JP2008006894A - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
JP2008006894A
JP2008006894A JP2006177647A JP2006177647A JP2008006894A JP 2008006894 A JP2008006894 A JP 2008006894A JP 2006177647 A JP2006177647 A JP 2006177647A JP 2006177647 A JP2006177647 A JP 2006177647A JP 2008006894 A JP2008006894 A JP 2008006894A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air
heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006177647A
Other languages
Japanese (ja)
Inventor
Hisashi Ieda
恒 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006177647A priority Critical patent/JP2008006894A/en
Publication of JP2008006894A publication Critical patent/JP2008006894A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular air conditioner capable of reducing power consumption of an electric compressor without deteriorating air conditioning feeling when heating. <P>SOLUTION: When an occupant is present, operation is switched to a heat pump cycle for heating the heat medium (water) with a water-refrigerant heat exchanger 24 arranged in a ceiling part of a vehicle to heat the air blowing into a cabin with a heater core 29 using the heat medium as a heat source and arranged in a floor part, and air is blown out toward feet of the occupant to improve the air conditioning feeling. When no occupant is present, operation is switched to a heat pump cycle for directly heating the air blowing into the cabin with a cabin-inside heat exchanger 25 arranged in the ceiling part of the vehicle, and heat transmitting efficiency is improved to reduce power consumption of the electric compressor 21. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車室内を空調する車両用空調装置に関するもので、特に、バス車両に用いて好適である。   The present invention relates to a vehicle air conditioner that air-conditions a passenger compartment, and is particularly suitable for use in a bus vehicle.

従来、特許文献1に、エンジンにて走行するバス車両に適用された車両用空調装置が開示されている。   Conventionally, Patent Document 1 discloses a vehicle air conditioner applied to a bus vehicle that runs on an engine.

この特許文献1の車両用空調装置は、冷凍サイクル(ヒートポンプサイクル)とエンジン冷却水を循環させるエンジン冷却水回路とを備えており、この冷凍サイクルは、室外空気と冷媒とを熱交換させる室外側熱交換器および車室内吹出空気と冷媒とを熱交換させる室内側熱交換器を有するとともに、冷媒流路を切替可能に構成されている。   The vehicle air conditioner disclosed in Patent Document 1 includes a refrigeration cycle (heat pump cycle) and an engine cooling water circuit that circulates engine cooling water. The refrigeration cycle has an outdoor side that exchanges heat between outdoor air and refrigerant. A heat exchanger and an indoor heat exchanger that exchanges heat between the air blown out from the passenger compartment and the refrigerant are provided, and the refrigerant flow path is switchable.

すなわち、この冷凍サイクルは、室外側熱交換器にて冷媒を放熱させ、室内側熱交換器にて冷媒に吸熱させる冷房用の冷媒流路と、室内側熱交換器にて冷媒を放熱させ、室外側熱交換器にて冷媒に吸熱させる暖房用の冷媒流路とを切替可能に構成されている。一方、エンジン冷却水回路は、エンジン冷却水と車室内吹出空気とを熱交換させるヒータコアを有している。   That is, this refrigeration cycle radiates the refrigerant in the outdoor heat exchanger, dissipates the refrigerant in the indoor heat exchanger, and the refrigerant flow path for cooling that causes the refrigerant to absorb heat in the indoor heat exchanger, It is configured to be able to switch between a heating refrigerant flow path that causes the refrigerant to absorb heat in the outdoor heat exchanger. On the other hand, the engine coolant circuit has a heater core that exchanges heat between the engine coolant and the air blown into the passenger compartment.

そして、車室内を冷房する冷房運転時には、冷凍サイクルを冷房用の冷媒流路に切り替えて、室内側熱交換器にて冷却された冷風を車室内に吹き出す。なお、この室内側熱交換器は、車両屋根上に搭載された空調ユニット内に配置されており、冷風は天井部から乗員の頭上側へ向かって吹き出される。   And at the time of air_conditionaing | cooling operation which cools a vehicle interior, a refrigerating cycle is switched to the refrigerant | coolant flow path for air_conditioning | cooling, and the cold wind cooled with the indoor side heat exchanger is blown off into a vehicle interior. In addition, this indoor side heat exchanger is arrange | positioned in the air conditioning unit mounted on the vehicle roof, and cold wind blows off toward a passenger | crew upper side from a ceiling part.

一方、車室内を暖房する通常の暖房運転時には、冷凍サイクルの圧縮機の作動を停止して、エンジン冷却水を熱源としてヒータコアにて車室内吹出空気を加熱して、加熱された温風を車室内に吹き出す。なお、このヒータコアは、車両床下に搭載されたヒータユニット内に配置されており、温風は床部から乗員の足下側に向かって吹き出される。   On the other hand, during the normal heating operation for heating the passenger compartment, the compressor operation of the refrigeration cycle is stopped, the engine core coolant is used as a heat source, the passenger compartment air is heated by the heater core, and the heated warm air is supplied to the vehicle. Blow out indoors. In addition, this heater core is arrange | positioned in the heater unit mounted under the vehicle floor, and warm air blows off toward a passenger | crew's leg side from a floor part.

上記の如く、冷房運転時には冷風を天井部から吹き出し、通常の暖房運転時には温風を床部から吹き出すことにより、車室内温度分布を頭寒足熱型として乗員の空調フィーリングを向上させている。   As described above, cold air is blown out from the ceiling during cooling operation, and warm air is blown out from the floor during normal heating operation, thereby improving the air conditioning feeling of the occupant with the temperature distribution in the passenger compartment as a head-and-foot heat type.

さらに、特許文献1の空調装置では、暖房運転時にエンジン廃熱量が低下して、ヒータコアで車室内吹出空気を充分に加熱できない場合に、冷凍サイクルの圧縮機を作動させるとともに、暖房用の冷媒流路に切り替えて、ヒートポンプサイクルを構成して、室内側熱交換器で加熱された温風を天井部から車室内へ補助的に吹き出して暖房能力を確保している。
特開平8−310227号公報
Furthermore, in the air conditioner of Patent Document 1, when the amount of engine waste heat is reduced during heating operation and the air blown into the vehicle interior cannot be sufficiently heated by the heater core, the compressor of the refrigeration cycle is operated and the refrigerant flow for heating By switching to the road, a heat pump cycle is configured, and warm air heated by the indoor heat exchanger is blown out auxiliary from the ceiling to the vehicle interior to ensure heating capacity.
JP-A-8-310227

ところで、車両走行用のエンジンを搭載していない電気自動車(燃料電池車を含む)や、停車時にエンジンが停止するハイブリッド車では、暖房用として充分な熱量をエンジン冷却水から得ることができない。また、冷凍サイクルの圧縮機を駆動させる定常的な駆動力をエンジンから得ることもできない。従って、特許文献1の車両用空調装置は、電気自動車等に適用することができない。   By the way, in an electric vehicle (including a fuel cell vehicle) that is not equipped with an engine for driving a vehicle or a hybrid vehicle that stops the engine when the vehicle is stopped, a sufficient amount of heat for heating cannot be obtained from the engine coolant. In addition, a steady driving force for driving the compressor of the refrigeration cycle cannot be obtained from the engine. Therefore, the vehicle air conditioner of Patent Document 1 cannot be applied to an electric vehicle or the like.

そのため、一般的に、電気自動車等に適用される車両用空調装置は、電動圧縮機を採用した冷凍サイクルとヒータコアの熱源となる熱媒体(例えば、水)を循環させる熱媒体循環回路とを備え、この冷凍サイクルは、室外側熱交換器および室内側熱交換器の他に、冷媒と熱媒体とを熱交換させる熱媒体熱交換器を有している。   Therefore, a vehicle air conditioner generally applied to an electric vehicle or the like includes a refrigeration cycle that employs an electric compressor and a heat medium circulation circuit that circulates a heat medium (for example, water) serving as a heat source for the heater core. In addition to the outdoor heat exchanger and the indoor heat exchanger, this refrigeration cycle has a heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium.

さらに、この冷凍サイクルは、室外側熱交換器にて冷媒を放熱させ、室内側熱交換器にて冷媒に吸熱させる冷房用の冷媒流路と、熱媒体熱交換器にて冷媒を放熱させ、室外側熱交換器にて冷媒に吸熱させる暖房用の冷媒流路とを切替可能に構成される。   Furthermore, this refrigeration cycle dissipates the refrigerant in the outdoor heat exchanger, dissipates the refrigerant in the heat medium heat exchanger, and the cooling medium flow path for cooling that absorbs heat in the refrigerant in the indoor heat exchanger, It is configured to be capable of switching between a heating refrigerant flow path that causes the refrigerant to absorb heat in the outdoor heat exchanger.

そして、冷房運転時には、冷房用の冷媒流路に切り替えて、特許文献1と同様の冷凍サイクルを構成して、室内側熱交換器で冷却された冷風を天井部から乗員の頭上側へ向かって吹き出す。   And at the time of air_conditionaing | cooling operation, it switches to the refrigerant | coolant flow path for air_conditioning | cooling, the refrigerating cycle similar to patent document 1 is comprised, and the cool air cooled with the indoor side heat exchanger is directed toward a passenger | crew upper side from a ceiling part. Blow out.

一方、暖房運転時には、暖房用の冷媒流路に切り替えて、ヒートポンプサイクルを構成し、熱媒体熱交換器にて加熱された熱媒体をヒータコアに流入させ、加熱された熱媒体を熱源としてヒータコアにて車室内吹出空気を加熱し、加熱された温風を床部から乗員の足下側へ向かって吹き出す。   On the other hand, at the time of heating operation, the refrigerant flow path for heating is switched to constitute a heat pump cycle, the heat medium heated by the heat medium heat exchanger is caused to flow into the heater core, and the heated heat medium is used as a heat source to the heater core. The air blown into the passenger compartment is heated, and the heated warm air is blown out from the floor toward the passenger's feet.

これにより、特許文献1と同様に、頭寒足熱型の車室内温度分布を実現して、乗員の空調フィーリングを向上させている。   As a result, similar to Patent Document 1, a head cold foot type vehicle interior temperature distribution is realized, and the air conditioning feeling of the occupant is improved.

しかしながら、上記の如く暖房運転時に、冷媒から熱媒体へ熱伝達させ、さらに熱媒体から車室内吹出空気へ熱伝達させると、冷媒から車室内吹出空気へ直接熱伝達させる場合に対して、熱媒体の介在による熱伝達効率の悪化が生じる。そのため、所望の暖房性能を得るための電動圧縮機の消費電力が増加してしまう。   However, when heat is transferred from the refrigerant to the heat medium during the heating operation as described above, and further, heat is transferred from the heat medium to the air blown into the vehicle compartment, the heat medium is directly transferred from the refrigerant to the air blown into the vehicle compartment. The heat transfer efficiency is deteriorated due to the interposition. Therefore, the power consumption of the electric compressor for obtaining desired heating performance increases.

この問題を解決するためには、暖房運転時にも冷媒と車室内吹出空気と直接熱交換させて、温風を車室内に吹き出す手段が考えられるが、室内側熱交換器は車両屋根上に搭載された空調ユニット内に配置されているので、温風が天井部から吹き出されることとなり、空調フィーリングを悪化させてしまう。   In order to solve this problem, it is conceivable to directly exchange heat between the refrigerant and the air blown into the passenger compartment during heating operation, and to blow warm air into the passenger compartment, but the indoor heat exchanger is mounted on the vehicle roof. Since it is arrange | positioned in the made air-conditioning unit, a warm air will blow off from a ceiling part and will worsen an air-conditioning feeling.

また、温風を車両屋根上から床下に導いて乗員の足下側へ吹き出す温風ダクトを新設する手段も考えられるが、車両屋根上から床下に水等(液体)の熱媒体を導く配管通路面積に対して、温風ダクトの通風路面積が拡大してしまうので、温風ダクトの搭載によって車室内スペースが縮小化されて乗員の居住性を損なうことになる。   In addition, it is conceivable to install a hot air duct that guides the hot air from the roof of the vehicle to the floor and blows it out to the passenger's feet, but the area of the pipe passage that leads the heat medium such as water (liquid) from the roof of the vehicle to the floor On the other hand, since the air passage area of the hot air duct is increased, the space of the passenger compartment is reduced by the installation of the hot air duct, thereby impairing the occupant comfort.

本発明は上記点に鑑み、暖房運転時に空調フィーリングを悪化させることなく、電動圧縮機の消費電力を低減できる車両空調装置を提供することを目的とする。   An object of this invention is to provide the vehicle air conditioner which can reduce the power consumption of an electric compressor, without deteriorating an air-conditioning feeling at the time of heating operation in view of the said point.

上記の目的を達成するため、本発明では、冷媒を圧縮して吐出する電動圧縮機(21)と、車両の天井部に配置されて、冷媒と乗員の頭上側に向かって吹き出される空気とを熱交換させる室内側熱交換器(25)と、天井部に配置されて、冷媒と熱媒体とを熱交換させる熱媒体熱交換器(24)と、車両の床部に配置されて、熱媒体と乗員の足下側に向かって吹き出される空気とを熱交換させるヒータコア(29)と、冷媒と室外空気とを熱交換させる室外側熱交換器(20)と、室外側熱交換器(20)へ流入する冷媒を減圧膨張させる流入側減圧手段(27a)と、車室内を暖房する暖房運転時に、室内側熱交換器(25)にて電動圧縮機(21)吐出冷媒を放熱させ、室外側熱交換器(20)にて流入側減圧手段(27a)下流側冷媒に吸熱させる空気加熱冷媒流路と、熱媒体熱交換器(24)にて電動圧縮機(21)吐出冷媒を放熱させ、室外側熱交換器(20)にて流入側減圧手段(27a)下流側冷媒に吸熱させる熱媒体加熱冷媒流路とを切り替える冷媒流路切替手段(26a、26b)とを備える車両用空調装置を特徴とする。   In order to achieve the above object, in the present invention, the electric compressor (21) that compresses and discharges the refrigerant, and the air that is arranged on the ceiling of the vehicle and blows out toward the upper side of the passenger's head. A heat exchanger (25) for exchanging heat between the indoor heat exchanger (25), a heat exchanger (24) for heat exchange between the refrigerant and the heat medium, and a floor portion of the vehicle. A heater core (29) for exchanging heat between the medium and the air blown toward the passenger's feet, an outdoor heat exchanger (20) for exchanging heat between the refrigerant and the outdoor air, and an outdoor heat exchanger (20 ) And the inflow side decompression means (27a) for decompressing and expanding the refrigerant flowing into the vehicle, and in the heating operation for heating the vehicle interior, the indoor side heat exchanger (25) dissipates the refrigerant discharged from the electric compressor (21), Inflow side decompression means (27a) downstream refrigerant in outer heat exchanger (20) The air heating refrigerant flow path for absorbing heat and the heat medium heat exchanger (24) radiate the refrigerant discharged from the electric compressor (21), and the outdoor heat exchanger (20) downstream of the inflow side decompression means (27a). The vehicle air conditioner includes a refrigerant flow path switching unit (26a, 26b) for switching between a heat medium heating refrigerant flow path that causes the refrigerant to absorb heat.

これによれば、冷媒流路切替手段(26a、26b)が空気加熱冷媒流路と熱媒体加熱冷媒流路とを切り替えることによって、室内側熱交換器(25)にて乗員の頭上側に向かって吹き出される空気を加熱するヒートポンプサイクルと、乗員の足下側に向かって吹き出される空気を加熱する熱源となる熱媒体を熱媒体熱交換器(24)にて加熱するヒートポンプサイクルとを切り替えて暖房運転を行うことができる。   According to this, the refrigerant flow path switching means (26a, 26b) switches between the air heating refrigerant flow path and the heat medium heating refrigerant flow path, so that the indoor heat exchanger (25) moves toward the head of the passenger. The heat pump cycle that heats the air blown out and the heat pump cycle that heats the heat medium that heats the air blown out toward the feet of the occupant in the heat medium heat exchanger (24) Heating operation can be performed.

そして、空気を加熱するヒートポンプサイクルでは、冷媒から車室内吹出空気へ直接熱伝達させることができるので、冷媒から熱媒体を介して車室内吹出空気へ熱伝達させる場合に対して、熱伝達効率を上昇させることができる。その結果、電動圧縮機(21)の消費電力を低減できるとともに、暖房運転開始時の即効性を向上させることもできる。   In the heat pump cycle that heats air, heat can be directly transferred from the refrigerant to the air blown into the vehicle interior, so that the heat transfer efficiency can be improved compared to the case where heat is transferred from the refrigerant to the air blown into the vehicle interior via the heat medium. Can be raised. As a result, the power consumption of the electric compressor (21) can be reduced, and the immediate effect at the start of heating operation can be improved.

また、熱媒体を加熱するヒートポンプサイクルでは、乗員の足下側に向かって吹き出される空気が加熱されるので、車室内温度分布を頭寒足熱型として空調フィーリングを向上させることができる。従って、暖房運転時に空気加熱冷媒流路と熱媒体加熱冷媒流路とを適宜切り替えることによって、乗員搭乗時の空調フィーリングを悪化させることなく、電動圧縮機(21)の消費電力を低減できる。   Further, in the heat pump cycle that heats the heat medium, the air blown toward the foot of the passenger is heated, so that the air conditioning feeling can be improved by using the cabin temperature distribution as a chill head heat type. Therefore, by appropriately switching between the air heating refrigerant channel and the heat medium heating refrigerant channel during the heating operation, the power consumption of the electric compressor (21) can be reduced without deteriorating the air conditioning feeling when boarding the passenger.

なお、本発明における天井部とは、車室内の天井だけでなく、屋根上など車両において乗員の頭上に位置する部位を含む意味である。また、床部とは、車室内の床上だけでなく、床下など車両において乗員の足下近傍に位置する部位を含む意味である。   In addition, the ceiling part in this invention is the meaning containing the site | part located on a passenger | crew's head in vehicles, such as not only the ceiling in a vehicle interior but a roof. Further, the floor means not only on the floor in the passenger compartment, but also includes a portion located in the vicinity of the occupant's feet in the vehicle such as under the floor.

また、上記特徴の車両用空調装置において、冷媒流路切替手段(26a、26b)の作動を制御する制御手段(31)と、暖房運転時に車室内の乗員の有無を検出する検出手段とを備え、制御手段(31)は、検出手段が乗員無を検出したとき、空気加熱冷媒流路に切り替え、さらに、検出手段が乗員有を検出したとき、熱媒体加熱冷媒流路に切り替えるようになっていてもよい。   The vehicle air conditioner having the above characteristics further includes a control means (31) for controlling the operation of the refrigerant flow path switching means (26a, 26b) and a detection means for detecting the presence or absence of a passenger in the vehicle compartment during heating operation. The control means (31) switches to the air heating refrigerant flow path when the detection means detects the absence of an occupant, and further switches to the heat medium heating refrigerant flow path when the detection means detects the presence of an occupant. May be.

これによれば、乗員が車室内に存在しない場合には、ヒートポンプサイクルの効率を向上させて、乗員が車室内に存在する場合には、空調フィーリングを向上させることができる。特に、本発明の車両用空調装置をバス車両に適用した場合、乗員とは車両運転手を除く乗客とすれば、乗客の空調フィーリングを向上させることができる。   According to this, the efficiency of the heat pump cycle can be improved when the occupant is not present in the passenger compartment, and the air conditioning feeling can be improved when the occupant is present in the passenger compartment. In particular, when the vehicle air conditioner of the present invention is applied to a bus vehicle, the passenger's air conditioning feeling can be improved if the passenger is a passenger excluding the vehicle driver.

また、上記特徴の車両用空調装置において、冷媒流路切替手段(26a、26b)の作動を制御する制御手段(31)と、操作者が冷媒流路の切替要求を入力する入力手段(33c)を備え、制御手段(31)は、入力手段(33c)に入力された切替要求に応じて、空気加熱冷媒流路と熱媒体加熱冷媒流路とを切り替えるようになっていてもよい。   In the vehicle air conditioner having the above characteristics, the control means (31) for controlling the operation of the refrigerant flow path switching means (26a, 26b) and the input means (33c) for the operator to input a refrigerant flow path switching request. The control means (31) may be configured to switch between the air heating refrigerant flow path and the heat medium heating refrigerant flow path in response to the switching request input to the input means (33c).

これによれば、操作者の要求に応じて、空気加熱冷媒流路と熱媒体加熱冷媒流路とを操作者の切替要求に応じて、適宜切り替えることができるので、より適切に、乗員搭乗時の空調フィーリングを悪化させることなく、電動圧縮機(21)の消費電力を低減できる。   According to this, the air heating refrigerant flow path and the heat medium heating refrigerant flow path can be appropriately switched according to the operator's switching request according to the operator's request. The power consumption of the electric compressor (21) can be reduced without deteriorating the air conditioning feeling.

また、上記特徴の車両用空調装置において、冷媒流路切替手段(26a、26b)の作動を制御する制御手段(31)と、暖房運転を開始した時からの経過時間を計測する経過時間計測手段とを備え、制御手段(31)は、経過時間が予め定めた基準時間未満のとき、空気加熱冷媒流路に切り替え、経過時間が基準時間以上のとき、熱媒体加熱冷媒流路に切り替えるようになっていてもよい。   In the vehicle air conditioner having the above characteristics, the control means (31) for controlling the operation of the refrigerant flow path switching means (26a, 26b) and the elapsed time measuring means for measuring the elapsed time from the start of the heating operation. And the control means (31) switches to the air heating refrigerant channel when the elapsed time is less than a predetermined reference time, and switches to the heat medium heating refrigerant channel when the elapsed time is equal to or longer than the reference time. It may be.

さらに、経過時間によって冷媒流路を切り替える上記特徴の車両用空調装置を、車両走行用モータに電力を供給する二次電池(11)を備え、二次電池(11)は外部電源により充電可能に構成された車両に適用した場合は、基準時間を、二次電池(11)に充電を開始してから、充電を完了するまでの時間としてもよい。   Further, the vehicle air conditioner that switches the refrigerant flow path according to the elapsed time is provided with a secondary battery (11) that supplies electric power to the vehicle driving motor, and the secondary battery (11) can be charged by an external power source. When applied to a configured vehicle, the reference time may be the time from the start of charging the secondary battery (11) to the completion of charging.

一般的に、二次電池(11)に充電を開始してから、充電を完了するまでの時間は、乗員は車室内に搭乗していない。従って、この時間に、制御手段(31)が空気加熱冷媒流路に切り替えて車室内のプレヒーティング(予備暖房)を行えば、プレヒーティング中の圧縮機の省動力化ができる。さらに、充電後、乗員が車室内に搭乗した際には、制御手段(31)が熱媒体加熱冷媒流路に切り替えるので、空調フィーリングを損なうこともない。   In general, the occupant is not in the passenger compartment during the time from the start of charging the secondary battery (11) to the completion of charging. Therefore, if the control means (31) switches to the air heating refrigerant flow path and performs preheating (preheating) in the passenger compartment at this time, it is possible to save power in the compressor during preheating. Furthermore, when the occupant gets into the passenger compartment after charging, the control means (31) switches to the heat medium heating refrigerant flow path, so that the air conditioning feeling is not impaired.

また、上述の特徴の車両用空調装置において、室外側熱交換器(20)から流出した冷媒を減圧膨張させる流出側減圧手段(27b)と、冷媒流路を切り替えて、暖房運転と車室内を冷房する冷房運転とを切り替える冷暖房切替手段(22)とを備え、冷暖房切替手段(22)は、冷房運転時に、室外側熱交換器(20)にて電動圧縮機(21)吐出冷媒を放熱させ、室内側熱交換器(25)にて流入側減圧手段(27a)下流側冷媒に吸熱させる冷房用冷媒流路に切り替えるようになっていてもよい。   Further, in the vehicle air conditioner having the above-described characteristics, the outlet side decompression means (27b) that decompresses and expands the refrigerant that has flowed out of the outdoor heat exchanger (20), and the refrigerant flow path are switched so that the heating operation and the passenger compartment are performed. A cooling / heating switching means (22) for switching between cooling operation and cooling operation, and the cooling / heating switching means (22) dissipates the refrigerant discharged from the electric compressor (21) in the outdoor heat exchanger (20) during the cooling operation. The indoor side heat exchanger (25) may be switched to a cooling refrigerant flow path that absorbs heat from the downstream side refrigerant in the inflow side decompression means (27a).

これによれば、冷房運転が可能であるとともに、冷房運転時に室内側熱交換器(25)にて冷媒に吸熱させる冷凍サイクルを構成しているので、乗員の頭上側に向かって冷風を吹き出すことができる。その結果、冷房運転時においても乗員の空調フィーリングを損なうことがない。   According to this, since the cooling operation is possible and the refrigeration cycle is configured such that the refrigerant is absorbed by the indoor heat exchanger (25) during the cooling operation, the cold air is blown out toward the head of the passenger. Can do. As a result, the air conditioning feeling of the passenger is not impaired even during the cooling operation.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

以下、図1〜5により、本発明の一実施形態を説明する。図1は、本発明の車両用空調装置の搭載状態を説明する概観斜視図であり、本実施形態の車両用空調装置はバス車両10に搭載されている。このバス車両10は、バッテリ11に蓄えられた電力が供給されることによって駆動する走行用モータ(図示せず)にて走行する電気自動車である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic perspective view for explaining the mounting state of the vehicle air conditioner of the present invention. The vehicle air conditioner of this embodiment is mounted on a bus vehicle 10. The bus vehicle 10 is an electric vehicle that travels by a travel motor (not shown) that is driven by the supply of electric power stored in the battery 11.

バッテリ11は、走行用モータのみならず、図1の破線に示すように、後述する空調ユニット13の電動圧縮機21のような車両用の各種電気機器にも電源を供給する。また、本実施形態では、バッテリ11を2つに分割して、車両進行方向Aの最後部に位置する天井部および床部に配置することで、車室内スペースの縮小化を回避している。   The battery 11 supplies power not only to the driving motor but also to various electric devices for vehicles such as an electric compressor 21 of the air conditioning unit 13 described later, as indicated by a broken line in FIG. In the present embodiment, the battery 11 is divided into two parts and arranged on the ceiling and the floor located at the rearmost part in the vehicle traveling direction A, thereby avoiding the reduction of the vehicle interior space.

また、本実施形態では、バッテリ11として、充放電可能な二次電池(例えば、ニッケル水素電池、リチウムイオン電池)を採用し、充電された電力を走行用モータ等に供給しているが、もちろん、水素と酸素とを電気化学反応させて発電する燃料電池を採用して、発電された電力を供給するようにしてもよい。   In the present embodiment, a chargeable / dischargeable secondary battery (for example, a nickel metal hydride battery or a lithium ion battery) is adopted as the battery 11 and the charged electric power is supplied to the traveling motor or the like. Alternatively, a fuel cell that generates electricity by electrochemical reaction of hydrogen and oxygen may be employed to supply the generated power.

バス車両10の車両前側部の屋根12の上部には空調ユニット13が配置され、バス車両10の車両中央部の床14の下部にはヒータユニット15が配置され、さらに、空調ユニット13およびヒータユニット15は温水配管16によって接続されている。空調ユニット13、ヒータユニット15および温水配管16は、本実施形態の車両用空調装置を構成する。   An air conditioning unit 13 is disposed above the roof 12 on the front side of the bus vehicle 10, a heater unit 15 is disposed below the floor 14 at the center of the bus vehicle 10, and the air conditioning unit 13 and the heater unit are further disposed. 15 is connected by a hot water pipe 16. The air conditioning unit 13, the heater unit 15, and the hot water pipe 16 constitute the vehicle air conditioner of this embodiment.

ここで、図2により、空調ユニット13およびヒータユニット15の詳細について説明する。なお、図2は、本実施形態の車両用空調装置の全体構成図である。まず、空調ユニット13は、主に、冷凍サイクル(ヒートポンプサイクル)を一体化(ユニット化)したもので、室外側熱交換器ユニット17、圧縮機ユニット18および室内側熱交換器ユニット19に大別される。   Here, the details of the air conditioning unit 13 and the heater unit 15 will be described with reference to FIG. FIG. 2 is an overall configuration diagram of the vehicle air conditioner according to the present embodiment. First, the air conditioning unit 13 is mainly an integrated (unitized) refrigeration cycle (heat pump cycle), and is roughly divided into an outdoor heat exchanger unit 17, a compressor unit 18, and an indoor heat exchanger unit 19. Is done.

まず、空調ユニット13のうち、最も前方に配置される室外側熱交換器ユニット17には、室外側熱交換器20および室外側電動送風機(図示せず)が設けられている。室外側熱交換器20は、その内部を流通する冷媒と室外側電動送風機によって送風された室外空気(外気)とを熱交換させるものである。   First, in the air conditioning unit 13, the outdoor heat exchanger unit 17 disposed at the foremost side is provided with an outdoor heat exchanger 20 and an outdoor electric blower (not shown). The outdoor heat exchanger 20 exchanges heat between the refrigerant flowing through the inside and the outdoor air (outside air) blown by the outdoor electric blower.

次に、圧縮機ユニット18は、空調ユニット13のうち中央部に配置され、電動圧縮機21、電気式四方弁22、アキュムレータ23および水−冷媒熱交換器24等が設けられている。電動圧縮機21は、冷凍サイクルにおいて冷媒を吸入し、圧縮して吐出するもので、固定容量型の圧縮機構部21aおよび電動モータ21bを有している。   Next, the compressor unit 18 is arrange | positioned in the center part among the air-conditioning units 13, and the electric compressor 21, the electric four-way valve 22, the accumulator 23, the water-refrigerant heat exchanger 24, etc. are provided. The electric compressor 21 sucks, compresses and discharges the refrigerant in the refrigeration cycle, and has a fixed capacity type compression mechanism 21a and an electric motor 21b.

本実施形態では、圧縮機構部21aとして周知のスクロール型の圧縮機構を採用しているが、ロータリ型、ピストン型、ベーン型等のその他の形式の圧縮機構を採用してもよい。   In the present embodiment, a well-known scroll type compression mechanism is employed as the compression mechanism portion 21a. However, other types of compression mechanisms such as a rotary type, a piston type, and a vane type may be employed.

また、電動モータ21bは、圧縮機構部21aに駆動力を与えるもので、後述する空調制御装置31を介してバッテリ11から電源供給されるとともに、空調制御装置31の制御信号によって回転数制御される。この回転数制御により、電動圧縮機21の冷媒吐出能力が調整される。   The electric motor 21b gives a driving force to the compression mechanism unit 21a. The electric motor 21b is supplied with power from the battery 11 via an air conditioning control device 31 to be described later, and the rotation speed is controlled by a control signal from the air conditioning control device 31. . By this rotational speed control, the refrigerant discharge capacity of the electric compressor 21 is adjusted.

圧縮機ユニット18の内部において、電動圧縮機21の冷媒吐出口には、電気式四方弁22が接続される。電気式四方弁22は、冷媒流路を切り替える冷媒流路切替手段を構成するもので、具体的には、電動圧縮機21吐出口側と室外側熱交換器18側との間を接続する冷房用冷媒流路および電動圧縮機21吐出口側と水−冷媒熱交換器24側または室内側熱交換器25側との間を接続する暖房用冷媒流路を切り替える。   Inside the compressor unit 18, an electric four-way valve 22 is connected to the refrigerant discharge port of the electric compressor 21. The electric four-way valve 22 constitutes a refrigerant flow path switching means for switching the refrigerant flow path, and specifically, cooling that connects between the discharge side of the electric compressor 21 and the outdoor heat exchanger 18 side. The refrigerant flow path for heating and the refrigerant flow path for heating that connects between the discharge port side of the electric compressor 21 and the water-refrigerant heat exchanger 24 side or the indoor heat exchanger 25 side are switched.

そして、電気式四方弁22が、上記の如く、冷媒流路を切り替えることによって、後述する暖房運転と冷房運転における冷媒流路が切り替えられる。従って、電気式四方弁22は、本実施形態における冷暖房切替手段である。この電気式四方弁22も後述する空調制御装置31の出力信号によって制御される。   Then, the electric four-way valve 22 switches the refrigerant flow path as described above, thereby switching the refrigerant flow path in the heating operation and cooling operation described later. Therefore, the electric four-way valve 22 is a cooling / heating switching means in the present embodiment. This electric four-way valve 22 is also controlled by an output signal of an air conditioning control device 31 described later.

一方、電動圧縮機21の冷媒吸入口には、アキュムレータ23が接続される。アキュムレータ23は、気相冷媒と液相冷媒を分離して液相冷媒を貯めておく気液分離器である。
より具体的には、電動圧縮機21の冷媒吸入口は、アキュムレータ23の気相冷媒出口に接続されており、これにより、電動圧縮機21への液相冷媒戻りが防止される。
On the other hand, an accumulator 23 is connected to the refrigerant suction port of the electric compressor 21. The accumulator 23 is a gas-liquid separator that separates the gas-phase refrigerant and the liquid-phase refrigerant and stores the liquid-phase refrigerant.
More specifically, the refrigerant suction port of the electric compressor 21 is connected to the gas-phase refrigerant outlet of the accumulator 23, thereby preventing the liquid-phase refrigerant from returning to the electric compressor 21.

前述の如く、電気式四方弁22のうち1つの冷媒流入出口には、水−冷媒熱交換器24が接続されている。この水−冷媒熱交換器24は、熱媒体である水と冷媒とを熱交換させる熱媒体熱交換器を構成する。なお、熱媒体としては水にエチレングリコール系の不凍液を混合した流体を採用してもよい。   As described above, the water-refrigerant heat exchanger 24 is connected to one refrigerant inlet / outlet of the electric four-way valve 22. The water-refrigerant heat exchanger 24 constitutes a heat medium heat exchanger that exchanges heat between water as a heat medium and the refrigerant. In addition, you may employ | adopt the fluid which mixed ethylene glycol type antifreeze with water as a heat medium.

次に、室内側熱交換器ユニット19は、空調ユニット13のうち最も後方に配置され、室内側熱交換器25、室内側電動送風機(図示せず)、開閉弁26a、26b、絞り機構27a、27b、逆止弁28a、28b等が設けられている。   Next, the indoor side heat exchanger unit 19 is arranged at the rearmost among the air conditioning units 13, and includes an indoor side heat exchanger 25, an indoor side electric blower (not shown), on-off valves 26a and 26b, a throttle mechanism 27a, 27b, check valves 28a, 28b and the like are provided.

室内側熱交換器25は、その内部を流通する冷媒と室内側電動送風機によって室内へ送風される空気とを熱交換させるものである。室内側熱交換器25の空気流れ方向下流側には、車両天井部の左右両側に配置された天井吹出ダクト(図示せず)が接続されており、室内側熱交換器25にて熱交換した空気は、天井吹出ダクトに設けられた空気吹出口から乗員の頭上側に向かって吹き出されるようになっている。   The indoor heat exchanger 25 exchanges heat between the refrigerant flowing through the indoor heat exchanger 25 and the air blown into the room by the indoor electric blower. Ceiling outlet ducts (not shown) arranged on the left and right sides of the vehicle ceiling are connected to the downstream side in the air flow direction of the indoor heat exchanger 25, and heat is exchanged by the indoor heat exchanger 25. The air is blown out from the air outlet provided in the ceiling outlet duct toward the upper side of the passenger.

また、室内側熱交換器25は、その冷媒通路が前述の水−冷媒熱交換器24の冷媒通路と並列になるように接続されている。具体的には、電気式四方弁22と水−冷媒熱交換器24の一方の冷媒流入出口とを接続する冷媒配管に、冷媒の流れを分岐する分岐部Bが設けられており、分岐部Bと室内側熱交換器25の一方の冷媒流入出口が接続されている。   The indoor heat exchanger 25 is connected so that the refrigerant passage is in parallel with the refrigerant passage of the water-refrigerant heat exchanger 24 described above. Specifically, a branch portion B that branches the refrigerant flow is provided in a refrigerant pipe connecting the electric four-way valve 22 and one refrigerant inlet / outlet of the water-refrigerant heat exchanger 24. And one refrigerant inlet / outlet of the indoor heat exchanger 25 are connected.

さらに、室内側熱交換器25の他方の冷媒流入出口に接続される冷媒配管にも分岐部Cが設けられており、分岐部Cと水−冷媒熱交換器24の他方の冷媒流入出口が接続されている。分岐部Bと室内側熱交換器25との間には、冷媒配管を開閉する開閉弁26aが設けられ、分岐部Cと水−冷媒熱交換器24との間にも開閉弁26bが設けられている。   Further, a branch portion C is also provided in the refrigerant pipe connected to the other refrigerant inlet / outlet of the indoor heat exchanger 25, and the other refrigerant inlet / outlet of the water-refrigerant heat exchanger 24 is connected to the branch portion C. Has been. An opening / closing valve 26a for opening and closing the refrigerant pipe is provided between the branching section B and the indoor side heat exchanger 25, and an opening / closing valve 26b is also provided between the branching section C and the water-refrigerant heat exchanger 24. ing.

これらの開閉弁26a、26bは、空調制御装置31の制御電圧によって開閉する電磁弁であり、空調制御装置31が開閉弁26a、26bを開閉することによって、電動圧縮機21吐出冷媒を室内側熱交換器25へ導く空気加熱冷媒流路と水−冷媒熱交換器24へ導く熱媒体加熱冷媒流路が切り替えられる。従って、開閉弁26a、26bは、本実施形態における冷媒流路切替手段である。   These on-off valves 26a and 26b are electromagnetic valves that are opened and closed by a control voltage of the air-conditioning control device 31, and the air-conditioning control device 31 opens and closes the on-off valves 26a and 26b, whereby the refrigerant discharged from the electric compressor 21 is heated indoors. The air heating refrigerant flow path leading to the exchanger 25 and the heat medium heating refrigerant flow path leading to the water-refrigerant heat exchanger 24 are switched. Therefore, the on-off valves 26a and 26b are refrigerant flow path switching means in the present embodiment.

さらに、分岐部Cは前述の室外側熱交換器ユニット17の室外側熱交換器20に接続されており、分岐部Cと室外側熱交換器20との間には、並列に配置された2つの冷媒流路が設けられる。そして、一方の冷媒流路には、分岐部C側から室外側熱交換器20側への冷媒流れのみを許容する逆止弁28aと絞り機構27aが配置されている。   Furthermore, the branch part C is connected to the outdoor heat exchanger 20 of the outdoor heat exchanger unit 17 described above, and 2 arranged between the branch part C and the outdoor heat exchanger 20 in parallel. Two refrigerant flow paths are provided. In one refrigerant flow path, a check valve 28a and a throttle mechanism 27a that allow only the refrigerant flow from the branch portion C side to the outdoor heat exchanger 20 side are arranged.

この絞り機構27aは、室外側熱交換器20へ流入する冷媒を減圧膨張させるもので、本実施形態の流入側減圧手段を構成する。また、本実施形態では、具体的に、絞り機構27aとして、分岐部Cを通過する冷媒圧力が目標高圧となるように弁機構の開度を調整する周知の機械式膨張弁を採用している。   This throttle mechanism 27a expands the refrigerant flowing into the outdoor heat exchanger 20 under reduced pressure, and constitutes the inflow side pressure reducing means of this embodiment. Further, in the present embodiment, specifically, as the throttle mechanism 27a, a known mechanical expansion valve that adjusts the opening degree of the valve mechanism so that the refrigerant pressure passing through the branch portion C becomes a target high pressure is adopted. .

また、他方の冷媒流路には、室外側熱交換器20側から分岐部C側への冷媒の流れのみを許容する逆止弁28bと絞り機構27aと同様の絞り機構27bが配置されている。この絞り機構27bは、室外側熱交換器20から流出する冷媒を減圧膨張させる流出側減圧手段を構成する。さらに、絞り機構27bは室外側熱交換器20流出冷媒の圧力が目標高圧となるように弁機構の開度を調整するようになっている。   In the other refrigerant flow path, a check valve 28b that allows only the refrigerant flow from the outdoor heat exchanger 20 side to the branching section C side and a throttle mechanism 27b similar to the throttle mechanism 27a are arranged. . The throttle mechanism 27b constitutes outflow side decompression means for decompressing and expanding the refrigerant flowing out of the outdoor heat exchanger 20. Furthermore, the throttle mechanism 27b adjusts the opening degree of the valve mechanism so that the pressure of the refrigerant flowing out of the outdoor heat exchanger 20 becomes a target high pressure.

次に、ヒータユニット15の詳細について説明する。ヒータユニット15には、ヒータコア29および温風用電動送風機(図示せず)が設けられている。ヒータコア29は、その内部を流通する熱媒体と温風用電動送風機によって室内へ送風される空気とを熱交換させるものである。   Next, details of the heater unit 15 will be described. The heater unit 15 is provided with a heater core 29 and a hot air electric blower (not shown). The heater core 29 exchanges heat between the heat medium flowing through the heater core 29 and the air blown into the room by the hot air electric blower.

ヒータコア29の空気流れ方向下流側には、車両床上部の左右両側に配置された床上吹出ダクト(図示せず)が接続されており、ヒータコア29にて熱交換した空気(温風)は、床上吹出ダクトに設けられた空気吹出口から乗員の足下側に向かって吹き出されるようになっている。   On the downstream side of the heater core 29 in the air flow direction, floor outlet ducts (not shown) disposed on the left and right sides of the upper part of the vehicle floor are connected, and the air (hot air) heat exchanged by the heater core 29 is on the floor. It blows out toward the passenger | crew's leg | foot side from the air blower outlet provided in the blowing duct.

なお、空調ユニット13およびヒータユニット15を接続する温水配管16は、バス車両壁部の内部に収容されており、空調ユニット13のうち水−冷媒熱交換器24およびヒータユニット15のうちヒータコア29を接続している。また、温水配管16には熱媒体循環用の水ポンプ30が接続されている。   The hot water pipe 16 connecting the air conditioning unit 13 and the heater unit 15 is housed inside the bus vehicle wall, and includes the water-refrigerant heat exchanger 24 in the air conditioning unit 13 and the heater core 29 in the heater unit 15. Connected. Further, a water pump 30 for circulating the heat medium is connected to the hot water pipe 16.

そして、この水ポンプ30が作動することによって熱媒体(水)が水−冷媒熱交換器24およびヒータコア29を循環する。なお、水ポンプ30も空調制御装置31の制御信号によって作動する。   When the water pump 30 operates, the heat medium (water) circulates through the water-refrigerant heat exchanger 24 and the heater core 29. The water pump 30 is also activated by a control signal from the air conditioning controller 31.

次に、図3に基づいて本実施形態の電気制御部の概要を説明すると、空調制御装置31は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この空調制御装置31は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上記した各種の電気機器21、22、26a、26b、30等の作動を制御する。   Next, the outline of the electric control unit according to the present embodiment will be described with reference to FIG. 3. The air conditioning control device 31 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The air conditioning control device 31 performs various calculations and processes based on the control program stored in the ROM, and controls the operations of the various electric devices 21, 22, 26a, 26b, 30 and the like described above.

空調制御装置31には、センサ群32からの検出信号、および操作パネル33からの各種操作信号が入力される。センサ群32として具体的には、外気温(車室外温度)を検出する外気センサ等が設けられる。   A detection signal from the sensor group 32 and various operation signals from the operation panel 33 are input to the air conditioning control device 31. Specifically, an outside air sensor or the like that detects an outside air temperature (a temperature outside the passenger compartment) is provided as the sensor group 32.

また、操作パネル33には、車両用空調装置を作動させる作動スイッチ33a、冷房運転と暖房運転と切り替える冷暖房切替スイッチ33b、暖房運転時において空気加熱運転と熱媒体加熱運転とを切り替える暖房モード切替スイッチ33c、空調対象空間である車室内の目標温度を設定する温度設定スイッチ33d等が設けられる。   The operation panel 33 includes an operation switch 33a for operating the vehicle air conditioner, a cooling / heating switch 33b for switching between the cooling operation and the heating operation, and a heating mode switching switch for switching between the air heating operation and the heat medium heating operation during the heating operation. 33c, a temperature setting switch 33d for setting a target temperature in the passenger compartment that is an air-conditioning target space, and the like are provided.

次に、上述の構成において、本実施形態の作動について説明する。まず、車室内の冷房を行う冷房運転について図4に基づいて説明する。図4は、図2の全体構成図のうち、空調ユニット13側を拡大した構成図で、実線矢印によって冷房運転時の冷媒流れ方向を示したものである。   Next, the operation of the present embodiment in the above configuration will be described. First, the cooling operation for cooling the passenger compartment will be described with reference to FIG. FIG. 4 is an enlarged configuration diagram of the air conditioning unit 13 side in the overall configuration diagram of FIG. 2, and the refrigerant flow direction during the cooling operation is indicated by solid line arrows.

冷房運転は、作動スイッチ33aが投入された状態で、冷暖房切替スイッチ33bが冷房運転側に切り替えられると開始する。まず、作動スイッチ33aが投入されると、空調制御装置31が、電動圧縮機21の電動モータ21bに電力を供給して電動圧縮機21を作動させる。   The cooling operation is started when the air conditioning switching switch 33b is switched to the cooling operation side in a state where the operation switch 33a is turned on. First, when the operation switch 33 a is turned on, the air conditioning control device 31 supplies electric power to the electric motor 21 b of the electric compressor 21 to operate the electric compressor 21.

さらに、冷暖房切替スイッチ33bが冷房運転側に切り替えられると、空調制御装置31が、電気式四方弁22を電動圧縮機21吐出口側と室外側熱交換器18側との間を接続する冷房用冷媒流路に切り替え、開閉弁26aを開弁し、開閉弁26bを閉弁し、水ポンプ30の作動を停止する。   Further, when the air conditioning switching switch 33b is switched to the cooling operation side, the air conditioning control device 31 connects the electric four-way valve 22 between the discharge port side of the electric compressor 21 and the outdoor heat exchanger 18 side. Switching to the refrigerant flow path, opening the on-off valve 26a, closing the on-off valve 26b, and stopping the operation of the water pump 30.

従って、冷房運転時には、電動圧縮機21から吐出された冷媒は、図4の実線矢印に示すように、電気式四方弁22を介して、室外側熱交換器20へ流入する。室外側熱交換器20へ流入した冷媒は室外側電動送風機によって送風された室外空気と熱交換して放熱する。   Therefore, during the cooling operation, the refrigerant discharged from the electric compressor 21 flows into the outdoor heat exchanger 20 through the electric four-way valve 22 as indicated by solid line arrows in FIG. The refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outdoor air blown by the outdoor electric blower to radiate heat.

なお、本実施形態では、冷媒として通常のフロン系冷媒を採用し、冷凍サイクルの高圧側圧力が冷媒の臨界圧力を超えない亜臨界サイクルを構成している。従って、冷房運転時において室外側熱交換器20は、電動圧縮機21吐出冷媒を放熱させて凝縮させる凝縮器としての作用を発揮する。   In the present embodiment, a normal chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical cycle in which the high-pressure side pressure of the refrigeration cycle does not exceed the critical pressure of the refrigerant is configured. Therefore, during the cooling operation, the outdoor heat exchanger 20 exerts an effect as a condenser that radiates and condenses the refrigerant discharged from the electric compressor 21.

室外側熱交換器20を流出した冷媒は、逆止弁28aの機能によって、絞り機構27b側へ流入し、絞り機構27bにおいて減圧膨張される。さらに、冷房運転時には、開閉弁26aが閉弁状態となっているので、絞り機構27b下流側冷媒は、室内側熱交換器25へ流入する。   The refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the throttle mechanism 27b by the function of the check valve 28a, and is decompressed and expanded in the throttle mechanism 27b. Furthermore, since the on-off valve 26a is closed during the cooling operation, the refrigerant on the downstream side of the throttle mechanism 27b flows into the indoor heat exchanger 25.

室内側熱交換器25へ流入した冷媒は、室内側電動送風機によって室内へ送風される空気から吸熱して蒸発する。従って、冷房運転時において室内側熱交換器25は、流出側減圧手段である絞り機構27b下流側冷媒に吸熱させる作用を発揮する。そして、室内側熱交換器25にて冷却された送風空気(冷風)は、前述の如く、天井吹出ダクトを介して、乗員の頭上側に向かって吹き出される。   The refrigerant flowing into the indoor heat exchanger 25 absorbs heat from the air blown into the room by the indoor electric blower and evaporates. Accordingly, during the cooling operation, the indoor heat exchanger 25 exerts an action of absorbing heat to the refrigerant on the downstream side of the throttle mechanism 27b which is the outflow side pressure reducing means. The blown air (cold air) cooled by the indoor heat exchanger 25 is blown out toward the passenger's upper head via the ceiling blowing duct as described above.

室内側熱交換器25から流出した冷媒は、電気式四方弁22を介して、アキュムレータ23に流入し、アキュムレータ23で気液分離された冷媒のうち、気相冷媒が再び電動圧縮機21に吸入される。従って、冷房運転時には、電動圧縮機21(圧縮)→室外側熱交換器20(凝縮)→絞り機構27b(膨張)→室内側熱交換器25(蒸発)の順で冷媒を循環させる周知の冷凍サイクルが構成される。   The refrigerant that has flowed out of the indoor heat exchanger 25 flows into the accumulator 23 through the electric four-way valve 22, and the gas-phase refrigerant of the refrigerant that has been gas-liquid separated by the accumulator 23 is sucked into the electric compressor 21 again. Is done. Therefore, during the cooling operation, the well-known refrigeration in which the refrigerant is circulated in the order of the electric compressor 21 (compression) → the outdoor heat exchanger 20 (condensation) → the throttle mechanism 27b (expansion) → the indoor heat exchanger 25 (evaporation). A cycle is constructed.

さらに、冷房運転時には、乗員の頭上側に向かって冷風を吹き出しているので、頭寒足熱型の車室内温度分布を実現して、乗員の空調フィーリングを向上させることができる。   Further, since the cool air is blown out toward the passenger's upper head during the cooling operation, the passenger's air conditioning feeling can be improved by realizing a head cold foot type vehicle interior temperature distribution.

次に、車室内の暖房を行う暖房運転のうち、熱媒体加熱運転について図5に基づいて説明する。図5は、図2の全体構成図のうち、空調ユニット13側を拡大した構成図で、実線矢印によって熱媒体加熱運転時の冷媒流れ方向を示したものである。   Next, of the heating operation for heating the passenger compartment, the heat medium heating operation will be described with reference to FIG. FIG. 5 is an enlarged configuration diagram of the air conditioning unit 13 side in the overall configuration diagram of FIG. 2, and the refrigerant flow direction during the heat medium heating operation is indicated by a solid line arrow.

熱媒体加熱運転は、作動スイッチ33aが投入された状態で、冷暖房切替スイッチ33bが暖房運転側に切り替えられ、さらに、暖房モード切替スイッチ33cが熱媒体加熱運転側に切り替えられると開始する。   The heat medium heating operation is started when the air conditioning switching switch 33b is switched to the heating operation side and the heating mode switching switch 33c is switched to the heat medium heating operation side with the operation switch 33a being turned on.

この熱媒体加熱運転時には、空調制御装置31が、電気式四方弁22を電動圧縮機21吐出口側と水−冷媒熱交換器24側との間を接続する暖房用冷媒流路に切り替える。さらに、開閉弁26aを閉弁し、開閉弁26bを開弁することによって熱媒体加熱冷媒流路に切り替え、さらに、水ポンプ30を作動させる。   During this heat medium heating operation, the air conditioning control device 31 switches the electric four-way valve 22 to the heating refrigerant flow path that connects the discharge side of the electric compressor 21 and the water-refrigerant heat exchanger 24 side. Further, the on-off valve 26a is closed and the on-off valve 26b is opened to switch to the heat medium heating refrigerant flow path, and the water pump 30 is operated.

従って、熱媒体加熱運転時には、電動圧縮機21から吐出された冷媒は、開閉弁26aが閉弁状態になっており、開閉弁26bが開弁状態になっているので、図5の実線矢印Dに示すように、電気式四方弁22および分岐部Bを介して、水−冷媒熱交換器24へ流入する。   Therefore, during the heat medium heating operation, the refrigerant discharged from the electric compressor 21 has the open / close valve 26a in the closed state and the open / close valve 26b in the open state, so the solid arrow D in FIG. As shown in FIG. 5, the refrigerant flows into the water-refrigerant heat exchanger 24 via the electric four-way valve 22 and the branch portion B.

水−冷媒熱交換器24へ流入した冷媒は水ポンプ30によって水−冷媒熱交換器24およびヒータコア29を循環する熱媒体(水)と熱交換して放熱する。つまり、熱媒体加熱運転時において、水−冷媒熱交換器24は、電動圧縮機21吐出冷媒を放熱させる作用を発揮し、一方、水−冷媒熱交換器24は、熱媒体(水)を加熱する作用を発揮する。   The refrigerant flowing into the water-refrigerant heat exchanger 24 exchanges heat with the heat medium (water) circulating through the water-refrigerant heat exchanger 24 and the heater core 29 by the water pump 30 to dissipate heat. That is, during the heat medium heating operation, the water-refrigerant heat exchanger 24 exerts an action of radiating heat from the refrigerant discharged from the electric compressor 21, while the water-refrigerant heat exchanger 24 heats the heat medium (water). Demonstrate the effect.

なお、水−冷媒熱交換器24における熱媒体(水)の流れ方向は、冷媒の流れ方向に対して対向する流れ方向になっており、これにより、水−冷媒熱交換器24の熱交換性能を向上させている。   In addition, the flow direction of the heat medium (water) in the water-refrigerant heat exchanger 24 is a flow direction opposite to the refrigerant flow direction, whereby the heat exchange performance of the water-refrigerant heat exchanger 24 is achieved. Has improved.

水−冷媒熱交換器24を流出した冷媒は、分岐部Cを通過して、逆止弁28bの機能によって、絞り機構27a側へ流入し、絞り機構27aにおいて減圧膨張されて、室外側熱交換器20へ流入する。   The refrigerant flowing out of the water-refrigerant heat exchanger 24 passes through the branch part C, flows into the throttle mechanism 27a side by the function of the check valve 28b, is decompressed and expanded in the throttle mechanism 27a, and is subjected to outdoor heat exchange. Flow into the vessel 20.

室外側熱交換器20へ流入した冷媒は、室外側電動送風機によって送風される室外空気から吸熱して蒸発する。従って、熱媒体加熱運転時において室外側熱交換器20は、流入側減圧手段である絞り機構27b下流側冷媒に吸熱させる作用を発揮する。   The refrigerant flowing into the outdoor heat exchanger 20 absorbs heat from the outdoor air blown by the outdoor electric blower and evaporates. Therefore, during the heat medium heating operation, the outdoor heat exchanger 20 exerts an action of absorbing heat to the refrigerant on the downstream side of the throttle mechanism 27b that is the inflow side pressure reducing means.

室外側熱交換器20から流出した冷媒は、電気式四方弁22を介して、アキュムレータ23に流入し、アキュムレータ23で気液分離された冷媒のうち、気相冷媒が再び電動圧縮機21に吸入される。従って、熱媒体加熱運転時には、電動圧縮機21(圧縮)→水−冷媒熱交換器24(凝縮)→絞り機構27a(膨張)→室外側熱交換器20(蒸発)の順で冷媒を循環させる周知の冷凍サイクル(ヒートポンプサイクル)を構成している。   The refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the accumulator 23 via the electric four-way valve 22, and the gas-phase refrigerant of the refrigerant that has been gas-liquid separated by the accumulator 23 is sucked into the electric compressor 21 again. Is done. Accordingly, during the heat medium heating operation, the refrigerant is circulated in the order of the electric compressor 21 (compression) → the water-refrigerant heat exchanger 24 (condensation) → the throttle mechanism 27a (expansion) → the outdoor heat exchanger 20 (evaporation). A known refrigeration cycle (heat pump cycle) is constructed.

一方、水−冷媒熱交換器24にて加熱された熱媒体(水)は、温水配管16を介して、ヒータコア29へ流入する。そして、ヒータコア29へ流入した熱媒体(水)は、温風用電動送風機によって室内へ送風される空気と熱交換し、ヒータコア29にて加熱された空気(温風)が、前述の如く、床上吹出ダクトを介して、乗員の足下側に向かって吹き出される。   On the other hand, the heat medium (water) heated by the water-refrigerant heat exchanger 24 flows into the heater core 29 via the hot water pipe 16. The heat medium (water) flowing into the heater core 29 exchanges heat with the air blown into the room by the hot air electric blower, and the air heated by the heater core 29 (warm air) is on the floor as described above. The air is blown out toward the occupant's feet through the blowout duct.

上述の如く、熱媒体加熱運転時には、乗員の足下側に向かって温風を吹き出しているので、頭寒足熱型の車室内温度分布を実現して、乗員の空調フィーリングを向上させることができる。   As described above, during the heat medium heating operation, the warm air is blown out toward the passenger's feet, so that the temperature distribution in the passenger compartment can be realized and the air conditioning feeling of the passenger can be improved.

次に、車室内の暖房を行う暖房運転のうち、空気加熱運転について説明する。図5に示す破線矢印は、空気加熱運転時の冷媒流れ方向を示したものである。空気加熱運転は、作動スイッチ33aが投入された状態で、冷暖房切替スイッチ33bが暖房運転側に切り替えられ、さらに、暖房モード切替スイッチ33cが空気加熱運転側に切り替えられると開始する。   Next, an air heating operation will be described among the heating operations for heating the passenger compartment. The broken line arrows shown in FIG. 5 indicate the refrigerant flow direction during the air heating operation. The air heating operation starts when the cooling / heating changeover switch 33b is switched to the heating operation side and the heating mode changeover switch 33c is switched to the air heating operation side with the operation switch 33a being turned on.

この空気加熱運転時には、空調制御装置31が、電気式四方弁22を電動圧縮機21吐出口側と水−冷媒熱交換器24側との間を接続する暖房用冷媒流路に切り替える。さらに、開閉弁26aを開弁し、開閉弁26bを閉弁することによって空気加熱冷媒流路に切り替える。   At the time of this air heating operation, the air conditioning control device 31 switches the electric four-way valve 22 to the heating refrigerant flow path connecting the discharge side of the electric compressor 21 and the water-refrigerant heat exchanger 24 side. Further, the on-off valve 26a is opened and the on-off valve 26b is closed to switch to the air heating refrigerant flow path.

従って、空気加熱運転時には、電動圧縮機21から吐出された冷媒は、開閉弁26aが開弁状態になっており、開閉弁26bが閉弁状態になっているので、図5の破線矢印Eに示すように、電気式四方弁22、分岐部Bおよび開閉弁26aを介して、室内側熱交換器25へ流入する。   Therefore, during the air heating operation, the refrigerant discharged from the electric compressor 21 has the open / close valve 26a opened and the open / close valve 26b closed, so that the broken line arrow E in FIG. As shown, the air flows into the indoor heat exchanger 25 via the electric four-way valve 22, the branch B and the on-off valve 26a.

室内側熱交換器25へ流入した冷媒は、室内側電動送風機によって室内へ送風される空気に放熱して凝縮する。従って、空気加熱運転時において室内側熱交換器25は、電動圧縮機21吐出冷媒を放熱させる放熱器として作用する。そして、室内側熱交換器25にて加熱された送風空気(温風)は、天井吹出ダクトを介して、乗員の頭上側に向かって吹き出される。   The refrigerant that has flowed into the indoor heat exchanger 25 dissipates heat to the air blown into the room by the indoor electric blower and condenses. Therefore, during the air heating operation, the indoor heat exchanger 25 acts as a radiator that radiates the refrigerant discharged from the electric compressor 21. And the blowing air (warm air) heated in the indoor side heat exchanger 25 is blown out toward the passenger | crew upper side via a ceiling blowing duct.

室内側熱交換器25から流出した冷媒は、熱媒体加熱運転時と同様に、絞り機構27a→室外側熱交換器20→電気式四方弁22→アキュムレータ23の順に流入して再び電動圧縮機21に吸入される。従って、空気加熱運転時には、電動圧縮機21(圧縮)→室内側熱交換器25(凝縮)→絞り機構27a(膨張)→室外側熱交換器20(蒸発)の順で冷媒を循環させる周知の冷凍サイクル(ヒートポンプサイクル)を構成している。   The refrigerant that has flowed out of the indoor heat exchanger 25 flows in the order of the throttle mechanism 27a → the outdoor heat exchanger 20 → the electric four-way valve 22 → the accumulator 23 in the same manner as in the heat medium heating operation, and again in the electric compressor 21. Inhaled. Therefore, during the air heating operation, the refrigerant is circulated in the order of the electric compressor 21 (compression) → the indoor heat exchanger 25 (condensation) → the throttle mechanism 27a (expansion) → the outdoor heat exchanger 20 (evaporation). It constitutes a refrigeration cycle (heat pump cycle).

上述の如く、空気加熱運転時には、冷媒から車室内吹出空気へ直接熱伝達させることができるので、冷媒から熱媒体を介して車室内吹出空気へ熱伝達させる場合に対して、熱伝達効率を上昇させることができる。その結果、電動圧縮機21の消費電力を低減できるとともに、暖房運転開始時の即効性を向上させることもできる。   As described above, since heat can be directly transferred from the refrigerant to the air blown into the vehicle interior during the air heating operation, the heat transfer efficiency is increased compared to the case where heat is transferred from the refrigerant to the air blown into the vehicle interior via the heat medium. Can be made. As a result, the power consumption of the electric compressor 21 can be reduced, and the immediate effect at the start of heating operation can be improved.

さらに、本実施形態では、暖房運転時に、冷媒流路切替手段を構成する開閉弁26a、26bによって空気加熱運転(空気加熱冷媒流路)と熱媒体加熱運転(熱媒体加熱冷媒流路)とを切り替えることができるので、空気加熱運転と熱媒体加熱運転とを適宜切り替えることで、乗員の空調フィーリングを悪化させることなく、電動圧縮機21の消費電力を低減できる。   Further, in the present embodiment, during heating operation, the on-off valves 26a and 26b constituting the refrigerant flow switching means perform air heating operation (air heating refrigerant flow channel) and heat medium heating operation (heat medium heating refrigerant flow channel). Since it can be switched, the power consumption of the electric compressor 21 can be reduced without deteriorating the air conditioning feeling of the occupant by appropriately switching between the air heating operation and the heat medium heating operation.

また、本実施形態のように、操作者が冷媒流路の切替要求を入力する入力手段を構成する暖房モード切替スイッチ33cを設けて、操作者の要求に応じて、空気加熱運転と熱媒体加熱運転とを適宜切り替えることができるようにすれば、より適切に、乗員搭乗時の空調フィーリングを悪化させることなく、電動圧縮機21の消費電力を低減できる。   Further, as in this embodiment, a heating mode change-over switch 33c that constitutes an input means for an operator to input a refrigerant flow switching request is provided, and air heating operation and heat medium heating are performed according to the operator's request. If the operation can be switched as appropriate, the power consumption of the electric compressor 21 can be reduced more appropriately without deteriorating the air-conditioning feeling when boarding the passenger.

(その他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows.

(1)上述の実施形態では、本発明の車両用空調装置を電気自動車(燃料電池車両を含む)に適用した例を説明したが、内燃機関であるエンジンと走行用モータの2つの走行用動力源を有するハイブリッド車両に適用してもよい。   (1) In the above-described embodiment, an example in which the vehicle air conditioner of the present invention is applied to an electric vehicle (including a fuel cell vehicle) has been described. However, two traveling powers, that is, an engine that is an internal combustion engine and a traveling motor. You may apply to the hybrid vehicle which has a source.

また、上述の実施形態では、本発明の車両用空調装置をバス車両に適用しているが、室内側熱交換器25および水−冷媒熱交換器24が車両天井部に配置され、ヒータコア29が車両床部に配置される車両であれば、バス車両に限定されず、ワゴン車、ミニバン等に適用してもよい。   In the above-described embodiment, the vehicle air conditioner of the present invention is applied to a bus vehicle. However, the indoor heat exchanger 25 and the water-refrigerant heat exchanger 24 are disposed on the vehicle ceiling, and the heater core 29 is provided. As long as the vehicle is arranged on the vehicle floor, the vehicle is not limited to a bus vehicle, and may be applied to a wagon car, a minivan, or the like.

(2)上述の実施形態では、暖房運転時のヒータコア29の熱源として、水−冷媒熱交換器24にて加熱された熱媒体を採用しているが、電気自動車においては、電池冷却用の冷却水を補助熱源として併用しても良い。さらに、ハイブリッド車両においては、エンジン冷却水を補助熱源として併用してもよい。   (2) In the above-described embodiment, the heat medium heated by the water-refrigerant heat exchanger 24 is used as the heat source of the heater core 29 during the heating operation. However, in an electric vehicle, cooling for battery cooling is performed. Water may be used as an auxiliary heat source. Further, in the hybrid vehicle, engine cooling water may be used as an auxiliary heat source.

具体的には、電池冷却用の冷却水およびエンジン冷却用の冷却水を、水−冷媒熱交換器24にて加熱された熱媒体と並列的に、ヒータコア29へ流入させるように冷却水回路を構成し、これら冷却水から暖房用の熱量を得られる場合にのみ、冷却水をヒータコア29に流入させるようにすればよい。   Specifically, the cooling water circuit is provided so that the cooling water for cooling the battery and the cooling water for engine cooling flow into the heater core 29 in parallel with the heat medium heated by the water-refrigerant heat exchanger 24. The cooling water may be allowed to flow into the heater core 29 only when the heat quantity for heating can be obtained from the cooling water.

(3)上述の実施形態では、入力手段である暖房モード切替スイッチ33cによる操作車の切替要求に応じて、空気加熱運転(空気加熱冷媒流路)と熱媒体加熱運転(熱媒体加熱冷媒流路)とを切り替えるようにしているが、空気加熱運転と熱媒体加熱運転との切り替えは、これに限定されない。   (3) In the above-described embodiment, the air heating operation (air heating refrigerant flow path) and the heat medium heating operation (heat medium heating refrigerant flow path) according to the switching request of the operating vehicle by the heating mode changeover switch 33c that is the input means. However, the switching between the air heating operation and the heat medium heating operation is not limited to this.

例えば、暖房運転時に車室内の乗員の有無を検出する検出手段を備え、空調制御手段31は、検出手段が乗員無を検出したとき、空気加熱運転に切り替え、さらに、検出手段が乗員有を検出したとき、熱媒体加熱運転に切り替えるようにしてもよい。   For example, a detection means for detecting the presence or absence of a passenger in the passenger compartment during heating operation is provided. When the detection means detects no occupant, the air conditioning control means 31 switches to the air heating operation, and the detection means detects the presence of an occupant. When it does, you may make it switch to a heat-medium heating operation.

これにより、乗員が車室内に存在しない場合には、ヒートポンプサイクルの効率を向上させて、乗員が車室内に存在する場合には、空調フィーリングを向上させることができる。なお、上記の検出手段として、例えば、車室内の重さの変化によって乗員の有無を検出する重量センサ、車室内のシートに乗員が着座しているか否かを判定する着座センサ、所定の範囲内の人員の有無を検出する赤外線センサ等を採用することができる。   Thereby, when a passenger | crew does not exist in a vehicle interior, the efficiency of a heat pump cycle can be improved, and when a passenger | crew exists in a vehicle interior, air-conditioning feeling can be improved. As the detection means, for example, a weight sensor that detects the presence or absence of an occupant by a change in the weight of the passenger compartment, a seating sensor that determines whether or not an occupant is seated on a seat in the passenger compartment, and within a predetermined range It is possible to employ an infrared sensor or the like that detects the presence or absence of other personnel.

また、この他にも、例えば、暖房運転を開始した時からの経過時間を計測する経過時間計測手段とを備え、空調制御手段31は、経過時間が予め定めた基準時間未満のとき、空気加熱運転に切り替え、経過時間が予め定めた時間以上のとき、熱媒体加熱運転に切り替えるようにしてもよい。なお、この経過時間計測手段として、空調制御手段31に内蔵されたタイマ手段を用いることができる。   In addition to this, for example, an elapsed time measuring unit that measures an elapsed time from the start of the heating operation is provided, and the air conditioning control unit 31 performs air heating when the elapsed time is less than a predetermined reference time. When the elapsed time is equal to or longer than a predetermined time, the operation may be switched to the heat medium heating operation. As the elapsed time measuring means, timer means built in the air conditioning control means 31 can be used.

さらに、上述の一実施形態と同様の構成のバス車両において、上記の基準時間を、二次電池に充電を開始してから、充電を完了するまでの時間としてもよい。   Furthermore, in the bus vehicle having the same configuration as that of the above-described embodiment, the reference time may be a time from when charging of the secondary battery is started to when charging is completed.

二次電池への充電中は一般的に乗員が搭乗していないので、空気加熱運転に切り替えて車室内のプレヒーティング(予備暖房)を行えば、プレヒーティング中の圧縮機の省動力化ができる。さらに、充電後、乗員が車室内に搭乗した際に、熱媒体加熱運転に切り替わっていれば空調フィーリングを損なうこともない。   Since the passengers are generally not on board while the secondary battery is being charged, switching to air heating operation and preheating (preheating) in the passenger compartment can save power in the compressor during preheating. Can do. Further, after charging, when the occupant gets into the passenger compartment, the air conditioning feeling is not impaired as long as the occupant switches to the heat medium heating operation.

(4)上述の実施形態では、熱媒体加熱運転では、水−冷媒熱交換器24にて冷媒を放熱させ、空気加熱運転では、室内側熱交換器25にて冷媒を放熱させているが、車室内を急速に暖めたい場合には、水−冷媒熱交換器24および室内側熱交換器25にて同時に冷媒を放熱させるようにしてもよい。   (4) In the embodiment described above, in the heat medium heating operation, the refrigerant is radiated by the water-refrigerant heat exchanger 24, and in the air heating operation, the refrigerant is radiated by the indoor heat exchanger 25. When it is desired to warm the passenger compartment rapidly, the water-refrigerant heat exchanger 24 and the indoor heat exchanger 25 may simultaneously radiate the refrigerant.

具体的には、暖房運転時に開閉弁26a、26bを同時に開弁状態にして、双方の熱交換器24、25にて冷媒を放熱させればよい。この時、室内側熱交換器24における冷媒放熱量を、水−冷媒熱交換器24における冷媒放熱量に対して、少なくすれば、空調フィーリングの悪化を抑制できる。   Specifically, the on-off valves 26a and 26b may be opened at the same time during the heating operation, and the refrigerant may be radiated by both the heat exchangers 24 and 25. At this time, if the refrigerant heat radiation amount in the indoor heat exchanger 24 is reduced with respect to the refrigerant heat radiation amount in the water-refrigerant heat exchanger 24, deterioration of the air conditioning feeling can be suppressed.

一実施形態の車両用空調装置のバス車両への搭載状態を説明する概観斜視図である。It is a general-purpose perspective view explaining the mounting state to the bus vehicle of the vehicle air conditioner of one Embodiment. 一実施形態の車両用空調装置の全体構成図である。1 is an overall configuration diagram of a vehicle air conditioner according to an embodiment. 一実施形態の電気制御部のブロック図である。It is a block diagram of the electric control part of one Embodiment. 一実施形態の冷房運転時の空調ユニットの冷媒流れを説明する説明図である。It is explanatory drawing explaining the refrigerant | coolant flow of the air conditioning unit at the time of the air_conditionaing | cooling operation of one Embodiment. 一実施形態の暖房運転時の空調ユニットの冷媒流れを説明する説明図である。It is explanatory drawing explaining the refrigerant | coolant flow of the air conditioning unit at the time of heating operation of one Embodiment.

符号の説明Explanation of symbols

21…電動圧縮機、20…室外側熱交換器、22…電気式四方弁、
24…水−冷媒熱交換器、25…室内側熱交換器、29…ヒータコア、
26a、26b…開閉弁、27a、27b…絞り機構、31…空調制御手段、
33c…暖房モード切替スイッチ。
21 ... Electric compressor, 20 ... Outdoor heat exchanger, 22 ... Electric four-way valve,
24 ... Water-refrigerant heat exchanger, 25 ... Indoor heat exchanger, 29 ... Heater core,
26a, 26b ... open / close valve, 27a, 27b ... throttling mechanism, 31 ... air conditioning control means,
33c ... Heating mode selector switch.

Claims (6)

冷媒を圧縮して吐出する電動圧縮機(21)と、
車両の天井部に配置されて、冷媒と乗員の頭上側に向かって吹き出される空気とを熱交換させる室内側熱交換器(25)と、
前記天井部に配置されて、冷媒と熱媒体とを熱交換させる熱媒体熱交換器(24)と、
前記車両の床部に配置されて、前記熱媒体と乗員の足下側に向かって吹き出される空気とを熱交換させるヒータコア(29)と、
冷媒と室外空気とを熱交換させる室外側熱交換器(20)と、
前記室外側熱交換器(20)へ流入する冷媒を減圧膨張させる流入側減圧手段(27a)と、
車室内を暖房する暖房運転時に、前記室内側熱交換器(25)にて前記電動圧縮機(21)吐出冷媒を放熱させ、前記室外側熱交換器(20)にて前記流入側減圧手段(27a)下流側冷媒に吸熱させる空気加熱冷媒流路と、前記熱媒体熱交換器(24)にて前記電動圧縮機(21)吐出冷媒を放熱させ、前記室外側熱交換器(20)にて前記流入側減圧手段(27a)下流側冷媒に吸熱させる熱媒体加熱冷媒流路とを切り替える冷媒流路切替手段(26a、26b)とを備えることを特徴とする車両用空調装置。
An electric compressor (21) for compressing and discharging the refrigerant;
An indoor heat exchanger (25) disposed on the ceiling of the vehicle for exchanging heat between the refrigerant and the air blown toward the passenger's upper head;
A heat medium heat exchanger (24) disposed on the ceiling portion for exchanging heat between the refrigerant and the heat medium;
A heater core (29) disposed on the floor of the vehicle for exchanging heat between the heat medium and air blown toward the foot of the passenger;
An outdoor heat exchanger (20) for exchanging heat between the refrigerant and the outdoor air;
Inflow side decompression means (27a) for decompressing and expanding the refrigerant flowing into the outdoor heat exchanger (20);
During the heating operation for heating the passenger compartment, the refrigerant discharged from the electric compressor (21) is radiated by the indoor heat exchanger (25), and the inflow side decompression means (20) is discharged by the outdoor heat exchanger (20). 27a) An air heating refrigerant flow path that absorbs heat from the downstream refrigerant, and the heat medium heat exchanger (24) radiates the refrigerant discharged from the electric compressor (21), and the outdoor heat exchanger (20) A vehicle air conditioner comprising: refrigerant flow switching means (26a, 26b) for switching the inflow side decompression means (27a) to a heat medium heating refrigerant flow path that absorbs heat from a downstream refrigerant.
前記冷媒流路切替手段(26a、26b)の作動を制御する制御手段(31)と、
前記暖房運転時に前記車室内の乗員の有無を検出する検出手段とを備え、
前記制御手段(31)は、前記検出手段が乗員無を検出したとき、前記空気加熱冷媒流路に切り替え、さらに、前記検出手段が乗員有を検出したとき、前記熱媒体加熱冷媒流路に切り替えるようになっていることを特徴とする請求項1に記載の車両用空調装置。
Control means (31) for controlling the operation of the refrigerant flow path switching means (26a, 26b);
Detecting means for detecting the presence or absence of a passenger in the passenger compartment during the heating operation,
The control means (31) switches to the air heating refrigerant flow path when the detection means detects no occupant, and further switches to the heat medium heating refrigerant flow path when the detection means detects presence of an occupant. The vehicle air conditioner according to claim 1, wherein the vehicle air conditioner is configured as described above.
前記冷媒流路切替手段(26a、26b)の作動を制御する制御手段(31)と、
操作者が冷媒流路の切替要求を入力する入力手段(33c)を備え、
前記制御手段(31)は、前記入力手段(33c)に入力された切替要求に応じて、前記空気加熱冷媒流路と前記熱媒体加熱冷媒流路とを切り替えるようになっていることを特徴とする請求項1に記載の車両用空調装置。
Control means (31) for controlling the operation of the refrigerant flow path switching means (26a, 26b);
An input means (33c) for an operator to input a switching request for the refrigerant flow path;
The control means (31) is configured to switch between the air heating refrigerant flow path and the heat medium heating refrigerant flow path in response to a switching request input to the input means (33c). The vehicle air conditioner according to claim 1.
前記冷媒流路切替手段(26a、26b)の作動を制御する制御手段(31)と、
前記暖房運転を開始した時からの経過時間を計測する経過時間計測手段とを備え、
前記制御手段(31)は、前記経過時間が予め定めた基準時間未満のとき、前記空気加熱冷媒流路に切り替え、前記経過時間が前記基準時間以上のとき、前記熱媒体加熱冷媒流路に切り替えるようになっていることを特徴とする請求項1に記載の車両用空調装置。
Control means (31) for controlling the operation of the refrigerant flow path switching means (26a, 26b);
Elapsed time measuring means for measuring the elapsed time from the start of the heating operation,
The control means (31) switches to the air heating refrigerant channel when the elapsed time is less than a predetermined reference time, and switches to the heat medium heating refrigerant channel when the elapsed time is equal to or more than the reference time. The vehicle air conditioner according to claim 1, wherein the vehicle air conditioner is configured as described above.
車両走行用モータに電力を供給する二次電池(11)を備え、前記二次電池(11)は外部電源により充電可能に構成された車両に適用される請求項4に記載の車両用空調装置であって、
前記基準時間は、前記二次電池(11)に充電を開始してから、充電を完了するまでの時間であることを特徴とする車両用空調装置。
The vehicle air conditioner according to claim 4, further comprising a secondary battery (11) for supplying electric power to a vehicle driving motor, wherein the secondary battery (11) is applied to a vehicle configured to be rechargeable by an external power source. Because
The vehicle air conditioner characterized in that the reference time is a time from the start of charging the secondary battery (11) to the completion of charging.
前記室外側熱交換器(20)から流出した冷媒を減圧膨張させる流出側減圧手段(27b)と、
冷媒流路を切り替えて、前記暖房運転と前記車室内を冷房する冷房運転とを切り替える冷暖房切替手段(22)とを備え、
前記冷暖房切替手段(22)は、前記冷房運転時に、前記室外側熱交換器(20)にて前記電動圧縮機(21)吐出冷媒を放熱させ、前記室内側熱交換器(25)にて前記流出側減圧手段(27b)下流側冷媒に吸熱させる冷房用冷媒流路に切り替えるようになっていることを特徴とする請求項1ないし5のいずれか1つに記載の車両用空調装置。
Outflow side decompression means (27b) for decompressing and expanding the refrigerant that has flowed out of the outdoor heat exchanger (20);
Air-conditioning switching means (22) for switching the refrigerant flow path to switch between the heating operation and the cooling operation for cooling the passenger compartment,
The air conditioning switching means (22) radiates the refrigerant discharged from the electric compressor (21) by the outdoor heat exchanger (20) during the cooling operation, and the indoor heat exchanger (25) The vehicular air conditioner according to any one of claims 1 to 5, wherein the outflow side decompression means (27b) is switched to a cooling refrigerant flow path that absorbs heat from the downstream side refrigerant.
JP2006177647A 2006-06-28 2006-06-28 Vehicular air conditioner Withdrawn JP2008006894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177647A JP2008006894A (en) 2006-06-28 2006-06-28 Vehicular air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177647A JP2008006894A (en) 2006-06-28 2006-06-28 Vehicular air conditioner

Publications (1)

Publication Number Publication Date
JP2008006894A true JP2008006894A (en) 2008-01-17

Family

ID=39065489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177647A Withdrawn JP2008006894A (en) 2006-06-28 2006-06-28 Vehicular air conditioner

Country Status (1)

Country Link
JP (1) JP2008006894A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136698A2 (en) * 2008-05-08 2009-11-12 모딘코리아 유한회사 Roof-top hvac system for buses
JP2011029297A (en) * 2009-07-23 2011-02-10 Juki Corp Electronic component feeder
JP2012510600A (en) * 2008-12-01 2012-05-10 ヴァレオ システム テルミク Coil type heat exchanger and air conditioner equipped with this coil type heat exchanger
US9233592B2 (en) 2010-07-14 2016-01-12 International Truck Intellectual Property Company, Llc Climate control system for the interior of an electric drive vehicle
WO2017104254A1 (en) * 2015-12-15 2017-06-22 株式会社デンソー Vehicle air conditioning device
CN107415636A (en) * 2017-08-07 2017-12-01 珠海格力电器股份有限公司 A kind of automobile, air conditioning system for vehicle and car air-conditioner control method
CN108422829A (en) * 2018-03-20 2018-08-21 上海加冷松芝汽车空调股份有限公司 A kind of integral new-energy passenger integrated thermal management system being suitable for flammable working medium
JP2019073252A (en) * 2017-10-19 2019-05-16 株式会社デンソーエアクール Vehicle air conditioner
CN109974318A (en) * 2017-12-27 2019-07-05 杭州三花研究院有限公司 A kind of heat management system
CN112689570A (en) * 2018-09-21 2021-04-20 三电汽车空调系统株式会社 Air conditioner for vehicle
JP2022545035A (en) * 2019-08-23 2022-10-24 華為技術有限公司 Automotive thermal management system and thermal management method based on automotive thermal management system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136698A2 (en) * 2008-05-08 2009-11-12 모딘코리아 유한회사 Roof-top hvac system for buses
WO2009136698A3 (en) * 2008-05-08 2010-01-07 모딘코리아 유한회사 Roof-top hvac system for buses
JP2012510600A (en) * 2008-12-01 2012-05-10 ヴァレオ システム テルミク Coil type heat exchanger and air conditioner equipped with this coil type heat exchanger
JP2011029297A (en) * 2009-07-23 2011-02-10 Juki Corp Electronic component feeder
US9233592B2 (en) 2010-07-14 2016-01-12 International Truck Intellectual Property Company, Llc Climate control system for the interior of an electric drive vehicle
WO2017104254A1 (en) * 2015-12-15 2017-06-22 株式会社デンソー Vehicle air conditioning device
CN107415636A (en) * 2017-08-07 2017-12-01 珠海格力电器股份有限公司 A kind of automobile, air conditioning system for vehicle and car air-conditioner control method
CN107415636B (en) * 2017-08-07 2023-08-08 珠海格力电器股份有限公司 Automobile, automobile air conditioning system and automobile air conditioning control method
JP2019073252A (en) * 2017-10-19 2019-05-16 株式会社デンソーエアクール Vehicle air conditioner
JP7073666B2 (en) 2017-10-19 2022-05-24 株式会社デンソーエアクール Vehicle air conditioner
CN109974318A (en) * 2017-12-27 2019-07-05 杭州三花研究院有限公司 A kind of heat management system
CN108422829B (en) * 2018-03-20 2023-07-14 上海加冷松芝汽车空调股份有限公司 New energy bus comprehensive thermal management system suitable for combustible working medium
CN108422829A (en) * 2018-03-20 2018-08-21 上海加冷松芝汽车空调股份有限公司 A kind of integral new-energy passenger integrated thermal management system being suitable for flammable working medium
CN112689570A (en) * 2018-09-21 2021-04-20 三电汽车空调系统株式会社 Air conditioner for vehicle
JP2022545035A (en) * 2019-08-23 2022-10-24 華為技術有限公司 Automotive thermal management system and thermal management method based on automotive thermal management system
JP7427771B2 (en) 2019-08-23 2024-02-05 華為技術有限公司 Automotive thermal management system and thermal management method based on automotive thermal management system

Similar Documents

Publication Publication Date Title
JP2008006894A (en) Vehicular air conditioner
JP5440426B2 (en) Temperature control system for vehicles
JP6925288B2 (en) Vehicle air conditioner
JP3736847B2 (en) Air conditioning apparatus and air conditioning method
JP5860361B2 (en) Thermal management system for electric vehicles
JP6204111B2 (en) Air conditioner for vehicles
JP2005263200A (en) Air conditioner for vehicle
JP5136881B2 (en) Air conditioner for vehicles
CN107499087B (en) Air conditioner for vehicle
JP5407944B2 (en) Air conditioner for vehicles
WO2017104254A1 (en) Vehicle air conditioning device
JP2012006514A (en) Air conditioner for vehicle
JP5126173B2 (en) Air conditioner for vehicles
JP5957233B2 (en) Air conditioner for vehicles
JP7017119B2 (en) Cooling system
JP2009166629A (en) Air conditioner for vehicle
JP2005233535A (en) Air conditioner
JPH0966722A (en) Air conditioner of electric vehicle
JP7095845B2 (en) Combined valve and vehicle air conditioner using it
CN115397683A (en) Vehicle air conditioning system
JP4213535B2 (en) Air conditioner for vehicles
JP6115373B2 (en) Air conditioner for vehicles
JP2010125913A (en) Vehicular air-conditioner
JP2021146860A (en) Vehicular air conditioner
JP3360430B2 (en) Heat pump type air conditioner for vehicles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901