JP2008010883A - Method and apparatus for heat treatment by light irradiation - Google Patents

Method and apparatus for heat treatment by light irradiation Download PDF

Info

Publication number
JP2008010883A
JP2008010883A JP2007209120A JP2007209120A JP2008010883A JP 2008010883 A JP2008010883 A JP 2008010883A JP 2007209120 A JP2007209120 A JP 2007209120A JP 2007209120 A JP2007209120 A JP 2007209120A JP 2008010883 A JP2008010883 A JP 2008010883A
Authority
JP
Japan
Prior art keywords
heated
light irradiation
heat treatment
light
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209120A
Other languages
Japanese (ja)
Inventor
Emi Kanezaki
恵美 金崎
Satoshi Shibata
聡 柴田
Fumitoshi Kawase
文俊 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007209120A priority Critical patent/JP2008010883A/en
Publication of JP2008010883A publication Critical patent/JP2008010883A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce stresses applied to an object to be heated by reducing temperature variation thereof by giving distributed light-irradiation intensity in a temperature raising step (an open-circuit control step) after starting the light irradiation. <P>SOLUTION: A method for heat treatment by light irradiation comprises a step for supporting the object 103 to be heated in a vessel and heat-treating the object 103 to be heated by a plurality of light-irradiation heating means 101 provided with a planar configuration and facing a surface of the object to be heated 103. In the step of raising the temperature of the object 103 to be heated by light irradiation from the light-irradiation heating means 101, the object 103 to be heated is irradiated with a light having such a planar light-intensity distribution as to make the maximum temperature difference within the surface of the object to be heated 70°C or lower. As a consequence, the temperature variation within the object 103 to be heated can be reduced in the open-circuit control step after the start of the light irradiation. Thereby, the stresses can be reduced; strains, deformations, bows, cracks and the like can be eliminated; characteristics fluctuations of the semiconductor devices formed in the object 103 to be heated can be suppressed; and reliability failures can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、半導体装置の製造工程のうち光照射熱処理方法および光照射熱処理装置に関するものである。   The present invention relates to a light irradiation heat treatment method and a light irradiation heat treatment apparatus in a manufacturing process of a semiconductor device.

ランプタイプの光照射熱処理装置は、半導体製造工程においては例えば、閾値制御のための注入、ソース・ドレインなどのイオン注入後の不純物活性化、高融点金属膜を元にしたシリサイド化、金属シリサイドの低抵抗化などの短時間熱処理に使用される。このタイプの熱処理装置の代表的な構成は、多数個のランプを用い、板状の被加熱体を両面若しくはその一方面から加熱するものである。ランプは被加熱体の表面と対向させ、表面に近い距離に多数一様な密度で配列されている。そして半導体基板のような被加熱体がほぼ一定の温度で加熱処理されている間は、熱処理装置においては被加熱体の両面側若しくはその一面側の近傍に設置された複数個のパイロメータによって、加熱された被加熱体が輻射する電磁波の波長を測定しさらに温度に換算して、被加熱体を所定の温度に維持するようにランプの光照射強度にフィードバック制御している。このように、パイロメータによる測定温度をフィードバックして光照射強度を制御する部分を閉回路制御工程と言う。この閉回路制御工程は、被加熱体から十分な輻射強度が得られる、一定の温度以上で有効に働く。この温度は通常、300℃から600℃以上である。   In the semiconductor manufacturing process, the lamp type light irradiation heat treatment apparatus, for example, implantation for threshold control, activation of impurities after ion implantation of source / drain, silicidation based on a refractory metal film, metal silicide Used for short-time heat treatment such as low resistance. A typical configuration of this type of heat treatment apparatus uses a large number of lamps to heat a plate-shaped object to be heated from both sides or one side thereof. The lamps are opposed to the surface of the object to be heated, and a large number of lamps are arranged with a uniform density at a distance close to the surface. While the heated object such as a semiconductor substrate is being heated at a substantially constant temperature, the heat treatment apparatus uses a plurality of pyrometers installed on both sides of the heated object or in the vicinity of the one surface. The wavelength of the electromagnetic wave radiated from the heated object is measured, converted into a temperature, and feedback controlled to the light irradiation intensity of the lamp so as to maintain the heated object at a predetermined temperature. Thus, the part which feeds back the measured temperature by a pyrometer and controls light irradiation intensity | strength is called a closed circuit control process. This closed circuit control process works effectively above a certain temperature at which sufficient radiation intensity can be obtained from the object to be heated. This temperature is usually 300 ° C. to 600 ° C. or higher.

一方、光照射熱処理装置で被加熱体を熱処理を開始する初期の段階においては、一定の光照射強度で、被加熱体を閉回路制御工程で制御可能な温度である300℃から600℃以上に昇温するステップがあるが、この工程を開回路制御工程と言う。以上のように光照射熱処理は、この開回路制御工程と、閉回路制御工程から構成される。   On the other hand, in the initial stage of starting the heat treatment of the object to be heated by the light irradiation heat treatment apparatus, the temperature of the object to be heated is controlled from 300 ° C. to 600 ° C. or higher at a constant light irradiation intensity that can be controlled in the closed circuit control process. Although there is a step of raising the temperature, this process is called an open circuit control process. As described above, the light irradiation heat treatment includes the open circuit control process and the closed circuit control process.

また、光照射熱処理工程では短時間に高温まで昇温するので被加熱体にストレスがかかるがこれを緩和するような考慮もなされており、その技術としては例えば特許文献1〜4に記載されている。
特開平11−214323号公報 特開平9−246200号公報 特開平3−218624号公報 特開2004−31842号公報
Also, in the light irradiation heat treatment process, since the temperature is raised to a high temperature in a short time, stress is applied to the object to be heated, but consideration has been given to alleviate this. For example, Patent Documents 1 to 4 describe such techniques. Yes.
JP-A-11-214323 JP-A-9-246200 JP-A-3-218624 JP 2004-31842 A

しかしながら、上記従来の技術では、光照射熱処理装置内での光照射開始直後の開回路制御工程では、一定の光照射強度で被加熱体を急速加熱するために、半導体基板のような被加熱体面内などの位置によって温度上昇速度が一般に異なることから温度分布が生じる。そのために被加熱体はストレスを受け、ひずみ、ゆがみ、反り、割れ等が発生する。また、場合によっては被加熱体に結晶欠陥が入り、被加熱体である半導体基板に作り込まれた半導体素子の特性ばらつき、さらには信頼性不良などを引き起こす場合があるという問題があった。   However, in the above conventional technique, in the open circuit control process immediately after the start of light irradiation in the light irradiation heat treatment apparatus, the surface of the object to be heated such as a semiconductor substrate is used to rapidly heat the object to be heated with a constant light irradiation intensity. A temperature distribution is generated because the temperature rise rate generally differs depending on the position of the inside. Therefore, the heated body is stressed, and distortion, distortion, warpage, cracking, etc. occur. Further, in some cases, there is a problem that crystal defects may enter the object to be heated, causing variations in characteristics of semiconductor elements formed on the semiconductor substrate that is the object to be heated, and further causing poor reliability.

したがって、この発明の目的は、被加熱体構成材料の熱伝導度と関係した比抵抗に応じて開回路制御工程の光照射強度に分布を持たせ、温度上昇時、被加熱体の温度ばらつきを低減することで被加熱体にかかるストレスを軽減し、ひずみ、ゆがみ、反り、割れ等が無く、特性変動の無い、高信頼性の半導体デバイスが製造できる光照射熱処理方法および光照射熱処理装置を提供することである。   Therefore, the object of the present invention is to provide a distribution in the light irradiation intensity of the open circuit control process according to the specific resistance related to the thermal conductivity of the material to be heated, and to vary the temperature variation of the object to be heated when the temperature rises. Provides a light irradiation heat treatment method and light irradiation heat treatment apparatus that can reduce the stress applied to the object to be heated, and can produce highly reliable semiconductor devices that are free from distortion, distortion, warping, cracking, etc. It is to be.

上記課題を解決するためにこの発明の請求項1記載の光照射熱処理方法は、容器内に被加熱体を支持し、前記被加熱体の一表面に対向して設けられた平面状の光照射加熱手段により前記被加熱体を熱処理する光照射熱処理方法であって、前記光照射加熱手段から光を照射して前記被加熱体の温度を上昇させる工程において、前記被加熱体面内の最大温度差が70℃以下となるような平面的な光強度分布を有する光を前記被加熱体に照射することを特徴とする。   In order to solve the above-mentioned problem, a light irradiation heat treatment method according to claim 1 of the present invention is a planar light irradiation method in which a heated object is supported in a container and provided to face one surface of the heated object. A light irradiation heat treatment method for heat-treating the object to be heated by a heating means, wherein in the step of increasing the temperature of the object to be heated by irradiating light from the light-irradiation heating means, a maximum temperature difference within the surface of the object to be heated The object to be heated is irradiated with light having a planar light intensity distribution such that the temperature becomes 70 ° C. or less.

請求項2記載の光照射熱処理方法は、請求項1に記載の光照射熱処理方法において、前記被加熱体の温度を上昇させる工程の後、前記光照射加熱手段から平面的に一様な強度を有する光を前記被加熱体に照射して熱処理する工程を含む。   The light irradiation heat treatment method according to claim 2 is the light irradiation heat treatment method according to claim 1, wherein after the step of increasing the temperature of the object to be heated, the light irradiation heating means has a uniform intensity in a plane. A step of irradiating the object to be heated with heat having heat treatment.

請求項3記載の光照射熱処理方法は、請求項1または2に記載の光照射熱処理方法において、前記被加熱体が円形状であり、前記光照射加熱手段からの平面的な光強度分布は同心円状の分布である。   The light irradiation heat treatment method according to claim 3 is the light irradiation heat treatment method according to claim 1 or 2, wherein the object to be heated is circular, and the planar light intensity distribution from the light irradiation heating means is concentric. Distribution.

請求項4記載の光照射熱処理方法は、請求項1または3に記載の光照射熱処理方法において、前記被加熱体は半導体基板からなる。   The light irradiation heat treatment method according to claim 4 is the light irradiation heat treatment method according to claim 1 or 3, wherein the object to be heated is made of a semiconductor substrate.

請求項5記載の光照射熱処理装置は、容器内に設けられた被加熱体を支持する支持体と、前記支持体に支持された被加熱体の一表面に対向して設けられた平面状の光照射加熱手段と、前記被加熱体の一表面とは反対側の他表面に対向して設けられた温度測定手段と、前記被加熱体の温度を上昇させるとき、前記被加熱体面内の最大温度差が70℃以下となるように前記光照射加熱手段の平面内での光照射強度分布を制御する光強度制御手段とを備えた。   The light irradiation heat treatment apparatus according to claim 5 is a planar support provided to face a surface of a heated body supported by the support, and a support that supports the heated body provided in the container. Light irradiation heating means, temperature measuring means provided opposite to the other surface opposite to the one surface of the heated object, and when raising the temperature of the heated object, the maximum in the heated object plane Light intensity control means for controlling the light irradiation intensity distribution in the plane of the light irradiation heating means so that the temperature difference becomes 70 ° C. or less.

請求項6記載の光照射熱処理装置は、請求項5に記載の光照射熱処理装置において、前記光照射加熱手段は、多数の加熱ランプが平面的に配列された集合体からなり、前記加熱ランプの集合体は平面的な複数の領域に分割され、それぞれの領域は互いに独立した光照射強度に設定可能とした。   The light irradiation heat treatment apparatus according to claim 6 is the light irradiation heat treatment apparatus according to claim 5, wherein the light irradiation heating means includes an assembly in which a plurality of heating lamps are arranged in a plane. The aggregate was divided into a plurality of planar areas, and each area could be set to an independent light irradiation intensity.

請求項7記載の光照射熱処理装置は、請求項6に記載の光照射熱処理装置において、前記被加熱体は半導体基板からなり、前記加熱ランプの集合体は平面的に同心円状の複数の領域に分割されている。   The light irradiation heat treatment apparatus according to claim 7 is the light irradiation heat treatment apparatus according to claim 6, wherein the object to be heated is a semiconductor substrate, and the assembly of the heating lamps is arranged in a plurality of concentric areas in a plane. It is divided.

この発明の請求項1記載の光照射熱処理方法によれば、光照射開始後の開回路制御工程において、被加熱体の温度ばらつきを低減することができる。これにより、ストレスを軽減し、ひずみ、ゆがみ、反り、割れ等が無く、被加熱体に作り込まれた半導体装置の特性変動を抑制し、信頼性不良を低減することができる。   According to the light irradiation heat treatment method of the first aspect of the present invention, the temperature variation of the object to be heated can be reduced in the open circuit control step after the start of light irradiation. Thereby, stress can be reduced, there is no distortion, distortion, warping, cracking, etc., and fluctuations in the characteristics of the semiconductor device built in the object to be heated can be suppressed and reliability defects can be reduced.

請求項2では、被加熱体の温度を上昇させる工程の後、光照射加熱手段から平面的に一様な強度を有する光を被加熱体に照射して熱処理する工程を含むので、被加熱体から十分な輻射強度が得られる所定の温度を維持するように測定温度をフィードバックして光照射強度を制御する閉回路制御工程を行うことができる。   In claim 2, since the step of raising the temperature of the object to be heated includes the step of irradiating the object to be heated with light having a uniform intensity in a plane from the light irradiation heating means, Therefore, it is possible to perform a closed circuit control step of controlling the light irradiation intensity by feeding back the measured temperature so as to maintain a predetermined temperature at which a sufficient radiation intensity can be obtained.

請求項3では、被加熱体が円形状であり、光照射加熱手段からの平面的な光強度分布は同心円状の分布であるので、被加熱体の中心からの距離に対応した光強度分布を形成することができる。   In the third aspect, since the object to be heated is circular and the planar light intensity distribution from the light irradiation heating means is a concentric circular distribution, the light intensity distribution corresponding to the distance from the center of the object to be heated is Can be formed.

請求項4では、被加熱体は半導体基板からなるので、半導体装置の製造工程に実施できる。   According to the fourth aspect of the present invention, since the object to be heated is made of a semiconductor substrate, it can be implemented in the manufacturing process of the semiconductor device.

この発明の請求項5記載の光照射熱処理装置によれば、光照射強度制御手段により、被加熱体の温度ばらつきを低減することができる。これにより、ストレスを軽減し、ひずみ、ゆがみ、反り、割れ等が無く、被加熱体に作り込まれた半導体装置の特性変動を抑制し、信頼性不良を低減することができる。   According to the light irradiation heat treatment apparatus of the fifth aspect of the present invention, the temperature variation of the object to be heated can be reduced by the light irradiation intensity control means. Thereby, stress can be reduced, there is no distortion, distortion, warping, cracking, etc., and fluctuations in the characteristics of the semiconductor device built in the object to be heated can be suppressed and reliability defects can be reduced.

請求項6では、光照射加熱手段は、多数の加熱ランプが平面的に配列された集合体からなり、加熱ランプの集合体は平面的な複数の領域に分割され、それぞれの領域は互いに独立した光照射強度に設定可能としたので、多数のランプ集合の光照射強度に分布が生じるように、ランプの集合領域毎に照射すべき光強度を自動的に設定することができる。   According to a sixth aspect of the present invention, the light irradiation heating means is composed of an assembly in which a large number of heating lamps are arranged in a plane, and the assembly of heating lamps is divided into a plurality of planar areas, and each area is independent of each other. Since the light irradiation intensity can be set, the light intensity to be irradiated can be automatically set for each lamp collection area so that the distribution of the light irradiation intensity of a large number of lamp sets is generated.

請求項7では、被加熱体が半導体基板であり、加熱ランプの集合体は平面的に同心円状の複数の領域に分割されているので、被加熱体の中心からの距離に対応した光強度分布を形成することができる。   According to the seventh aspect of the present invention, the object to be heated is a semiconductor substrate, and the assembly of the heating lamps is divided into a plurality of concentric areas in a plane, so that the light intensity distribution corresponding to the distance from the center of the object to be heated Can be formed.

この発明の実施の形態を図1〜図7に基づいて説明する。図1は、本発明の実施形態によるランプタイプ光照射熱処理装置の概略断面図を示す。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a lamp type light irradiation heat treatment apparatus according to an embodiment of the present invention.

図1に示すように、この光照射熱処理装置は、容器内に設けられた被加熱体103を支持する支持体102と、支持体102に支持された被加熱体103の一表面に対向して設けられた平面状の光照射加熱手段101と、被加熱体103の一表面とは反対側の他表面に対向して設けられた温度測定手段104と、被加熱体103の比抵抗に基づいて、温度測定手段により測定された温度が所定の温度になるように光照射加熱手段101の平面内での光照射強度分布を制御する光照射強度制御手段とを備えている。   As shown in FIG. 1, this light irradiation heat treatment apparatus has a support 102 that supports a heated body 103 provided in a container, and one surface of the heated body 103 supported by the support 102. Based on the provided planar light irradiation heating means 101, the temperature measuring means 104 provided opposite to the other surface opposite to the one surface of the heated object 103, and the specific resistance of the heated object 103 And a light irradiation intensity control means for controlling the light irradiation intensity distribution in the plane of the light irradiation heating means 101 so that the temperature measured by the temperature measuring means becomes a predetermined temperature.

この場合、装置には被加熱体、特に板状の基板を加熱、昇温するための多数個の円筒状のランプ(光照射加熱手段)101が平面状に配列され、被加熱体支持体102によって被加熱体103が支持されており、多数のランプ101と対向している。この支持体102は被加熱体103をそのごく周辺で支持するのみであって、被加熱体103の裏面は露出している状態である。   In this case, a large number of cylindrical lamps (light irradiation heating means) 101 for heating and heating the object to be heated, particularly a plate-like substrate, are arranged in a plane in the apparatus, and the object to be heated support 102 The object to be heated 103 is supported by and faces a large number of lamps 101. This support body 102 only supports the heated body 103 at its very periphery, and the back surface of the heated body 103 is exposed.

被加熱体103を挟んでランプ101と対向して、温度を測定する複数個のパイロメータ(温度測定手段)104が設置される。パイロメータ104は、被加熱体が輻射する波長を測定し、測定した波長の値から被加熱体の温度を換算する。また不活性ガス導入口105から不活性ガスが被加熱体103の表面に沿って流れ、不活性ガス排気口106から廃棄されるようになっており、その先には排気ポンプ107が接続されている。さらに、光照射熱処理時、被加熱体103は支持体102と共に回転する機構が設けられている。   A plurality of pyrometers (temperature measuring means) 104 for measuring the temperature are installed facing the lamp 101 with the heated body 103 interposed therebetween. The pyrometer 104 measures the wavelength emitted by the heated object, and converts the temperature of the heated object from the measured wavelength value. An inert gas flows from the inert gas inlet 105 along the surface of the heated object 103 and is discarded from the inert gas outlet 106, and an exhaust pump 107 is connected to the end of the inert gas exhaust port 106. Yes. Further, a mechanism for rotating the heated object 103 together with the support 102 during the light irradiation heat treatment is provided.

図2は、図1の光照射熱処理装置におけるランプの平面配置図を示す。図2において複数個の小円がランプの配置を示し、円内に記載の1から12の番号は、ランプ101に供給する電力(パワー)を独立に制御できる領域が計12あることを示す。すなわち本発明の実施形態の熱処理装置におけるランプ101はその電力を12の領域で独立に制御できるように構成されているのである。また、108の円はランプ101に対向して載置された被加熱体103としての半導体基板8インチ口径である場合の位置を示し、109の円は被加熱体支持体102の外縁位置を示す。   FIG. 2 shows a plan layout of lamps in the light irradiation heat treatment apparatus of FIG. In FIG. 2, a plurality of small circles indicate the arrangement of the lamps, and the numbers 1 to 12 described in the circles indicate that there are a total of 12 areas in which the power supplied to the lamp 101 can be controlled independently. That is, the lamp 101 in the heat treatment apparatus according to the embodiment of the present invention is configured so that its power can be controlled independently in 12 regions. A circle 108 indicates a position when the diameter of the semiconductor substrate 8 is 8 inches as the heated body 103 placed facing the lamp 101, and a circle 109 indicates the outer edge position of the heated body support 102. .

以上の構成を有する光照射熱処理装置を用いた本発明の実施形態の光照射熱処理方法について説明する。すなわち、パイロメータ104の制御可能な温度まで、一定の光照射強度で被加熱体103を昇温する開回路制御工程と、パイロメータ104によって被加熱体103が輻射する波長を測定し、その波長の値から被加熱体103の温度を換算して、ランプ101の光照射強度を調整する閉回路制御工程とを含む。   The light irradiation heat treatment method of the embodiment of the present invention using the light irradiation heat treatment apparatus having the above configuration will be described. That is, an open circuit control step for raising the temperature of the object to be heated 103 at a constant light irradiation intensity up to a temperature controllable by the pyrometer 104, a wavelength at which the object to be heated 103 radiates is measured by the pyrometer 104, and a value of the wavelength A closed circuit control step of converting the temperature of the object to be heated 103 and adjusting the light irradiation intensity of the lamp 101.

具体的に被加熱体103が半導体基板の場合は、加熱用ランプの独立パワー制御領域を図3に示すように3つに分ける。すなわちランプの光照射強度分布を3つの領域に分割する。対向する基板周囲よりも内側であり、かつ、基板中心からの距離201を半径(8インチ口径の基板半径の約80%)とする円の領域203と、基板周囲よりも内側であり、かつ、領域203以外の領域204、および基板の外部領域205である。なお、半径202は8インチ口径基板の外周とほぼ同じである。このように被加熱体103が円形状であり、光照射加熱手段からの平面的な光強度分布は同心円状の分布である。   Specifically, when the object to be heated 103 is a semiconductor substrate, the independent power control region of the heating lamp is divided into three as shown in FIG. That is, the light irradiation intensity distribution of the lamp is divided into three regions. A circle region 203 having a radius 201 (about 80% of the substrate radius of the 8-inch aperture) that is inside the opposite substrate periphery and having a distance 201 from the substrate center, and that is inside the substrate periphery; and An area 204 other than the area 203 and an external area 205 of the substrate. The radius 202 is substantially the same as the outer periphery of the 8-inch caliber substrate. Thus, the to-be-heated body 103 is circular, and the planar light intensity distribution from the light irradiation heating means is a concentric distribution.

そして実際に基板に熱処理を施すときは、基板(シリコン)の比抵抗が1Ωcm以上の場合には、光照射開始後の開回路制御工程において、図4(a)に示すように、領域204及び領域205には、それら領域にあるランプに同じパワーを投入して同一光照射強度にし、領域203の光照射強度を領域204および領域205より大きくする。また、基板(シリコン)の比抵抗が1Ωcmより小さい場合には、光照射開始後の開回路制御工程において、図4(b)に示す通りに、光照射強度を領域203、領域204、領域205全ての領域で一定になるようそれぞれのランプに同じパワーを投入する。   When the substrate is actually heat-treated, if the specific resistance of the substrate (silicon) is 1 Ωcm or more, in the open circuit control step after the start of light irradiation, as shown in FIG. In the area 205, the same power is applied to the lamps in these areas so as to have the same light irradiation intensity, and the light irradiation intensity in the area 203 is made larger than those in the areas 204 and 205. Further, when the specific resistance of the substrate (silicon) is smaller than 1 Ωcm, the light irradiation intensity is set to the region 203, the region 204, and the region 205 as shown in FIG. Apply the same power to each lamp so that it is constant in all areas.

図5は、従来の熱処理による被加熱体の温度時間的変化を示すグラフである。従来のように図1の多数のランプ101のすべてに一様な同一パワーを入力し、図4(b)のように一様な光強度分布にして基板に加熱用の光照射を行って得られた基板の温度上昇の時間的変化を示す。グラフの横軸は光照射熱処理時間、縦軸の第一軸は、図1に示すパイロメータ104によって、加熱された基板が輻射する波長を測定し、温度に換算した基板の温度であり、T1、T6はそれぞれ基板の中心、周辺に対向する位置に設置されたパイロメータを示す記号である。このT1とT6の測定位置を図6に示す。T1は基板中心の温度に対応し、T6は周辺部の温度に対応する。図の黒丸は装置に取り付けられたパイロメータの位置を示し、T1〜T6はパイロメータの記号を示す。また、縦軸の第二軸は基板面内における、温度の最も高い部分と低い部分の温度差であり、これをdeltaとして示したものである。なお、用いた材料はCZ−Si基板(比抵抗:1−10Ωcm)で、通常半導体デバイスを製作するのに一般に広く用いられる基板である。   FIG. 5 is a graph showing a change in temperature with time of an object to be heated by a conventional heat treatment. As in the prior art, the same uniform power is input to all of the many lamps 101 in FIG. 1, and the substrate is irradiated with light for heating to obtain a uniform light intensity distribution as shown in FIG. 4B. The time change of the temperature rise of the obtained substrate is shown. The horizontal axis of the graph is the light irradiation heat treatment time, and the first axis of the vertical axis is the temperature of the substrate measured by measuring the wavelength radiated by the heated substrate with the pyrometer 104 shown in FIG. T6 is a symbol indicating a pyrometer installed at a position facing the center and the periphery of the substrate, respectively. The measurement positions of T1 and T6 are shown in FIG. T1 corresponds to the temperature at the center of the substrate, and T6 corresponds to the temperature at the periphery. The black circles in the figure indicate the positions of pyrometers attached to the apparatus, and T1 to T6 indicate pyrometer symbols. The second axis of the vertical axis is the temperature difference between the highest temperature portion and the lowest temperature portion in the substrate plane, and this is indicated as delta. The material used is a CZ-Si substrate (specific resistance: 1-10 Ωcm), which is a substrate that is generally widely used for manufacturing semiconductor devices.

開回路制御工程において、従来のように図4(b)に示す光照射強度分布を用いた場合、図5の0〜15sec間の測定温度が示すように、光照射開始後において温度ばらつきが大きくなる。これは、基板に急激な温度上昇が起こって力学的ストレスがかかり、基板がひずみ、その結果、基板が図1の支持体102上で跳ねることで上部のランプ光が基板周辺と支持体102の隙間から漏れ、パイロメータ104に直接入射したため周辺の温度が(T6)上昇したのである。ここでは、光照射開始後4秒の時点で光の漏れが発生している。   In the open circuit control process, when the light irradiation intensity distribution shown in FIG. 4B is used as in the prior art, as shown in the measured temperature of 0 to 15 seconds in FIG. Become. This is because a sudden temperature rise occurs in the substrate and mechanical stress is applied, and the substrate is distorted. As a result, the substrate jumps on the support 102 in FIG. Leakage from the gap and direct incidence on the pyrometer 104 increased the ambient temperature (T6). Here, light leakage occurs at 4 seconds after the start of light irradiation.

このようなことが起こる場合の模式図を図7に示す。多数個のランプが501、被加熱体支持体が502、複数個のパイロメータが503、正常位置の被加熱体が504、ひずみが生じて跳ねた後の被加熱体が505、その結果、基板と支持体の隙間から漏れた上部のランプ光が506である。こうして光506が周辺に位置するパイロメータT6に入射して中心より高い温度が測定される。   FIG. 7 shows a schematic diagram when such a situation occurs. Multiple lamps 501, heated object support 502, multiple pyrometers 503, heated object in normal position 504, heated object 505 after being distorted and bounced, The upper lamp light leaking from the gap between the supports is 506. In this way, the light 506 is incident on the pyrometer T6 located in the vicinity, and a temperature higher than the center is measured.

したがってここで測定された温度は基板の真の温度では無く、ランプ光のもれにより誤測定された温度であり、この状態では測定温度を正確にランプへの入力パワー制御にフィードバックすることができないことになる。この温度ばらつきは、被加熱体のひずみにより生じるため、ストレスの有無を判断する指標とすることもできる。   Therefore, the temperature measured here is not the true temperature of the substrate, but the temperature erroneously measured due to the leakage of the lamp light. In this state, the measured temperature cannot be accurately fed back to the input power control to the lamp. It will be. Since this temperature variation is caused by distortion of the heated object, it can also be used as an index for determining the presence or absence of stress.

一方、図8は、本発明の実施形態の熱処理による被加熱体の温度時間的変化を示すグラフである。本発明の実施形態による基板の熱処理方法を用いた場合、すなわち光照射開始後の開回路制御工程において、図1の光照射熱処理装置における多数のランプ101を、図4(a)に示す光照射強度分布になるようにパワー制御を行った場合の基板温度変化を示す。図8の実験に使用した半導体基板は図5と同様、比抵抗1−10Ωcmのものである。ランプの配列において中心部で光照射強度を高くし、周辺部で低くすると、図8のように基板の周辺(T6)と中心(T1)の温度差を少なくできることを示しているが(図8の0〜20秒程度の期間)これは、従来の光照射加熱のように急速な基板温度上昇によるストレスが小さくなり、基板のそりなどがほとんど起こらなくなり、加熱用ランプ光が直接パイロメータに入射しなくなったためと考えられる。   On the other hand, FIG. 8 is a graph showing a change with time of the temperature of the object to be heated by the heat treatment according to the embodiment of the present invention. When the substrate heat treatment method according to the embodiment of the present invention is used, that is, in the open circuit control step after the start of light irradiation, the multiple lamps 101 in the light irradiation heat treatment apparatus of FIG. A change in substrate temperature when power control is performed so as to obtain an intensity distribution is shown. The semiconductor substrate used in the experiment of FIG. 8 has a specific resistance of 1-10 Ωcm, as in FIG. FIG. 8 shows that the temperature difference between the periphery (T6) and the center (T1) of the substrate can be reduced as shown in FIG. 8 by increasing the light irradiation intensity at the central portion and decreasing it at the peripheral portion in the lamp arrangement (FIG. 8). This is a period of about 0 to 20 seconds) This is because the stress caused by rapid substrate temperature rise is reduced as in conventional light irradiation heating, and the substrate is hardly warped, and the heating lamp light is directly incident on the pyrometer. It is thought that it was gone.

本発明の実施形態による一つの基板熱処理方法においては、最初の光照射開始後の開回路制御工程で、図4(a)に示す光照射強度分布で基板を加熱、温度上昇させ、基板が一定の温度以上あるいは加熱時間が一定時間経過した後、図4(b)に示す一様な光照射強度分布で閉回路制御工程を行う。   In one substrate heat treatment method according to an embodiment of the present invention, in the open circuit control process after the start of the first light irradiation, the substrate is heated and the temperature is increased with the light irradiation intensity distribution shown in FIG. After the above temperature or the heating time has elapsed for a certain time, the closed circuit control process is performed with the uniform light irradiation intensity distribution shown in FIG.

図9は、被加熱体の比抵抗と最大温度差との関係を示す図である。図4(a)に示す光照射強度分布を用いて光照射急速熱処理の開回路制御工程を、種々の比抵抗を有する基板材料に適用した結果を示す。図の最大温度差は図6のT1とT6に位置するパイロメータで測定した温度の差である。基板はその直径が8インチであり、thermal SiO2は、シリコン基板に熱酸化膜を形成したもの、SiNはシリコン基板上にSiN膜を形成したもの、P-/Pepi−Siはシリコン基板に中濃度のP型エピタキシャル層を成長させたもの、P+/Pepi−Siは高濃度シリコン基板上に中濃度P型エピタキシャル成長層を形成したもの、dopedPolySiはシリコン基板上にリン、ボロン、砒素などを導入したポリシリコン膜を形成したものである。   FIG. 9 is a diagram showing the relationship between the specific resistance of the heated object and the maximum temperature difference. The result of having applied the open circuit control process of light irradiation rapid thermal processing to the board | substrate material which has various specific resistance using the light irradiation intensity distribution shown to Fig.4 (a) is shown. The maximum temperature difference in the figure is the difference in temperature measured by the pyrometer located at T1 and T6 in FIG. The substrate is 8 inches in diameter, thermal SiO2 is a silicon substrate formed with a thermal oxide film, SiN is a silicon substrate formed with a SiN film, and P- / Pepi-Si is a medium concentration on the silicon substrate. P + / Pepi-Si has a medium concentration P type epitaxial growth layer formed on a high concentration silicon substrate, and dopedPolySi introduces phosphorus, boron, arsenic, etc. on the silicon substrate. A polysilicon film is formed.

この結果から比抵抗が1Ω・cm以上になった場合に、光照射開始後の開回路制御工程において、加熱のための光照射強度に図4(a)のような分布を持たせることが、被加熱体のストレス低減に有効である。被加熱体内の最大温度差が70℃以上あると一般の半導体デバイス特性や信頼性に影響が顕著に表れるので、最大温度差が70℃以下、基板全体としての比抵抗が1Ω・cm以上を光照射強度分布を有する開回路制御工程を実施する基準となる。   From this result, when the specific resistance is 1 Ω · cm or more, in the open circuit control step after the start of light irradiation, the light irradiation intensity for heating can have a distribution as shown in FIG. It is effective for reducing the stress of the heated object. If the maximum temperature difference in the body to be heated is 70 ° C or higher, the effect on general semiconductor device characteristics and reliability will be noticeable. Therefore, the maximum temperature difference is 70 ° C or lower and the specific resistance of the entire substrate is 1Ω · cm or higher. This is a standard for performing an open circuit control process having an irradiation intensity distribution.

次に、基板における比抵抗が1Ω・cm以下のときは、最大温度差が70℃以上となるが、これは低抵抗の場合、温度変化、温度分布に対する基板の応答が速いのでランプの光照射強度に分布を持たせるとその分布が直接基板内温度分布に反映するものと考えられる。したがって本発明の実施形態では、基板の大部分が比抵抗が1Ω・cm以下である場合は、熱処理装置のランプの光照射強度を一様にして開回路制御工程を行う。   Next, when the specific resistance of the substrate is 1 Ω · cm or less, the maximum temperature difference is 70 ° C. or more. However, when the resistance is low, the response of the substrate to the temperature change and temperature distribution is fast, so the light irradiation of the lamp If the intensity is distributed, it is considered that the distribution directly reflects the temperature distribution in the substrate. Therefore, in the embodiment of the present invention, when most of the substrate has a specific resistance of 1 Ω · cm or less, the open circuit control step is performed with the light irradiation intensity of the lamp of the heat treatment apparatus made uniform.

以上述べた実施の形態では基板における比抵抗が1Ω・cm以上のとき、ランプの光照射強度を図4(a)のように領域203と領域204+領域205の2領域に分割したが、半導体基板など被加熱体の比抵抗に応じてさらに多くの領域に分割し、それぞれの領域ごとに投入電力、光照射強度を制御し強度分布を形成してもよい。   In the embodiment described above, when the specific resistance of the substrate is 1 Ω · cm or more, the light irradiation intensity of the lamp is divided into two regions 203 and 204 + region 205 as shown in FIG. It is possible to divide into more regions according to the specific resistance of the object to be heated, etc., and control the input power and light irradiation intensity for each region to form an intensity distribution.

本発明の実施形態による光照射熱処理装置は図1に示すごとくであるが、熱処理の開回路制御工程に関する図9のような実験結果などから、光照射熱処理を行う前に被加熱体の比抵抗測定を行う手段(比抵抗測定手段)と、被加熱体の測定された比抵抗に基づいて、被加熱体に対向させて平面状に設けられた多数のランプ集合の光照射強度に分布が生じるように、ランプの集合領域毎に照射すべき光強度を自動的に設定する手段(光照射強度制御手段)とを追加した装置にすることができる。被加熱体の比抵抗と、熱処理の開回路制御工程における被加熱体内の最大温度差が70℃以下と成るようなランプ集合の光照射強度分布との関係を求めそれを上記の光強度分布自動設定手段に入力しておけば上記装置が実現できる。   The light irradiation heat treatment apparatus according to the embodiment of the present invention is as shown in FIG. 1, but based on the experimental results as shown in FIG. 9 regarding the open circuit control process of heat treatment, the specific resistance of the object to be heated before the light irradiation heat treatment is performed. Based on the measurement means (specific resistance measurement means) and the measured specific resistance of the heated object, a distribution is generated in the light irradiation intensity of a large number of lamp sets provided in a plane so as to face the heated object. As described above, it is possible to provide an apparatus to which means (light irradiation intensity control means) for automatically setting the light intensity to be irradiated for each lamp collecting area is added. The relationship between the specific resistance of the object to be heated and the light irradiation intensity distribution of the lamp assembly in which the maximum temperature difference in the object to be heated in the open circuit control process of the heat treatment is 70 ° C. or less is obtained, and this is calculated as described above. The above apparatus can be realized if it is input to the setting means.

本発明に係る光照射熱処理方法および光照射熱処理装置は、光照射開始後の被加熱体の温度ばらつき低減により、ストレスを軽減し、ひずみ、ゆがみ、反り、割れ等が無く、被加熱体に作り込まれた半導体装置の特性変動を抑制し、信頼性不良を低減することができる等の効果を有し、半導体集積回路デバイス製造工程における種種の熱処理に使用されることはもちろん、急速高温加熱、熱処理によるストレス発生が問題となるデバイスに応用することができる。   The light irradiation heat treatment method and the light irradiation heat treatment apparatus according to the present invention reduce the stress by reducing the temperature variation of the object to be heated after the start of light irradiation, and are free from distortion, distortion, warping, cracking, etc. It has the effect of suppressing fluctuations in the characteristics of the embedded semiconductor device and reducing reliability defects, and is used for various types of heat treatment in the semiconductor integrated circuit device manufacturing process. It can be applied to devices in which the occurrence of stress due to heat treatment is a problem.

本発明の実施形態における光照射熱処理装置の概略図である。It is the schematic of the light irradiation heat processing apparatus in embodiment of this invention. 本発明の実施形態による光照射熱処理装置のランプ配置平面図である。It is a lamp | ramp arrangement top view of the light irradiation heat processing apparatus by embodiment of this invention. 本発明の実施形態による光照射熱処理装置のランプの光強度制御領域を示す図である。It is a figure which shows the light intensity control area | region of the lamp | ramp of the light irradiation heat processing apparatus by embodiment of this invention. 本発明の実施形態にランプの光照射強度分布を示す図である。It is a figure which shows the light irradiation intensity distribution of the lamp | ramp in embodiment of this invention. 従来の熱処理による被加熱体の温度時間的変化を示すグラフである。It is a graph which shows the temperature change of the to-be-heated body by the conventional heat processing. ランプと被加熱体に対する温度測定パイロメータの相対的位置を示す図である。It is a figure which shows the relative position of the temperature measurement pyrometer with respect to a lamp | ramp and a to-be-heated body. 従来例においてランプによる光照射を行ったときの被加熱体のそりを示す図である。It is a figure which shows the curvature of a to-be-heated body when the light irradiation by a lamp | ramp is performed in a prior art example. 本発明の実施形態による光照射熱処理方法による被加熱体の温度の時間的変化を示すグラフである。It is a graph which shows the time change of the temperature of the to-be-heated body by the light irradiation heat processing method by embodiment of this invention. 被加熱体の比抵抗と最大温度差との関係を示す図である。It is a figure which shows the relationship between the specific resistance of a to-be-heated body, and a maximum temperature difference.

符号の説明Explanation of symbols

101 ランプ
102 被加熱体支持体
103 被加熱体
104 パイロメータ
105 不活性ガス導入口
106 不活性ガス排気口
107 8インチ口径被加熱体位置
108 被加熱体支持体位置
201 被加熱体中心からの距離
202 被加熱体の半径
203 被加熱体より内側であって、101を半径とする円の領域
204 被加熱体より内側であって、103以外の領域
205 ランプの照射される領域であって、被加熱体以外の領域
501 ランプ
502 被加熱体支持体
503 パイロメータ
504 ストレスによるひずみが発生しない場合の被加熱体
505 ストレスによるひずみが発生した場合の被加熱体
506 被加熱体のひずみにより、パイロメータに直接入射したランプ光
DESCRIPTION OF SYMBOLS 101 Lamp 102 Heated object support body 103 Heated object 104 Pyrometer 105 Inert gas introduction port 106 Inert gas exhaust port 107 8 inch diameter heated object position 108 Heated object support position 201 Distance 202 from the center of the heated object Radius 203 of the object to be heated is inside the object to be heated and is a circle area 204 having a radius of 101. It is an area inside the object to be heated and is an area other than 103. Non-body region 501 Lamp 502 Heated object support 503 Pyrometer 504 Heated object 505 when no strain due to stress occurs Heated object 506 when stress due to stress occurs Direct incident on the pyrometer due to distortion of the heated object Lamp light

Claims (7)

容器内に被加熱体を支持し、前記被加熱体の一表面に対向して設けられた平面状の光照射加熱手段により前記被加熱体を熱処理する光照射熱処理方法であって、前記光照射加熱手段から光を照射して前記被加熱体の温度を上昇させる工程において、前記被加熱体面内の最大温度差が70℃以下となるような平面的な光強度分布を有する光を前記被加熱体に照射することを特徴とする光照射熱処理方法。   A light irradiation heat treatment method in which a heated body is supported in a container and the heated body is heat-treated by a planar light irradiation heating means provided facing one surface of the heated body, the light irradiation In the step of increasing the temperature of the object to be heated by irradiating light from the heating means, light having a planar light intensity distribution such that the maximum temperature difference in the surface of the object to be heated is 70 ° C. or less is heated. A light irradiation heat treatment method characterized by irradiating a body. 前記被加熱体の温度を上昇させる工程の後、前記光照射加熱手段から平面的に一様な強度を有する光を前記被加熱体に照射して熱処理する工程を含む請求項1に記載の光照射熱処理方法。   2. The light according to claim 1, further comprising a step of performing heat treatment by irradiating the object to be heated with light having a uniform intensity in a plane from the light irradiation heating unit after the step of increasing the temperature of the object to be heated. Irradiation heat treatment method. 前記被加熱体が円形状であり、前記光照射加熱手段からの平面的な光強度分布は同心円状の分布である請求項1または2に記載の光照射熱処理方法。   The light irradiation heat treatment method according to claim 1, wherein the object to be heated has a circular shape, and a planar light intensity distribution from the light irradiation heating unit is a concentric distribution. 前記被加熱体は半導体基板からなる請求項1または3に記載の光照射熱処理方法。   The light irradiation heat treatment method according to claim 1, wherein the object to be heated is a semiconductor substrate. 容器内に設けられた被加熱体を支持する支持体と、前記支持体に支持された被加熱体の一表面に対向して設けられた平面状の光照射加熱手段と、前記被加熱体の一表面とは反対側の他表面に対向して設けられた温度測定手段と、前記被加熱体の温度を上昇させるとき、前記被加熱体面内の最大温度差が70℃以下となるように前記光照射加熱手段の平面内での光照射強度分布を制御する光強度制御手段とを備えた光照射熱処理装置。   A support for supporting the heated body provided in the container, a planar light irradiation heating means provided facing one surface of the heated body supported by the support, and the heated body The temperature measuring means provided opposite to the other surface opposite to the one surface, and when the temperature of the object to be heated is increased, the maximum temperature difference in the surface of the object to be heated is 70 ° C. or less. A light irradiation heat treatment apparatus comprising: a light intensity control means for controlling a light irradiation intensity distribution in a plane of the light irradiation heating means. 前記光照射加熱手段は、多数の加熱ランプが平面的に配列された集合体からなり、前記加熱ランプの集合体は平面的な複数の領域に分割され、それぞれの領域は互いに独立した光照射強度に設定可能とした請求項5に記載の光照射熱処理装置。   The light irradiation heating means is composed of an assembly in which a large number of heating lamps are arranged in a plane, and the assembly of the heating lamps is divided into a plurality of planar regions, and each region has an independent light irradiation intensity. The light irradiation heat treatment apparatus according to claim 5, which can be set as follows. 前記被加熱体は半導体基板からなり、前記加熱ランプの集合体は平面的に同心円状の複数の領域に分割されている請求項6に記載の光照射熱処理装置。   The light irradiation heat treatment apparatus according to claim 6, wherein the object to be heated is made of a semiconductor substrate, and the assembly of the heating lamps is divided into a plurality of planar concentric regions.
JP2007209120A 2007-08-10 2007-08-10 Method and apparatus for heat treatment by light irradiation Pending JP2008010883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209120A JP2008010883A (en) 2007-08-10 2007-08-10 Method and apparatus for heat treatment by light irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209120A JP2008010883A (en) 2007-08-10 2007-08-10 Method and apparatus for heat treatment by light irradiation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004011841A Division JP4024764B2 (en) 2004-01-20 2004-01-20 Light irradiation heat treatment method and light irradiation heat treatment apparatus

Publications (1)

Publication Number Publication Date
JP2008010883A true JP2008010883A (en) 2008-01-17

Family

ID=39068742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209120A Pending JP2008010883A (en) 2007-08-10 2007-08-10 Method and apparatus for heat treatment by light irradiation

Country Status (1)

Country Link
JP (1) JP2008010883A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339930U (en) * 1986-08-29 1988-03-15
JPH07316811A (en) * 1994-05-23 1995-12-05 Hitachi Ltd Temperature controlling method by multipoint temperature monitor and semiconductor producing device
JPH118204A (en) * 1997-06-13 1999-01-12 Sci Technol Kk High speed lamp-heating processor
JP2002164300A (en) * 2000-11-29 2002-06-07 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer
JP2002367914A (en) * 2001-06-11 2002-12-20 Tokyo Electron Ltd Heat treatment device
JP2003318121A (en) * 2002-04-26 2003-11-07 Trecenti Technologies Inc Method for manufacturing semiconductor device
JP2005209698A (en) * 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd Light-irradiation heat treatment method and light-irradiation heat treatment equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339930U (en) * 1986-08-29 1988-03-15
JPH07316811A (en) * 1994-05-23 1995-12-05 Hitachi Ltd Temperature controlling method by multipoint temperature monitor and semiconductor producing device
JPH118204A (en) * 1997-06-13 1999-01-12 Sci Technol Kk High speed lamp-heating processor
JP2002164300A (en) * 2000-11-29 2002-06-07 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer
JP2002367914A (en) * 2001-06-11 2002-12-20 Tokyo Electron Ltd Heat treatment device
JP2003318121A (en) * 2002-04-26 2003-11-07 Trecenti Technologies Inc Method for manufacturing semiconductor device
JP2005209698A (en) * 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd Light-irradiation heat treatment method and light-irradiation heat treatment equipment

Similar Documents

Publication Publication Date Title
JP4024764B2 (en) Light irradiation heat treatment method and light irradiation heat treatment apparatus
CN108028213A (en) Pre-heating mean for Millisecond annealing system
TW303498B (en)
JP6153749B2 (en) Temperature measuring device, temperature measuring method and heat treatment device
KR20080102335A (en) Controlled annealing method
JP2006344678A (en) Method and device for heat treatment
JP4143376B2 (en) Heater and heater assembly for semiconductor device manufacturing apparatus
JPH09237789A (en) Shielding body as well as apparatus and method for heat treatment
JP2007335604A (en) Manufacturing method of semiconductor device
JP4744112B2 (en) Heat treatment equipment
US8420555B2 (en) Manufacturing method for semiconductor device and manufacturing apparatus for semiconductor device
JP2008010883A (en) Method and apparatus for heat treatment by light irradiation
JPH06177141A (en) Heat treatment furnace
JP4558031B2 (en) Heat treatment apparatus and heat treatment method
JP2006100067A (en) Induction heating device
JP5021347B2 (en) Heat treatment equipment
JP4079582B2 (en) Heat treatment apparatus and heat treatment method
JP2003279245A (en) Drying method and device for coating film, manufacturing method for device, and device
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2002221394A (en) Heating device for electronic component
JP2007335344A (en) Heating apparatus
CN211265419U (en) Edge ring of wafer heat treatment equipment and wafer heat treatment equipment
JP2008153592A (en) Substrate processing system, and substrate processing method
JP5468895B2 (en) Heating apparatus and substrate processing apparatus
TWI275914B (en) A mask structure for controlling the temperature on the surface of a semiconductor wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20101222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110124

A521 Written amendment

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110228

A131 Notification of reasons for refusal

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313