JP2008007945A - Earthquake resistant structure - Google Patents

Earthquake resistant structure Download PDF

Info

Publication number
JP2008007945A
JP2008007945A JP2006176308A JP2006176308A JP2008007945A JP 2008007945 A JP2008007945 A JP 2008007945A JP 2006176308 A JP2006176308 A JP 2006176308A JP 2006176308 A JP2006176308 A JP 2006176308A JP 2008007945 A JP2008007945 A JP 2008007945A
Authority
JP
Japan
Prior art keywords
steel plate
corrugated steel
slabs
joined
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006176308A
Other languages
Japanese (ja)
Other versions
JP4881084B2 (en
Inventor
Yoshihiro Ota
義弘 太田
Hirofumi Kaneko
洋文 金子
Satoru Aizawa
覚 相澤
Takahiro Kei
崇博 毛井
Hideki Kimura
秀樹 木村
Yasumasa Miyauchi
靖昌 宮内
Takashi Ikeda
崇 池田
Naoki Aso
直木 麻生
Yasuaki Hirakawa
恭章 平川
Kazutomi Nakane
一臣 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2006176308A priority Critical patent/JP4881084B2/en
Publication of JP2008007945A publication Critical patent/JP2008007945A/en
Application granted granted Critical
Publication of JP4881084B2 publication Critical patent/JP4881084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for improving the earthquake resistant performance by disposing a waveform steel plate having a small resistance to the vertical axial force and bending in the out-of-plane direction although resisting internal bending and shearing force as a wall outside the structural plane of a column-beam frame between beams or slabs of upper and lower floors. <P>SOLUTION: As a wall erected between the beams or slabs of upper and lower floors causing inter-layer deformation by horizontal force, the waveform steel plate is disposed with the folding line pointing in the horizontal direction, a flange steel plate is connected to the waveform steel plate along the right and left side parts, a base plate is joined thereto along the upper and lower horizontal side parts, and the flange steel plate and the base plate are integrally joined at the intersection points to form a frame. The upper and lower base plates are joined to the beams or slabs of the upper and lower floors through a shearing force transmission element and installed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、地震や風等により建物に作用する水平力に降伏してエネルギーを吸収する耐震構造の技術分野に属し、更に云うと、柱梁架構の構面外の壁体として内面曲げ及び剪断力には抵抗するが、鉛直軸力及び面外方向への曲げに対しては抵抗が小さい波形鋼板を上下階の小梁間又はスラブ間に配置して耐震性能を向上する構造に関する。   The present invention belongs to the technical field of seismic structures that absorb energy by surrendering to horizontal forces acting on buildings due to earthquakes, winds, etc., and more specifically, internal bending and shearing as walls outside the structure of column beam frames. The present invention relates to a structure that improves seismic performance by disposing corrugated steel plates between vertical beams and slabs on the upper and lower floors, which resists force but has low resistance to vertical axial force and out-of-plane bending.

従来から、頻繁に発生する地震を対処するために、柱梁(大梁)架構の構面内にRC壁を配置して主に斜めに形成される圧縮束により水平荷重を負担することが実用に供されている。特に既存建物において、更なる水平剛性及び耐力を確保する場合に、前記RC壁を柱梁架構の構面外の仕切り壁や、袖壁、腰壁等の壁体においても自由に配置して耐震補強の精度及び自由度を向上させている。   Conventionally, in order to cope with frequent earthquakes, it is practical to place a horizontal wall in the construction surface of a column beam (large beam) frame and to bear a horizontal load mainly by a compression bundle formed diagonally. It is provided. Especially in existing buildings, in order to secure further horizontal rigidity and proof strength, the RC wall can be freely arranged on the partition walls outside the structure of the column beam frame, sleeve walls, waist walls, etc. The accuracy and flexibility of reinforcement are improved.

また、柱梁架構の構面外の箇所を耐震補強する方法として下記の特許文献1には、各階のスラブにおける柱梁架構以外の箇所に、下階から補強設置階まで貫通する作業孔を開口し、作業孔を貫通した柱を既存建物の基礎に建て込み、前記柱間に補強梁を架設して柱梁架構を形成し、作業孔を塞いで前記補強梁を各スラブと一体化して耐震補強架構を構築する技術が開示されている。   In addition, as a method for seismic reinforcement of a location outside the structure of the column beam frame, Patent Document 1 below provides a work hole penetrating from the lower floor to the reinforcement installation floor at a location other than the column beam frame in the slab of each floor. A pillar that penetrates the work hole is built in the foundation of the existing building, a reinforcing beam is built between the pillars to form a column beam structure, the work hole is closed, and the reinforcing beam is integrated with each slab. A technique for constructing a reinforcing frame is disclosed.

特開2005−179978号公報JP 2005-179978 A

上記の柱梁架構の構面外の箇所にRC壁を配置する技術は、図8に示すように前記RC壁30が上下階のスラブ31、31のみと接合されるため、同スラブ31のRC壁30が取り付く部分Xが面外変形を拘束され、同スラブ31の壁30の端部Yに面外に大きな面外せん断及び面外曲げモーメントが集中して発生し、スラブ31に大きな損傷を与えるという問題点がある。   As shown in FIG. 8, the RC wall 30 is joined only to the upper and lower slabs 31 and 31 as shown in FIG. The portion X to which the wall 30 is attached is restrained from out-of-plane deformation, and large out-of-plane shear and out-of-plane bending moments are concentrated on the end Y of the wall 30 of the slab 31 to cause great damage to the slab 31. There is a problem of giving.

特許文献1の耐震補強架構は、柱梁架構の構面外の箇所においても、耐震補強を実施している点は認められる。しかし、下階から補強設置階まで連層して構築する構成であるため、特に最下階の梁には相当の自重がかかるし、軸力又は面外方向の曲げ力が各階の梁(又はスラブ)に集中的に加わるため、前記各梁に更なる補強構造を施工する必要が生じて、コストが嵩み作業効率が悪い。
また、耐震補強架構は下階から順に施工していくため、不必要な作業が関係のない下階に加算されて、各階毎に別々の工事を行えず作業効率が著しく悪くなるという問題がある。
It is recognized that the earthquake-resistant reinforcement frame of Patent Document 1 is also subjected to earthquake-proof reinforcement even at locations outside the column beam frame. However, since it is constructed in a layered structure from the lower floor to the reinforcement installation floor, a considerable weight is applied to the beam on the lowermost floor in particular, and the axial force or the bending force in the out-of-plane direction causes the beam (or Since the slab is intensively added to the slab, it is necessary to construct a further reinforcing structure on each of the beams, resulting in high costs and poor work efficiency.
In addition, since the seismic retrofit frames are constructed in order from the lower floor, unnecessary work is added to the lower floors that are not related, and there is a problem that separate work cannot be performed for each floor and work efficiency is significantly deteriorated. .

ところで、面内の曲げ及びせん断に対するせん断耐力及び剛性が大きくて、剛性及び強度設計の自由度が高く、軸力及び面外方向への曲げ力に対する抵抗が小さいという力学的特性を有する波形鋼板を、柱梁架構の構面外の箇所へ配置して耐震補強する点は未だ見聞きしない。   By the way, a corrugated steel sheet having mechanical properties such as a large shear strength and rigidity against in-plane bending and shear, a high degree of freedom in rigidity and strength design, and a small resistance to axial and out-of-plane bending forces. I have not seen or heard about the point where it is placed outside the surface of the column beam frame and is seismically strengthened.

本発明の目的は、柱梁架構などの構面外であって上下階の小梁間又はスラブ間へ建て込む壁体として波形鋼板を使用して構築し、スラブ又は小梁の補強を低減し、精度の高い耐震効果を発揮させ、作業効率を向上させる耐震構造を提供することにある。   The object of the present invention is to construct a corrugated steel plate as a wall body to be built between the small beams on the upper and lower floors or between the slabs outside the structural surface such as the column beam frame, to reduce the reinforcement of the slabs or small beams, The purpose is to provide a seismic structure that exhibits high precision seismic effect and improves work efficiency.

上記した背景技術の課題を解決するための手段として、請求項1に記載した発明に係る耐震構造は、
柱梁架構の構面外であって、水平力で層間変形を発生する上下階の小梁間又はスラブ間へ建て込む壁体として波形鋼板がその折り筋を水平方向に向けた配置とされ、
前記波形鋼板には、左右の側辺部に沿ってフランジ鋼板が接続され、上下の水平辺部に沿ってベースプレートが接合され、前記フランジ鋼板とベースプレートとは、その交点を一体的に接合されて枠が形成されており、
上下のベースプレートは前記上下階の小梁又はスラブと剪断力伝達要素を介して接合して設置されていることを特徴とする。
As means for solving the problems of the background art described above, the earthquake-resistant structure according to the invention described in claim 1 is:
The corrugated steel sheet is placed outside the surface of the column beam frame, and the corrugated steel plate is placed in the horizontal direction between the upper and lower beam beams or slabs that generate interlayer deformation by horizontal force.
A flange steel plate is connected to the corrugated steel plate along the left and right side portions, a base plate is joined along the upper and lower horizontal sides, and the intersection of the flange steel plate and the base plate is integrally joined. A frame is formed,
The upper and lower base plates are installed by being joined to the upper and lower floor beams or slabs via a shearing force transmitting element.

請求項2記載した発明は、請求項1に記載した耐震構造において、
波形鋼板の左右の側辺部に沿って接続されたフランジ鋼板の片側又は両側は、間柱と剪断力伝達要素を介して接続されていることを特徴とする。
The invention described in claim 2 is the earthquake resistant structure described in claim 1,
One side or both sides of the flange steel plate connected along the left and right side portions of the corrugated steel plate are connected to each other via a stud and a shearing force transmission element.

請求項3記載の発明は、請求項1又は2に記載した耐震構造において、
波形鋼板は、鉛直方向及び水平方向に複数連結されていることを特徴とする。
The invention according to claim 3 is the earthquake resistant structure according to claim 1 or 2,
A plurality of corrugated steel sheets are connected in the vertical direction and the horizontal direction.

請求項1又は2に記載した発明に係る耐震構造は、以下のような効果を奏する。
柱梁架構の構面外で上下階の小梁間又はスラブ間へ建て込む壁体として、波形鋼板をその折り筋を水平方向に向けて配置するので、前記波形鋼板が鉛直軸力又はねじり変形等の外方向の曲げ力には抵抗せずに許容する力学特性を発揮するので、前記小梁又はスラブの前記壁体が取り付いている箇所に過度の軸力、剪断力及び曲げモーメントが発生せず、補強をする格別の必要がないし、あったとしても軽微な補強で対応できる。また、柱梁架構の構面外に構築される壁体に等しく実施でき設計自由度が飛躍的に向上されて、精度の高い耐震効果を発揮できる。
また、本発明の耐震構造は、同一階で波形鋼板を用いた壁体の構築を行なうので、上下階の作業に不必要な影響を与えることなく効率の良い作業に寄与する。
The earthquake-resistant structure according to the invention described in claim 1 or 2 has the following effects.
Since the corrugated steel sheet is placed with its fold line in the horizontal direction as a wall to be built between the beams on the upper and lower floors or between the slabs outside the surface of the column beam frame, the corrugated steel sheet has vertical axial force or torsional deformation, etc. It exerts the mechanical characteristics that allow it without resisting the outward bending force, so that excessive axial force, shearing force and bending moment do not occur at the place where the wall of the beam or slab is attached. There is no special need for reinforcement, and even if there is, it can be handled with minor reinforcement. Moreover, it can be equally applied to the wall constructed outside the structure of the column beam frame, and the degree of freedom in design is greatly improved, so that a highly accurate seismic effect can be exhibited.
Moreover, since the seismic structure of the present invention constructs a wall body using corrugated steel sheets on the same floor, it contributes to efficient work without unnecessarily affecting the work on the upper and lower floors.

請求項3に記載された発明によれば、波形鋼板は鉛直方向に及び水平方向に複数連結して組み合わせているので、設置する場所に合わせて幅と高さを自由に調節して設計の自由度が向上するし、運搬し易い。   According to the invention described in claim 3, since the corrugated steel sheets are combined by combining a plurality of corrugated steel sheets in the vertical direction and the horizontal direction, the width and height can be freely adjusted according to the installation location, and the design can be freely performed. The degree is improved and it is easy to carry.

本発明は、柱1梁2架構の構面外であって、水平力で層間変形を発生する上下階の小梁間又はスラブ4間へ建て込む壁体3として波形鋼板5がその折り筋を水平方向に向けた配置とされ、前記波形鋼板5の左右の側辺部に沿ってフランジ鋼板6が接続され、上下の水平辺部に沿ってベースプレート7が接合され、前記フランジ鋼板6とベースプレート7とは、その交点を一体的に接合されて枠8が形成されており、上下のベースプレート7、7は前記上下階の小梁又はスラブ4、4と剪断力伝達要素9を介して接合して設置されている構成である。   In the present invention, the corrugated steel plate 5 is located outside the plane of the column 1 beam 2 frame and is built between the upper and lower beam beams or between the slabs 4 that generate interlayer deformation by horizontal force. The flange steel plate 6 is connected along the left and right side portions of the corrugated steel plate 5, the base plate 7 is joined along the upper and lower horizontal sides, and the flange steel plate 6, the base plate 7, The frame 8 is formed by integrally joining the intersections, and the upper and lower base plates 7 and 7 are installed by being joined to the upper and lower floor beams or slabs 4 and 4 via the shearing force transmitting element 9. It is the structure which is done.

請求項1に記載した本発明に係る免震補強構造を図1〜4に基づいて説明する。
本発明は、図1の平面図に示すように柱1と大梁2との柱梁架構の構面外であって、小梁間又はスラブ4間へ建て込む間仕切り壁、袖壁、腰壁等の壁体3に好適に実施されるものであり、波形鋼板5をその折り筋を水平方向に向けて、水平剪断力には抵抗するが軸力及び面外方向の曲げに対する抵抗が小さい構成で組み入れて実施される。
A seismic isolation reinforcing structure according to the present invention as set forth in claim 1 will be described with reference to FIGS.
As shown in the plan view of FIG. 1, the present invention is outside of the structure of the column beam structure of the column 1 and the large beam 2 and is installed between the small beams or between the slabs 4, such as partition walls, sleeve walls, waist walls, etc. The corrugated steel plate 5 is preferably implemented in the wall body 3 and has a structure in which the corrugated steel sheet 5 is oriented in the horizontal direction and resists horizontal shearing force but has little resistance to axial and out-of-plane bending. Implemented.

前記波形鋼板5は、具体的に図示することは省略したが、波の数を例えば2程度の少数とする小型の波形鋼板を鉛直方向に及び水平方向に連結して組み合わせて、設置する場所の幅及び高さに構築される。したがって、設置する場所に合わせて幅と高さを自由に調節できるので設計の自由度が向上するし、運搬し易い(請求項3記載の発明)。   Although the corrugated steel sheet 5 is not specifically illustrated, the corrugated steel sheet 5 is a combination of small corrugated steel sheets having a small number of waves, for example, about two, connected in the vertical direction and the horizontal direction. Built to width and height. Accordingly, the width and height can be freely adjusted according to the installation location, so that the degree of freedom in design is improved and transportation is easy (the invention according to claim 3).

上記のように連結して構築された波形鋼板5には、図2に示すように、その左右の側辺部に沿ってフランジ鋼板6、6が溶接等により接続されている。また、波形鋼板5の上下の水平辺部に沿って剪断力を伝達するベースプレート7、7がやはり溶接等により接合されている。そして、前記フランジ鋼板6とベースプレート7とは、その交点を一体的に接合されて枠8が形成されている。前記枠8は、直行して設けられる波形鋼板5の厚みよりも十分に幅広な長さとされており、波形鋼板5が負担する水平力に枠8がしっかり抵抗し且つ上下のスラブ4、4へ伝達される構成である。
その後、上下のベースプレート7、7と上下階のスラブ4、4とは、図3A、図3Bに示すように、剪断力伝達要素9によって接合される。
As shown in FIG. 2, the flanged steel plates 6, 6 are connected to the corrugated steel plate 5 connected and constructed as described above along the left and right side portions thereof by welding or the like. Further, base plates 7 and 7 for transmitting a shearing force along the upper and lower horizontal sides of the corrugated steel plate 5 are also joined by welding or the like. The flange steel plate 6 and the base plate 7 are integrally joined at their intersections to form a frame 8. The frame 8 has a length that is sufficiently wider than the thickness of the corrugated steel sheet 5 provided in a straight line, and the frame 8 firmly resists the horizontal force borne by the corrugated steel sheet 5 and moves to the upper and lower slabs 4, 4. It is a configuration to be transmitted.
Thereafter, the upper and lower base plates 7 and 7 and the upper and lower floor slabs 4 and 4 are joined together by a shearing force transmitting element 9 as shown in FIGS. 3A and 3B.

前記剪断力伝達要素9は、例えば同スラブ4へ予め取り付けられた孔(図示省略)へPC鋼棒又はボルト90等を前記ベースプレート7に設けた貫通孔(図示省略)へ通し、ベースプレート7の内側からナット91等により締め付けて接合する構成とされている。   The shear force transmitting element 9 is formed by passing a PC steel rod or a bolt 90 or the like through a hole (not shown) provided in the base plate 7 through a hole (not shown) previously attached to the slab 4. To be joined by tightening with a nut 91 or the like.

勿論、この限りではなく、図4の拡大図に示すように、スタッドボルト10をベースプレート7からスラブ4へ向かって、及びスラブ4からベースプレート7に向かって、その頭部がスラブ4とベースプレート7のスパン内にとどまる長さで配置され、前記スパン内にスパイラル筋11を配備した後、モルタルを充填して接続する方法もある。
更に、図示することは省略したがスラブ4とベースプレート7の接触面に接着材を塗布して接合する方法も考えられる。
Of course, the present invention is not limited to this, and as shown in the enlarged view of FIG. 4, the stud bolts 10 are directed from the base plate 7 toward the slab 4 and from the slab 4 toward the base plate 7. There is also a method in which the spiral muscles 11 are arranged in a length that stays in the span, and the mortar is filled and connected after the spiral muscle 11 is arranged in the span.
Furthermore, although illustration is omitted, a method of applying an adhesive to the contact surface between the slab 4 and the base plate 7 and joining them may be considered.

前記波形鋼板5は、断面形状が折板状(図2)になっている。その折板形状は矩形波形状に形成されており、固有の力学的特性を得られる構成とされている。但し、波形鋼板5の断面形状は図7A〜Dに示す例の限りではなく、種々な波形状で実施できる。
固有の力学的特性としては、水平剪断力に対し、波形鋼板5の折板になっている一枚一枚が剪断力に対して十分に抵抗し、その集合として全体が水平剪断力に十分に大きな抵抗をする。
The corrugated steel plate 5 has a folded plate shape (FIG. 2). The folded plate shape is formed in a rectangular wave shape and is configured to obtain unique mechanical characteristics. However, the cross-sectional shape of the corrugated steel sheet 5 is not limited to the example shown in FIGS.
As an inherent mechanical characteristic, each of the folded plates of the corrugated steel plate 5 sufficiently resists the shearing force against the horizontal shearing force, and the whole as a set is sufficiently resistant to the horizontal shearing force. Make a big resistance.

波形鋼板5は折板になっているので、剪断剛性及び強度は、鋼材の材質固有の強度の他に、板厚の大きさ(通例9mm〜22mm程度)、重ね合わせの枚数、ピッチ(通例500mm〜700mm程度)及び波高の大きさ(通例80mm〜150mm程度)などの設計如何により自在に設計することができる。   Since the corrugated steel plate 5 is a folded plate, the shear rigidity and strength are not only the strength inherent to the steel material, but also the size of the plate (usually about 9 mm to 22 mm), the number of overlaps, and the pitch (typically 500 mm). About 700 mm) and the wave height (usually about 80 mm to 150 mm).

また、波形鋼板5は折板になっているので、波形の筋に直角な軸力に対してはアコーディオンの如くに自由に伸び縮みし、剛性と耐力が小さい。波形面内の曲げに対しても、同様にアコーディオンの如く自由に伸び縮みして圧縮及び引っ張りを許容するので、剛性、耐力が小さい。したがって、スラブ4がRC造、SRC造等々のコンクリート構造であっても、コンクリートのクリープ、乾燥収縮によるコンクリート造スラブ4の軸力を負担せず、耐震壁としての力学特性にさして変化をきたさない。特に壁体3が取り付いている箇所においては、過度の軸力、剪断力及び曲げモーメントが発生せず、補強をする格別の必要がないし、あったとしても軽微な補強で対応できる。そして、施工時及び供用時において付加軸力が導入されることがなく、波形鋼板5の剪断座屈強度及び靱性は高く維持されるし、地震時の剪断変形に対して経年変化を生ずることもなく良好な耐震機能を発揮する。   Further, since the corrugated steel plate 5 is a folded plate, the axial force perpendicular to the corrugated streak freely expands and contracts like an accordion, and the rigidity and proof stress are small. Similarly, bending and bending within the corrugated surface can be freely expanded and contracted like an accordion to allow compression and tension, so that rigidity and yield strength are small. Therefore, even if the slab 4 has an RC structure, an SRC structure, or the like, it does not bear the axial force of the concrete slab 4 due to concrete creep or drying shrinkage, and does not change the mechanical characteristics as a seismic wall. . In particular, at the place where the wall 3 is attached, excessive axial force, shearing force and bending moment do not occur, and there is no special need for reinforcement, and even if there is, it can be handled with slight reinforcement. Further, no additional axial force is introduced at the time of construction and in service, the shear buckling strength and toughness of the corrugated steel sheet 5 are maintained at a high level, and secular change may occur with respect to the shear deformation at the time of earthquake. Excellent seismic function.

一方、波形の折り筋に垂直な方向の面外力(曲げ及び剪断)に対する剛性、耐力は、折板になっているので十分大きいが、波形の折り筋に平行な方向の面外力(ねじり及び剪断)に対しては、折板になっているが故に抵抗が小さい。したがって、耐震壁の剛性や強度をそれぞれ独立的に制御することが容易に可能であり設計の自由度は極めて高い。
更に、波形の山と谷の高さ(波高)は戸境壁の厚さ寸法内に納めことができる程度(例えば80mm〜150mm)なので、居室等の床面積に悪影響を及ぼさない実施ができる利点もある。
On the other hand, the rigidity and proof stress against the out-of-plane force (bending and shearing) in the direction perpendicular to the corrugated folding line is sufficiently large because it is a folded plate, but the out-of-plane force (torsion and shearing) in the direction parallel to the corrugating folding line. ) Has a small resistance because it is a folded plate. Therefore, the rigidity and strength of the seismic wall can be easily controlled independently, and the degree of freedom in design is extremely high.
Furthermore, the height of the corrugated peaks and valleys (wave height) is such that it can be accommodated within the thickness dimension of the door wall (for example, 80 mm to 150 mm), so that it can be carried out without adversely affecting the floor area of the living room. There is also.

また、上記のような構成であるため柱梁架構の構面外のどの壁体にも等しく実施可能であり、設計自由度が飛躍的に向上されて、精度の高い耐震効果を発揮できる。
また本発明の耐震構造は、同一階で波形鋼板5を組み入れた壁体8を構築するので、上下階の作業に不必要な影響を与えることなく効率の良い作業で構築できる。
Moreover, since it is the above structures, it can apply equally to any wall body outside the structure of a column beam structure, a design freedom is improved greatly, and a highly accurate earthquake-resistant effect can be exhibited.
Moreover, since the seismic structure of the present invention constructs the wall body 8 incorporating the corrugated steel plate 5 on the same floor, it can be constructed with an efficient work without unnecessarily affecting the work on the upper and lower floors.

本発明の耐震構造は、図1〜4に示した上下のスラブ4、4のみとの接合で実施する限りではない。図5A、図5Bに示すように、同じく柱1、大梁2架構の構面外であって、例えば大梁2の上に間柱12が構築されている場合においては、先ず、上述した実施例1の如く上下のスラブ4、4間に波形鋼板5をその折り筋を水平方向に向けて、枠8の上下の水平辺部を形成するベースプレート7と同スラブ4とを上記剪断力伝達要素9により接続して組み入れる。次に、波形鋼板5の左右の側辺部に接続されたフランジ鋼板6の片側(図示では左側)と前記間柱12とをやはり剪断力伝達要素9により接合して壁体13を構築することも好適に実施される。
前記剪断力伝達要素9は、実施例1で説明したように、PC鋼棒やボルト90、又は図4に示したようなスタッドボルト10とスパイラル筋11を配備した後モルタルを充填して接続する方法等が適宜実施される。
また、図示したように間柱12とフランジ鋼板6の片側とは単に接着材による接合としても良い。
The seismic structure of the present invention is not limited to be implemented by joining only the upper and lower slabs 4 and 4 shown in FIGS. As shown in FIGS. 5A and 5B, when the pillars 12 and the large beams 2 are out of the plane of construction, for example, when the studs 12 are constructed on the large beams 2, first, the first embodiment described above is used. In this way, the corrugated steel plate 5 is placed between the upper and lower slabs 4 and 4 with the fold line directed in the horizontal direction, and the base plate 7 forming the upper and lower horizontal sides of the frame 8 and the same slab 4 are connected by the shearing force transmitting element 9. And incorporate. Next, one side (left side in the figure) of the flanged steel plate 6 connected to the left and right side portions of the corrugated steel plate 5 and the stud 12 are also joined by the shear force transmission element 9 to construct the wall body 13. It is preferably implemented.
As described in the first embodiment, the shear force transmitting element 9 is connected to a PC steel rod or bolt 90, or a stud bolt 10 and a spiral bar 11 as shown in FIG. A method or the like is appropriately performed.
Moreover, as shown in the figure, the spacer 12 and one side of the flange steel plate 6 may be simply joined by an adhesive.

図5A、Bにおいては、片側(左側)の間柱12とのみ接合される場合を示したが、この限りではなく、図6A、Bに示すように、間柱12、12が両側に構築されている場合は、フランジ鋼板6、6の両側と両側(左右)の間柱12、12とを剪断力伝達要素9を介してそれぞれ接続して壁体14を構築することもできる。剪断力伝達要素9は実施例1及び実施例2で説明したとおりである。   In FIGS. 5A and 5B, the case where only one side (left side) of the pillars 12 is joined is shown. However, the present invention is not limited to this, and as shown in FIGS. 6A and B, the pillars 12 and 12 are constructed on both sides. In this case, the wall body 14 can also be constructed by connecting the both sides of the flange steel plates 6 and 6 and the pillars 12 and 12 on both sides (left and right) via the shearing force transmitting element 9. The shearing force transmitting element 9 is as described in the first and second embodiments.

以上に本発明の実施例を説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の形態で実施し得る。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the gist of the present invention.

本発明に係る耐震構造を実施する構面外を示す平面図である。It is a top view which shows the structure outside which implements the earthquake-resistant structure which concerns on this invention. 波形鋼板にフランジ鋼板とベースプレートを接合して枠を形成した一例を示す図である。It is a figure which shows an example which joined the flange steel plate and the baseplate to the corrugated steel plate, and formed the frame. Aは本発明に係る耐震構造を実施した立面図である。BはAの側面図である。A is an elevational view of the seismic structure according to the present invention. B is a side view of A. FIG. 剪断力伝達要素の他の実施例を示した拡大図である。It is the enlarged view which showed the other Example of the shearing force transmission element. A、Bは本発明に係る耐震構造の実施例2の概念を示す図である。A and B are figures which show the concept of Example 2 of the earthquake-resistant structure based on this invention. A、Bは本発明に係る耐震構造の実施例3の概念を示す図である。A and B are figures which show the concept of Example 3 of the earthquake-resistant structure based on this invention. A〜Dは波形鋼板の異なる断面形状を示した説明図である。AD is explanatory drawing which showed the different cross-sectional shape of a corrugated steel plate. 従来例の課題を概念的に示した参考図である。It is the reference figure which showed the subject of the prior art example notionally.

符号の説明Explanation of symbols

1 柱
2 大梁
3、13、14 壁体
4 スラブ
5 波形鋼板
6 フランジ鋼板
7 ベースプレート
8 枠
9 剪断力伝達要素
10 スタッドボルト
11 スパイラル筋
12 間柱
DESCRIPTION OF SYMBOLS 1 Column 2 Large beam 3, 13, 14 Wall body 4 Slab 5 Corrugated steel plate 6 Flange steel plate 7 Base plate 8 Frame 9 Shear force transmission element 10 Stud bolt 11 Spiral muscle 12 Spacer

Claims (3)

柱梁架構の構面外であって、水平力で層間変形を発生する上下階の小梁間又はスラブ間へ建て込む壁体として波形鋼板がその折り筋を水平方向に向けた配置とされ、
前記波形鋼板には、左右の側辺部に沿ってフランジ鋼板が接続され、上下の水平辺部に沿ってベースプレートが接合され、前記フランジ鋼板とベースプレートとは、その交点を一体的に接合されて枠が形成されており、
上下のベースプレートは前記上下階の小梁又はスラブと剪断力伝達要素を介して接合して設置されていることを特徴とする、耐震構造。
The corrugated steel sheet is placed outside the surface of the column beam frame, and the corrugated steel plate is placed in the horizontal direction between the upper and lower beam beams or slabs that generate interlayer deformation by horizontal force.
A flange steel plate is connected to the corrugated steel plate along the left and right side portions, a base plate is joined along the upper and lower horizontal sides, and the intersection of the flange steel plate and the base plate is integrally joined. A frame is formed,
A seismic structure, wherein the upper and lower base plates are installed by joining the beam or slab on the upper and lower floors via a shearing force transmitting element.
波形鋼板の左右の側辺部に沿って接続されたフランジ鋼板の片側又は両側は、間柱と剪断力伝達要素を介して接続されていることを特徴とする、請求項1に記載した耐震構造。   The seismic structure according to claim 1, wherein one side or both sides of the flange steel plate connected along the left and right side portions of the corrugated steel plate are connected to each other via a stud and a shear force transmitting element. 波形鋼板は、鉛直方向及び水平方向に複数連結されていることを特徴とする、請求項1又は2に記載した耐震構造。   The seismic structure according to claim 1 or 2, wherein a plurality of corrugated steel plates are connected in a vertical direction and a horizontal direction.
JP2006176308A 2006-06-27 2006-06-27 Seismic structure Active JP4881084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176308A JP4881084B2 (en) 2006-06-27 2006-06-27 Seismic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176308A JP4881084B2 (en) 2006-06-27 2006-06-27 Seismic structure

Publications (2)

Publication Number Publication Date
JP2008007945A true JP2008007945A (en) 2008-01-17
JP4881084B2 JP4881084B2 (en) 2012-02-22

Family

ID=39066395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176308A Active JP4881084B2 (en) 2006-06-27 2006-06-27 Seismic structure

Country Status (1)

Country Link
JP (1) JP4881084B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242440A (en) * 2009-04-09 2010-10-28 Takenaka Komuten Co Ltd Parking lot
CN109386071A (en) * 2018-11-29 2019-02-26 杭州铁木辛柯建筑结构设计事务所有限公司 The industrialization steel plate shear force wall being made of Z-shape steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310510A (en) * 1996-05-23 1997-12-02 Ohbayashi Corp Earthquake resistant reinforcing construction of existing building
JP2006045776A (en) * 2004-07-30 2006-02-16 Takenaka Komuten Co Ltd Construction method of shear wall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310510A (en) * 1996-05-23 1997-12-02 Ohbayashi Corp Earthquake resistant reinforcing construction of existing building
JP2006045776A (en) * 2004-07-30 2006-02-16 Takenaka Komuten Co Ltd Construction method of shear wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242440A (en) * 2009-04-09 2010-10-28 Takenaka Komuten Co Ltd Parking lot
CN109386071A (en) * 2018-11-29 2019-02-26 杭州铁木辛柯建筑结构设计事务所有限公司 The industrialization steel plate shear force wall being made of Z-shape steel
CN109386071B (en) * 2018-11-29 2023-11-24 杭州铁木辛柯建筑结构设计事务所有限公司 Industrialized steel plate shear wall composed of Z-shaped steel

Also Published As

Publication number Publication date
JP4881084B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5885950B2 (en) Seismic control wall frame structure
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
JP2011256577A (en) Seismic control structure including viscoelastic damper
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
JP2006342510A (en) Multi-story shear wall
JP4664997B2 (en) Buildings with joint hardware
JP4414833B2 (en) Seismic walls using corrugated steel
JP4563872B2 (en) Seismic wall
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP5967642B2 (en) Building reinforcement structure
JP4881084B2 (en) Seismic structure
JP5827804B2 (en) Structure
JP4395419B2 (en) Vibration control pillar
JP2000160683A (en) Aseismatic reinforcing structure of wooden house
JP2013117156A (en) Earthquake-resistant wall and aseismic structure
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP4897854B2 (en) Seismic structure
JP6414877B2 (en) Reinforcement structure and building
JP2008075314A (en) Aseismic control structure of connected buildings
JP6009432B2 (en) Bearing wall with brace and brace
JP2005083136A (en) Composite structure support
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
JP4485876B2 (en) Seismic walls and structures
JP2012144864A (en) Structure

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4881084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3