JP2008006524A - Hollow device and its manufacturing method - Google Patents

Hollow device and its manufacturing method Download PDF

Info

Publication number
JP2008006524A
JP2008006524A JP2006177862A JP2006177862A JP2008006524A JP 2008006524 A JP2008006524 A JP 2008006524A JP 2006177862 A JP2006177862 A JP 2006177862A JP 2006177862 A JP2006177862 A JP 2006177862A JP 2008006524 A JP2008006524 A JP 2008006524A
Authority
JP
Japan
Prior art keywords
hollow
hollow fiber
resin
microchannel
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177862A
Other languages
Japanese (ja)
Inventor
Masato Mikami
正人 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2006177862A priority Critical patent/JP2008006524A/en
Priority to US11/589,788 priority patent/US20080003433A1/en
Priority to CN200610165669.1A priority patent/CN101096265A/en
Publication of JP2008006524A publication Critical patent/JP2008006524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/561Tubes; Conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00071Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow device having a microchannel and capable of being simply manufactured, and its manufacturing method. <P>SOLUTION: This hollow device 10 has a hollow fiber 12 having the microchannel 16 and a device main body forming part 14 around the hollow fiber 12. This manufacturing method of the hollow device 10 includes a process for arranging the hollow fiber 12 having the microchannel 16 in a desired shape, a process for introducing a device main body forming material around the hollow fiber 12, and a process for hardening or solidifying the device main body forming material to seal the hollow fiber 12 in the device main body forming part 14. It is desirable that a material of the hollow fiber 12 is resin, a carbon fiber, a composite material of resin and an inorganic material or glass. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、中空デバイス及びその製造方法に関する。   The present invention relates to a hollow device and a manufacturing method thereof.

中空デバイスは、従来、主に、ステンレス等の金属製材料から形成されていた。この場合、金属製材料は、溶融温度が非常に高いため、注型によっては、中空部、特に、直径がμm単位の微細な流路を有するように成型することが困難であった。そのため、従来は、これらの金属製材料の表面にエッチング処理により毛細状の溝を形成した後、これを溶接等により接合して管路状の流路を形成したり、金属製材料にレーザー加工により短管路を形成し、この短管路を接続して形成されていた。   Conventionally, the hollow device has been mainly formed of a metal material such as stainless steel. In this case, since the metal material has a very high melting temperature, it has been difficult to mold the metal material so as to have a hollow portion, in particular, a fine channel having a diameter of μm, depending on casting. Therefore, conventionally, after forming a capillary groove on the surface of these metal materials by etching, this is joined by welding or the like to form a conduit-like flow path, or laser processing is performed on the metal material A short pipe was formed by connecting the short pipes.

また、従来の高分子樹脂を用いた中空デバイスの製造方法は、射出成型により微小流路に対応する凸型形状を備えた鋳型に溶融状態の高分子レジンを流し込み、微小流路に対応する溝を有する部材(一方の樹脂製部材)を成型し、溝を形成した表面に別途成型した高分子からなる部材(他方の樹脂製部材)を接合することにより成型されている。   In addition, a conventional method for manufacturing a hollow device using a polymer resin is such that a molten polymer resin is poured into a mold having a convex shape corresponding to a microchannel by injection molding, and a groove corresponding to the microchannel is formed. Is formed by molding a member (one resin member) having a groove and bonding a member (the other resin member) made of a polymer separately molded to the surface where the groove is formed.

従来の中空デバイスの製造方法としては、例えば、特許文献1には、デバイス本体と前記デバイス本体の内部に形成された中空部とを備えた中空デバイスの製造方法であって、本体用材料を硬化又は固化させることにより前記デバイス本体を形成し、前記本体用材料の硬化又は固化前に前記中空部の形成位置に中空部形成部材を設置し前記本体用材料の硬化又は固化後に前記デバイス本体から前記中空部形成部材を除去して前記中空部を形成することを特徴とする中空デバイスの製造方法が提案されている。   As a conventional method for manufacturing a hollow device, for example, Patent Document 1 discloses a method for manufacturing a hollow device including a device body and a hollow portion formed inside the device body, and the body material is cured. Alternatively, the device body is formed by solidifying, and a hollow portion forming member is installed at a position where the hollow portion is formed before the body material is cured or solidified, and the body material is cured from the device body after the body material is cured or solidified. A method for manufacturing a hollow device is proposed in which the hollow portion is formed by removing the hollow portion forming member.

特開2003−311697号公報JP 2003-311697 A

本発明の目的は、微小流路を有し、簡便に製造することができる中空デバイス及びその製造方法を提供することである。   An object of the present invention is to provide a hollow device that has a microchannel and can be easily manufactured, and a method for manufacturing the hollow device.

本発明が解決しようとする上記課題は、手段<1>及び<6>によって解決された。好ましい実施態様である<2>〜<5>と共に以下に示す。
<1> 微小流路を有する中空繊維、及び、前記中空繊維の周囲にデバイス本体形成部を有することを特徴とする中空デバイス、
<2> 前記中空繊維が樹脂である上記<1>に記載の中空デバイス、
<3> 前記中空繊維が炭素繊維である上記<1>又は<2>に記載の中空デバイス、
<4> 前記中空繊維が樹脂と無機材料との複合材料である上記<1>〜<3>のいずれか1つに記載の中空デバイス、
<5> 前記中空繊維がガラスである上記<1>〜<4>のいずれか1つに記載の中空デバイス、
<6> 微小流路を有する中空繊維を所望の形状に配置する工程、中空繊維の周囲にデバイス本体形成材料を導入する工程、及び、デバイス本体形成材料を硬化又は固化する工程を含むことを特徴とする中空デバイスの製造方法。
The above-mentioned problem to be solved by the present invention has been solved by means <1> and <6>. It is shown below with <2>-<5> which are preferable embodiments.
<1> A hollow device having a microchannel, and a hollow device having a device body forming portion around the hollow fiber,
<2> The hollow device according to <1>, wherein the hollow fiber is a resin.
<3> The hollow device according to <1> or <2>, wherein the hollow fiber is a carbon fiber.
<4> The hollow device according to any one of <1> to <3>, wherein the hollow fiber is a composite material of a resin and an inorganic material.
<5> The hollow device according to any one of the above <1> to <4>, wherein the hollow fiber is glass.
<6> including a step of arranging hollow fibers having microchannels in a desired shape, a step of introducing a device main body forming material around the hollow fibers, and a step of curing or solidifying the device main body forming material. A method for manufacturing a hollow device.

本発明によれば、微小流路を有し、簡便に製造することができる中空デバイス及びその製造方法を提供することができた。   According to the present invention, it was possible to provide a hollow device that has a microchannel and can be easily manufactured and a method for manufacturing the hollow device.

本発明の中空デバイスは、微小流路を有する中空繊維、及び、前記中空繊維の周囲にデバイス本体形成部を有することを特徴とする。
また、本発明の中空デバイスの製造方法は、微小流路を有する中空繊維を所望の形状に配置する工程、中空繊維の周囲にデバイス本体形成材料を導入する工程、及び、デバイス本体形成材料を硬化又は固化する工程を含むことを特徴とする。
以下、図面等を参照しながら、本発明を詳細に説明する。
The hollow device of the present invention is characterized by having a hollow fiber having a microchannel and a device body forming portion around the hollow fiber.
The method for producing a hollow device of the present invention includes a step of arranging hollow fibers having microchannels in a desired shape, a step of introducing a device main body forming material around the hollow fibers, and a curing of the device main body forming material. Or a step of solidifying.
Hereinafter, the present invention will be described in detail with reference to the drawings.

従来の中空デバイスの製造方法は、例えば、前述の特許文献1に記載された発明のように、金型内に金属製糸、樹脂製糸、ガラス製糸、カーボン製糸などの繊維状の中空部形成部材を、所定の形状に張った後、エポキシ樹脂等の熱硬化性樹脂や熱可塑性樹脂を金型内に充填して硬化させ、デバイス本体を形成後に繊維状の中空部形成部材を除去する方法が提示されている。この方法でループ状流路、湾曲している流路や直線流路/湾曲流路、直線流路/ループ流路が複合した流路の形成も提示されているが製造工程容易ではなく、また、高機能化のため流路内を処理、機能設計することは難しい。 A conventional hollow device manufacturing method is, for example, as in the invention described in Patent Document 1 described above, a hollow part forming member such as a metal thread, a resin thread, a glass thread, or a carbon thread is formed in a mold. , Presenting a method of removing the fibrous hollow part forming member after forming a device body after filling the mold with a thermosetting resin such as epoxy resin or thermoplastic resin and curing it Has been. Loop flow path in this way, the flow channel and straight channel / curved channel that curves, straight channel / loop flow paths are also presented the formation of flow paths in complex but the manufacturing process is not easy, In addition, it is difficult to process and functionally design the inside of the flow path for high functionality.

上記の特許文献1に記載の方法では繊維状の部材を除去してしまうが、本発明の中空デバイス及びその製造方法では、中空繊維を使用し、中空繊維内の中空部分を微小流路として用いるため、中空繊維の材質、構造を様々な種類のものから選択可能であったり、容易に高機能化付与の流路が設計でき、また、中空繊維で流路が形成されるため、任意の中空繊維を所望の形状、例えば、直線状やループ状、湾曲、複合形状に設計した微小流路を有するデバイスを一括成型により得ることができる。   Although the fibrous member is removed by the method described in Patent Document 1, the hollow device of the present invention and the manufacturing method thereof use a hollow fiber, and a hollow portion in the hollow fiber is used as a microchannel. Therefore, the material and structure of the hollow fiber can be selected from various types, and a flow path with high functionality can be easily designed, and the flow path is formed with the hollow fiber. A device having a microchannel in which fibers are designed in a desired shape, for example, a linear shape, a loop shape, a curved shape, or a composite shape can be obtained by batch molding.

従来の微小流路を有するデバイスの製造方法は、金属製材料の表面にエッチング処理により毛細状の溝を形成した後、これを溶接等により接合して管路状の流路を形成したり、金属製材料にレーザー加工により短管路を形成し、この短管路を接続して形成する方法や、高分子樹脂を用いた製造方法では、射出成型により微小流路に対応する凸型形状を備えた鋳型に溶融状態の高分子レジンを流し込み、微小流路に対応する溝を有する部材(一方の樹脂製部材)を成型し、溝を形成した表面に別途成型した高分子からなる部材(他方の樹脂製部材)を接合することにより成型する方法が挙げられる。しかしながら、これらの従来法では、微小流路内の高機能化は流路形成後高分子材料でコーティングするなど工程が複雑であった。
一方、本発明においては、中空繊維で流路を成型するため、中空繊維の材質、構造を選択することにより、例えば、親水性流路、疎水性流路、親水性流路と疎水性流路との組み合わせや、選択的にガス透過する流路の組み合わせ、有機材料と無機材料の海島構造を有する流路などの所望する性質の微小流路を有するデバイスが簡便に一括成型により得ることができる。
A conventional method for manufacturing a device having a micro flow channel is to form a capillary channel by forming a capillary groove on the surface of a metal material by etching, and then joining it by welding or the like. In a method of forming a short pipe line in a metal material by laser processing and connecting the short pipe lines or a manufacturing method using a polymer resin, a convex shape corresponding to a micro flow path is formed by injection molding. A molten polymer resin is poured into the provided mold, a member (one resin member) having a groove corresponding to the microchannel is molded, and a member made of a polymer separately molded on the surface where the groove is formed (the other member) And a resin molding member). However, in these conventional methods, the high-functionality in the microchannel is complicated by a process such as coating with a polymer material after the channel is formed.
On the other hand, in the present invention, since the flow path is molded with hollow fibers, the material and structure of the hollow fibers are selected, so that, for example, hydrophilic flow paths, hydrophobic flow paths, hydrophilic flow paths and hydrophobic flow paths are selected. , A combination of channels that selectively allow gas permeation, and a device having a microchannel with desired properties such as a channel having a sea-island structure of an organic material and an inorganic material can be easily obtained by batch molding. .

(中空デバイス)
本発明の中空デバイスは、微小流路を有する中空繊維、及び、前記中空繊維の周囲にデバイス本体形成部を有することを特徴とする。
また、本発明の中空デバイスは、後述する本発明の中空デバイスの製造方法により製造されることが好ましい。
本発明の中空デバイスとして具体的には、例えば、図1〜図4に示すような形状が挙げられるが、これらに限定されるものではない。
(Hollow device)
The hollow device of the present invention is characterized by having a hollow fiber having a microchannel and a device body forming portion around the hollow fiber.
Moreover, it is preferable that the hollow device of this invention is manufactured by the manufacturing method of the hollow device of this invention mentioned later.
Specific examples of the hollow device of the present invention include, but are not limited to, the shapes shown in FIGS.

図1は、本発明の中空デバイスの一例を中空繊維の中央部分で切断した断面概略図である。
図1に示す中空デバイス10は、中空繊維12及びデバイス本体形成部14により形成されており、中空繊維の内部には微小流路16が形成されている。微小流路16は、図1ではデバイス中央付近において波型の形状をとっているように、中空デバイスの製造時に中空繊維を所望の形状に配置してデバイスを形成することにより、任意の形状の微小流路を有する中空デバイスを容易に形成することができる。
FIG. 1 is a schematic cross-sectional view of an example of the hollow device of the present invention cut at the center of a hollow fiber.
A hollow device 10 shown in FIG. 1 is formed by a hollow fiber 12 and a device body forming portion 14, and a microchannel 16 is formed inside the hollow fiber. As shown in FIG. 1, the microchannel 16 has a wave shape in the vicinity of the center of the device. By forming the device by arranging the hollow fibers in a desired shape at the time of manufacturing the hollow device, the microchannel 16 has an arbitrary shape. A hollow device having a microchannel can be easily formed.

図2は、本発明の中空デバイスの一例及びその製造工程を示す概略図である。
図2に示す中空デバイス10は、デバイスの中央部分において微小流路16がらせん状に形成された中空デバイス10(図2(C))であり、その製造方法としては、まず、図2(A)に示す円筒形部材18に中空繊維12の一部を巻き付け(図2(B))、該中空繊維の形状を維持したままデバイス本体形成部14を形成することにより容易に製造することができる。
FIG. 2 is a schematic view showing an example of a hollow device of the present invention and a manufacturing process thereof.
The hollow device 10 shown in FIG. 2 is a hollow device 10 (FIG. 2C) in which the microchannel 16 is formed in a spiral shape in the central portion of the device. 2), a part of the hollow fiber 12 is wound around the cylindrical member 18 (FIG. 2B), and the device main body forming portion 14 is formed while maintaining the shape of the hollow fiber. .

(中空繊維)
本発明に用いることができる中空繊維は、繊維の内部に中空部分を有しており、中空デバイスを製造した際に中空繊維の該中空部分が微小流路を形成できるものであれば、特に制限はない。また、本発明の中空デバイスに使用する中空繊維の本数は、1本であっても、2本以上用いてもよい。
本発明に用いることができる中空繊維の形状は、特に制限はなく、中空繊維の外周の断面形状が、例えば、円形、楕円形、多角形、任意の1以上の曲線よりなる形状、任意の1以上の直線と1以上曲線よりなる形状等が挙げられる。また、同様に中空繊維内部の微小流路の形状も特に制限はなく、微小流路の外周の断面形状が、例えば、円形、楕円形、多角形、任意の1以上の曲線よりなる形状、任意の1以上の直線と1以上曲線よりなる形状等が挙げられる。
また、本発明に用いることができる中空繊維は、必要に応じ、1本の中空繊維の内部に1つの微小流路のみを有していても、2以上の微小流路を有していてもよい。
本発明の中空デバイスにおいて、中空繊維の長さ、すなわち、微小流路の長さについては特に制限はなく、所望の長さを用いて中空デバイスを形成することができる。
また、前記中空繊維は、前記中空繊維全体において一様な形状や流路径でなくともよく、所望の形状及び繊維径であればよい。
(Hollow fiber)
The hollow fiber that can be used in the present invention has a hollow portion inside the fiber, and is particularly limited as long as the hollow portion of the hollow fiber can form a microchannel when a hollow device is manufactured. There is no. The number of hollow fibers used in the hollow device of the present invention may be one or two or more.
The shape of the hollow fiber that can be used in the present invention is not particularly limited, and the cross-sectional shape of the outer periphery of the hollow fiber is, for example, a circle, an ellipse, a polygon, a shape formed of any one or more curves, and any one Examples of the shape include the above straight line and one or more curves. Similarly, the shape of the microchannel inside the hollow fiber is not particularly limited, and the cross-sectional shape of the outer periphery of the microchannel is, for example, a circle, an ellipse, a polygon, a shape formed of any one or more curves, any Examples of the shape include one or more straight lines and one or more curves.
Moreover, the hollow fiber that can be used in the present invention may have only one minute channel inside one hollow fiber, or may have two or more minute channels, if necessary. Good.
In the hollow device of the present invention, the length of the hollow fiber, that is, the length of the microchannel is not particularly limited, and the hollow device can be formed using a desired length.
Moreover, the said hollow fiber does not need to be a uniform shape and flow path diameter in the said whole hollow fiber, What is necessary is just a desired shape and fiber diameter.

前記中空繊維により形成される微小流路は、その一部において少なくともマイクロスケールの流路であればよい。すなわち、本発明の中空デバイスにおいて最も流路の幅(流路径)が狭い部分の幅が、5,000μm以下であり、好ましくは10〜1,000μmの範囲であり、より好ましくは30〜500μmの範囲である。また、流路の深さは、10〜1,000μmの範囲であることが好ましい。
また、前記中空繊維の繊維径については特に制限はなく、中空繊維内部に形成されている1以上の微小流路が、上述の流路径で形成された中空繊維であることが好ましく、好ましくは10〜2,000μmの範囲であり、より好ましくは30〜1,000μmの範囲である。
また、前記中空繊維により形成される微小流路は、前記中空繊維全体において一様な形状や流路径でなくともよく、所望の形状及び流路径であればよい。
The microchannel formed by the hollow fibers may be at least a microscale channel in a part thereof. That is, the width of the narrowest channel (channel diameter) in the hollow device of the present invention is 5,000 μm or less, preferably in the range of 10 to 1,000 μm, more preferably in the range of 30 to 500 μm. It is a range. Moreover, it is preferable that the depth of a flow path is the range of 10-1,000 micrometers.
Moreover, there is no restriction | limiting in particular about the fiber diameter of the said hollow fiber, It is preferable that the 1 or more microchannel formed in the hollow fiber is a hollow fiber formed with the above-mentioned channel diameter, Preferably 10 It is the range of -2,000 micrometers, More preferably, it is the range of 30-1,000 micrometers.
In addition, the micro flow path formed by the hollow fibers does not have to have a uniform shape and a flow path diameter throughout the hollow fibers, and may have any desired shape and flow path diameter.

本発明に用いることができる中空繊維として例えば、市販の中空繊維を好適に用いることができる。近年の紡糸技術の発展により、各種材料の中空繊維が作製されており、特に繊維製造メーカーからポリエチレン、ポリプロピレン、ポリイミド、フッ素樹脂、ポリエステルなどの樹脂製の中空繊維が発売されている。これらの中空繊維は目的に合わせて、多様な材質、機能、形状が設計されている。これらの中空繊維を微小流路として利用することは、従来作製されていた微小流路を有するデバイスに比べ、中空繊維の組み合わせにより多種類の素材、形状、表面特性などの流路への機能付与が簡便に行うことができる。
また、繊維状であるためループ状流路、湾曲している流路や直線流路/湾曲流路、直線流路/ループ流路が複合されてなる流路の形成も容易であり、また、これらを1本の中空繊維により1つのデバイス内に形成することも容易である。
As the hollow fiber that can be used in the present invention, for example, a commercially available hollow fiber can be suitably used. With the recent development of spinning technology, hollow fibers made of various materials have been produced. In particular, hollow fibers made of resin such as polyethylene, polypropylene, polyimide, fluororesin, and polyester have been released by fiber manufacturers. These hollow fibers are designed in various materials, functions, and shapes according to the purpose. Utilizing these hollow fibers as micro-channels gives functions to channels such as various types of materials, shapes, and surface characteristics by combining hollow fibers compared to devices with micro-channels manufactured in the past. Can be carried out easily.
In addition, since it is fibrous, it is easy to form a loop-shaped channel, a curved channel, a linear channel / curved channel, a channel including a combination of a linear channel / loop channel, and These can be easily formed in one device by one hollow fiber.

中空繊維の材料としては、樹脂(高分子化合物)、炭素繊維、樹脂とシリカ粒子やクレーなどの無機材料の複合化材料、ガラス、金属などの中空繊維を形成できるものであればいかなる材料でもよい。これらの中でも、中空繊維の作製が簡便であり、材料の選択性、高機能化などの点から、樹脂、炭素繊維、樹脂と無機材料との複合材料、又は、ガラスであることが好ましく、特に樹脂であることが好ましい。   The hollow fiber material may be any material as long as it can form resin (polymer compound), carbon fiber, composite material of resin and inorganic material such as silica particles and clay, and hollow fiber such as glass and metal. . Among these, the production of hollow fibers is simple, and from the viewpoints of material selectivity, high functionality, and the like, a resin, a carbon fiber, a composite material of a resin and an inorganic material, or glass is preferable. A resin is preferred.

本発明に用いることができる中空繊維は、2種以上の中空繊維を接続し、組み合わせて用いることが好ましい。中空繊維の接続方法としては、特に制限はなく、1つの中空繊維の端部と他の中空繊維の端部とを公知の方法により接続すればよい。中空繊維の接続方法として具体的には、中空繊維の1つの端部と他の中空繊維の1つの端部とを接着剤等により接続する方法、端部を熱融着する方法、ジョイント部材により2つの中空繊維を端部で接続する方法等が例示できる。
また、中空繊維の製造時において、性質の異なる2以上の部分を有する1本の中空繊維を製造し、本発明の中空デバイスに用いてもよい。
The hollow fibers that can be used in the present invention are preferably used by connecting two or more kinds of hollow fibers in combination. There is no restriction | limiting in particular as a connection method of a hollow fiber, What is necessary is just to connect the edge part of one hollow fiber, and the edge part of another hollow fiber by a well-known method. Specifically, as a method for connecting the hollow fibers, one end of the hollow fiber and one end of the other hollow fiber are connected by an adhesive, the end is heat-sealed, a joint member is used. A method of connecting two hollow fibers at the end can be exemplified.
Moreover, at the time of manufacture of a hollow fiber, one hollow fiber having two or more portions having different properties may be manufactured and used for the hollow device of the present invention.

従来のマイクロ流路デバイスにおいては、微小流路の内壁へ修飾を行い、特定の性質や機能を付与することが困難であった。
本発明の中空デバイスは、中空繊維により微小流路を形成することから、所望の性質や機能を有する中空繊維を使用するだけで容易に微小流路の内壁部分の機能化を行うことができる。
本発明に用いることができる中空繊維は、特定の性質や機能を付与する点からは、親水性、疎水性、選択的気体透過性、選択的液体透過性、反応性、化合物選択的反応性、及び/又は、濾過機能、透析機能等の性質や機能を有する中空繊維を用いることが好ましい。
また、本発明の中空デバイスは、中空繊維で流路を成型するため、中空状繊維の材質、構造を選択することにより、例えば、親水性流路と疎水性流路の組み合わせや、選択的にガス透過する流路の組み合わせ、有機材料と無機材料との海島構造を有する流路など所望する性質の微小流路を簡便に得ることができる。
In the conventional microchannel device, it is difficult to modify the inner wall of the microchannel to give specific properties and functions.
Since the hollow device of the present invention forms the micro flow channel by the hollow fiber, the function of the inner wall portion of the micro flow channel can be easily performed only by using the hollow fiber having desired properties and functions.
The hollow fiber that can be used in the present invention is hydrophilic, hydrophobic, selective gas permeable, selective liquid permeable, reactive, compound selective reactive, in terms of imparting specific properties and functions. And / or hollow fibers having properties and functions such as a filtration function and a dialysis function are preferably used.
In addition, since the hollow device of the present invention forms a flow path with hollow fibers, by selecting the material and structure of the hollow fiber, for example, a combination of a hydrophilic flow path and a hydrophobic flow path, or selectively It is possible to easily obtain a micro channel having desired properties such as a combination of gas permeable channels and a channel having a sea-island structure of an organic material and an inorganic material.

親水性流路と疎水性流路の組み合わせとしては、図3に示すような本発明の中空デバイスが例示できる。
図3は、本発明の中空デバイスの他の一例を中空繊維の中央部分で切断した断面概略図である。
図3に示す中空デバイス10は、中空繊維12が親水性中空繊維12aと疎水性中空繊維12bとから形成されており、連結部20を境に微小流路内壁部分の性質が親水性−疎水性と変化するデバイスである。
Examples of the combination of the hydrophilic channel and the hydrophobic channel include the hollow device of the present invention as shown in FIG.
FIG. 3 is a schematic cross-sectional view of another example of the hollow device of the present invention cut at the center of the hollow fiber.
In the hollow device 10 shown in FIG. 3, the hollow fiber 12 is formed of a hydrophilic hollow fiber 12a and a hydrophobic hollow fiber 12b, and the property of the inner wall portion of the microchannel is hydrophilic-hydrophobic with the connecting portion 20 as a boundary. It is a device that changes.

選択的にガス透過する流路の組み合わせとしては、図4に示すような本発明の中空デバイスが例示できる。
図4は、本発明の中空デバイスの他の一例を中空繊維の中央部分で切断した断面概略図である。
図4に示す中空デバイス10は、中空繊維12が脱酸素特性を有する中空繊維12cと水蒸気透過特性を有する中空繊維12dとから形成されており、連結部20を境に微小流路内壁部分の性質が酸素透過性−水蒸気透過性と変化するデバイスである。
As a combination of the channels through which gas selectively permeates, the hollow device of the present invention as shown in FIG. 4 can be exemplified.
FIG. 4 is a schematic cross-sectional view of another example of the hollow device of the present invention cut at the center portion of the hollow fiber.
In the hollow device 10 shown in FIG. 4, the hollow fiber 12 is formed of a hollow fiber 12 c having a deoxygenation characteristic and a hollow fiber 12 d having a water vapor transmission characteristic, and the properties of the inner wall portion of the microchannel with the connecting part 20 as a boundary. Is a device that changes between oxygen permeability and water vapor permeability.

また、本発明に用いることができる中空繊維は、分岐を有していてもよい。すなわち、本発明の中空デバイスにおける微小流路は分岐を有していてもよい。
また、分岐を有する微小流路を備えたジョイント部材により、複数の中空繊維を接続し、中空デバイス中に微小流路の分岐部分を形成してもよい。
具体的には、デバイス本体形成部の一部となる基板に所望の分岐の溝を形成させ、その部分に中空繊維を配置、固定しデバイス本体形成材料で成型する方法や、市販ジョイントや光造型法で作製したエポキシ樹脂製のジョイントを用いて中空繊維を接続し分岐を有する成型体を得る方法がある。
Moreover, the hollow fiber which can be used for this invention may have a branch. That is, the microchannel in the hollow device of the present invention may have a branch.
In addition, a plurality of hollow fibers may be connected by a joint member provided with a microchannel having a branch, and a branch portion of the microchannel may be formed in the hollow device.
Specifically, a desired branching groove is formed on a substrate which is a part of the device body forming portion, and hollow fibers are arranged, fixed and molded with the device body forming material, a commercially available joint, or photomolding. There is a method of obtaining a molded body having a branch by connecting hollow fibers using an epoxy resin joint produced by the above method.

(デバイス本体形成部)
本発明の中空デバイスにおけるデバイス本体形成部の材質としては、金属、セラミック、ガラス、シリコーン、樹脂などの材料が例示でき、成形の容易性から、ガラス、シリコーン又は樹脂であることが好ましく、熱硬化性や光硬化性を有する反応性樹脂、熱可塑性樹脂などの高分子材料を用いることがより好ましい。
また、本発明の中空デバイスにおいて、デバイス本体形成部の材質と中空繊維の材質とは、異なる材質であることが好ましい。
熱硬化性樹脂や熱可塑性樹脂を用いる場合は、中空繊維の材料の融点が前記デバイス本体形成部の材料より高い材料を選択することが好ましい。また、溶媒により溶融している材料を用いる場合は、中空繊維の材料が前記材料を溶融している溶媒に対して耐性を有する材料を選択することが好ましい。
また、前記デバイス本体形成部の材質として使用する樹脂としては、耐衝撃性、耐熱性、耐薬品性、透明性などが、行う反応や単位操作に適した樹脂であることが好ましく、具体的には、ポリエステル樹脂、スチレン樹脂、アクリル樹脂、スチレン・アクリル樹脂、シリコーン樹脂、エポキシ樹脂、ジエン系樹脂、フェノール樹脂、テルペン樹脂、クマリン樹脂、アミド樹脂、アミドイミド樹脂、ブチラール樹脂、ウレタン樹脂、エチレン・酢酸ビニル樹脂等が好ましく例示できるが、より好ましくはエポキシ樹脂である。
また、前記熱硬化性樹脂、光硬化性樹脂及び熱可塑性樹脂は、「高分子大辞典」(1994年、丸善(株)発行)に記載のものも、所望に応じ、好適に用いることができる。
(Device body forming part)
Examples of the material of the device body forming portion in the hollow device of the present invention include materials such as metal, ceramic, glass, silicone, and resin. From the viewpoint of ease of molding, glass, silicone, or resin is preferable, and thermosetting is preferable. It is more preferable to use a polymer material such as a reactive resin or a thermoplastic resin having a property and photocurability.
In the hollow device of the present invention, the material of the device body forming portion and the material of the hollow fiber are preferably different materials.
When using a thermosetting resin or a thermoplastic resin, it is preferable to select a material in which the melting point of the hollow fiber material is higher than the material of the device body forming portion. Moreover, when using the material fuse | melted with the solvent, it is preferable to select the material with which the material of a hollow fiber has tolerance with respect to the solvent which fuse | melted the said material.
Further, as the resin used as the material of the device body forming portion, impact resistance, heat resistance, chemical resistance, transparency and the like are preferably resins suitable for reactions to be performed and unit operations. Polyester resin, styrene resin, acrylic resin, styrene / acrylic resin, silicone resin, epoxy resin, diene resin, phenol resin, terpene resin, coumarin resin, amide resin, amideimide resin, butyral resin, urethane resin, ethylene / acetic acid A vinyl resin or the like can be preferably exemplified, but an epoxy resin is more preferable.
In addition, as the thermosetting resin, the photocurable resin, and the thermoplastic resin, those described in “Polymer Dictionary” (published by Maruzen Co., Ltd., 1994) can be suitably used as desired. .

本発明の中空デバイスの大きさは、使用目的に応じ適宜設定することができるが、1〜100cm2の範囲が好ましく、10〜40cm2の範囲がより好ましい。また、中空デバイスの厚さは、2〜30mmの範囲が好ましく、3〜15mmの範囲がより好ましい。 The size of the hollow device in the present invention may be appropriately set according to the intended use, preferably in the range of 1 to 100 cm 2, the range of 10 to 40 cm 2 is more preferable. Moreover, the range of 2-30 mm is preferable and, as for the thickness of a hollow device, the range of 3-15 mm is more preferable.

本発明の中空デバイスは、その用途に応じて、中空繊維により形成する微小流路以外にも、他の微小流路や、反応、混合、分離、精製、分析、洗浄等の機能を有する部位を有していてもよい。
また、本発明の中空デバイスには、必要に応じて、例えば、中空デバイスに流体を送液するための送液口や、中空デバイスから流体を回収するための回収口などを設けてもよい。
The hollow device of the present invention has, in addition to the microchannel formed by hollow fibers, other microchannels and sites having functions such as reaction, mixing, separation, purification, analysis, and washing depending on the application. You may have.
Further, the hollow device of the present invention may be provided with, for example, a liquid feeding port for feeding a fluid to the hollow device, a collection port for collecting the fluid from the hollow device, and the like as necessary.

また、本発明の中空デバイスは、その用途に応じて、複数を組み合わせたり、反応、混合、分離、精製、分析、洗浄等の機能を有する装置や、送液装置、回収装置、他のマイクロ流路デバイス等を組み合わせ、マイクロ化学システムを好適に構築することができる。   In addition, the hollow device of the present invention can be used in combination with a plurality of devices or a device having functions such as reaction, mixing, separation, purification, analysis, and washing, a liquid feeding device, a recovery device, and other micro-flow devices. A microchemical system can be suitably constructed by combining road devices and the like.

(中空デバイスの製造方法)
本発明の中空デバイスの製造方法は、微小流路を有する中空繊維を所望の形状に配置する工程(以下、「配置工程」ともいう。)、中空繊維の周囲にデバイス本体形成材料を導入する工程(以下、「導入工程」ともいう。)、及び、デバイス本体形成材料を硬化又は固化する工程(以下、「固定工程」ともいう。)を含むことを特徴とする。
前記配置工程は、中空デバイスの使用目的に応じ、微小流路を有する適当な中空繊維を選択し、流路のデザインに合わせて中空繊維を所望の形状に配置する工程である。中空繊維を所望の形状に配置する方法としては、例えば、デバイス本体形成部の形成時に使用する金型やデバイス本体形成材料で作製された基板に配置する方法や、前述したように図2に示すような円筒形部材等の補助部材を使用して中空繊維を所望の形状に配置する方法等が好ましく挙げられる。
前記導入工程は、中空繊維の形状に合わせて、中空繊維の周囲にデバイス本体形成材料を導入する工程である。導入するデバイス本体形成材料は、導入する際に流動体であることが好ましく、また、溶媒に溶解又は分散した状態で用いてもよい。
また、本発明の中空デバイスの製造方法は、中空繊維の周囲にデバイス本体形成材料を導入した後、中空繊維を所望の形状に配置しても、中空繊維の周囲にデバイス本体形成材料を導入しながら中空繊維を所望の形状に配置してもよい。すなわち、本発明の中空デバイスの製造方法は、前記配置工程を行った後、前記導入工程を行っても、前記導入工程を行った後、前記配置工程を行っても、前記配置工程と前記導入工程とを同時に行ってもよい。
前記固定工程は、加熱や冷却、光、乾燥、脱溶媒、圧縮等の適切な手段によりデバイス本体形成材料を硬化又は固化する工程である。また、「硬化又は固化」とは、デバイス内部に配置した中空繊維の配置が変化せず、また、中空デバイスが使用時に問題のない硬さにデバイス本体形成材料を硬化又は固化していればよく、例えば、ゴム等のように中空デバイス自体が応力により変形可能であってもよい。
(Method for manufacturing hollow device)
The method for producing a hollow device of the present invention includes a step of arranging hollow fibers having microchannels in a desired shape (hereinafter also referred to as “arrangement step”), and a step of introducing a device body forming material around the hollow fibers. (Hereinafter also referred to as “introducing step”) and a step of curing or solidifying the device body forming material (hereinafter also referred to as “fixing step”).
The arrangement step is a step of selecting an appropriate hollow fiber having a microchannel according to the purpose of use of the hollow device and arranging the hollow fiber in a desired shape according to the design of the channel. As a method of arranging the hollow fibers in a desired shape, for example, a method of arranging the hollow fibers on a mold or a substrate made of the device body forming material used when forming the device body forming portion, or as shown in FIG. The method etc. which arrange | position a hollow fiber in a desired shape using auxiliary members, such as such a cylindrical member, are mentioned preferably.
The introduction step is a step of introducing a device body forming material around the hollow fiber in accordance with the shape of the hollow fiber. The device body forming material to be introduced is preferably a fluid when introduced, and may be used in a state dissolved or dispersed in a solvent.
In addition, the method for manufacturing a hollow device of the present invention introduces the device body forming material around the hollow fiber even if the hollow fiber is arranged in a desired shape after the device body forming material is introduced around the hollow fiber. However, the hollow fibers may be arranged in a desired shape. That is, the manufacturing method of the hollow device of the present invention includes the placement step and the introduction after the placement step, the introduction step, the introduction step, and the placement step. You may perform a process simultaneously.
The fixing step is a step of curing or solidifying the device body forming material by an appropriate means such as heating, cooling, light, drying, solvent removal, and compression. In addition, “curing or solidifying” means that the arrangement of the hollow fibers arranged inside the device does not change, and the device forming material is hardened or solidified to such a degree that the hollow device has no problem when used. For example, the hollow device itself such as rubber may be deformable by stress.

本発明の中空デバイスの製造方法として具体的には、例えば、中空デバイスの使用目的に応じ、適当な中空繊維を選択し、流路のデザインに合わせてデバイス本体形成部の一部となる基板に中空繊維を固定し、その後、デバイス本体形成材料を金型に導入し固化させ成型体を得る方法、中空デバイスの使用目的に応じ、適当な中空繊維を選択し、流路のデザインに合わせて金型内に中空繊維を固定し、デバイス本体形成材料を金型に導入し固化させ成型体を得る方法等が好ましく挙げられる。   Specifically, as a method for producing a hollow device of the present invention, for example, an appropriate hollow fiber is selected according to the purpose of use of the hollow device, and a substrate that becomes a part of the device body forming portion in accordance with the design of the flow path. After fixing the hollow fiber, the device body forming material is introduced into a mold and solidified to obtain a molded body. Depending on the purpose of use of the hollow device, an appropriate hollow fiber is selected, and the mold is matched to the flow path design. Preferred examples include a method of fixing a hollow fiber in a mold, introducing a device body forming material into a mold and solidifying it to obtain a molded body.

以下、本発明を実施例で詳しく説明するが、本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all.

(実施例1)
ポリエチレン製中空繊維(三菱レイヨン社製)を金型中に図1に示すような中央部分が波状、他の部分が直線状に配置した後、金型に溶液状態のエポキシ樹種(ジャパンエポキシレジン(株)社製 液状グレード821/硬化剤グレード3019)を流し込み、80℃で3時間加熱処理をして、高分子レジンを固化させ、微小流路を有する中空デバイスを作製した。
(Example 1)
After placing a hollow polyethylene fiber (manufactured by Mitsubishi Rayon Co., Ltd.) in a mold with a central portion as shown in FIG. 1 and other portions in a straight line, the epoxy tree species in a solution state (Japan Epoxy Resin ( Co., Ltd. liquid grade 821 / curing agent grade 3019) was poured, and heat treatment was performed at 80 ° C. for 3 hours to solidify the polymer resin, thereby producing a hollow device having a microchannel.

(実施例2)
疎水性のポリエチレン製中空繊維(三菱レイヨン社製)と親水性のエチレン−ビニルアルコール共重合体製中空状繊維(川澄化学工業(株)製)を組み合わせて、金型中に図3のように配置した後、金型に溶液状態のエポキシ樹種(ジャパンエポキシレジン(株)社製 液状グレード821/硬化剤グレード3019)を流し込み、80℃で3時間加熱処理をして、高分子レジンを固化させ、微小流路を有する中空デバイスを作製した。
(Example 2)
A combination of hydrophobic polyethylene hollow fibers (Mitsubishi Rayon Co., Ltd.) and hydrophilic ethylene-vinyl alcohol copolymer hollow fibers (Kawasumi Chemical Co., Ltd.) as shown in FIG. After placement, the epoxy tree species in a solution state (liquid grade 821 / hardening agent grade 3019 manufactured by Japan Epoxy Resin Co., Ltd.) is poured into the mold, and heat treatment is performed at 80 ° C. for 3 hours to solidify the polymer resin. Then, a hollow device having a microchannel was produced.

(実施例3)
脱酸素特性を有するポリテトラフルオロエチレン製中空繊維(SEPAREL/PF-F:大日本インキ化学工業(株)製)と水蒸気透過性を有するポリイミド製中空繊維(宇部興産(株)製)を組み合わせて配置した後、金型に溶融状態のエポキシ樹種(ジャパンエポキシレジン(株)社製 液状グレード821/硬化剤グレード3019)を流し込み、80℃で3時間加熱処理をして、高分子レジンを固化させ、微小流路を有する中空デバイスを作製した。
作製した中空デバイスの流路入口と出口とにポンプを設置し流量を調整することにより内部圧力を調整し、酸素及び水が溶存しているエタノールを流した。流路を通過したエタノールの溶存酸素と溶解水量を測定した結果、流路に流す前と比較して溶存酸素量、溶存水量とも低下していた。
(Example 3)
A combination of polytetrafluoroethylene hollow fiber (SEPAREL / PF-F: manufactured by Dainippon Ink & Chemicals, Inc.) having deoxygenation characteristics and polyimide hollow fiber (made by Ube Industries, Ltd.) having water vapor permeability. After placement, a molten epoxy tree species (liquid grade 821 / hardening agent grade 3019 manufactured by Japan Epoxy Resin Co., Ltd.) is poured into the mold and heat treated at 80 ° C. for 3 hours to solidify the polymer resin. Then, a hollow device having a microchannel was produced.
The internal pressure was adjusted by installing a pump at the channel inlet and outlet of the manufactured hollow device and adjusting the flow rate, and ethanol in which oxygen and water were dissolved was allowed to flow. As a result of measuring the dissolved oxygen amount and the dissolved water amount of ethanol that passed through the flow path, both the dissolved oxygen amount and the dissolved water amount were reduced as compared with those before flowing through the flow path.

本発明の中空デバイスの一例を中空繊維の中央部分で切断した断面概略図である。It is the cross-sectional schematic which cut | disconnected the example of the hollow device of this invention in the center part of the hollow fiber. 本発明の中空デバイスの一例及びその製造工程を示す概略図である。It is the schematic which shows an example of the hollow device of this invention, and its manufacturing process. 本発明の中空デバイスの他の一例を中空繊維の中央部分で切断した断面概略図である。It is the cross-sectional schematic which cut | disconnected another example of the hollow device of this invention in the center part of the hollow fiber. 本発明の中空デバイスの他の一例を中空繊維の中央部分で切断した断面概略図である。It is the cross-sectional schematic which cut | disconnected another example of the hollow device of this invention in the center part of the hollow fiber.

符号の説明Explanation of symbols

10 中空デバイス
12 中空繊維
12a 親水性中空繊維
12b 疎水性中空繊維
12c 脱酸素特性を有する中空繊維
12d 水蒸気透過特性を有する中空繊維
14 デバイス本体形成部
16 微小流路
18 円筒形部材
20 連結部
DESCRIPTION OF SYMBOLS 10 Hollow device 12 Hollow fiber 12a Hydrophilic hollow fiber 12b Hydrophobic hollow fiber 12c Hollow fiber 12d which has a deoxidation characteristic Hollow fiber which has a water-vapor-permeation characteristic 14 Device main body formation part 16 Microchannel 18 Cylindrical member 20 Connection part

Claims (2)

微小流路を有する中空繊維、及び、前記中空繊維の周囲にデバイス本体形成部を有することを特徴とする
中空デバイス。
A hollow device comprising a hollow fiber having a microchannel, and a device body forming portion around the hollow fiber.
微小流路を有する中空繊維を所望の形状に配置する工程、
中空繊維の周囲にデバイス本体形成材料を導入する工程、及び、
デバイス本体形成材料を硬化又は固化する工程を含むことを特徴とする
中空デバイスの製造方法。
A step of arranging hollow fibers having a microchannel in a desired shape;
Introducing a device body forming material around the hollow fiber; and
A method for producing a hollow device, comprising a step of curing or solidifying a device body forming material.
JP2006177862A 2006-06-28 2006-06-28 Hollow device and its manufacturing method Pending JP2008006524A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006177862A JP2008006524A (en) 2006-06-28 2006-06-28 Hollow device and its manufacturing method
US11/589,788 US20080003433A1 (en) 2006-06-28 2006-10-31 Hollow device and manufacturing method thereof
CN200610165669.1A CN101096265A (en) 2006-06-28 2006-12-11 Hollow device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177862A JP2008006524A (en) 2006-06-28 2006-06-28 Hollow device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008006524A true JP2008006524A (en) 2008-01-17

Family

ID=38877021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177862A Pending JP2008006524A (en) 2006-06-28 2006-06-28 Hollow device and its manufacturing method

Country Status (3)

Country Link
US (1) US20080003433A1 (en)
JP (1) JP2008006524A (en)
CN (1) CN101096265A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130065042A1 (en) 2011-03-11 2013-03-14 The Board Of Trustees Of The University Of Illinois Micro-Vascular Materials And Composites For Forming The Materials
US9988746B2 (en) 2012-10-01 2018-06-05 The Board Of Trustees Of The University Of Illinois Partially degradable fibers and microvascular materials formed from the fibers
US10081715B2 (en) 2013-11-14 2018-09-25 The Board Of Trustees Of The University Of Illinois Branched interconnected microvascular network in polymers and composites using sacrificial polylactide films, sheets and plates
US10852291B2 (en) * 2015-02-03 2020-12-01 University Of Washington Fluidic device and methods of use for processing tissue for pathology

Also Published As

Publication number Publication date
CN101096265A (en) 2008-01-02
US20080003433A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
Chen et al. Advanced microfluidic devices for fabricating multi‐structural hydrogel microsphere
US8273245B2 (en) Microfluidic devices, particularly filtration devices comprising polymeric membranes, and methods for their manufacture and use
JP2009506912A5 (en)
TWI630952B (en) Hollow fiber membrane module and manufacturing method of hollow fiber membrane module
JP2008006524A (en) Hollow device and its manufacturing method
WO2011158517A1 (en) Method for producing perforated hollow tube and mold form for producing perforated hollow tube
CN102033135A (en) Integrated microfluidic chip interface, interface mould, and interface manufacturing and using methods
CN105084463B (en) A kind of doughnut dissolved oxygen film and its component
JP6924556B2 (en) Microreactor, chemical product manufacturing system and microreactor manufacturing method
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
CN109070001B (en) Tubular filter membrane element and method for producing same
JP2006234600A (en) Plastic microchip and its manufacturing method
CN106457154A (en) Potting material for membrane modules and hollow fiber membrane module using same
WO2014103842A1 (en) Method for producing microchannel and microchannel
JPH10500624A (en) Method for producing hollow fiber section for hollow fiber module and hollow fiber section for hollow fiber module
CN101272729B (en) A micro fluidic system and a method of attaching a membrane to a tube
Wang et al. A method for manufacturing flexible microfluidic chip based on soluble material
CN111655374A (en) Pipettor with encapsulated or integral filter, method of forming same, and apparatus
KR100588805B1 (en) Apparatus and Methods for Manufacturing micro-structure
JP4362432B2 (en) Hollow fiber type module
Zhang et al. Fabrication of diverse microparticles in a unified microfluidic configuration
CN109821583B (en) Processing method of special-shaped cross section micro-channel chip based on FDM three-dimensional printing
JP2017154349A (en) Method of manufacturing micro flow path chip
JP2011224026A (en) Blood purification device and method of manufacturing the same
JP2008286519A (en) Fluid introduction device