JP2008014485A - Motor driven valve - Google Patents

Motor driven valve Download PDF

Info

Publication number
JP2008014485A
JP2008014485A JP2007068250A JP2007068250A JP2008014485A JP 2008014485 A JP2008014485 A JP 2008014485A JP 2007068250 A JP2007068250 A JP 2007068250A JP 2007068250 A JP2007068250 A JP 2007068250A JP 2008014485 A JP2008014485 A JP 2008014485A
Authority
JP
Japan
Prior art keywords
valve
gear
motor
screw
spur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007068250A
Other languages
Japanese (ja)
Inventor
Yusuke Arai
裕介 荒井
Hitoshi Umezawa
仁志 梅澤
Hidekazu Sasada
英一 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2007068250A priority Critical patent/JP2008014485A/en
Priority to KR1020070038225A priority patent/KR101278417B1/en
Priority to CN200710109227XA priority patent/CN101086304B/en
Publication of JP2008014485A publication Critical patent/JP2008014485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and inexpensive motor driven valve having a high-resolution valve opening angle without using an expensive planetary gear reduction mechanism. <P>SOLUTION: The motor driven valve 1 for controlling the flow amount of refrigerant in an air-conditioner comprises a spur gear type reduction ring train mechanism 50 formed with a plurality of spur gears 54-58 combined for reducing the speed of rotation of an electric motor 30 to be lower to convert the opening/closing operation of the valve. D and K satisfy a relationship of D=α×m, α=20 to 100, K=m/β, and β=8 to 20, where m is the module of the spur gears 54-58, 1/K is a reduction ratio, and D is the diameter of a circle representing the maximum outside dimension of the spur gear type reduction ring train mechanism in the radial direction of the gears. So, the spur gears have a good dimensional balance, thus providing the small and inexpensive motor driven valve 1 with high resolution and a great reduction ratio. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機の冷媒の流量を制御する電動弁、特に、電動モータの回転を、弁の開閉動作に変換するために低速回転に減速するべく、複数の平歯車を組み合わせて成る平歯車式減速輪列機構を備えた電動弁に関する。   The present invention relates to an electric valve that controls the flow rate of refrigerant in an air conditioner, and more particularly to a flat gear that combines a plurality of spur gears in order to decelerate rotation of an electric motor to low-speed rotation in order to convert the rotation of the electric motor into valve opening / closing operation. The present invention relates to an electric valve provided with a gear-type reduction gear train mechanism.

空気調和機の冷媒の流量を制御する電動弁であって、電動モータの回転を弁の開閉動作に変換するものとしては、大きく分けて次の二つのタイプが知られている。第1のタイプは、ロータの回転を直接ねじ機構に伝達して弁の開閉を行うようにしたもので、例えば特許文献1や特許文献2に開示されている。第2のタイプは、ロータの回転を減速装置で減速してねじ機構に伝達するようにしたもので、例えば特許文献3や特許文献4等に開示されている。
特開2000−356278号公報 特開2004−197800号公報 特開2002−84732号公報 特開2003−232465号公報
The following two types are widely known as motor-operated valves that control the flow rate of the refrigerant of the air conditioner and convert the rotation of the electric motor into the opening / closing operation of the valve. The first type is such that the rotation of the rotor is directly transmitted to the screw mechanism to open and close the valve, and is disclosed in Patent Document 1 and Patent Document 2, for example. The second type is one in which the rotation of the rotor is reduced by a reduction device and transmitted to the screw mechanism, and is disclosed in, for example, Patent Document 3 and Patent Document 4.
JP 2000-356278 A Japanese Patent Laid-Open No. 2004-197800 JP 2002-84732 A JP 2003-232465 A

前記第1のタイプの電動弁は、比較的コンパクトに構成できるものの、用途が低負荷の場合に限られ、また1駆動パルス当たりの弁開度を細かく設定することは困難であるという不都合を有している。
前記第2のタイプの電動弁は、負荷が大きい場合にも使用でき、1駆動パルス当たりの弁開度を細かく設定することはできるが、コンパクトに構成するには、例えば遊星歯車式減速機構を採用することになる。しかしながら、遊星歯車式減速機構には厳しい製造精度が求められ、構造が複雑になるとともに、製造コストが高くなるという問題を有している。
Although the first type motor-operated valve can be configured relatively compactly, it has the disadvantages that it is limited to a low load application and that it is difficult to finely set the valve opening per drive pulse. is doing.
The electric valve of the second type can be used even when the load is large, and the valve opening per driving pulse can be set finely. To make it compact, for example, a planetary gear type reduction mechanism is used. Will be adopted. However, the planetary gear type reduction mechanism is required to have strict manufacturing accuracy, and has a problem that the structure becomes complicated and the manufacturing cost increases.

本発明の目的は、高価な遊星歯車減速機構を用いることなく、高分解能な弁開度を持つことができ、且つ小型で安価な電動弁を提供することである。   An object of the present invention is to provide a small and inexpensive electric valve that can have a high resolution valve opening without using an expensive planetary gear reduction mechanism.

本発明による電動弁は、空気調和機の冷媒の流量を制御する電動弁であって、電動モータの回転を、弁の開閉動作に変換するために低速回転に減速するべく、複数の平歯車を組み合わせて成る平歯車式減速輪列機構を備え、前記平歯車式減速輪列機構に用いられる平歯車のモジュールをm、減速比を1/K、前記平歯車式減速輪列機構の歯車径方向の最大外形寸法を表す円の直径をDとしたとき、DとKとが以下の関係を満足することから成っている。
D=α・m α=20〜100
K=m/β β= 8〜20
An electric valve according to the present invention is an electric valve that controls the flow rate of refrigerant in an air conditioner, and a plurality of spur gears are provided to reduce the rotation of the electric motor to a low-speed rotation in order to convert the rotation of the electric motor into an opening / closing operation of the valve. A spur gear reduction gear train mechanism is provided in combination, the spur gear module used in the spur gear reduction gear train mechanism is m, the reduction ratio is 1 / K, and the gear radial direction of the spur gear reduction gear train mechanism When the diameter of a circle representing the maximum outer dimension of the above is D, D and K satisfy the following relationship.
D = α · m α = 20-100
K = m / β β = 8-20

この電動弁によれば、平歯車式減速輪列機構に用いられる平歯車のモジュール、減速比、及び歯車径方向の最大外形寸法を表す円の直径が上記の範囲に定められているので、平歯車式減速輪列機構の各平歯車の寸法のバランスが良好であり、小型及び安価で、且つ高い分解能、大きな減速比を持つ電動弁を得ることができる。   According to this motor operated valve, the spur gear module used in the spur gear reduction gear train mechanism, the reduction ratio, and the diameter of the circle representing the maximum outer diameter in the gear radial direction are determined within the above range. It is possible to obtain a motor-operated valve having a good balance of dimensions of each spur gear of the gear type reduction gear train mechanism, small size and low cost, high resolution, and a large reduction ratio.

前記電動弁において、前記平歯車式減速輪列機構を、互いに噛み合う二つの平歯車から成る減速段を複数段備えて成るものとすることができる。このような構成によれば、電動モータの出力回転が平歯車式減速輪列機構に入力されると、複数段の減速段によって非常に高い減速比で減速され、弁開度を高い分解能で制御することができる。   In the motor-operated valve, the spur gear type reduction gear train mechanism may be provided with a plurality of speed reduction stages composed of two spur gears meshing with each other. According to such a configuration, when the output rotation of the electric motor is input to the spur gear reduction gear train mechanism, it is decelerated at a very high reduction ratio by a plurality of reduction gear stages, and the valve opening degree is controlled with high resolution. can do.

前記電動弁において、前記平歯車式減速輪列機構の平歯車の前記モジュールmは0.2〜0.4であり、前記最大外形寸法を表す円の直径Dは40mm以下であり、前記減速比1/Kが1/30〜1/100であるとすることができる。これらの数値範囲を選択することにより、製造が困難になることなく、軸方向及び径方向に十分に小型でありながら、大きな減速比を持つ電動弁を得ることができる。   In the electric valve, the module m of the spur gear of the spur gear type reduction gear train mechanism is 0.2 to 0.4, the diameter D of the circle representing the maximum outer dimension is 40 mm or less, and the reduction ratio 1 / K can be 1/30 to 1/100. By selecting these numerical ranges, it is possible to obtain a motor-operated valve having a large reduction ratio while being sufficiently small in the axial direction and the radial direction without being difficult to manufacture.

前記電動弁は、より具体的には、前記平歯車式減速輪列機構が歯車箱内に収容されるとともに、前記平歯車式減速輪列機構からの回転出力をねじ軸方向の出力変位に変換するねじ機構部が前記歯車箱に取り付けられており、前記電動モータは前記歯車箱の外部に配設されるモータ励磁装置と、前記歯車箱の外部に回転自在に支持され且つ前記モータ励磁装置によって回転駆動されるとともに当該回転を前記平歯車式減速輪列機構に入力させる永久磁石型のロータ組立体とを備えており、前記歯車箱の外部には前記ねじ機構部に接続された弁本体が配設され、前記弁本体は、弁室と、当該弁室の壁面の一部に形成された弁座と、前記弁座に接離して前記弁座に形成されている開口を開閉する弁体と、前記ねじ機構部の出力変位を受けて前記弁体を前記弁座に対して接離させる弁棒と、当該弁棒と前記弁本体とに渡って装着され冷媒が前記歯車箱内に侵入するのを阻止するベローズとを備えることができる。   More specifically, in the motor operated valve, the spur gear type reduction gear train mechanism is housed in a gear box, and the rotational output from the spur gear type reduction gear train mechanism is converted into an output displacement in the screw shaft direction. A screw mechanism that is attached to the gear box, and the electric motor is rotatably supported on the outside of the gear box, and is rotatably supported on the outside of the gear box. A permanent magnet type rotor assembly that is driven to rotate and inputs the rotation to the spur gear type reduction gear train mechanism, and a valve body connected to the screw mechanism portion is provided outside the gear box. The valve body is arranged to open and close a valve chamber, a valve seat formed on a part of a wall surface of the valve chamber, and an opening formed in the valve seat in contact with and away from the valve seat And receiving the output displacement of the screw mechanism portion, the valve body May comprise a valve stem contacting and separating with respect to the valve seat, and a bellows refrigerant mounted over said valve body with the valve stem is prevented from entering into the gear box.

前記ねじ機構部に用いられるねじは、ねじピッチが0.5〜1.5mmであり、ねじサイズがM3〜M7の範囲であるとすることができる。モータの回転が平歯車式減速輪列機構によって大きく減速されると、それに応じて大きなトルクとなった回転出力が当該ねじに作用するが、ねじ機構部のねじについて上記の数値範囲にあるようなねじを採用することで、小型でありながらも、弁体を確実に作動させることができる。   The screw used for the screw mechanism portion may have a screw pitch of 0.5 to 1.5 mm and a screw size in the range of M3 to M7. When the rotation of the motor is greatly decelerated by the spur gear type reduction gear train mechanism, the rotation output with a large torque correspondingly acts on the screw, but the screw of the screw mechanism section is in the above numerical range. By adopting the screw, the valve element can be reliably operated while being small.

この発明による電動弁では、上記のように構成されていることにより、電動モータの回転が平歯車式減速輪列機構の減速作用によって大きな減速比で伝達され、減速された出力において大きなトルクを得ることができる。したがって、平歯車式減速輪列機構の出力回転を弁の開閉動作に変換するねじ機構部において、強力な弁駆動力を発揮することができる。また、大きく減速された回転がねじ機構に与えられるので、弁体の弁座に対する移動距離、即ち、弁座に形成された開口の開度を高い精度で制御可能となり、弁開度の高い分解能が得られ、電動弁を通過する流量を高精度で制御することができる。更に、平歯車式減速輪列機構の各平歯車について、設計・製造の厳しい制約が課せられることなく、各平歯車の仕様がバランス良く設定される。したがって、平歯車式減速輪列機構を採用しながらもサイズを可及的に小型化することが可能である。また、本発明による電動弁は、簡素な構造で量産性に優れ、安価に製造することができる。   With the motor-driven valve according to the present invention configured as described above, the rotation of the electric motor is transmitted with a large reduction ratio by the deceleration action of the spur gear type reduction gear train mechanism, and a large torque is obtained at the decelerated output. be able to. Therefore, a powerful valve driving force can be exhibited in the screw mechanism portion that converts the output rotation of the spur gear type reduction gear train mechanism into the opening / closing operation of the valve. In addition, since a greatly decelerated rotation is given to the screw mechanism, the moving distance of the valve body relative to the valve seat, that is, the opening degree of the opening formed in the valve seat can be controlled with high accuracy, and the resolution of the valve opening degree is high. The flow rate passing through the motor-operated valve can be controlled with high accuracy. Furthermore, the specifications of each spur gear are set in a well-balanced manner without any severe design and manufacturing restrictions imposed on each spur gear of the spur gear type reduction gear train mechanism. Therefore, it is possible to reduce the size as much as possible while adopting the spur gear type reduction gear train mechanism. The motor-operated valve according to the present invention has a simple structure and is excellent in mass productivity, and can be manufactured at low cost.

図1は、本発明による平歯車式減速輪列機構を備えた電動弁(以下、単に「電動弁」と略す)の弁本体を除く主要部の縦断面図である。なお、一部の要素についてはハッチングを省略してある。図2は、図1に示す電動弁の主要部と組み合わされる弁本体、ねじ軸受け、ねじ軸、ボールの詳細を示す断面図である。   FIG. 1 is a longitudinal sectional view of a main part excluding a valve body of an electric valve (hereinafter simply referred to as “electric valve”) provided with a spur gear reduction gear train mechanism according to the present invention. Note that hatching is omitted for some elements. FIG. 2 is a cross-sectional view showing details of a valve main body, a screw bearing, a screw shaft, and a ball combined with the main part of the electric valve shown in FIG.

図1に示すように、全体を符号1で示す電動弁は、基本的構造として、励磁機能で作用しステータとロータとから成る電動モータを含む駆動部2と、駆動部2による回転駆動力が入力されて歯車減速を行い減速した回転を出力する平歯車式減速輪列機構を含むギア減速機部3と、ギア減速機部3からの減速回転をねじ作用によってねじ軸方向の変位に変換して出力するねじ機構部4とを有している。電動弁1は、ねじ機構部4の出力部に弁本体部を接続することで完成した弁として用いられるが、図1には、接続されるべき弁本体部は示されていない。ねじ機構部4のねじ軸方向の変位出力は、図2に符号5で示されている弁本体部に伝達される。   As shown in FIG. 1, the motor-operated valve denoted by reference numeral 1 as a whole has, as a basic structure, a drive unit 2 including an electric motor that operates with an excitation function and includes a stator and a rotor, and a rotational driving force by the drive unit 2. The gear speed reducer unit 3 including a spur gear type reduction gear train mechanism that receives the input and performs gear reduction to output the reduced rotation, and the reduced speed rotation from the gear speed reducer unit 3 is converted into a displacement in the screw axis direction by a screw action. And a screw mechanism portion 4 for outputting the output. The motor-operated valve 1 is used as a valve that is completed by connecting the valve main body portion to the output portion of the screw mechanism portion 4, but FIG. 1 does not show the valve main body portion to be connected. The displacement output in the screw axis direction of the screw mechanism portion 4 is transmitted to the valve body portion indicated by reference numeral 5 in FIG.

電動弁1において、駆動部2は、ステータを構成する筒状のモータ励磁装置31と、モータ励磁装置31の内部に配置され、且つ回転駆動される永久磁石型のロータ組立体32とを有する電動モータ30を備えている。この電動モータ30は、ステッピングモータである。モータ励磁装置31は、内部に装備されるボビン34に巻き付けたコイル33と、コイル33への通電によって励磁されるステータ35とを有し、コイル33は電気回路36、リード37、及びリード線7を介して外部の電源に接続されて給電を受ける。ロータ組立体32は、出力部として、その出力回転を伝達する支軸39の下端部に出力歯車40を備えている。   In the motor-operated valve 1, the drive unit 2 has an electric motor having a cylindrical motor excitation device 31 that constitutes a stator, and a permanent magnet type rotor assembly 32 that is disposed inside the motor excitation device 31 and is driven to rotate. A motor 30 is provided. The electric motor 30 is a stepping motor. The motor exciter 31 includes a coil 33 wound around a bobbin 34 provided inside, and a stator 35 excited by energization of the coil 33, and the coil 33 includes an electric circuit 36, a lead 37, and a lead wire 7. It is connected to an external power supply via the power supply and receives power. The rotor assembly 32 includes an output gear 40 at the lower end portion of a support shaft 39 that transmits the output rotation as an output portion.

駆動部2は、全体として、ギア減速機部3の上方に配置されており、支軸39がギア減速機部3内に延びて、出力歯車40の回転をギア減速機部3に伝達する。駆動部2とギア減速機部3とは、気密容器であるカバー41によって覆われている。カバー41は、金属材で作られる有頂円筒形状の容器であり、その下側部分41aはギア減速機部3に備わる歯車箱43を覆っており、下側部分41aの上方に一体的に延びる上段部分41bには、駆動部2の電動モータ30が収容されている。なお、図面を見やすくするために、ギア減速部3の各平歯車を横方向に展開して図示しているため、カバー41は多段円筒状に描かれているが、実際には、各平歯車は電動モータ30の下方に位置しており、カバー41は直線的な円筒状である。カバー41をモータ励磁装置31に装着したとき、モータ励磁装置31は、板ばねにより形成された取付具42により、歯車箱43上に押し付けられて固定される。カバー41は、底側が、歯車箱43の底板431を覆うゴム製の覆い部分34と一体に固定されている。下側部分41aの下端周縁部分と覆い部分34の周縁部分とはカシメ部41dによって固定されており、カバー41の内部を外部から密閉状態に保っている。   The drive unit 2 is disposed above the gear reducer unit 3 as a whole, and the support shaft 39 extends into the gear reducer unit 3 to transmit the rotation of the output gear 40 to the gear reducer unit 3. The drive unit 2 and the gear reducer unit 3 are covered with a cover 41 that is an airtight container. The cover 41 is a top-shaped cylindrical container made of a metal material, and its lower portion 41a covers a gear box 43 provided in the gear reducer unit 3 and extends integrally above the lower portion 41a. The upper portion 41b accommodates the electric motor 30 of the drive unit 2. In order to make the drawing easier to see, each spur gear of the gear reduction unit 3 is shown in a laterally expanded manner, and thus the cover 41 is drawn in a multi-stage cylindrical shape. Is located below the electric motor 30 and the cover 41 is a linear cylinder. When the cover 41 is mounted on the motor excitation device 31, the motor excitation device 31 is pressed and fixed onto the gear box 43 by a fixture 42 formed by a leaf spring. The cover 41 is fixed integrally with a rubber covering portion 34 that covers the bottom plate 431 of the gear box 43 on the bottom side. The lower end peripheral portion of the lower portion 41a and the peripheral portion of the cover portion 34 are fixed by a caulking portion 41d, and the inside of the cover 41 is kept sealed from the outside.

電動弁1のギア減速機部3は、ロータ組立体32の回転を減速する平歯車式減速輪列機構(以下、「減速輪列機構」と略す)50を備えている。減速輪列機構50は、駆動部2の支軸39と平行に且つ間隔を置いて配置された縦回転軸51,52,53と、それらの縦回転軸51〜53にそれぞれ設けられた減速用の大径歯車54,55,56及び小径歯車57,58を有している。大径歯車54は出力歯車40に噛み合い、大径歯車54と一体の小径歯車57は大径歯車55に噛み合い、大径歯車55と一体の小径歯車58は大径歯車56に噛み合っている。これらの歯車によって、ロータ組立体32の回転は大きく減速され、最終段の歯車56と一体の縦回転軸53に伝達される。   The gear reduction unit 3 of the motor-operated valve 1 includes a spur gear type reduction gear train mechanism (hereinafter abbreviated as “reduction gear train mechanism”) 50 that reduces the rotation of the rotor assembly 32. The reduction gear train mechanism 50 includes longitudinal rotation shafts 51, 52, and 53 that are disposed in parallel to and spaced from the support shaft 39 of the drive unit 2, and for deceleration provided on the longitudinal rotation shafts 51 to 53, respectively. Large-diameter gears 54, 55, and 56 and small-diameter gears 57 and 58. The large diameter gear 54 meshes with the output gear 40, the small diameter gear 57 integral with the large diameter gear 54 meshes with the large diameter gear 55, and the small diameter gear 58 integral with the large diameter gear 55 meshes with the large diameter gear 56. By these gears, the rotation of the rotor assembly 32 is greatly decelerated and transmitted to the vertical rotation shaft 53 integral with the gear 56 of the final stage.

減速輪列機構50の出力ギア軸である縦回転軸53に接続されるねじ機構部4においては、縦回転軸53からの回転出力は、縦回転軸53の下端に形成された平ドライバ部63を介してねじ軸62に伝達される。ねじ軸62は上部には、この平ドライバ部63が差し込まれるスリット64が形成されている。ねじ軸62は、筒状の軸受60の内面に形成された雌ねじ61に螺合している。ねじ軸62の下部には凹部66が形成されており、この凹部66にボール67が固着されている。軸受60の下端部には、後述する弁本体部5に固定されたナット部材65が支持されている。なお、軸受60はナット部材65と回転自在に組み付けられている。電動弁1のねじ機構部4は、ロータ組立体32の回転が減速輪列機構50を介して縦回転軸53に伝達されたときに、ねじ軸62及びボール66を介して、後述するように、弁を開閉させる直線運動に変換する。   In the screw mechanism portion 4 connected to the vertical rotation shaft 53 that is the output gear shaft of the reduction gear train mechanism 50, the rotation output from the vertical rotation shaft 53 is a flat driver portion 63 formed at the lower end of the vertical rotation shaft 53. Is transmitted to the screw shaft 62 via. In the upper part of the screw shaft 62, a slit 64 into which the flat driver portion 63 is inserted is formed. The screw shaft 62 is screwed into a female screw 61 formed on the inner surface of the cylindrical bearing 60. A recess 66 is formed in the lower portion of the screw shaft 62, and a ball 67 is fixed to the recess 66. A nut member 65 fixed to a valve body 5 described later is supported at the lower end of the bearing 60. The bearing 60 is rotatably assembled with the nut member 65. When the rotation of the rotor assembly 32 is transmitted to the longitudinal rotation shaft 53 via the reduction gear train mechanism 50, the screw mechanism portion 4 of the motor-operated valve 1 is described later via the screw shaft 62 and the ball 66. Convert to linear motion to open and close the valve.

次に、電動弁1の弁本体部5の詳細を説明する。図2は、弁本体部5に備わる弁本体70、弁棒80等の詳細を示す断面図である。弁本体70は、内部下方に弁室72が形成されており、この弁室72の壁面の一部として弁座77が形成されている。弁本体70には、その底部から下方に向けて延び、且つ弁室72に通じるオリフィス74が形成されている。また、弁本体70には、冷媒を流入及び流出させるために、弁室72の側面に連通する配管78aと、オリフィス74に連通する配管78bが気密に取り付けられている。弁本体70の上端部の外周部が、ナット部材65の内周部にねじ係合することによって、水分等の弁本体70内への浸入を防止している。また、弁本体70には、その弁室72の上部に連通して冷媒が導入される室76が形成されている。   Next, details of the valve body 5 of the motor-operated valve 1 will be described. FIG. 2 is a cross-sectional view showing details of the valve main body 70, the valve stem 80, and the like provided in the valve main body 5. The valve main body 70 has a valve chamber 72 formed in the lower part inside, and a valve seat 77 is formed as a part of the wall surface of the valve chamber 72. The valve body 70 is formed with an orifice 74 that extends downward from the bottom and communicates with the valve chamber 72. In addition, a pipe 78 a that communicates with the side surface of the valve chamber 72 and a pipe 78 b that communicates with the orifice 74 are airtightly attached to the valve body 70 in order to allow the refrigerant to flow in and out. The outer peripheral portion of the upper end portion of the valve main body 70 is screw-engaged with the inner peripheral portion of the nut member 65 to prevent moisture and the like from entering the valve main body 70. Further, the valve body 70 is formed with a chamber 76 that communicates with the upper portion of the valve chamber 72 and into which the refrigerant is introduced.

弁室72内には、弁座77に対して接離して弁座77に形成されている開口を開閉する弁体90が配置されている。弁体90を移動させるため、ねじ機構4のねじ軸62に連係される弁棒80が弁体90に連結されている。弁棒80の外側に配設されたベローズ81の上端部82は、リング部材83を介して、弁本体70にカシメ加工により固着されている。リング部材83の弁本体70への固定については、カシメ加工の他に、はんだ付けにより気密性を保っている。   In the valve chamber 72, a valve body 90 that opens and closes an opening formed in the valve seat 77 by being in contact with and away from the valve seat 77 is disposed. In order to move the valve body 90, a valve rod 80 linked to the screw shaft 62 of the screw mechanism 4 is connected to the valve body 90. An upper end portion 82 of a bellows 81 disposed outside the valve stem 80 is fixed to the valve main body 70 via a ring member 83 by caulking. Regarding the fixing of the ring member 83 to the valve body 70, airtightness is maintained by soldering in addition to caulking.

ベローズ81の下端部84は弁棒80に固着されている。ベローズ81は、弁本体70の室76に導入される冷媒が歯車箱43へ浸入するのを防止する。弁棒80の上端部には、ボール67のためのボール受け部材85が挿入固定されている。図1に示すように、ボール67の上部には、ねじ軸62が当接し、ねじ機構4により軸方向の推力を弁棒80側へ伝達する。   A lower end 84 of the bellows 81 is fixed to the valve stem 80. The bellows 81 prevents the refrigerant introduced into the chamber 76 of the valve body 70 from entering the gear box 43. A ball receiving member 85 for the ball 67 is inserted and fixed at the upper end of the valve stem 80. As shown in FIG. 1, the screw shaft 62 contacts the upper portion of the ball 67, and axial thrust is transmitted to the valve stem 80 side by the screw mechanism 4.

カバー41の内部に装備されるロータ組立体32は、モータ励磁装置31のコイル33に駆動信号を供給することにより回転する。   The rotor assembly 32 provided inside the cover 41 rotates by supplying a drive signal to the coil 33 of the motor excitation device 31.

弁本体部5では、ねじ軸方向の変位出力を受けて弁体90が弁座77に対して接離動作し、その動作によって弁開度が変更される。即ち、弁本体部5においては、ねじ軸62が軸受60内で回転すると、ねじ軸62の軸方向の移動に変換され、ねじ軸62の軸方向の移動量は、ボール67、ボール受け部材85を介して弁棒80側へ伝達され、弁棒80の先端に取り付けた弁体90が上下方向に直線移動する。これによって、弁体90とオリフィス74の間の流路面積は制御され冷媒の流量が調節される。このとき、弁棒80と弁本体70とに渡って装着されたベローズ81は、弁室72に連通する室76内に導入される冷媒が歯車箱43内に浸入するのを防止する。   In the valve body 5, the valve body 90 is moved toward and away from the valve seat 77 in response to the displacement output in the screw shaft direction, and the valve opening is changed by the operation. That is, in the valve main body 5, when the screw shaft 62 rotates in the bearing 60, the screw shaft 62 is converted into axial movement, and the axial movement amount of the screw shaft 62 includes the ball 67 and the ball receiving member 85. The valve body 90 attached to the tip of the valve stem 80 moves linearly in the vertical direction. Thereby, the flow passage area between the valve body 90 and the orifice 74 is controlled, and the flow rate of the refrigerant is adjusted. At this time, the bellows 81 mounted across the valve stem 80 and the valve body 70 prevents the refrigerant introduced into the chamber 76 communicating with the valve chamber 72 from entering the gear box 43.

減速輪列機構50においては、ロータ組立体32の出力歯車40からの回転が入力となる。出力歯車40は小径歯車であり、出力歯車40に噛み合い且つ縦回転軸51に支持されている大径歯車54とで第1の減速段が構成されている。大径歯車54と一体の小径歯車57と、隣接する縦回転軸52に支持されている大径歯車55で第2の減速段が構成されている。同様にして、大径歯車55と一体の小径歯車58と、隣接する縦回転軸(出力ギア軸)53に支持されている大径歯車56とで第3の減速段が構成されており、縦回転軸(出力ギア軸)53が減速輪列機構50の出力軸となっている。したがって、ギア減速機部3では、歯車径方向に接続された複数の減速段によって、電動モータ30の出力回転(ロータ組立体32の回転)は、例えば50対1程度の大きな減速比で減速されて、ねじ軸62に伝達される。これによって、ねじ軸62は、微少回転数での回転が可能となり、分解能の高い弁開度制御が達成される。   In the reduction gear train mechanism 50, rotation from the output gear 40 of the rotor assembly 32 is input. The output gear 40 is a small-diameter gear, and the first reduction gear stage is constituted by the large-diameter gear 54 that meshes with the output gear 40 and is supported by the vertical rotation shaft 51. The second reduction stage is constituted by the small-diameter gear 57 integral with the large-diameter gear 54 and the large-diameter gear 55 supported by the adjacent vertical rotation shaft 52. Similarly, a third reduction gear stage is constituted by a small-diameter gear 58 integral with the large-diameter gear 55 and a large-diameter gear 56 supported by the adjacent vertical rotation shaft (output gear shaft) 53. A rotation shaft (output gear shaft) 53 is an output shaft of the reduction gear train mechanism 50. Therefore, in the gear reducer unit 3, the output rotation of the electric motor 30 (rotation of the rotor assembly 32) is reduced at a large reduction ratio of about 50 to 1, for example, by a plurality of reduction stages connected in the gear radial direction. Is transmitted to the screw shaft 62. As a result, the screw shaft 62 can be rotated at a minute rotational speed, and the valve opening degree control with high resolution is achieved.

本発明による電動弁の実施例として、以下のものが挙げられる。電動弁1においては、減速輪列機構50に用いられる平歯車の歯の大きさを定めるギアモジュールmとして0.2〜0.4とすることが好ましい。ギアモジュールmをこの範囲よりも小さくし過ぎると、平歯車の歯の大きさが小さ過ぎて製造が困難になり、また伝達トルクの大きさに耐えるには、歯車軸方向の長さを長くする必要が生じ、ギア減速機部3の歯車軸方向長さが長くなる。また、逆にギアモジュールmを上記範囲よりも大きくすると、製造し易くなるが、歯車径が大きくなり、減速輪列機構50の歯車径方向の最大外形寸法を表す円(図4に破線で示す円)の直径、即ち、電動弁1のサイズも大きくなる。この円は、平歯車式減速輪列機構50の歯車径方向を直径とし、且つ全ての平歯車54〜58を包含する最小の円であり、一部又は全部の平歯車の歯先を通る円である。減速輪列機構50は、前記最大外形寸法が直径15〜40mmというような小型でありながら、減速比が30〜100であるような大きな値を得ることができる。また、ねじ機構4のねじ軸62としては、ねじピッチが0.5〜1.5mmであるM3〜M7の小型の三角ねじ(又は、台形ねじ、角ねじでも可能)とすることができる。   Examples of the motor-operated valve according to the present invention include the following. In the motor-operated valve 1, the gear module m that determines the size of the spur gear teeth used in the reduction gear train mechanism 50 is preferably 0.2 to 0.4. If the gear module m is made smaller than this range, the tooth size of the spur gear becomes too small, making it difficult to manufacture, and increasing the length in the gear shaft direction to withstand the magnitude of the transmission torque. A necessity arises and the gear axial direction length of the gear reduction gear part 3 becomes long. On the contrary, if the gear module m is made larger than the above range, it becomes easy to manufacture, but the gear diameter is increased, and a circle representing the maximum outer dimension in the gear radial direction of the reduction gear train mechanism 50 (shown by a broken line in FIG. 4). The diameter of the circle), that is, the size of the motor-operated valve 1 is also increased. This circle is the smallest circle having a diameter in the radial direction of the spur gear type reduction gear train mechanism 50 and including all the spur gears 54 to 58, and passes through the tooth tips of some or all of the spur gears. It is. The reduction gear train mechanism 50 can obtain a large value such that the reduction ratio is 30 to 100 while the maximum outer dimension is small such that the diameter is 15 to 40 mm. Further, the screw shaft 62 of the screw mechanism 4 can be a small triangular screw of M3 to M7 having a screw pitch of 0.5 to 1.5 mm (or a trapezoidal screw or a square screw is also possible).

一例として、減速段数を3段又は4段とし、モジュールmを0.2、0.3、0.4として、減速輪列機構の歯車径方向の最大外形寸法を表す円の直径を15〜40mmとしたときに、減速比を30〜100となる組合せが得られることを、図3のグラフに示している。   As an example, the number of reduction stages is 3 or 4, the module m is 0.2, 0.3, 0.4, and the diameter of the circle representing the maximum outer dimension in the gear radial direction of the reduction gear train mechanism is 15 to 40 mm. 3 shows that a combination with a reduction ratio of 30 to 100 is obtained.

本発明による電動弁の電動モータと減速機構を示す断面図。Sectional drawing which shows the electric motor and deceleration mechanism of the electrically operated valve by this invention. 本発明による電動弁の弁本体の詳細を示す断面図。Sectional drawing which shows the detail of the valve main body of the motor operated valve by this invention. 減速比と減速輪列機構の歯車径方向の最大外形寸法を表す円の直径との関係を示すグラフ。The graph which shows the relationship between the reduction ratio and the diameter of the circle | round | yen showing the maximum external dimension of the gear radial direction of a reduction gear train mechanism. 平歯車式減速機構の歯車径方向の最大外形寸法を表す円を示す説明図。Explanatory drawing which shows the circle | round | yen showing the maximum external dimension of the gear radial direction of a spur gear type reduction mechanism.

符号の説明Explanation of symbols

1 電動弁 2 駆動部
3 ギア減速機部 4 ねじ機構部
4a 出力部 5 弁本体部
30 電動モータ 31 モータ励磁装置
32 ロータ組立体 33 コイル
34 樹脂モールド 35 ステータ
36 電気回路 37 リード
38 電源 39 出力軸
40 出力歯車 41 カバー
41a 低段部分 41b 高段部分
42 取付具 43 歯車箱
50 平歯車式減速輪列機構(減速輪列機構)
51,52,53 縦回転軸(又は、回転支持軸)(53:出力ギア軸)
54,55,56 大径歯車
57,58 小径歯車
60 軸受 61 雌ねじ
62 ねじ軸 63 平ドライバ部
64 スリット 65 ナット部材
66 凹部 67 ボール
70 弁本体 72 弁室
74 オリフィス 76 室
77 弁座 78a,78b 配管
79 受け部 80 弁棒
81 ベローズ 82 上端部
83 リング部材 84 下端部
85 ボール受け部材 90 弁体
DESCRIPTION OF SYMBOLS 1 Electric valve 2 Drive part 3 Gear speed reducer part 4 Screw mechanism part 4a Output part 5 Valve body part 30 Electric motor 31 Motor exciter 32 Rotor assembly 33 Coil 34 Resin mold 35 Stator 36 Electric circuit 37 Lead 38 Power supply 39 Output shaft 40 output gear 41 cover 41a low stage part 41b high stage part 42 fitting 43 gear box 50 spur gear type reduction gear train mechanism (reduction gear train mechanism)
51, 52, 53 Vertical rotation shaft (or rotation support shaft) (53: output gear shaft)
54, 55, 56 Large diameter gears 57, 58 Small diameter gear 60 Bearing 61 Female screw 62 Screw shaft 63 Flat driver 64 Slit 65 Nut member 66 Recessed 67 Ball 70 Valve body 72 Valve chamber 74 Orifice 76 Chamber 77 Valve seat 78a, 78b Piping 79 Receiving portion 80 Valve rod 81 Bellows 82 Upper end portion 83 Ring member 84 Lower end portion 85 Ball receiving member 90 Valve body

Claims (5)

空気調和機の冷媒の流量を制御する電動弁であって、
電動モータの回転を、弁の開閉動作に変換するために低速回転に減速するべく、複数の平歯車を組み合わせて成る平歯車式減速輪列機構を備え、
前記平歯車式減速輪列機構に用いられる平歯車のモジュールをm、減速比を1/K、前記平歯車式減速輪列機構の歯車径方向の最大外形寸法を表す円の直径をDとしたとき、DとKとが以下の関係を満足することから成る電動弁。
D=α・m α=20〜100
K=m/β β= 8〜20
An electric valve that controls the flow rate of the refrigerant of the air conditioner,
In order to reduce the rotation of the electric motor to low-speed rotation in order to convert the rotation of the valve into a valve opening / closing operation, a spur gear type reduction gear train mechanism comprising a combination of a plurality of spur gears is provided.
The spur gear module used in the spur gear reduction gear train mechanism is m, the reduction ratio is 1 / K, and the diameter of the circle representing the maximum outer dimension in the gear radial direction of the spur gear reduction gear train mechanism is D. A motor-operated valve in which D and K satisfy the following relationship:
D = α · m α = 20-100
K = m / β β = 8-20
前記平歯車式減速輪列機構は、互いに噛み合う二つの平歯車から成る減速段を複数段備えて成るものである請求項1に記載の電動弁。   2. The motor-operated valve according to claim 1, wherein the spur gear type reduction gear train mechanism includes a plurality of speed reduction stages including two spur gears meshing with each other. 前記平歯車式減速輪列機構の平歯車の前記モジュールmは0.2〜0.4であり、前記最大外形の寸法を表す円の直径Dは40mm以下であり、前記減速比1/Kが1/30〜1/100である請求項1に記載の電動弁。   The module m of the spur gear of the spur gear type reduction gear train mechanism is 0.2 to 0.4, the diameter D of the circle representing the dimension of the maximum outer shape is 40 mm or less, and the reduction ratio 1 / K is The motor operated valve according to claim 1, which is 1/30 to 1/100. 前記平歯車式減速輪列機構が歯車箱内に収容されるとともに、前記平歯車式減速輪列機構からの回転出力をねじ軸方向の出力変位に変換するねじ機構部が前記歯車箱に取り付けられており、
前記電動モータは前記歯車箱の外部に配設されるモータ励磁装置と、前記歯車箱の外部に回転自在に支持され且つ前記モータ励磁装置によって回転駆動されるとともに当該回転を前記平歯車式減速輪列機構に入力させる永久磁石型のロータ組立体とを備えており、
前記歯車箱の外部には前記ねじ機構部に接続された弁本体が配設され、前記弁本体は、弁室と、当該弁室の壁面の一部に形成された弁座と、前記弁座に接離して前記弁座に形成されている開口を開閉する弁体と、前記ねじ機構部の出力変位を受けて前記弁体を前記弁座に対して接離させる弁棒と、当該弁棒と前記弁本体とに渡って装着され冷媒が前記歯車箱内に侵入するのを阻止するベローズとを備えている請求項1〜3のいずれか1項に記載の電動弁。
The spur gear type reduction gear train mechanism is housed in a gear box, and a screw mechanism unit that converts rotational output from the spur gear type reduction gear train mechanism into output displacement in the screw shaft direction is attached to the gear box. And
The electric motor includes a motor exciter disposed outside the gear box, and is rotatably supported by the outside of the gear box and is rotationally driven by the motor exciter and rotates the spur gear reduction wheel. A permanent magnet type rotor assembly for inputting to the row mechanism,
A valve body connected to the screw mechanism is disposed outside the gear box, and the valve body includes a valve chamber, a valve seat formed on a part of a wall surface of the valve chamber, and the valve seat. A valve body that opens and closes an opening formed in the valve seat by contact with and away from the valve, a valve rod that receives and outputs an output displacement of the screw mechanism portion, and a valve rod that contacts and separates the valve seat; The motor-operated valve of any one of Claims 1-3 provided with the bellows with which it mounts | wears over the said valve main body, and blocks | prevents that a refrigerant | coolant penetrate | invades in the said gear box.
前記ねじ機構部に用いられるねじは、ねじピッチが0.5〜1.5mmであり、ねじサイズがM3〜M7の範囲である請求項4に記載の電動弁。   The motor-operated valve according to claim 4, wherein the screw used in the screw mechanism section has a screw pitch of 0.5 to 1.5 mm and a screw size in a range of M3 to M7.
JP2007068250A 2006-06-06 2007-03-16 Motor driven valve Pending JP2008014485A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007068250A JP2008014485A (en) 2006-06-06 2007-03-16 Motor driven valve
KR1020070038225A KR101278417B1 (en) 2006-06-06 2007-04-19 Motor-Operated Valve
CN200710109227XA CN101086304B (en) 2006-06-06 2007-05-24 Electric valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006157501 2006-06-06
JP2007068250A JP2008014485A (en) 2006-06-06 2007-03-16 Motor driven valve

Publications (1)

Publication Number Publication Date
JP2008014485A true JP2008014485A (en) 2008-01-24

Family

ID=39071688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068250A Pending JP2008014485A (en) 2006-06-06 2007-03-16 Motor driven valve

Country Status (3)

Country Link
JP (1) JP2008014485A (en)
KR (1) KR101278417B1 (en)
CN (1) CN101086304B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779873A (en) * 2020-07-16 2020-10-16 江苏华力矿业科技有限公司 Be applied to disk seat module that colliery beam tube monitoring multichannel gas gathered
WO2022185824A1 (en) * 2021-03-04 2022-09-09 株式会社不二工機 Flow rate control valve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3234474A1 (en) * 2014-12-15 2017-10-25 Belimo Holding AG Control device
CN104964066B (en) * 2015-06-29 2017-07-07 上海康源电气有限公司 Dynamoelectric switching valve with deceleration device and the refrigerator system using the dynamoelectric switching valve
CN108730553B (en) * 2017-04-17 2020-04-28 浙江三花汽车零部件有限公司 Electric valve
CN110375103B (en) * 2018-04-13 2022-04-26 浙江三花智能控制股份有限公司 Electric valve
CN112856017B (en) * 2019-11-11 2024-01-23 盾安环境技术有限公司 Valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288678A (en) * 1988-05-17 1989-11-20 Nippon Parusumootaa Kk Pulse motor assembly for controlling valve
JPH0389826A (en) * 1989-08-31 1991-04-15 Nippon Parusumootaa Kk Pulse motor assembly for valve control
JPH0615909B2 (en) * 1988-12-28 1994-03-02 日本パルスモーター株式会社 Pulse motor assembly for valve control
JP2002084732A (en) * 2000-09-08 2002-03-22 Nippon Pulse Motor Co Ltd Valve controlling stepping motor assembly
JP2003097660A (en) * 2001-09-21 2003-04-03 Nippon Pulse Motor Co Ltd Stepping motor assembly for controlling valve
JP2003232465A (en) * 2002-02-05 2003-08-22 Fuji Koki Corp Gear type motor-operated valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560951B2 (en) * 1992-06-30 1996-12-04 ブラザー工業株式会社 Tape printer
JP2006132631A (en) * 2004-11-04 2006-05-25 Fuji Koki Corp Motor-operated valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288678A (en) * 1988-05-17 1989-11-20 Nippon Parusumootaa Kk Pulse motor assembly for controlling valve
JPH0615909B2 (en) * 1988-12-28 1994-03-02 日本パルスモーター株式会社 Pulse motor assembly for valve control
JPH0389826A (en) * 1989-08-31 1991-04-15 Nippon Parusumootaa Kk Pulse motor assembly for valve control
JP2887395B2 (en) * 1989-08-31 1999-04-26 日本パルスモーター株式会社 Pulse motor assembly for valve control
JP2002084732A (en) * 2000-09-08 2002-03-22 Nippon Pulse Motor Co Ltd Valve controlling stepping motor assembly
JP2003097660A (en) * 2001-09-21 2003-04-03 Nippon Pulse Motor Co Ltd Stepping motor assembly for controlling valve
JP2003232465A (en) * 2002-02-05 2003-08-22 Fuji Koki Corp Gear type motor-operated valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111779873A (en) * 2020-07-16 2020-10-16 江苏华力矿业科技有限公司 Be applied to disk seat module that colliery beam tube monitoring multichannel gas gathered
WO2022185824A1 (en) * 2021-03-04 2022-09-09 株式会社不二工機 Flow rate control valve

Also Published As

Publication number Publication date
CN101086304B (en) 2010-12-08
KR101278417B1 (en) 2013-06-24
KR20070116719A (en) 2007-12-11
CN101086304A (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP5647844B2 (en) Motorized valve
JP4817671B2 (en) Motorized valve with speed reducer
JP2008014485A (en) Motor driven valve
CN111148928B (en) Electric valve
JP4936941B2 (en) Motorized valve
JP2008101765A (en) Motorized valve
EP3109526B1 (en) Motor-driven valve
JP2008267464A (en) Motor driven valve
JP2006307975A (en) Motor-operated valve
JP5022960B2 (en) Electric valve with reduction gear unit
JP7175042B2 (en) electric valve
JP2011252600A (en) Motor-operated valve with reducer
JP6584564B2 (en) Motorized valve
JP2010091095A (en) Planetary gear type reduction gear, and canned planetary gear type motor-driven valve equipped therewith
JP4319125B2 (en) Planetary gear type motorized valve
JP6133459B2 (en) Motorized valve
JP6709674B2 (en) Planetary gear type speed reducer and motor-operated valve equipped with the same
US20220074513A1 (en) Electromechanical device with an actuator drive and an actuator
JP6742041B2 (en) Motorized valve
JP2017198259A (en) Planetary gear type reduction gear and motor-driven valve including the same
JP2024008534A (en) Motor-operated valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108