JP2008005389A - 通信方法および通信装置 - Google Patents

通信方法および通信装置 Download PDF

Info

Publication number
JP2008005389A
JP2008005389A JP2006175030A JP2006175030A JP2008005389A JP 2008005389 A JP2008005389 A JP 2008005389A JP 2006175030 A JP2006175030 A JP 2006175030A JP 2006175030 A JP2006175030 A JP 2006175030A JP 2008005389 A JP2008005389 A JP 2008005389A
Authority
JP
Japan
Prior art keywords
symbol
inter
carrier
differential modulation
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006175030A
Other languages
English (en)
Inventor
Sunao Saito
直 齋藤
Setsuo Arita
節男 有田
Yuji Ichinose
祐治 一ノ瀬
Daisuke Niima
大輔 新間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006175030A priority Critical patent/JP2008005389A/ja
Publication of JP2008005389A publication Critical patent/JP2008005389A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】マルチキャリア変調を用いた通信システムにおいて、変/復調処理が簡便な差動変調方式を用いて高い信頼性を実現する。
【解決手段】1つのシンボル内の複数のキャリア間の位相差に、伝送情報に基づく変調をかけるキャリア間差動変調手段を用いてマルチキャリア通信信号を構成し、前記マルチキャリア通信信号の1シンボルの後段に、通信信号の一部をコピーして生成するガードインターバル(後部GI)207を連結する。キャリア間差動変調部12におけるFFTウィンドウ201をデータ部206とほぼ正確に重ならせることが可能である。したがって、伝送路のノイズの影響により、FFTウィンドウ201がシンボル間差動変調部13aに誤って重なる確率を低減し、同時に、キャリア間差動変調部12の復調特性を良好にし、ビット誤り率を低減することができる。
【選択図】図13

Description

本発明は、複数の搬送波(キャリア)を用いてデータを伝送するマルチキャリア通信方法および通信装置に関する。
近年、一般社会におけるインターネットの普及に伴い、様々な場所、アプリケーションにおいてディジタル通信技術のニーズが著しく高まっている。例えば、列車においては、LCD表示器等を用いた乗客案内サービスや高度な列車走行制御に対するニーズが高まっている。そこで、サービスコンテンツを車上サーバから各車両の表示器へ配信するためや、また、車上機器の制御情報を運転室から伝送するための高速なディジタル通信技術の開発が進んでいる。画像伝送を行う場合には、通信装置に高い通信速度が求められる。また、機器の制御情報を伝送するためには、高い通信信頼性を確保しつつ、通信速度を向上させていく必要がある。
例えば、列車駆動用のインバータ装置から発生するインバータノイズが通信線に重畳される列車内の環境において、通信速度を向上させるためには、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変調などのマルチキャリア方式が有効である。その場合に、各キャリアの変調に用いる一次変調方式として送受信処理が簡便な差動変調が頻繁に用いられる。
特許文献1には、公知のキャリア間差動変調とシンボル間差動変調を組合せた変調方式が開示されている。例えば、第一シンボルでは通信データの一部を用いてキャリア間差動変調を行い、続く第二シンボル以降では残りの通信データを用いてシンボル間差動変調を行っている。このとき、第二シンボル以降のシンボル間差動変調を行うための参照シンボルとしては前段のシンボルを用い、そのシンボルとの位相差としてシンボル間差動変調を行うのである。この場合、シンボル間差動変調方式およびキャリア間差動変調方式において必要となる位相基準として、キャリア間差動変調部に少なくとも1キャリア設けるだけでよい。したがって、シンボル間差動変調方式およびキャリア間差動変調方式の課題である周波数利用効率の低下を図り、通信速度を向上させることが可能になる。
特開2001−77788号公報
キャリア間差動変調方式においては、後述して詳細に説明するが、シンボル同期位置がキャリア間差動変調部のデータ部に正確に一致させることができない場合には、通信誤り率特性が大きく劣化し、通信信頼性が低下するという課題があった。
本発明は、1つのシンボル内の複数のキャリア間の位相差に、伝送情報に基づく変調をかけるキャリア間差動変調手段を用いてマルチキャリア通信信号を構成し、前記マルチキャリア通信信号の1シンボルの後段に、通信信号の一部をコピーして生成するガードインターバル(後部GI)を連結することを主特徴とする。
本発明の望ましい実施態様においては、シンボル間差動変調方式とキャリア間差動変調方式を共用し、かつシンボル間差動変調部の参照シンボルとしてキャリア間差動変調を行ったシンボルを用いる。
本発明によれば、キャリア間差動変調を行ったシンボルの信号後部にガードインターバルを付加することによって、通信信頼性の低下を抑制することができる。
まず、以下に述べる実施形態の概要を説明しておく。
キャリア間差動変調を用いた場合に通信信頼性が低下する原因は、シンボル同期位置がキャリア間差動変調部のデータ部に正確に一致していないことに起因するキャリア位相の回転現象である。そこで、信号後段に、送信側で予め想定するシンボル同期位置に相当するガードインターバル(後部GI)を付加し、受信側での正しいシンボル同期位置でのFFT(Fast Fourier Transformation)ウィンドウの設定を可能にする。この後部GIは、通信信号との周期性を一致させるため、通信信号の一部をコピーして生成する。
本実施形態は、本発明を用いた実施形態の中で最良と考えられる実施形態について説明したものであり、本実施形態によって本発明の実施形態が限定されるものではない。
以下、本発明による通信方法および通信装置の実施形態を図面を参照して説明する。
(1)通信信号の構成:
図1は、本発明の一実施例による通信方法に採用する通信信号の概略構成図である。通信信号10は、プリアンブル部11の後にキャリア間差動変調部12が続き、その後にシンボル間差動変調部13a、13b、・・・13zが複数連結される。シンボル間差動変調のみを用いる方式では、キャリア間差動変調部12の代わりにデータ通信には用いない参照用シンボルを用いる。そこで、この部分をキャリア間差動変調によってデータ通信に用いることによって、特許文献1に開示されたように、高効率な通信方法を実現している。なお、プリアンブル部11は、通信信号10の同期処理などのために用いられる。
図2は、本発明の一実施例による通信方法におけるキャリアへのデータ割付方法を説明するイメージ図である。OFDM変調などのマルチキャリア通信方式では、周波数軸上に複数の搬送波(キャリア)を設け、それらの複数の搬送波を時間軸上においては1つにまとめて通信シンボルを形成する。まず最初に、キャリア間差動変調部12では、1シンボル内のキャリア間の位相差に対してデータを割付ける。即ち、1ビットのデータに対応させて位相差を与える差動BPSK(Binary Phase Shift Keying)変調を用いる場合には、第1キャリアと第2キャリアの間の位相差を図3に示すような関係とする。
図3は、本発明の一実施例による通信方法における差動BPSK変調の説明図である。1ビットのデータが0の場合には、図3(A)のように第1キャリアと第2キャリアの位相差を0rad(0°)とする。データが1の場合には、図3(B)のように位相差をπrad(180°)となるようにする。データと位相差の対応付けについては逆の関係になるようにしても構わない。なお、図3(A)および(B)におけるIはキャリアの同相成分を表し、Qはキャリアの直交成分を表す。第2キャリアと第3キャリアの間の位相差も同様にデータに対応する位相差となるように変調する。キャリアが最大Mキャリアまである場合には、隣接するキャリア間において同様にデータに対応する位相差を与える変調を行っていく。この場合には、合計でM−1ビットのデータがキャリア間差動変調部12に割り付けることができる。従って、1シンボルのキャリア数が多いほど、通信効率は高くなる。また、キャリア間差動変調は、伝送路の伝達特性が周波数に依存して振幅および位相が大きく変動する場合、通信誤り率が低下し易くなる。しかし、OFDM変調を用いることで、キャリア間の周波数間隔を非常に小さくすることが可能であるため、キャリア間差動変調部12における通信誤り率への影響を少なくすることが可能である。
次に、シンボル間差動変調部13aにおいては、キャリア間差動変調部12との間において、同じキャリア番号のキャリア同士の位相差に対してデータを割付ける。即ち、キャリア間差動変調部においてデータを割付ける方法と同様に、1ビットのデータに対応させて位相差を与える差動BPSK変調を用いる場合には、1ビットのデータが0の場合には図3(A)のような関係とする。また、データが1の場合には、図3(B)に示すような関係とする。シンボル間差動変調部13aにおいては、キャリアが最大Mキャリアまである場合には、合計でMビットのデータを割付けることができる。続いて、シンボル間差動変調部13bにおいては、シンボル間差動変調部13aとの間において、シンボル間差動変調部13aにおいて行った差動BPSK変調と同様に同じキャリア番号のキャリア同士の位相差に対してデータを割付ける。この場合も同様に、キャリアが最大Mキャリアまである場合には、合計でMビットのデータを割付けることができる。
以上のように、キャリア間差動変調部12とシンボル間差動変調部13a、および13bにおいて、差動BPSK変調を用いてデータを割付けてキャリアの変調を行うことが可能である。データの割付量は、1シンボル中にMキャリアがあり、キャリア間差動変調部とシンボル間差動変調部を合わせた合計のシンボル数がNである場合、1つの通信信号につき、最大でN×M−1ビットのデータを割付けることが可能である。通信信号を構成するシンボル数が同じ条件の下で、シンボル間差動変調のみを用いた場合には、1つの通信信号において、最大で(N−1)×Mビットしか送信できない。これに対し、キャリア間差動変調とシンボル間差動変調を両方用いて1つの通信信号を構成することで、M−1(=(N×M−1)−((N−1)×M))ビット多く、データを割付けることが可能になる。
なお、本実施例においては、説明を簡略化するために、キャリア間の位相差に対してデータを割付ける方法として図3に示したような差動BPSK変調を用いて説明した。しかし、より通信速度を向上させて高効率な通信を行いたい要求がある場合には、1ビットのデータに対応してキャリア間の位相差を与える差動BPSK変調の代わりに、次のような変調方式を用いても良い。例えば、2ビットのデータに対応してキャリア間の位相差を与える差動QPSK(Quadrature Phase Shift Keying)変調や、3ビットのデータに対応してキャリア間の位相差を与える差動8PSK(8 Phase Shift Keying)変調などである。これらの差動変調を用いる場合には、伝送路で必要なS/Nが異なるため、図4に示すような関係を用いて、通信に必要なビット誤り率BER(Bit Error Rate)特性の下でS/Nに応じて使用する差動変調を切替えていくことが可能である。
図4は、本発明の一実施例による通信方法における変調方式毎のガウス雑音下でのビット誤り率特性図である。例えば、通信に必要なビット誤り率が10−5である場合には、キャリアのS/Nが約18dB以上ある場合には差動8PSK変調を用いる。また、キャリアのS/Nが約15dB以上ある場合には、差動QPSK変調を用いる。さらに、キャリアのS/Nが約10dB以上ある場合には、差動BPSK変調を用いることが可能である。なお、キャリアのS/Nが約10dB以下である場合には、差動BPSK変調を用いても、通信におけるビット誤りが多発するため、通信信頼性を向上させるために該当キャリアにはデータを割付けないようにするのが良い。あるいは、誤り訂正符号化を行うなどして通信に必要なS/Nを低減させても良い。
(2)通信装置の構成:
図5は、本発明の一実施例による通信装置の構成図である。なお、通信装置100bの構成は、通信装置100aと同一とすればよい。通信装置100aは、次の機器から構成されている。まず、結合器110、バンドパス(以下BP)フィルタ101a,101bによって送受信する。次に、受信アンプ102、送信アンプ109で増幅し、アナログ/ディジタル変換器(A/D)103、ディジタル/アナログ変換器(D/A)108で信号変換を行う。これらの送受信信号は、復調器104、変調器107、アクセスコントローラ105によって、変/復調される。そして、プロトコル変換器106を介して、通信装置100aと外部装置(PCなど)間は、ケーブル302で接続される。外部装置とのインターフェースは、例えば、Ethernet(登録商標)またはUSB等の標準的な規格のケーブル302での接続や、PCI(Peripheral Component Interconnect)バスなど規格化されたバス配線での接続によって形成する。プロトコル変換器106がデータを受け取ると、通信装置100aで扱う所定フォーマットの通信パケットに変換する。
アクセスコントローラ105は、プロトコル変換器106からの通信パケットを受信すると、このデータを変調器107に出力する。変調器107は、別途入力しているキャリアテーブルのビット割付量情報105bに基づいて、各サブキャリアに上記データを割り付けた上で通信信号を生成する。通信信号は、D/A変換器108によりアナログ信号に変換され、送信アンプ109によって増幅された後、BPフィルタ101bで不要な高周波成分をカットした上で、結合器110を介して通信線301に出力され、通信装置100bに通信される。なお、結合器110は、通信線301において電力供給のための直流または交流電圧が重畳されている場合に必要な回路であるため、電力供給のための直流または交流電圧が重畳されていない信号線を通信線とする場合には不要である。通常、通信のための信号は電力供給用周波数よりも高い周波数によって構成されるため、結合器110によって通信信号を減衰させることなしに通信線301に重畳させるようにすることが可能である。
図6は、本発明の一実施例において結合器110を使用する場合の接続構成例を示す。結合器110では、コンデンサで電力供給用の直流または交流電圧をカットし、トランスのインダクタンスとこのコンデンサの静電容量の値で決まる高周波通過特性を持たせ、通信信号のみが通信装置100aと授受される。
一方、通信装置100bから送信されてきた通信信号は、BPフィルタ101aによって通信帯域以外の信号を抑制し、通信帯域の信号を受信アンプ102に出力する。受信アンプ102は、受信信号を増幅し、A/D変換器103によってディジタル信号に変換された信号は、復調器104に出力される。復調器104では、別途入力しているキャリアテーブルのビット割付量情報105aに基づいて、各サブキャリアに割り付けられているデータを取り出し、アクセスコントローラ105に出力する。アクセスコントローラ105では、この取り出したデータを所定フォーマットの通信パケットに変換し、プロトコル変換器106に出力する。プロトコル変換器106は、この通信パケットを、前記外部装置とのインターフェースが取れるようにプロトコル変換し、外部装置に情報を出力する。
(3)変調器及び復調器の構成:
続いて変調器107及び復調器104の構成について説明する。
図7は、本発明の一実施例による通信方法に採用する変調器の機能ブロック図である。変調器107は、キャリア間差動変調処理171、シンボル間差動変調処理172、切替信号173、IFFT(Inverse Fast Fourier Transformation)処理174、ガードインターバル付加処理175、およびメモリ176からなる。最初に、図1で述べたキャリア間差動変調部12について処理する。送信データ170は、最初にビット割付量情報105bを用いてキャリア間差動変調処理171を行い、全サブキャリアのI(同相成分)出力及びQ(直交成分)出力が得られたら、それらをIFFT処理174に入力して送信信号の時間波形を生成する。このとき、切替信号173は、キャリア間差動変調処理171の出力がIFFT処理174の入力になるように設定しておく。また、メモリ176では、IFFT処理174への入力データ(全キャリアのIおよびQデータ)を保存しておく。さらに、時間波形の周期性を保つようにしながら、時間波形の一部を信号の前段に挿入するガードインターバル付加処理175を行うことで、図1で述べたキャリア間差動変調部12の最終的な送信信号177を生成する。このガードインターバル付加処理175は、前置GI部付加処理175aと後置GI部付加処理175bとを備えている。
前置GI部付加処理175aは、マルチパスフェージング環境下におけるシンボル間干渉を防ぐ役割を持つ。
後置GI部付加処理175bは、前置GI部付加処理175aから出力された時間波形と周期性を保つようにしながら、時間波形の一部をコピーして後段に連結する。そして、連結後の時間波形を出力して送信信号177を得ることができる。後置GI部付加処理175bは、伝送路のノイズの影響により、FFTウィンドウ201がシンボル間差動変調部13aに誤って重なる確率を低減することができる。同時に、キャリア間差動変調部12の復調特性を良好にし、ビット誤り率を低減することが可能になる。
次に、図1で述べたシンボル間差動変調部13aについて処理する。送信データ170は、最初にビット割付量情報105bおよびメモリ176から出力される1シンボル前のキャリアのI、Qデータを用いてシンボル間差動変調処理172を行う。全サブキャリアのI(同相成分)出力及びQ(直交成分)出力が得られたら、それらをIFFT処理174に入力して送信信号の時間波形を生成する。このとき、切替信号173は、シンボル間差動変調処理172の出力がIFFT処理174の入力になるように設定しておく。また、メモリ176では、IFFT処理174への入力データ(全キャリアのIおよびQデータ)を保存しておく。シンボル間差動変調部13b以降のシンボルについても同様に処理することで通信信号を生成することができる。なお、切替信号173を簡易に生成する方法としては、まず、通信信号のシンボル数をカウントするカウンタを設け、キャリア間差動変調部12をカウント1としてカウントを開始する。そして、カウンタの値が1以下の場合は、キャリア間差動変調処理171からの出力がIFFT処理174の入力となるように設定する。一方、カウンタの値が2以上の場合には、シンボル間差動変調処理172からの出力がIFFT処理174の入力となるように設定すれば良い。そして、送信終了時にはカウンタの値が0にリセットされるようにする。
図8は、本発明の一実施例による通信方法に採用する復調器の機能ブロック図である。復調器104は、シンボル同期処理141、ガードインターバル除去処理142、FFT処理143、キャリア間差動復調処理144、シンボル間差動復調処理145、メモリ147から構成される。まず、受信信号140に対してシンボル同期処理141においてシンボル同期を行い、続いてガードインターバル除去処理142を行う。
ガードインターバル除去処理142は、前置GI部除去処理142aと後置GI部除去処理142bとを備えている。後置GI部除去処理142bにおいては、前置GI部除去処理142aから出力された時間波形から後置GI部207を除去してFFT処理143へと出力する。
さて、ガードインターバル除去処理142を行った後、除去後の受信信号に対してFFT処理143を実行して全サブキャリアのI入力及びQ入力を得る。得られたI入力及びQ入力は、メモリ147において保存するとともに、キャリア間差動変調部12の復調を行う場合には、ビット割付量情報105aを用いてキャリア間差動復調処理144において受信データを復調する。また、シンボル間差動変調部13a,13b…,13zの復調を行う場合には、ビット割付量情報105aおよびメモリ147から出力される1シンボル前のキャリアのI、Qデータを用いてシンボル間差動復調処理145において受信データを復調する。切替信号146は、キャリア間差動変調部12からの受信データを受信する場合には、キャリア間差動復調処理144からの出力が受信データ148の入力となるように設定する。また、シンボル間差動変調部13a,13b,…,13zからの受信データを受信する場合には、シンボル間差動復調処理145からの出力が受信データ148の入力となるように設定すれば良い。なお、切替信号146を簡易に生成する方法としては、変調器107における切替信号173と同様である。すなわち、通信信号のシンボル数をカウントするカウンタを設け、キャリア間差動変調部12をカウント1としてカウントを開始し、カウンタの値が1以下の場合にはキャリア間差動復調処理144からの出力が受信データ148の入力となるように設定する。また、カウンタの値が2以上の場合には、シンボル間差動復調処理145からの出力が受信データ148の入力となるように設定すれば良い。そして、受信終了時にはカウンタの値が0にリセットされるようにする。
(4)キャリア間差動変調部におけるビット誤り率特性:
図9は、本発明の作用を説明するためのキャリア間差動変調部のFFTウィンドウの位置とキャリア位相の誤差を示す図である。すなわち、図9(A)には、キャリア間差動変調部12を受信した場合において、復調器104のFFT処理143で時間波形にFFT処理をかけるFFTウィンドウ201の位置を示している。ここでは、シンボル同期処理141が正確に実行されて、FFTウィンドウ201はデータ部203と完全に重なっており、GI(ガードインターバル)部202とは重なっていない。また、後ろに連結されているシンボル間差動変調部13aとも重なっていない。この場合、FFT処理143を実施した後のキャリアの位相は、伝送路の伝達特性や伝送路で重畳されるノイズの影響、A/D変換器による量子化誤差などを除いて考えると、送信側において与えたキャリアの位相と全く同一となる。このため、各キャリアに生じる位相の誤差は、図9(B)に示す通り、全てのキャリアにおいて0となる。
図9(A)に示すように、受信側においてFFTウィンドウ201をキャリア間差動変調部12のデータ部203に正確に合わせることは、通常、困難である。なぜならば、伝送路で重畳されるノイズの影響などにより、シンボル同期処理141を行った結果のシンボル同期位置は、ある程度の幅で変動するためである。シンボル同期位置が変動すると、FFTウィンドウ201も一緒に変動する。もし仮に、FFTウィンドウ201がシンボル間差動変調部13aに一部が重なった場合には、キャリア間差動変調部12とシンボル間差動変調部13aの間には全く関連性がないため、キャリア間差動変調部12の復調特性に大きく影響を与えて、通信誤りが多発する。逆に、FFTウィンドウ201がGI部202の方に一部が重なった場合には、GI部202はデータ部203との周期性を保っているため、復調特性に与える影響は、シンボル間差動変調部13a側に重なった場合と比較して小さい。そこで通常は、図10に示すように実行する。
図10は、本発明の作用を説明するための、マージンを設けた場合の、キャリア間差動変調部のFFTウィンドウの位置とキャリア位相の誤差を示す図である。図10(A)に示すように、FFTウィンドウ201がGI部202の方に重なり易いように、シンボル同期処理141ではシンボル同期位置のマージン204を設けて同期処理を実行する。しかし、この場合には、図10(B)に示すように、キャリア間差動変調部12のキャリア位相には、送信側で与えたキャリア位相との間にキャリア番号に応じて誤差が生じる。図10(B)は、最大のキャリア数が256の場合で、かつ、マージン204が、A/D103で実施するA/Dサンプリングの1サンプル分に相当する量である場合のキャリア位相の誤差量を示している。一般的には、式1のような形でキャリア位相の誤差量を表すことができる。
Y=−2πz(x−1)/2N・・・・・・・・・・・・・・・・・・・・・(1)
ここで、Nは最大のキャリア数、zはマージン204に相当するA/Dサンプリングのサンプル数である。
シンボル間差動変調部13a、13b、・・・13zにおいては、このような位相の誤差が生じたとしても同じキャリア番号のキャリアについて、前後のシンボル間の位相差を用いるために、相対的な位相誤差量は0となるために復調特性に影響を受けない。しかし、キャリア間差動変調部12については、1つのシンボル内において隣接するキャリア間の位相差を用いるために、図10(B)に示したようなキャリア位相の誤差の影響を受ける。
図11は、本発明の作用を説明するための、キャリア間差動変調部において、差動BPSK変調を用いた場合のビット誤り率特性を示す。縦軸はビット誤り率、横軸はマージン204に相当するA/Dサンプル数である。伝送路のノイズ条件として白色ガウスノイズを重畳し、S/N10dB、20dB、30dBの場合の、それぞれのシミュレーション結果を示している。図11から分かるように、マージン204が少ないほど、ビット誤り率特性が良好になることが分かる。
図12は、同様に、本発明の作用を説明するための、キャリア間差動変調部に差動QPSK変調を用いた場合のビット誤り率特性を示す。伝送路のノイズ条件として白色ガウスノイズを重畳し、S/N15dB、20dB、30dBの場合のそれぞれのシミュレーション結果を示している。図11の場合と同様に、マージン204が少ないほどビット誤り率特性が良好になることが分かる。
(5)キャリア間差動変調部におけるガードインターバルの追加:
図13は、本発明の一実施例による通信方法に用いる通信信号の構成図である。図に示すように、キャリア間差動変調部12において、データ部206の前段のGI部(前置GI部)205のほかに、データ部の後段のGI部(後置GI部)207を付加したものである。前置GI部205と同様に、後置GI部207もデータ部206との周期性を保つように、データ部206の一部をコピーして生成する。また、後置GI部207は、図10(A)におけるマージン204と同等の量とすれば良い。すなわち、図8のシンボル同期処理141の同期処理精度に応じて、必要な量を生成するものとする。このようにすることで、キャリア間差動変調部12におけるFFTウィンドウ201をデータ部206とほぼ正確に重ならせることが可能となる。したがって、伝送路のノイズの影響により、FFTウィンドウ201がシンボル間差動変調部13aに誤って重なる確率を低減することが可能になる。同時に、キャリア間差動変調部12の復調特性を良好にし、ビット誤り率を低減することが可能になる。
なお、シンボル間差動変調部13a、13b、・・・13zにおいても、キャリア間差動変調部12とシンボル長を同一とするために、後置GI部207を設けた方が良い。
図14は、本発明の一実施例による通信方法におけるビット誤り率特性図である。本発明により、後置GI部207を設けた場合、ビット誤り率特性は、図14に示すような特性となる。マージンzが0のときにビット誤り率が最小とはならずに、ある値z=20のときに、ビット誤り率の極小値を持つようになる。そして、マージンがzよりも大きくなるにつれてビット誤り率特性が悪化していく。このマージン値zは、図13におけるFFTウィンドウ201が、データ部206と正確に一致する場合のマージンに相当する。即ち、後置GI部の量がz=20である場合である。
ここで、図11に示すように、S/Nが10[dB]の環境下で、ビット誤り率10−4を達成するためには、約20A/Dサンプルのマージンが必要であり、図14から明らかなように、後置GI部207の時間幅は、0〜40[A/Dサンプル数]とすれば良いことが判る。
以上のように、本発明による通信方法および通信装置を用いることで、高効率で、通信誤りを低減して通信信頼性を高めた通信方法および通信装置を提供し、高い通信効率と高い通信信頼性を両立させた通信システムを提供することが可能となる。
本発明の一実施例による通信方法に採用する通信信号の概略構成図。 本発明の一実施例による通信方法におけるキャリアへのデータ割付方法を説明するイメージ図。 本発明の一実施例による通信方法における差動BPSK変調説明図。 本発明の一実施例による通信方法における変調方式毎のガウス雑音下でのビット誤り率特性図。 本発明の一実施例による通信装置の構成図。 本発明の一実施例において結合器を使用する場合の接続構成例図。 本発明の一実施例による通信方法に採用する変調器の機能ブロック図。 本発明の一実施例による通信方法に採用する復調器の機能ブロック図。 本発明の作用を説明するためのキャリア間差動変調部のFFTウィンドウの位置とキャリア位相の誤差を示す図。 本発明の作用を説明するための、マージンを設けた場合の、キャリア間差動変調部のFFTウィンドウの位置とキャリア位相の誤差を示す図。 本発明の作用を説明するための、キャリア間差動変調部において、差動BPSK変調を用いた場合のビット誤り率特性図。 本発明の作用を説明するための、キャリア間差動変調部に差動QPSK変調を用いた場合のビット誤り率特性図。 本発明の一実施例による通信方法に用いる通信信号の構成図。 本発明の一実施例による通信方法におけるビット誤り率特性図。
符号の説明
10…通信信号、11…プリアンブル部、12…キャリア間差動変調部、13a〜13z…シンボル間差動変調部、100a,100b…通信装置、101a,101b…バンドパス(BP)フィルタ、102…受信アンプ、103…A/D変換器、104…復調器、105…アクセスコントローラ、105a,105b…ビット割付量情報、106…プロトコル変換器、107…変調器、108…D/A変換器、109…送信アンプ、110…結合器、140…受信信号、141…シンボル同期処理、142…ガードインターバル(GI)除去処理、142a…前置GI部除去処理、142b…後置GI部除去処理、143…FFT処理、144…キャリア間差動復調処理、145…シンボル間差動復調処理、146,173…切替信号、147,176…メモリ、148…受信データ、170…送信データ、171…キャリア間差動変調処理、172…シンボル間差動変調処理、174…IFFT処理、175…ガードインターバル(GI)付加処理、175a…前置GI部付加処理、175b…後置GI部付加処理、177…送信信号、201…FFTウィンドウ、202,205…前置GI部、203,206…データ部、204…マージン、207…後置GI部、301…通信線、302…ケーブル。

Claims (12)

  1. 1つのシンボル内の複数のキャリア間の位相差に、伝送情報に基づく変調をかけるキャリア間差動変調手段を用いて直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)信号を構成する通信方法において、前記OFDM信号の1シンボルの後段に、通信信号の一部をコピーして生成するガードインターバル(後部GI)を連結することを特徴とする通信方法。
  2. 請求項1において、前記OFDM信号を構成する変調手段として、1つのシンボル内の複数のキャリア間の位相差に変調をかける前記キャリア間差動変調手段とともに、複数のシンボル間のキャリアの位相差に変調をかけるシンボル間差動変調手段とを共用することを特徴とする通信方法。
  3. 請求項2において、前記キャリア間差動変調手段によって生成したシンボルを、次段のシンボル間差動変調の参照シンボルとすることを特徴とする通信方法。
  4. 請求項2または3において、キャリア間差動変/復調によって出力されるキャリアの同相成分Iおよび直交成分QからなるI,Qデータと、シンボル間差動変/復調によって出力されるキャリアのI,Qデータとを切替えて後段に伝達することを特徴とする通信方法。
  5. 請求項1〜4のいずれかにおいて、前記OFDM信号の1シンボルの後段に、通信信号の一部をコピーして生成するガードインターバルを連結するほかに、前記1シンボルの前段に、通信信号の一部をコピーして生成するガードインターバルを連結することを特徴とする通信方法。
  6. 請求項1〜5のいずれかにおいて、S/Nが10[dB]の下で、前記後部GIの時間幅を0〜40[A/Dサンプル数]とすることを特徴とする通信方法。
  7. 1つのシンボル内の複数のキャリア間の位相差に、伝送情報に基づく変調をかけるキャリア間差動変調手段を用いてOFDM信号を構成する通信装置において、前記OFDM信号の1シンボルの後段に、通信信号の一部をコピーして生成したガードインターバル(後部GI)を連結する後部GI付加手段を備えたことを特徴とする通信装置。
  8. 請求項7において、前記OFDM信号を構成する変調手段として、1つのシンボル内の複数のキャリア間の位相差に変調をかける前記キャリア間差動変調手段とともに、複数のシンボル間のキャリアの位相差に変調をかけるシンボル間差動変調手段を備えたことを特徴とする通信装置。
  9. 請求項8において、前記キャリア間差動変調手段の次段に、このキャリア間差動変調手段によって生成したシンボルを参照シンボルとするシンボル間差動変調手段を備えたことを特徴とする通信装置。
  10. 請求項8または9において、キャリア間差動変/復調手段から出力されるキャリアの同相成分Iおよび直交成分QからなるI,Qデータと、シンボル間差動変/復調手段から出力されるキャリアのI,Qデータとを切替えて後段に伝達する切替手段を備えたことを特徴とする通信装置。
  11. 請求項7〜10のいずれかにおいて、前記OFDM信号の1シンボルの後段に、前記後部GIを連結する後部GI付加手段のほかに、前記1シンボルの前段に、通信信号の一部をコピーして生成したガードインターバル(前部GI)を連結する前部GI付加手段を備えたことを特徴とする通信装置。
  12. 請求項7〜11のいずれかにおいて、前記後部GI付加手段は、S/Nが10[dB]の下で、時間幅が0〜40[A/Dサンプル数]の後部GIを付加するように構成したことを特徴とする通信装置。
JP2006175030A 2006-06-26 2006-06-26 通信方法および通信装置 Pending JP2008005389A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175030A JP2008005389A (ja) 2006-06-26 2006-06-26 通信方法および通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175030A JP2008005389A (ja) 2006-06-26 2006-06-26 通信方法および通信装置

Publications (1)

Publication Number Publication Date
JP2008005389A true JP2008005389A (ja) 2008-01-10

Family

ID=39009378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175030A Pending JP2008005389A (ja) 2006-06-26 2006-06-26 通信方法および通信装置

Country Status (1)

Country Link
JP (1) JP2008005389A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150428A (ja) * 1996-10-31 1998-06-02 Discovision Assoc 直交周波数分割多重を使用するレシーバ及びそのタイミング同期方法
JP2001077788A (ja) * 1999-09-07 2001-03-23 Sony Corp 送信装置、受信装置、通信システム、送信方法、受信方法及び通信方法
JP2004064793A (ja) * 2002-07-29 2004-02-26 Samsung Electronics Co Ltd チャンネル特性に適応する直交周波数分割多重通信方法及びその装置
WO2006019255A1 (en) * 2004-08-17 2006-02-23 Lg Electronics Inc. Method for detecting ofdm symbol timing in ofdm system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150428A (ja) * 1996-10-31 1998-06-02 Discovision Assoc 直交周波数分割多重を使用するレシーバ及びそのタイミング同期方法
JP2001077788A (ja) * 1999-09-07 2001-03-23 Sony Corp 送信装置、受信装置、通信システム、送信方法、受信方法及び通信方法
JP2004064793A (ja) * 2002-07-29 2004-02-26 Samsung Electronics Co Ltd チャンネル特性に適応する直交周波数分割多重通信方法及びその装置
WO2006019255A1 (en) * 2004-08-17 2006-02-23 Lg Electronics Inc. Method for detecting ofdm symbol timing in ofdm system

Similar Documents

Publication Publication Date Title
JP4430103B2 (ja) 直交周波数分割多重接続通信システムにおける上りリンク応答情報の伝送方法及び装置
AU2010232634B2 (en) Managing transmissions among nodes communicating over a shared communication medium
CN110166400B (zh) 高速工业通信系统的同步方法、装置、网络设备及存储介质
US9479621B2 (en) Physical layer (PHY) link signaling for cable networks
US20090245399A1 (en) Method and apparatus for inserting guard interval in a mobile communication system
EP2347538B1 (en) Method and apparatus for generating a preamble for use in cable transmission systems
EP2159966A1 (en) Managing distributed access to a shared medium
JP2013502839A (ja) 連接反復符号を用いる畳み込み符号
US7468961B2 (en) System, apparatus, and method for radio communication using a plurality of carriers
EP2095555B1 (en) Selecting carriers for modulating signals in a communication network
US8614961B1 (en) Efficient communication over a shared medium
JP2002319917A (ja) マルチキャリア信号の生成方法、マルチキャリア信号の復号方法、マルチキャリア信号生成装置、及びマルチキャリア信号復号装置
US6985531B2 (en) Dual domain differential encoder/decoder
US10404504B2 (en) Modulation method, demodulation method, and apparatus for multi-user information transmission
JP2012506208A5 (ja)
CN110336765B (zh) 高速工业通信系统的同步方法、装置、网络设备及存储介质
EP3190842B1 (en) Data transmission method and device
US20170048094A1 (en) Channel equalization apparatus and method based on pilot signals for docsis down stream system
CN105745889A (zh) 一种注册方法、设备及系统
US20100329196A1 (en) Method and apparatus for transmitting uplink control channel in a mobile communication system
KR20140077606A (ko) 무선통신 시스템에서 응답 신호 송수신 방법 및 장치
CN104243383A (zh) 数据发送方法、接收方法及设备
JP2001036497A (ja) 通信装置および通信方法
EP2090049A1 (en) Amplitude-differential phase shift keying modulation apparatus and method
EP3509263B1 (en) System and method for multi-dimensional modulation schemes with high noise immunity and low emission idle signaling for automotive area networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125