
前記一方の超音波振動子及び前記他方の超音波振動子を相互に切り替えるための送受信切替スイッチとを備え、
前記一対の超音波振動子の各々に並列に接続され且つ各々の超音波振動子の内部容量の温度特性と逆特性を有するコンデンサを備えたことを特徴とする超音波流量計。
A pair of ultrasonic transducers are provided at a certain distance on the upstream side and downstream side of the flow path, and ultrasonic waves are transmitted and received by switching the transmission / reception direction between the forward direction along the fluid flow and the reverse direction against the flow. And an ultrasonic flowmeter for obtaining a flow rate based on the arrival time of the ultrasonic wave in each direction,
A transmission circuit for generating a transmission signal to be sent to one ultrasonic transducer;
A reception detection circuit for detecting a reception signal from the other ultrasonic transducer;
A transmission / reception changeover switch for mutually switching the one ultrasonic transducer and the other ultrasonic transducer;
An ultrasonic flowmeter comprising a capacitor connected in parallel to each of the pair of ultrasonic transducers and having a reverse characteristic to the temperature characteristic of the internal capacitance of each ultrasonic transducer.
JP2006187175A 2006-07-06 2006-07-06 Ultrasonic flowmeter Pending JP2008014840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187175A JP2008014840A (en) 2006-07-06 2006-07-06 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187175A JP2008014840A (en) 2006-07-06 2006-07-06 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2008014840A true JP2008014840A (en) 2008-01-24

Family

ID=39071992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187175A Pending JP2008014840A (en) 2006-07-06 2006-07-06 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2008014840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112809A (en) * 2010-11-25 2012-06-14 Tokyo Keiso Co Ltd Ultrasonic flow meter
EP2722653A1 (en) 2012-10-16 2014-04-23 Horiba, Ltd. Ultrasonic flowmeter
WO2021261814A1 (en) * 2020-06-23 2021-12-30 (주)발맥스기술 Ultrasonic flowrate measurement device, controller therefor, and ultrasonic flowrate measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073349B2 (en) * 1991-02-08 1995-01-18 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト Operating circuit for ultrasonic flow rate measuring device
JP2006017679A (en) * 2004-07-05 2006-01-19 Toshiba Corp Ultrasonic flowmeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073349B2 (en) * 1991-02-08 1995-01-18 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト Operating circuit for ultrasonic flow rate measuring device
JP2006017679A (en) * 2004-07-05 2006-01-19 Toshiba Corp Ultrasonic flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112809A (en) * 2010-11-25 2012-06-14 Tokyo Keiso Co Ltd Ultrasonic flow meter
EP2722653A1 (en) 2012-10-16 2014-04-23 Horiba, Ltd. Ultrasonic flowmeter
WO2021261814A1 (en) * 2020-06-23 2021-12-30 (주)발맥스기술 Ultrasonic flowrate measurement device, controller therefor, and ultrasonic flowrate measurement method

Similar Documents

Publication Publication Date Title
JP4579220B2 (en) Ultrasonic fluid measuring device
CA2619063C (en) Driver configuration for an ultrasonic flow meter
JP2008134267A (en) Ultrasonic flow measurement method
JP2008014840A (en) Ultrasonic flowmeter
JP4851936B2 (en) Ultrasonic flow meter
JP2008267848A (en) Ultrasonic flowmeter
JP4180396B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP2010223855A (en) Ultrasonic flowmeter
JP7151311B2 (en) ultrasonic flow meter
JP6982737B2 (en) Ultrasonic flow meter
KR20180034624A (en) A method for determining the flow rate of a fluid in a flow tube of a flow measurement system and a corresponding flow measurement system
JP3958124B2 (en) Ultrasonic receiver and ultrasonic flow meter
JP3646875B2 (en) Ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP5655194B2 (en) Flow measuring device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
CN110398269B (en) Method for determining measurement information and measurement device
JP4746903B2 (en) Ultrasonic flow meter
JPH08278176A (en) Ultrasonic flow meter
JP4649135B2 (en) Ultrasonic flow meter
JP2006317187A (en) Ultrasonic flowmeter
JP2003083787A (en) Ultrasonic flowmeter
JP3973920B2 (en) Clamp-on type ultrasonic flowmeter
JP4572547B2 (en) Ultrasonic fluid measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117