JP2008007332A - Salt composition and its manufacture process - Google Patents

Salt composition and its manufacture process Download PDF

Info

Publication number
JP2008007332A
JP2008007332A JP2006176258A JP2006176258A JP2008007332A JP 2008007332 A JP2008007332 A JP 2008007332A JP 2006176258 A JP2006176258 A JP 2006176258A JP 2006176258 A JP2006176258 A JP 2006176258A JP 2008007332 A JP2008007332 A JP 2008007332A
Authority
JP
Japan
Prior art keywords
salt
mass
concentration
seawater
salt composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006176258A
Other languages
Japanese (ja)
Other versions
JP5189743B2 (en
Inventor
Yasuyuki Isono
康幸 礒野
Yoshifumi Sugito
善文 杉戸
Hideo Fukuoka
秀雄 福岡
Eisaku Shimada
英作 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006176258A priority Critical patent/JP5189743B2/en
Publication of JP2008007332A publication Critical patent/JP2008007332A/en
Application granted granted Critical
Publication of JP5189743B2 publication Critical patent/JP5189743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a salt composition which is tasty and has effects of controlling blood pressure increase and preventing thrombus formation and its manufacturing process which is simple and utilizes seawater. <P>SOLUTION: The salt composition is obtained by reducing sodium salt and potassium salt concentrations by desalting seawater and increasing magnesium ion concentration. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、海水を利用した塩組成物およびその製造方法に関する。詳しくは、ミネラル成分を豊富に含む海水を脱塩処理し、ナトリウム塩およびカリウム塩の濃度を低減させ、且つマグネシウムイオン濃度を高めた塩組成物およびその簡便な製造方法に関する。該塩組成物は、血圧上昇抑制および血栓発生予防の効果を有しつつ、食味が良いため有用である。   The present invention relates to a salt composition using seawater and a method for producing the same. Specifically, the present invention relates to a salt composition in which seawater containing abundant mineral components is desalted, the concentration of sodium salt and potassium salt is reduced, and the magnesium ion concentration is increased, and a simple production method thereof. The salt composition is useful because it has an effect of suppressing an increase in blood pressure and preventing the occurrence of thrombus, and has a good taste.

生活習慣病の一つである高血圧の対策として食生活の改善が挙げられる。日本では醤油、味噌、漬物、梅干し、塩辛などの塩化ナトリウム含量が高い食品が好まれている。ナトリウムは人体にとって必須元素であるが、過剰摂取は高血圧を引き起こす原因であるとされている。反面、カリウムの摂取は血圧降下作用があるという研究結果が報告されている(非特許文献1)。また、その他にも様々なミネラルが血圧に影響を与えることが知られており、特にマグネシウムおよび珪素化合物は血圧上昇抑制効果が大きいことが知られている。   Improvement of eating habits can be mentioned as a countermeasure for high blood pressure, which is one of lifestyle-related diseases. In Japan, foods with a high sodium chloride content such as soy sauce, miso, pickles, pickled plums, and salted fish are preferred. Sodium is an essential element for the human body, but overdose is thought to cause hypertension. On the other hand, research results have reported that potassium intake has a blood pressure lowering effect (Non-patent Document 1). In addition, various minerals are known to affect blood pressure, and in particular, magnesium and silicon compounds are known to have a large effect on suppressing blood pressure rise.

また、マグネシウムは、血圧の上昇を抑制する効果とともに、血栓の発生を防止する効果を有することが知られている。これらのミネラルについて、それぞれの効用及び欠乏症について表1にまとめた。   Magnesium is known to have an effect of preventing blood clots from occurring as well as an effect of suppressing an increase in blood pressure. These minerals are summarized in Table 1 for their respective benefits and deficiencies.

Figure 2008007332
Figure 2008007332

イオン交換膜、天日乾燥などの手段により調製された市販の食用塩はナトリウム濃度が高く、特にイオン交換膜法による食塩のナトリウム純度は99.5質量%以上である。塩化カリウムは、塩化ナトリウム同様に塩味を呈しているため、塩化ナトリウムの一部を塩化カリウムに置き換えることにより、ナトリウム純度を低下させた代替塩が提案されている。   Commercially available edible salts prepared by means such as ion exchange membranes and sun drying have a high sodium concentration. Particularly, the sodium purity of sodium chloride by ion exchange membrane method is 99.5% by mass or more. Since potassium chloride has a salty taste like sodium chloride, an alternative salt in which the sodium purity is lowered by replacing a part of sodium chloride with potassium chloride has been proposed.

しかしながら、上記代替塩は、市販の食用塩と比較して、血圧上昇を抑制する効果を有するが、塩化カリウムの含有量増加にともない、塩化カリウムの苦みを原因とする食味の悪さが発生するなどの問題を有している。   However, the alternative salt has an effect of suppressing an increase in blood pressure as compared with a commercially available edible salt, but with an increase in the content of potassium chloride, bad taste caused by the bitterness of potassium chloride occurs. Have problems.

また、近年では、他にも上記した各種のミネラルを含有する塩化ナトリウムの代替塩が市販されているが、それらの調製法は複雑であり、各ミネラルの体内における吸収度合いがばらつくなどの問題を有している。   In addition, in recent years, alternative salts of sodium chloride containing other various minerals described above are commercially available, but their preparation methods are complicated, and problems such as the degree of absorption of each mineral in the body vary. Have.

Journal of American Medical Association 277巻、1624−1632ページ(1997年)Journal of American Medical Association, Vol. 277, pp. 1624-1632 (1997)

従って、本発明の目的は、ミネラルバランスを考慮しつつ、海水を脱塩処理することにより、血圧上昇抑制および血栓発生予防の効果を有し、さらに食味の良い塩組成物を簡便な製造方法で提供することにある。   Therefore, an object of the present invention is to provide a salt composition that has an effect of suppressing blood pressure elevation and preventing thrombus generation by desalting seawater while taking into account the mineral balance, and is a simple production method. It is to provide.

上記目的を達成する本発明の構成は、下記の通りである。
1.海水を脱塩処理し、ナトリウム塩濃度およびカリウム塩濃度を低減させ、且つマグネシウムイオン濃度を高めたことを特徴とする塩組成物。
2.ナトリウム塩、カリウム塩、カルシウム塩およびマグネシウム塩の合計を100質量%とした場合の各塩の含有量が、下記の通りである前記1に記載の塩組成物。
ナトリウム塩:60〜70質量%
カリウム塩:0〜10質量%
カルシウム塩:0〜10質量%
マグネシウム塩:15〜30質量%
3.海水が、海洋深層水である前記1に記載の塩組成物。
4.更にトクサ科植物由来の珪素化合物を全塩100質量部当たり0.001〜0.5質量部の割合で含む前記1に記載の塩組成物。
5.更にトレハロース化合物を含む前記1に記載の塩組成物。
6.海洋深層水をモザイク荷電膜により脱塩処理し、ナトリウム塩濃度およびカリウム塩濃度を低減させ、且つマグネシウムイオン濃度を高めることを特徴とする塩組成物の製造方法。
The configuration of the present invention that achieves the above object is as follows.
1. A salt composition characterized by desalinating seawater to reduce sodium salt concentration and potassium salt concentration and to increase magnesium ion concentration.
2. 2. The salt composition according to 1 above, wherein the content of each salt when the total of the sodium salt, potassium salt, calcium salt and magnesium salt is 100% by mass is as follows.
Sodium salt: 60 to 70% by mass
Potassium salt: 0 to 10% by mass
Calcium salt: 0 to 10% by mass
Magnesium salt: 15-30% by mass
3. 2. The salt composition according to 1 above, wherein the seawater is deep ocean water.
4). Furthermore, the salt composition of said 1 which contains the silicon compound derived from a Ciraceae plant in the ratio of 0.001-0.5 mass part per 100 mass parts of total salts.
5. Furthermore, the salt composition of said 1 containing a trehalose compound.
6). A method for producing a salt composition, which comprises subjecting deep ocean water to desalination with a mosaic charged membrane, reducing sodium salt concentration and potassium salt concentration, and increasing magnesium ion concentration.

本発明によれば、海水を脱塩処理することにより、血圧上昇抑制および血栓発生予防の効果を有し、さらに食味の良い塩組成物およびその簡便な製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, by desalinating seawater, it can provide the salt composition which has the effect of suppression of a blood pressure rise and thrombus generation | occurrence | production, and also has good taste, and its simple manufacturing method.

次に好ましい実施の形態を挙げて本発明を更に詳しく説明する。
本発明の塩組成物は、海水を脱塩処理し、ナトリウム塩濃度およびカリウム塩濃度を低減させ、且つマグネシウムイオン濃度を高めたことを特徴としている。
Next, the present invention will be described in more detail with reference to preferred embodiments.
The salt composition of the present invention is characterized in that seawater is desalted, the sodium salt concentration and the potassium salt concentration are reduced, and the magnesium ion concentration is increased.

本発明で使用する海水としては、海洋の表層水または深層水を利用することができる。好ましくは、一般に表層水と比べて、生菌数が少なく、栄養塩類が豊富な、水深200m以上の海洋から取水された深層水を利用する。   As seawater used in the present invention, marine surface water or deep water can be used. Preferably, deep water taken from the ocean with a depth of 200 m or more, which has a low viable cell count and is rich in nutrients, is generally used as compared with surface water.

また、海中では、深度が高くなるにつれて珪素濃度が高くなることが知られており、この点からも表層水と比較して、深層水の方が本発明の原料として有利であるといえる。珪素化合物は鉱泉水、地下水にも豊富に含まれているため、これらを原料の一部として利用することも可能である。   Further, in the sea, it is known that the silicon concentration increases as the depth increases. From this point, it can be said that deep water is more advantageous as a raw material of the present invention than surface water. Since silicon compounds are also abundantly contained in mineral spring water and groundwater, they can be used as a part of raw materials.

本発明の海水を脱塩処理する方法としては、従来公知の脱塩方法、例えば、逆浸透膜法、電気透析法または拡散透析法などが使用できる。好ましくは、原水から有用ミネラル成分を選択分離することができる電気透析法または拡散透析法であり、特に好ましくは、モザイク荷電膜を用いた拡散透析法である。   As a method for desalinating seawater of the present invention, a conventionally known desalting method such as a reverse osmosis membrane method, an electrodialysis method, or a diffusion dialysis method can be used. Preferred is an electrodialysis method or diffusion dialysis method capable of selectively separating useful mineral components from raw water, and particularly preferred is a diffusion dialysis method using a mosaic charged membrane.

上記のモザイク荷電膜は、カチオン性重合体成分およびアニオン性重合体成分からなるカチオン性およびアニオン性のイオンチャンネルが、互いに相接し、且つ膜の表裏両面間を貫通している構造を有し、膜のイオンチャンネルを透過しやすい塩類などのイオンと透析されにくい非イオン性または分子量の大きい分子とが容易に分離される特異な分離膜である。   The above-mentioned mosaic charged membrane has a structure in which cationic and anionic ion channels composed of a cationic polymer component and an anionic polymer component are in contact with each other and penetrate between both sides of the membrane. This is a unique separation membrane in which ions such as salts that easily pass through the ion channels of the membrane and nonionic or high molecular weight molecules that are difficult to be dialyzed are easily separated.

工業的に使用できる大型のモザイク荷電膜を製造する方法は、特許第3012153号公報、特許第3234426号公報、特許第3236754号公報、特許第3156955号公報、特許第3453067号公報および特許第3626650号公報に例示されている。特に荷電性重合体成分の少なくとも一成分が架橋した粒状重合体を成膜したモザイク荷電膜を有する透析装置を使用する方法が好ましい。   A method for producing a large-sized mosaic charged film that can be used industrially is disclosed in Japanese Patent No. 3012153, Japanese Patent No. 3234426, Japanese Patent No. 3236754, Japanese Patent No. 3156955, Japanese Patent No. 3430667, and Japanese Patent No. 3626650. It is exemplified in the publication. In particular, a method using a dialysis apparatus having a mosaic charged membrane formed by forming a granular polymer in which at least one of the chargeable polymer components is crosslinked is preferable.

モザイク荷電膜を使用した脱塩方法は、蒸留法のような加熱エネルギーを必要とせず、また、電気透析のような塩類のイオン量に対応する電気エネルギーを必要とせず、イオン交換樹脂のような再生は不要であり、装置も構造が簡単で安価に製造できるため、初期投資、ランニングコストともに安く、非常に経済的である。また、操作中における液温上昇が小さい、熱変性しやすい物質の変質、劣化などが起こりにくい、無孔膜のため分画分子量が非常に小さく、栄養塩類、有機物の漏れが実質的にない、さらに、脱塩処理時に原海水の流速、透析水の流速、膜面の線速を調整することで、得られる脱塩水のイオン含有比率およびイオン含有濃度を制御することができるなど他の分離方法に見られないような優れた特徴を有する脱塩システムである。   The desalting method using a mosaic charged membrane does not require heating energy unlike the distillation method, and does not require electrical energy corresponding to the amount of ions of the salt, such as electrodialysis. Regeneration is not required, and the device is simple in structure and can be manufactured at low cost. Therefore, both initial investment and running cost are low, and it is very economical. In addition, liquid temperature rise during operation is small, alteration and degradation of materials that are easily heat-denatured are unlikely to occur, non-porous membrane has a very low molecular weight cut-off, and there is virtually no leakage of nutrients and organic matter. Furthermore, other separation methods such as controlling the ion content ratio and ion concentration of the obtained desalted water by adjusting the flow rate of the raw seawater, the flow rate of the dialysis water, and the linear velocity of the membrane surface during the desalting treatment It is a desalination system having excellent characteristics not seen in

次に本発明の具体的な実施の態様を図1に基づき説明する。モザイク荷電膜1を装着した透析槽2には原海水通水部分3と透析水通水部分4とがあり、3および4は膜1を介して接触している。原海水は原海水貯槽5から原海水送液ポンプ6により3に供給され、透析水は透析水貯槽7から透析水送液ポンプ8により4に供給される。原海水と透析水とは1を介し接触する際、原海水中のイオンは拡散により透析水中に移動する。透析槽より取り出された脱塩水、透析水はそれぞれ受槽9、10に貯められる。ここで、原海水および透析水の流速比、膜面線速(=流速/膜面積)を調整することで、受槽に得られる脱塩水および透析水の塩濃度、塩組成をコントロールすることができる。   Next, a specific embodiment of the present invention will be described with reference to FIG. The dialysis tank 2 equipped with the mosaic charged membrane 1 has a raw seawater passage portion 3 and a dialysis water passage portion 4, and 3 and 4 are in contact via the membrane 1. The raw seawater is supplied from the raw seawater storage tank 5 to 3 by the raw seawater feed pump 6, and the dialysate is supplied from the dialysate storage tank 7 to 4 by the dialysate feed pump 8. When the raw seawater and dialyzed water come into contact via 1, ions in the raw seawater move into the dialyzed water by diffusion. Demineralized water and dialysis water taken out from the dialysis tank are stored in receiving tanks 9 and 10, respectively. Here, the salt concentration and salt composition of the demineralized water and dialysis water obtained in the receiving tank can be controlled by adjusting the flow rate ratio of raw seawater and dialysis water and the membrane surface linear velocity (= flow velocity / membrane area). .

受槽9に得られた液は、再度透析操作の原海水として供することも可能である。また、透析槽より取り出された脱塩水および透析水を受槽に入れず、それぞれ原海水貯槽5、透析水貯槽7に直接戻すことも可能である。   The liquid obtained in the receiving tank 9 can be used again as raw seawater for dialysis. It is also possible to return the desalted water and dialysis water taken out from the dialysis tank directly to the raw seawater storage tank 5 and the dialysis water storage tank 7, respectively.

また、原海水中のイオンの拡散透析速度は、原海水と透析水とのイオン濃度差が大きいほうが高くなるので、原海水を予め濃縮しておくことにより、脱塩速度を向上させることができる。上記の濃縮方法としては、例えば、逆浸透膜処理、電気透析処理、減圧処理およびかん水処理などが使用でき、特に限定されない。   In addition, since the diffusion dialysis rate of ions in the raw seawater increases as the difference in ion concentration between the raw seawater and dialysed water increases, the desalination rate can be improved by concentrating the raw seawater in advance. . Examples of the concentration method include, but are not particularly limited to, reverse osmosis membrane treatment, electrodialysis treatment, reduced pressure treatment, and brine treatment.

海水を脱塩処理することにより製造された本発明の塩組成物は、ナトリウム塩、カリウム塩、カルシウム塩およびマグネシウム塩の合計を100質量%とした場合の各塩の含有量が、ナトリウム塩:60〜70質量%、カリウム塩:0〜10質量%、カルシウム塩:0〜10質量%、マグネシウム塩:15〜30質量%であることが好ましい(上記の濃度は、各元素が塩を形成しているものに加え、イオンとして解離している状態とを含む。)。   The salt composition of the present invention produced by subjecting seawater to desalting has a content of each salt when the total amount of sodium salt, potassium salt, calcium salt and magnesium salt is 100% by mass. 60 to 70% by mass, potassium salt: 0 to 10% by mass, calcium salt: 0 to 10% by mass, magnesium salt: preferably 15 to 30% by mass (in the above concentrations, each element forms a salt) In addition to those that are dissociated as ions.)

ナトリウム塩の含有量を60〜70質量%とすることで、食味の良さを維持しつつ、ナトリウム過剰摂取による血圧上昇を抑制することができる。また、カリウム塩の含有量を0〜10質量%とすることで、カリウムの苦味を原因とした食味の低下を防ぎ、さらにカリウム塩含有時は血圧上昇を抑制することができる。また、カルシウム塩の含有量を0〜10質量%とすることで、カルシウム塩含有時はカルシウム摂取不足による血圧上昇を抑えることができる。また、マグネシウム塩の含有量を15〜30質量%とすることで、血圧上昇を抑制するとともに血栓の発生を防止することができる。このような濃度は、モザイク荷電膜による脱塩を複数回繰り返すことによって達成される。   By setting the content of the sodium salt to 60 to 70% by mass, it is possible to suppress an increase in blood pressure due to excessive intake of sodium while maintaining good taste. Moreover, the fall of the taste resulting from potassium bitterness can be prevented by making content of potassium salt 0-10 mass%, and also a blood pressure rise can be suppressed when potassium salt content is contained. Moreover, when the content of the calcium salt is 0 to 10% by mass, an increase in blood pressure due to insufficient intake of calcium can be suppressed when the calcium salt is contained. Moreover, by setting the content of the magnesium salt to 15 to 30% by mass, it is possible to suppress an increase in blood pressure and to prevent thrombus generation. Such a concentration is achieved by repeating desalting with a mosaic charged membrane a plurality of times.

本発明の塩組成物には、更に海水から得られる成分以外に、珪素化合物を添加することができる。特に、珪素含有量の高いトクサ科植物由来の珪素化合物を添加することが好ましい。トクサ科植物としては、好ましくはトクサ属、例えば、スギナ(Equisetum arvense)、トクサ(Equisetum hyemale L.)、イヌスギナ(Equisetum palustre L.)であり、さらに好ましくはスギナである。   In addition to the components obtained from seawater, a silicon compound can be added to the salt composition of the present invention. In particular, it is preferable to add a silicon compound derived from a cassaceae plant having a high silicon content. As the cassaceae plant, preferably, the genus Toxa, for example, horsetail (Equisetum arvense), horsetail (Equisetum hyalale L.), or horsetail (Equisetum palustre L.), and more preferably, horsetail.

トクサ科植物由来の珪素化合物の添加量は、食味および血圧上昇防止の観点から、全塩100質量部当たり0.001〜0.5質量部の割合とすることが好ましい。   It is preferable that the addition amount of the silicon compound derived from the laceaceae plant is a ratio of 0.001 to 0.5 parts by mass per 100 parts by mass of the total salt from the viewpoint of taste and blood pressure rise prevention.

また、添加するトクサ科植物は、植物体、例えば地上茎、地下茎、栄養茎、胞子嚢穂などを乾燥、切断、粉砕したものだけではなく、それらの抽出物さらにはその分画物であってもよい。上記の加工方法は、公知の方法により行うことができ、また、これらのトクサ科植物は、公知の方法を用いて、原海水中または塩組成物中に添加することができる。   In addition, the asteraceae plants to be added are not only those obtained by drying, cutting, and crushing plant bodies such as ground stems, underground stems, vegetative stems, spore ears, etc., but also extracts thereof and fractions thereof. Good. Said processing method can be performed by a well-known method, and these cassaceae plants can be added in a raw | natural seawater or a salt composition using a well-known method.

本発明の塩組成物には、更にミネラル吸収促進剤として、トレハロース化合物を添加することができる。トレハロース化合物としては、例えば、トレハロース骨格にグルコースがさらにα−1.4結合したグルコシルトレハロース、マルトシルトレハロース、マルトトレオシルトレハロースなどを用いることができる。トレハロース化合物は分子中の水酸基がカルシウム、マグネシウムなどの金属イオンと複合体を形成することがNMRを用いた研究により推定されており、ミネラル吸収向上効果が報告されている。   A trehalose compound can be further added to the salt composition of the present invention as a mineral absorption promoter. As the trehalose compound, for example, glucosyl trehalose, maltosyl trehalose, maltotreosyl trehalose in which glucose is further α-1.4 bonded to the trehalose skeleton can be used. Trehalose compounds have been estimated by studies using NMR that hydroxyl groups in the molecule form complexes with metal ions such as calcium and magnesium, and the effect of improving mineral absorption has been reported.

トレハロース化合物の添加量は、全塩100質量部当たり0.1〜10質量部の割合とすることが好ましい。トレハロース化合物は、公知の方法を用いて、原海水中または塩組成物中へ添加することができる。   The amount of trehalose compound added is preferably 0.1 to 10 parts by mass per 100 parts by mass of the total salt. The trehalose compound can be added to the raw seawater or the salt composition using a known method.

本発明の塩組成物は、液剤として使用されるだけではなく、更に濃縮、固化、乾燥などの操作を行うことにより、例えばペースト剤、粉末剤、顆粒剤、錠剤などの形態として使用することもできる。その調製法は医薬、食品などの分野において利用されている公知の手段を使用し得る。   The salt composition of the present invention is not only used as a liquid agent, but may also be used in the form of, for example, a paste, powder, granule, tablet, etc. by further operations such as concentration, solidification, and drying. it can. The preparation method can use a known means utilized in fields such as medicine and food.

次に、実施例を挙げて本発明をさらに具体的に説明する。尚、文または表中の「部」または「%」とあるのは特に断りのない限り質量基準である。   Next, the present invention will be described more specifically with reference to examples. “Part” or “%” in the text or table is based on mass unless otherwise specified.

[実施例1]
駿河湾海洋深層水(水深687m)10Lを減圧濃縮し、1Lの濃縮海洋深層水(原海水)を得た。これを、モザイク荷電膜を装着した透析装置を用いて、原海水/透析水流速比を1として脱塩処理をし、表2に示される本発明の液体状塩組成物を作成した。表2に示すとおり、上記透析操作を行うことにより、該組成物は、原海水と比較して、ナトリウム塩濃度およびカリウム塩濃度を低減させ、マグネシウム塩濃度およびカルシウム塩濃度を高めることができた。
[Example 1]
10 L of Suruga Bay deep sea water (depth of 687 m) was concentrated under reduced pressure to obtain 1 L of deep deep sea water (raw seawater). This was desalted using a dialyzer equipped with a mosaic charged membrane with a raw seawater / dialyzed water flow rate ratio of 1, and the liquid salt composition of the present invention shown in Table 2 was prepared. As shown in Table 2, by performing the dialysis operation, the composition was able to reduce the sodium salt concentration and the potassium salt concentration and increase the magnesium salt concentration and the calcium salt concentration as compared with the raw seawater. .

[実施例2]
実施例1で用いた濃縮海洋深層水(原海水)を、モザイク荷電膜を装着した透析装置を用いて、原海水/透析水流速比を0.5として脱塩処理をし、表2に示される本発明の液体状塩組成物を作成した。表2に示すとおり、該組成物は、原海水と比較して、ナトリウム塩濃度およびカリウム塩濃度を低減させ、マグネシウム塩濃度を高めることができた。
[Example 2]
The concentrated deep ocean water (raw seawater) used in Example 1 was desalted using a dialyzer equipped with a mosaic charged membrane with a raw seawater / dialyzed water flow rate ratio of 0.5, and is shown in Table 2. The liquid salt composition of the present invention was prepared. As shown in Table 2, the composition was able to reduce the sodium salt concentration and the potassium salt concentration and increase the magnesium salt concentration as compared with the raw seawater.

Figure 2008007332
尚、表2の組成はナトリウム塩、カリウム塩、マグネシウム塩およびカルシウム塩の合計を100%とした場合の各塩の含有%を示している。
Figure 2008007332
In addition, the composition of Table 2 has shown the content% of each salt when the sum total of a sodium salt, potassium salt, magnesium salt, and calcium salt is 100%.

[実施例3]
漢方薬として市販されているスギナ(学名:Equisetum arvense)5グラムを500ccの水に入れ、弱火で約20分煮出した。実施例1で得られた組成物100%に対して、本抽出液を1%の割合で配合し、珪素が強化された本発明の塩組成物を得ることができた。
[Example 3]
5 grams of cedar (scientific name: Equisetum arvense) marketed as a herbal medicine was placed in 500 cc of water and boiled for about 20 minutes on low heat. This extract was blended at a rate of 1% with respect to 100% of the composition obtained in Example 1, and the salt composition of the present invention in which silicon was strengthened could be obtained.

[実施例4]
実施例3で得られた組成物1Lにトレハロース2gを溶解し、これを凍結乾燥した後、粉砕し、52gの粉末状の本発明の塩組成物を得ることができた。
[Example 4]
2 g of trehalose was dissolved in 1 L of the composition obtained in Example 3, which was lyophilized and then pulverized to obtain 52 g of the powdered salt composition of the present invention.

本発明によれば、海水を脱塩処理することにより、ナトリウム塩濃度およびカリウム塩濃度を低減させ、マグネシウム塩濃度を高めた塩組成物を提供することができる。前記塩組成物は、血圧上昇抑制および血栓発生防止の効果があり、食味が良いため、食品などの用途に有用である。   ADVANTAGE OF THE INVENTION According to this invention, the salt composition which reduced the sodium salt density | concentration and the potassium salt density | concentration, and raised the magnesium salt density | concentration by desalinating seawater can be provided. The salt composition has an effect of suppressing blood pressure elevation and preventing thrombus generation, and has a good taste, so that it is useful for uses such as food.

本発明に用いたモザイク荷電膜装着透析装置の一実施形態を説明するための図である。It is a figure for demonstrating one Embodiment of the mosaic charge membrane mounting | wearing dialysis apparatus used for this invention.

符号の説明Explanation of symbols

1:モザイク荷電膜
2:透析槽
3:原海水通水部分
4:透析水通水部分
5:原海水貯槽
6:原海水送液ポンプ
7:透析水貯槽
8:透析水送液ポンプ
9:受槽
10:受槽
1: Mosaic charged membrane 2: Dialysis tank 3: Raw seawater passage part 4: Dialysis water passage part 5: Raw seawater storage tank 6: Raw seawater feed pump 7: Dialysate water storage tank 8: Dialysate feed pump 9: Receiving tank 10: Receiving tank

Claims (6)

海水を脱塩処理し、ナトリウム塩濃度およびカリウム塩濃度を低減させ、且つマグネシウムイオン濃度を高めたことを特徴とする塩組成物。   A salt composition characterized by desalinating seawater to reduce sodium salt concentration and potassium salt concentration and to increase magnesium ion concentration. ナトリウム塩、カリウム塩、カルシウム塩およびマグネシウム塩の合計を100質量%とした場合の各塩の含有量が、下記の通りである請求項1に記載の塩組成物。
ナトリウム塩:60〜70質量%
カリウム塩:0〜10質量%
カルシウム塩:0〜10質量%
マグネシウム塩:15〜30質量%
The salt composition according to claim 1, wherein the content of each salt when the total of the sodium salt, potassium salt, calcium salt and magnesium salt is 100% by mass is as follows.
Sodium salt: 60 to 70% by mass
Potassium salt: 0 to 10% by mass
Calcium salt: 0 to 10% by mass
Magnesium salt: 15-30% by mass
海水が、海洋深層水である請求項1に記載の塩組成物。   The salt composition according to claim 1, wherein the seawater is deep seawater. 更にトクサ科植物由来の珪素化合物を全塩100質量部当たり0.001〜0.5質量部の割合で含む請求項1に記載の塩組成物。   Furthermore, the salt composition of Claim 1 which contains the silicon compound derived from a Coleaceae plant in the ratio of 0.001-0.5 mass part per 100 mass parts of total salts. 更にトレハロース化合物を含む請求項1に記載の塩組成物。   The salt composition according to claim 1, further comprising a trehalose compound. 海洋深層水をモザイク荷電膜により脱塩処理し、ナトリウム塩濃度およびカリウム塩濃度を低減させ、且つマグネシウムイオン濃度を高めることを特徴とする塩組成物の製造方法。
A method for producing a salt composition, which comprises subjecting deep ocean water to desalination with a mosaic charged membrane, reducing sodium salt concentration and potassium salt concentration, and increasing magnesium ion concentration.
JP2006176258A 2006-06-27 2006-06-27 Salt composition and method for producing the same Expired - Fee Related JP5189743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176258A JP5189743B2 (en) 2006-06-27 2006-06-27 Salt composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176258A JP5189743B2 (en) 2006-06-27 2006-06-27 Salt composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008007332A true JP2008007332A (en) 2008-01-17
JP5189743B2 JP5189743B2 (en) 2013-04-24

Family

ID=39065860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176258A Expired - Fee Related JP5189743B2 (en) 2006-06-27 2006-06-27 Salt composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5189743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031037A (en) * 2006-07-25 2008-02-14 Watervis Inc Method for efficiently extracting mineral with high purity from deep ocean water by using low temperature vacuum crystal method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232880A (en) * 1975-09-09 1977-03-12 Asahi Chem Ind Co Ltd Treating process of seawater
JPH03229622A (en) * 1990-02-05 1991-10-11 Tokuyama Soda Co Ltd Reproduction of diffusion dialysis membrane
JPH06229622A (en) * 1993-02-05 1994-08-19 Harman Co Ltd Water pouring device for bath tub
JPH08155281A (en) * 1994-11-30 1996-06-18 Dainichiseika Color & Chem Mfg Co Ltd Mosaic charge membrane and its production
JPH08197049A (en) * 1995-01-31 1996-08-06 Hitachi Ltd Method for recovering mineral component
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2002306118A (en) * 2001-04-16 2002-10-22 Hitachi Ltd Method for producing health salt from ocean deep water and device therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232880A (en) * 1975-09-09 1977-03-12 Asahi Chem Ind Co Ltd Treating process of seawater
JPH03229622A (en) * 1990-02-05 1991-10-11 Tokuyama Soda Co Ltd Reproduction of diffusion dialysis membrane
JPH06229622A (en) * 1993-02-05 1994-08-19 Harman Co Ltd Water pouring device for bath tub
JPH08155281A (en) * 1994-11-30 1996-06-18 Dainichiseika Color & Chem Mfg Co Ltd Mosaic charge membrane and its production
JPH08197049A (en) * 1995-01-31 1996-08-06 Hitachi Ltd Method for recovering mineral component
JP2002292371A (en) * 2001-01-23 2002-10-08 Goshu Yakuhin Kk Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
JP2002306118A (en) * 2001-04-16 2002-10-22 Hitachi Ltd Method for producing health salt from ocean deep water and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031037A (en) * 2006-07-25 2008-02-14 Watervis Inc Method for efficiently extracting mineral with high purity from deep ocean water by using low temperature vacuum crystal method

Also Published As

Publication number Publication date
JP5189743B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
CN104085956B (en) A kind of preparation method of ocean nanofiltration concentrate
KR100670474B1 (en) A Concentrate Method of Minerals from Sea Water, the Mineral Concentrate and its Use
CN107626285A (en) A kind of method for preparing heavy metal absorbent using the cold Bacillus genus strain in ocean
KR101887512B1 (en) Method for processing seafood extract, seafood extract, food and drink
KR101367477B1 (en) Method for separate manufacturing of mineral salts (calcium and magnesium salts) isolated from alkaline water by electrolysis of sea water and mineral water
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
JP2007029899A (en) Mineral water
KR101896227B1 (en) Method for preparing mineral water with high hardness using deep sea water or saline groundwater
CN110467302A (en) A method of edible salt is prepared using deep sea water
JP5189743B2 (en) Salt composition and method for producing the same
KR101643146B1 (en) Manufacturing Apparatus for Mineral Water with Forward Osmosis Hybrid
JP2007289953A (en) Method for producing salt water, salt, and bittern using sea water as raw material, and salt water, salt, and bittern
CN103932341A (en) Soda drink containing shitake mushroom extracting solution, and preparation method thereof
KR20060083308A (en) Nutri-culture media and cultured various sprouts using complete or partially desalinated deep sea water
TWI428292B (en) Preparation method of seawater concentrate and seawater mineral powder
JP2006007084A (en) Mineral composition, manufacturing method therefor and usage thereof
JP2006305412A (en) Mineral water, and method for producing the same
JP4045061B2 (en) Mineral water beverage containing mineral components derived from deep water
JP2006142265A (en) High-concentration mineral liquid manufacturing method and manufacturing apparatus
CN111302449A (en) Alkaline micromolecular drinking water rich in deep-sea mineral elements and preparation method thereof
KR101410234B1 (en) Preparation method of Artemisia capillaris extract using deep seawater
KR100759983B1 (en) Method for producing mineral water from deep ocean water with active control of mineral balances
KR101901784B1 (en) Method for Preparing Functionality-enhanced Salt by Raising Minerals
JP4087890B1 (en) Salt made from oyster meat and method for producing the same
JP2007166990A (en) Deep seawater using method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees