JP2008005194A - Detecting device and detecting method for defective pixel - Google Patents

Detecting device and detecting method for defective pixel Download PDF

Info

Publication number
JP2008005194A
JP2008005194A JP2006172352A JP2006172352A JP2008005194A JP 2008005194 A JP2008005194 A JP 2008005194A JP 2006172352 A JP2006172352 A JP 2006172352A JP 2006172352 A JP2006172352 A JP 2006172352A JP 2008005194 A JP2008005194 A JP 2008005194A
Authority
JP
Japan
Prior art keywords
defective pixel
address
illuminance
illuminance state
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006172352A
Other languages
Japanese (ja)
Inventor
Akiyoshi Tsuchida
朗義 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006172352A priority Critical patent/JP2008005194A/en
Publication of JP2008005194A publication Critical patent/JP2008005194A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detecting device and a detecting method for defective pixel that can correct a different kind of defective pixel with high accuracy, according to a signal level. <P>SOLUTION: Disclosed are the detecting device 10 and detecting method for defective pixel that detect the defective pixel generated in an imaging area of a semiconductor element D, the detecting device, including a defective pixel detector 14 detecting the defective pixel; defective pixel address storage units 15 and 16 storing address information on a defective pixel detected from a photographed image in a first illuminance state, wherein the illuminance of light irradiating the imaging area is low and also storing address information detected from a photographed image, in a second illuminance state wherein the illuminance is higher than in the first illuminance state; an address comparator 17 for comparing pieces of address information on the defective pixels in the first illuminance state and second illuminance state stored in the defective pixel address storage units 15 and 16; and a correction address deciding unit 18 for determining execution correction address for the defective pixel, based on the comparison result of the pieces of address information on the defective pixel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、欠陥画素の検出装置及び検出方法に関し、特に信号レベルに応じて種類が異なる欠陥画素に対して高精度な補正を行うことができる欠陥画素の検出装置及び検出方法に関する。   The present invention relates to a defective pixel detection apparatus and detection method, and more particularly, to a defective pixel detection apparatus and detection method capable of performing highly accurate correction on defective pixels of different types according to signal levels.

固体撮像素子等の半導体素子を備えた撮像装置は、半導体素子の撮像領域を構成する画素に局所的な液晶欠陥によって感度が低下する欠陥画素が生じてことがある。このような欠陥画素のうち一般的に光電感度の低いものは黒い点として現れるので黒キズと呼ばれている。   In an image pickup apparatus including a semiconductor element such as a solid-state image pickup element, a defective pixel whose sensitivity decreases due to a local liquid crystal defect may occur in a pixel constituting an image pickup region of the semiconductor element. Among such defective pixels, those with generally low photoelectric sensitivity appear as black dots and are called black scratches.

図5は、半導体素子の撮像領域における黒キズの種類を示す図である。図5において、1は、半導体素子の撮像領域を示し、2は、水平転送路を示し、3は、アンプを示している。また、図5で矢印Aで示す方向は水平転送路の延設された方向に対して垂直な方向(縦方向)を示している。
図5(a)に示すように、黒キズは、信号レベルが高いときに感度の低下している欠陥画素があった場合でも、縦方向Aに連続しない孤立点の欠陥画素(いわゆる点キズ)p1,p2となる。一方、図5(b)に示すように、信号レベルを低くすると、高い信号レベルのときに現れていた欠陥画素が転送効率の低い状態となり、縦方向Aに対して連続する欠陥画素(いわゆる線キズ)p2となる場合がある。一般に、信号レベルが低いほど転送効率は低下するので、縦方向に連続する欠陥画素の数が多くなる。
FIG. 5 is a diagram showing the types of black scratches in the imaging region of the semiconductor element. In FIG. 5, reference numeral 1 denotes an imaging region of a semiconductor element, 2 denotes a horizontal transfer path, and 3 denotes an amplifier. 5 indicates a direction (vertical direction) perpendicular to the direction in which the horizontal transfer path is extended.
As shown in FIG. 5 (a), black scratches are isolated defective pixels that are not continuous in the vertical direction A (so-called point scratches) even when there is a defective pixel with reduced sensitivity when the signal level is high. p1 and p2. On the other hand, as shown in FIG. 5B, when the signal level is lowered, the defective pixels appearing at the high signal level are in a low transfer efficiency state, and defective pixels (so-called line lines) continuous in the vertical direction A are obtained. Scratch) may be p2. In general, the lower the signal level, the lower the transfer efficiency, so the number of defective pixels continuous in the vertical direction increases.

従来、撮像装置を出荷する前に、半導体素子の欠陥画素の検出が行われている。検出された欠陥画素は、当該欠陥画素の近傍の正常の画素の信号に基づいて補間する処理が行われる。例えば、黒キズの検出は、下記特許文献1に示すように、一定の光照射量で撮像したときの固体撮像素子の各画素の出力信号レベルが閾値を下回っているか否かで判別する。   Conventionally, a defective pixel of a semiconductor element has been detected before shipping an imaging device. The detected defective pixel is subjected to interpolation processing based on a signal of a normal pixel in the vicinity of the defective pixel. For example, as shown in Patent Document 1 below, black scratch detection is performed by determining whether or not the output signal level of each pixel of the solid-state imaging device is lower than a threshold value when imaging is performed with a constant light irradiation amount.

特開2002−112118号公報JP 2002-112118 A

ところで、縦方向に連続する欠陥画素については、縦方向一列について画素補正が行う必要がある。しかし、欠陥画素には図5に示すように、信号レベルによって孤立点の欠陥画素と縦方向に連続する欠陥画素との異なる種類があり、孤立点の欠陥画素に対して縦方向一列の画素補正を行うと、正常な画素についても補正を行うこととなり、歩留まりの低下が生じていた。   By the way, for defective pixels continuous in the vertical direction, it is necessary to perform pixel correction for one column in the vertical direction. However, as shown in FIG. 5, there are different types of defective pixels, that is, a defective pixel at an isolated point and a defective pixel continuous in the vertical direction, depending on the signal level. As a result, correction was performed for normal pixels, resulting in a decrease in yield.

本発明は、上記事情に鑑みてなされたもので、その目的は、信号レベルに応じて種類が異なる欠陥画素に対して高精度な補正を行うことができる欠陥画素の検出装置及び検出方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a defective pixel detection apparatus and detection method capable of performing highly accurate correction on defective pixels of different types according to signal levels. There is to do.

本発明の上記目的は、半導体素子の撮像領域に発生する欠陥画素を検出する検出装置であって、前記欠陥画素を検出する欠陥画素検出部と、前記欠陥画素の検出時に、前記撮像領域に照射する光の照度が低い第1照度状態の撮像画像から検出された欠陥画素のアドレス情報を格納し、また、前記第1照度状態より前記照度が高い第2照度状態の撮像画像から検出されたアドレス情報を格納する欠陥画素アドレス格納部と、前記欠陥画素アドレス格納部に格納された、前記第1照度状態と前記第2照度状態との前記欠陥画素のアドレス情報を比較するアドレス比較部と、前記欠陥画素のアドレス情報の比較に基づいて、該欠陥画素に実行する補正アドレスを決定する補正アドレス判断部を備えていることを特徴とする検出装置によって達成される。   The object of the present invention is a detection device for detecting defective pixels generated in an imaging region of a semiconductor element, and a defective pixel detection unit for detecting the defective pixels, and irradiating the imaging region when detecting the defective pixels The address information of the defective pixel detected from the captured image in the first illuminance state in which the illuminance of the light is low is stored, and the address detected from the captured image in the second illuminance state in which the illuminance is higher than the first illuminance state A defective pixel address storage unit for storing information; an address comparison unit for comparing address information of the defective pixel in the first illuminance state and the second illuminance state stored in the defective pixel address storage unit; It is achieved by a detection apparatus comprising a correction address determination unit that determines a correction address to be executed for a defective pixel based on a comparison of address information of the defective pixel. .

また、本発明の上記目的は、半導体素子の撮像領域に発生する欠陥画素を検出する検出方法であって、前記欠陥画素の検出時に、前記撮像領域に照射する光の照度が低い第1照度状態の撮像画像から検出された欠陥画素のアドレス情報と、また、前記第1照度状態より前記照度が高い第2照度状態の撮像画像から検出されたアドレス情報とを欠陥画素アドレス格納部に格納し、前記アドレス格納部に格納された前記第1照度状態と前記第2照度状態との前記欠陥画素のアドレス情報を比較し、前記欠陥画素のアドレス情報の比較に基づいて、該欠陥画素に実行する補正アドレスを決定することを特徴とする検出方法によって達成される。   In addition, the object of the present invention is a detection method for detecting a defective pixel generated in an imaging region of a semiconductor element, wherein a first illuminance state in which the illuminance of light irradiating the imaging region is low when the defective pixel is detected. The address information of the defective pixel detected from the captured image and the address information detected from the captured image of the second illuminance state in which the illuminance is higher than the first illuminance state are stored in the defective pixel address storage unit, Correction performed on the defective pixel based on the comparison of the address information of the defective pixel by comparing the address information of the defective pixel in the first illuminance state and the second illuminance state stored in the address storage unit This is achieved by a detection method characterized by determining an address.

本発明は、照度を変えて欠陥画素のアドレス情報を取得し、それぞれのアドレス情報を比較し、照射量に応じて転送効率が変化して、アドレスが変わる欠陥画素を特定することができる。そして、欠陥画素のアドレス情報の比較に基づいて、当該欠陥画素に実行する補正アドレスを決定することができる。例えば、照度を変えても転送効率が変化しない点キズを構成する欠陥画素については、従来のように縦方向に沿った補正を行わず、該欠陥画素のアドレス情報に示されるアドレスについてのみ補正を行うことができる。このため、欠陥画素のアドレス情報に従って、適正な範囲で欠陥画素の補正を行うことができ、正常である画素に補正を行うことで、高精度な補正を行うことができ、歩留まりを向上させることができる。   According to the present invention, it is possible to acquire defective pixel address information by changing the illuminance, compare the respective address information, change the transfer efficiency according to the irradiation amount, and specify the defective pixel whose address changes. Based on the comparison of the defective pixel address information, a correction address to be executed on the defective pixel can be determined. For example, for a defective pixel that forms a point flaw that does not change the transfer efficiency even when the illuminance is changed, correction is not performed along the vertical direction as in the past, but only for the address indicated in the address information of the defective pixel. It can be carried out. Therefore, according to the address information of the defective pixel, the defective pixel can be corrected within an appropriate range. By correcting the normal pixel, high-accuracy correction can be performed and the yield can be improved. Can do.

欠陥画素アドレス格納部に格納された欠陥画素の連続量の変化に基づき補正アドレスを決定することが好ましい。こうすれば、欠陥画素の連続量が所定の値以上であるものを線キズとし、欠陥画素の連続量が所定の値以下であるものを点キズとして判別することができる。そして、欠陥画素にあわせて補正アドレスを決定することで、正常な画素を対象とすることなく、高い精度で且つ効率良く補正を行うことができる。   It is preferable to determine the correction address based on a change in the continuous amount of defective pixels stored in the defective pixel address storage unit. By so doing, it is possible to determine that the defective amount of the continuous pixel is equal to or greater than a predetermined value as a line scratch, and the defective pixel that is equal to or smaller than the predetermined value as a point scratch. Then, by determining the correction address in accordance with the defective pixel, it is possible to perform correction with high accuracy and efficiency without targeting a normal pixel.

撮像領域に照射する光を供給する照明と、欠陥画素の検出時に、照明を制御し、第1照度状態及び第2照度状態に設定する照明制御部を備えていることが好ましい。こうすれば、欠陥画素の検出時に、欠陥画素検出部と協同させて、照明を所定の照度の状態に設定して欠陥画素を検出する手順を円滑的に行うことができる。   It is preferable to include an illumination that supplies light to irradiate the imaging region, and an illumination control unit that controls the illumination and detects the first illuminance state and the second illuminance state when a defective pixel is detected. If it carries out like this, it can cooperate with a defective pixel detection part at the time of detection of a defective pixel, and can perform the procedure which sets a lighting to the state of predetermined illumination intensity, and detects a defective pixel smoothly.

本発明によれば、信号レベルに応じて種類が異なる欠陥画素に対して高精度な補正を行うことができる欠陥画素の検出装置及び検出方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the defective pixel detection apparatus and detection method which can perform a highly accurate correction | amendment with respect to the defective pixel from which a kind differs according to a signal level can be provided.

以下、本発明の実施形態を図面に基づいて詳しく説明する。
図1は、本発明にかかる検出装置の構成を示す図である。
検出装置10は、半導体素子Dの撮像領域に発生する欠陥画素を検出する機能を有しており、本実施形態では半導体素子Dの一例として固体撮像素子を用いて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a detection apparatus according to the present invention.
The detection apparatus 10 has a function of detecting defective pixels generated in the imaging region of the semiconductor element D. In the present embodiment, a description will be given using a solid-state imaging element as an example of the semiconductor element D.

検出装置10には、欠陥画素の検出時に、固体撮像素子Dからアナログ出力信号を取得し、デジタル信号に変換するA/D変換部13と、A/D変換部13で変換された画像のデジタル信号が入力される欠陥画素検出部14とが、設けられている。   The detection apparatus 10 acquires an analog output signal from the solid-state imaging device D when detecting a defective pixel and converts the analog output signal into a digital signal, and the digital image converted by the A / D conversion unit 13. A defective pixel detection unit 14 to which a signal is input is provided.

欠陥画素検出部14は、画像のデジタル信号に基づいて、画素ごとに出力値を検出し、出力値が閾値に満たない画素については欠陥画素と決定し、該欠陥画素のアドレス情報を後述する欠陥画素アドレス格納部に出力する。欠陥画素のアドレス情報は、例えば、撮像領域に平行なx−y平面を規定したときの欠陥画素の位置を表す座標データを用いることができる。   The defective pixel detection unit 14 detects an output value for each pixel based on the digital signal of the image, determines a pixel whose output value is less than the threshold value as a defective pixel, and sets defective pixel address information to be described later. Output to the pixel address storage. As the address information of the defective pixel, for example, coordinate data representing the position of the defective pixel when an xy plane parallel to the imaging region is defined can be used.

検出装置10には、欠陥画素の検出時に、予め設定された照度で固体撮像素子Dの撮像領域に光を照射する照明11が設けられている。また、照明11を制御可能で、所定の照度状態に設定することができる照明制御部12が設けられている。本実施形態では、照明制御部12によって、照明11の照度を、撮像領域に照射する光の照度が低い低照度状態(第1照度状態)と低照度状態より照度が高い中照度状態(第2照度状態)とに設定することができる。本実施形態において、低照度状態とは固体撮像素子の信号出力が、固体撮像素子各画素のフォトダイオードに対する電荷飽和レベルの5〜15%の信号レベルの範囲となる、照明11から撮像領域に供給される光の照度であり、中照度状態では固体撮像素子の信号出力が、固体撮像素子各画素のフォトダイオードに対する電荷飽和レベルの30〜50%の信号レベルの範囲となる。   The detection device 10 is provided with an illumination 11 that irradiates light onto the imaging region of the solid-state imaging device D with a preset illuminance when a defective pixel is detected. Moreover, the illumination control part 12 which can control the illumination 11 and can set to a predetermined illumination state is provided. In the present embodiment, the illumination control unit 12 changes the illuminance of the illumination 11 to a low illuminance state (first illuminance state) where the illuminance of light irradiating the imaging region is low and a medium illuminance state (second illuminance higher than the low illuminance state). Illuminance state). In the present embodiment, the low illuminance state means that the signal output of the solid-state imaging device is supplied from the illumination 11 to the imaging region in a signal level range of 5 to 15% of the charge saturation level with respect to the photodiode of each pixel of the solid-state imaging device. In the middle illuminance state, the signal output of the solid-state imaging device is in a signal level range of 30 to 50% of the charge saturation level with respect to the photodiode of each pixel of the solid-state imaging device.

検出装置10は、欠陥画素の検出時に、欠陥画素検出部14によって検出された欠陥画素のアドレス情報を格納する欠陥画素アドレス格納部を備えている。本実施形態では、図1に示すように、低照度状態で撮像された撮像画像から検出された欠陥画素のアドレスを格納する低信号レベル時欠陥画素アドレス格納部15と、中照度状態で撮像された撮像画像から検出された欠陥画素のアドレスを格納する高信号レベル時欠陥画素アドレス格納部16と、が設けられている。なお、本実施形態では、照度状態に従って欠陥画素のアドレス情報を格納する欠陥画素アドレス格納部を分けたが、照度状態にかかわらず同一の欠陥画素アドレス格納部に格納してもよい。   The detection apparatus 10 includes a defective pixel address storage unit that stores address information of defective pixels detected by the defective pixel detection unit 14 when a defective pixel is detected. In the present embodiment, as shown in FIG. 1, a defective pixel address storage unit 15 at a low signal level that stores an address of a defective pixel detected from a captured image captured in a low illuminance state, and an image captured in a medium illuminance state. A high signal level defective pixel address storage unit 16 for storing the address of the defective pixel detected from the captured image. In the present embodiment, the defective pixel address storage unit that stores the address information of the defective pixel is divided according to the illuminance state, but may be stored in the same defective pixel address storage unit regardless of the illuminance state.

検出装置10は、低信号レベル時欠陥画素アドレス格納部15と高信号レベル時欠陥画素アドレス格納部16から、それぞれに格納されたそれぞれの欠陥画素のアドレス情報を取得し、取得したアドレス情報を比較するアドレス比較部17を備えている。   The detection device 10 acquires the address information of the defective pixels stored in the defective pixel address storage unit 15 at the low signal level and the defective pixel address storage unit 16 at the high signal level, and compares the acquired address information. An address comparison unit 17 is provided.

また、検出装置10は、アドレス比較部17における、低照度状態と中照度状態との欠陥画素のアドレス情報の比較に基づいて、欠陥画素に実行する補正アドレスを決定する補正アドレス判断部18を備えている。補正アドレス判断部18によって決定された補正アドレスのデータは、補正アドレス格納部19に出力され、格納される。補正アドレス格納部19は、例えば、メモリなどの記憶部を用いることができる。また、補正アドレス格納部19は、外部のパーソナルコンピュータなどの他の装置であってもよい。   In addition, the detection apparatus 10 includes a correction address determination unit 18 that determines a correction address to be executed for the defective pixel based on the comparison of the address information of the defective pixel in the low illuminance state and the medium illuminance state in the address comparison unit 17. ing. The correction address data determined by the correction address determination unit 18 is output to and stored in the correction address storage unit 19. As the correction address storage unit 19, for example, a storage unit such as a memory can be used. The correction address storage unit 19 may be another device such as an external personal computer.

次に、本発明にかかる欠陥画素の検出方法の手順を説明する。図2は、欠陥画素の検出方法の手順を示す図である。なお、検出方法の手順の説明では、図1に示す検出装置の構成を適宜参照する。   Next, the procedure of the defective pixel detection method according to the present invention will be described. FIG. 2 is a diagram illustrating a procedure of a defective pixel detection method. In the description of the procedure of the detection method, the configuration of the detection apparatus shown in FIG.

欠陥画素の検出時には、最初に、照明の光量を設定し、低照度状態にする(ステップS11)。そして、固体撮像素子によって撮像を行って画像データを取り込む(ステップS12)。   When detecting defective pixels, first, the amount of illumination light is set, and a low illuminance state is set (step S11). Then, the image data is captured by capturing with the solid-state image sensor (step S12).

画像データをA/D変換部13によってデジタル信号に変換した後、欠陥画素検出部14によって欠陥画素の検出を行う(ステップS13)。そして、検出された欠陥画素のアドレス情報を欠陥画素アドレス格納部に出力する。本実施形態の検出装置10では、低照度状態で検出された欠陥画素は、低信号レベル時欠陥画素アドレス格納部15に格納される(ステップ14)。   After the image data is converted into a digital signal by the A / D converter 13, the defective pixel is detected by the defective pixel detector 14 (step S13). Then, the address information of the detected defective pixel is output to the defective pixel address storage unit. In the detection apparatus 10 of the present embodiment, defective pixels detected in a low illuminance state are stored in the defective pixel address storage unit 15 at a low signal level (step 14).

次に、照明制御部12によって照明11を所定の光量に設定し、中照度状態とし(ステップS15)、固体撮像素子Dによって撮像を行い、画像データを取り込む(ステップS16)。   Next, the illumination control unit 12 sets the illumination 11 to a predetermined light quantity, sets it to a medium illuminance state (step S15), performs imaging with the solid-state imaging device D, and captures image data (step S16).

画像データをA/D変換部13によってデジタル信号に変換した後、欠陥画素検出部14によって欠陥画素の検出を行い(ステップS17)、検出された欠陥画素のアドレス情報を欠陥画素アドレス格納部に出力する。本実施形態の検出装置10では、中照度状態で検出された欠陥画素は、高信号レベル時欠陥画素アドレス格納部16に格納される(ステップ18)。   After the image data is converted into a digital signal by the A / D conversion unit 13, the defective pixel detection unit 14 detects the defective pixel (step S17), and outputs the detected defective pixel address information to the defective pixel address storage unit. To do. In the detection apparatus 10 of the present embodiment, the defective pixel detected in the medium illuminance state is stored in the defective pixel address storage unit 16 at the time of a high signal level (step 18).

低照度状態及び中照度状態の欠陥画素のアドレス情報を格納した後、アドレス比較部17に、低信号レベル時欠陥画素アドレス格納部15に格納された欠陥画素のアドレス情報と、高信号レベル時欠陥画素アドレス格納部16に格納された欠陥画素のアドレス情報とを出力する。そして、アドレス比較部17において、同一の欠陥画素について、低照度状態のアドレス情報と中照度状態のアドレス情報とを比較する。   After storing the address information of defective pixels in the low illuminance state and the medium illuminance state, the address comparison unit 17 stores the defective pixel address information stored in the low pixel level defective pixel address storage unit 15 and the high signal level defect. The defective pixel address information stored in the pixel address storage unit 16 is output. Then, the address comparison unit 17 compares the address information in the low illuminance state and the address information in the medium illuminance state for the same defective pixel.

アドレス比較部17において、欠陥画素のアドレス情報の比較に基づいて、欠陥画素の連続量の変化を判別する(ステップS19)。図3及び図4は、欠陥画素の連続量の変化を説明する図である。
図3(a)は低照度状態で撮像された欠陥画素を示し、図3(b)は中照度状態で撮像された欠陥画素を示している。図3(a)及び図3(b)に示すように、低照度状態及び中照度状態で、欠陥画素p11,p21についていずれも欠陥画素のアドレス情報に変化がない場合には、それぞれの欠陥画素p11,p21が、縦一列ごとに画像補正を行うときに同時に補正される当該列の方向(図中上下方向)に対して連続する量を連続量Δp1,Δp2は変化がない。つまり、欠陥画素p11,p21は、いずれも光の照度にかかわらず、転送効率が変化しない、点キズであると決定することができる。そして、これら欠陥画素p11,21に画像補正を行う場合には、そのアドレス情報で特定されるアドレスについてのみ画像補正を行う。
The address comparison unit 17 determines a change in the continuous amount of defective pixels based on the comparison of defective pixel address information (step S19). 3 and 4 are diagrams for explaining a change in the continuous amount of defective pixels.
3A shows a defective pixel imaged in a low illuminance state, and FIG. 3B shows a defective pixel imaged in a medium illuminance state. As shown in FIGS. 3A and 3B, when there is no change in the address information of the defective pixels for the defective pixels p11 and p21 in the low illuminance state and the medium illuminance state, the respective defective pixels The continuous amounts Δp1 and Δp2 do not change with respect to the continuous amounts of p11 and p21 with respect to the direction (vertical direction in the figure) of the column that is simultaneously corrected when performing image correction for each vertical column. That is, it is possible to determine that the defective pixels p11 and p21 are point scratches whose transfer efficiency does not change regardless of the illuminance of light. When image correction is performed on these defective pixels p11 and 21, image correction is performed only for the address specified by the address information.

図4(a)は低照度状態で撮像された欠陥画素を示し、図4(b)は中照度状態で撮像された欠陥画素を示している。図4(a)及び図4(b)に示すように、低照度状態及び中照度状態で、欠陥画素p11,p21のうち欠陥画素のアドレス情報に変化がある場合には、アドレス情報が変化している欠陥画素p21の連続量Δp2が変化する。具体的には、欠陥画素p21は、低照度状態の撮像では、欠陥画素p11と同じ点キズの欠陥画素であるが、中照度状態で撮像すると、その欠陥画素p21が新たに検出される画素によって延長し、この結果、連続量Δp2が大きくなっている。   4A shows a defective pixel imaged in a low illuminance state, and FIG. 4B shows a defective pixel imaged in a medium illuminance state. As shown in FIGS. 4A and 4B, when there is a change in the address information of the defective pixel among the defective pixels p11 and p21 in the low illuminance state and the medium illuminance state, the address information changes. The continuous amount Δp2 of the defective pixel p21 is changed. Specifically, the defective pixel p21 is a defective pixel having the same point scratch as the defective pixel p11 in imaging in the low illuminance state, but when the imaging is performed in the middle illuminance state, the defective pixel p21 is newly detected. As a result, the continuous amount Δp2 is increased.

補正アドレス判断部18は、欠陥画素の連続量が変化しないものについては、点キズの欠陥画素と判断し、その欠陥画素のアドレス情報を補正アドレス格納部19に出力する。そして、補正アドレス格納部19が該欠陥画素を点補正の対象として補正アドレスに設定し、アドレス情報を格納する(ステップS20)。一方、補正アドレス判断部18は、欠陥画素の連続量が変化しているものについては、線キズの欠陥画素と判断し、その欠陥画素のアドレス情報を補正アドレス格納部19に出力する。そして、補正アドレス格納部19が該欠陥画素を線補正の対象として補正アドレスに設定し、アドレス情報を格納する(ステップS21)。   The correction address determination unit 18 determines that the defective pixel continuous amount does not change as a defective pixel having a point defect, and outputs the address information of the defective pixel to the correction address storage unit 19. Then, the correction address storage unit 19 sets the defective pixel as a point correction target as a correction address, and stores address information (step S20). On the other hand, the correction address determination unit 18 determines that a defective pixel has a continuous amount of change as a defective pixel having a line defect, and outputs address information of the defective pixel to the correction address storage unit 19. Then, the correction address storage unit 19 sets the defective pixel as a line correction target as a correction address, and stores address information (step S21).

低照度状態及び中照度状態で検出された欠陥画素の連続量の変化を判断する処理を実行し、補正アドレスを設定した後、欠陥画素の検出を終了する。   A process for determining a change in the continuous amount of defective pixels detected in the low illuminance state and the medium illuminance state is executed, and after the correction address is set, the detection of the defective pixel is terminated.

本実施形態の検出装置10及びそれを用いた検出方法によれば、照度を変えて欠陥画素のアドレス情報を取得し、それぞれのアドレス情報を比較し、照射量に応じて転送効率が変化して、アドレスが変わる欠陥画素を特定することができる。そして、欠陥画素のアドレス情報の比較に基づいて、当該欠陥画素に実行する補正アドレスを決定することができる。従来の検出方法では、転送効率が変化する欠陥画素を判別していなかったため、全ての欠陥画素に対して該欠陥画素が存在する縦1列全ての欠陥画素について補正を行っていた。本発明にかかる欠陥画素の検出方法は、例えば、照度を変えても転送効率が変化しない点キズを構成する欠陥画素については、従来のように縦方向に沿った補正を行わず、該欠陥画素のアドレス情報に示されるアドレスについてのみ補正を行うことができる。このため、欠陥画素のアドレス情報に従って、適正な範囲で欠陥画素の補正を行うことができ、正常である画素に補正を行うことで、高精度な補正を行うことができ、歩留まりを向上させることができる。   According to the detection device 10 and the detection method using the detection device of the present embodiment, the address information of the defective pixel is acquired by changing the illuminance, the respective address information is compared, and the transfer efficiency changes according to the irradiation amount. The defective pixel whose address changes can be specified. Based on the comparison of the defective pixel address information, a correction address to be executed on the defective pixel can be determined. In the conventional detection method, defective pixels whose transfer efficiency changes are not discriminated. Therefore, all defective pixels in one vertical column where the defective pixels exist are corrected for all defective pixels. According to the defective pixel detection method of the present invention, for example, a defective pixel that does not change the transfer efficiency even when the illuminance is changed does not perform correction along the vertical direction as in the related art, and the defective pixel is not corrected. Correction can be performed only for the address indicated in the address information. Therefore, according to the address information of the defective pixel, the defective pixel can be corrected within an appropriate range. By correcting the normal pixel, high-accuracy correction can be performed and the yield can be improved. Can do.

本実施形態のように、欠陥画素アドレス格納部にそれぞれ格納された欠陥画素の連続量の変化に基づき補正アドレスを決定すれば、欠陥画素の連続量が所定の値以上であるものを線キズとし、欠陥画素の連続量が所定の値以下であるものを点キズとして判別することができる。そして、それぞれの欠陥画素にあわせて補正アドレスを決定することで、正常な画素を対象とすることなく、高い精度で且つ効率良く補正を行うことができる。   As in this embodiment, if the correction address is determined based on the change in the continuous amount of defective pixels respectively stored in the defective pixel address storage unit, a defective line having a continuous amount of defective pixels equal to or greater than a predetermined value is defined as a line scratch. A defect in which the continuous amount of defective pixels is a predetermined value or less can be determined as a point flaw. Then, by determining a correction address in accordance with each defective pixel, it is possible to perform correction with high accuracy and efficiency without targeting normal pixels.

本実施形態の検出装置10では、照明11と、該照明11を制御する照明制御部12とを備えた構成としたが、照明11及び照明制御部12は、検出装置10と別に設けられている構成としてもよい。検出装置10のように、照明11と、欠陥画素の検出時に、照明11を制御し、低照度状態及び中照度状態に設定する照明制御部12とを備えている構成とすれば、欠陥画素の検出時に、欠陥画素検出部14と協同させて、照明11を所定の照度の状態に設定して欠陥画素を検出する手順を円滑的に行うことができる。   Although the detection apparatus 10 of the present embodiment includes the illumination 11 and the illumination control unit 12 that controls the illumination 11, the illumination 11 and the illumination control unit 12 are provided separately from the detection apparatus 10. It is good also as a structure. As in the detection device 10, when the illumination 11 and the illumination control unit 12 that controls the illumination 11 and sets the low illumination state and the medium illumination state when the defective pixel is detected, the defective pixel is detected. At the time of detection, the procedure for detecting defective pixels by setting the illumination 11 to a predetermined illuminance state can be smoothly performed in cooperation with the defective pixel detection unit 14.

本発明にかかる検出装置の構成を示す図である。It is a figure which shows the structure of the detection apparatus concerning this invention. 欠陥画素の検出方法の手順を示す図である。It is a figure which shows the procedure of the detection method of a defective pixel. 欠陥画素の連続量の変化を説明する図である。It is a figure explaining the change of the continuous amount of a defective pixel. 欠陥画素の連続量の変化を説明する図である。It is a figure explaining the change of the continuous amount of a defective pixel. 半導体素子の撮像領域における黒キズの種類を示す図である。It is a figure which shows the kind of black crack in the imaging region of a semiconductor element.

符号の説明Explanation of symbols

10 検出装置
14 欠陥画素検出部
17 アドレス比較部
18 補正アドレス判断部
19 補正アドレス格納部
D 固体撮像素子(半導体素子)
DESCRIPTION OF SYMBOLS 10 Detection apparatus 14 Defective pixel detection part 17 Address comparison part 18 Correction address judgment part 19 Correction address storage part D Solid-state image sensor (semiconductor element)

Claims (10)

半導体素子の撮像領域に発生する欠陥画素を検出する検出装置であって、
前記欠陥画素を検出する欠陥画素検出部と、
前記欠陥画素の検出時に、前記撮像領域に照射する光の照度が低い第1照度状態の撮像画像から検出された欠陥画素のアドレス情報を格納し、また、前記第1照度状態より前記照度が高い第2照度状態の撮像画像から検出されたアドレス情報を格納する欠陥画素アドレス格納部と、
前記欠陥画素アドレス格納部に格納された、前記第1照度状態と前記第2照度状態との前記欠陥画素のアドレス情報を比較するアドレス比較部と、
前記欠陥画素のアドレス情報の比較に基づいて、該欠陥画素に実行する補正アドレスを決定する補正アドレス判断部を備えていることを特徴とする検出装置。
A detection device for detecting defective pixels generated in an imaging region of a semiconductor element,
A defective pixel detection unit for detecting the defective pixel;
When detecting the defective pixel, the address information of the defective pixel detected from the captured image in the first illuminance state where the illuminance of the light irradiating the imaging region is low is stored, and the illuminance is higher than that in the first illuminance state A defective pixel address storage unit for storing address information detected from the captured image in the second illuminance state;
An address comparison unit for comparing address information of the defective pixel in the first illuminance state and the second illuminance state, which is stored in the defective pixel address storage unit;
A detection apparatus comprising: a correction address determination unit that determines a correction address to be executed for a defective pixel based on a comparison of address information of the defective pixel.
前記補正アドレス判断部が、前記欠陥画素アドレス格納部に格納された前記欠陥画素の連続量の変化に基づき前記補正アドレスを決定することを特徴とする請求項1に記載の検出装置。   The detection apparatus according to claim 1, wherein the correction address determination unit determines the correction address based on a change in a continuous amount of the defective pixels stored in the defective pixel address storage unit. 前記撮像領域に照射する光を供給する照明と、前記欠陥画素の検出時に、前記照明を制御し、前記第1照度状態及び前記第2照度状態に設定する照明制御部を備えていることを特徴とする請求項1又は2に記載の検出装置。   And an illumination control unit configured to control the illumination to detect the defective pixel and to set the first illuminance state and the second illuminance state at the time of detecting the defective pixel. The detection device according to claim 1 or 2. 前記半導体素子が、固体撮像素子であることを特徴とする請求項1から3のいずれか1つに記載の検出装置。   The detection device according to claim 1, wherein the semiconductor element is a solid-state imaging element. 前記第1照度状態が、半導体素子の信号出力が電荷飽和レベルの5〜15%の信号レベルとなる範囲であり、前記第2照度状態が、電荷飽和レベルの30〜50%の信号レベルとなる範囲であることを特徴とする請求項1から4のいずれか1つに記載の検出装置。   The first illuminance state is a range where the signal output of the semiconductor element is a signal level of 5 to 15% of the charge saturation level, and the second illuminance state is a signal level of 30 to 50% of the charge saturation level. The detection device according to claim 1, wherein the detection device is a range. 半導体素子の撮像領域に発生する欠陥画素を検出する検出方法であって、
前記欠陥画素の検出時に、前記撮像領域に照射する光の照度が低い第1照度状態の撮像画像から検出された欠陥画素のアドレス情報と、また、前記第1照度状態より前記照度が高い第2照度状態の撮像画像から検出されたアドレス情報とを欠陥画素アドレス格納部に格納し、
前記アドレス格納部に格納された前記第1照度状態と前記第2照度状態との前記欠陥画素のアドレス情報を比較し、
前記欠陥画素のアドレス情報の比較に基づいて、該欠陥画素に実行する補正アドレスを決定することを特徴とする検出方法。
A detection method for detecting defective pixels generated in an imaging region of a semiconductor element,
At the time of detecting the defective pixel, address information of the defective pixel detected from the captured image in the first illuminance state where the illuminance of the light irradiating the imaging region is low, and the second illuminance is higher than that in the first illuminance state. Store the address information detected from the captured image in the illuminance state in the defective pixel address storage unit,
Compare the address information of the defective pixel in the first illuminance state and the second illuminance state stored in the address storage unit,
A detection method comprising: determining a correction address to be executed for a defective pixel based on a comparison of address information of the defective pixel.
前記欠陥画素アドレス格納部に格納された前記欠陥画素の連続量の変化に基づき前記補正アドレスを決定することを特徴とする請求項6に記載の検出方法。   The detection method according to claim 6, wherein the correction address is determined based on a change in a continuous amount of the defective pixels stored in the defective pixel address storage unit. 前記撮像領域に照射する光を供給する照明を制御し、前記第1照度状態及び前記第2照度状態に設定することを特徴とする請求項6又は7に記載の検出方法。   The detection method according to claim 6 or 7, wherein illumination for supplying light to irradiate the imaging region is controlled and set to the first illuminance state and the second illuminance state. 前記半導体素子が、固体撮像素子であることを特徴とする請求項6から8のいずれか1つに記載の検出方法。   The detection method according to claim 6, wherein the semiconductor element is a solid-state imaging element. 前記第1照度状態が、半導体素子の信号出力が電荷飽和レベルの5〜15%の信号レベルとなる範囲であり、前記第2照度状態が、電荷飽和レベルの30〜50%の信号レベルとなる範囲であることを特徴とする請求項6から9のいずれか1つに記載の検出方法。   The first illuminance state is a range where the signal output of the semiconductor element is a signal level of 5 to 15% of the charge saturation level, and the second illuminance state is a signal level of 30 to 50% of the charge saturation level. The detection method according to claim 6, wherein the detection method is a range.
JP2006172352A 2006-06-22 2006-06-22 Detecting device and detecting method for defective pixel Pending JP2008005194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172352A JP2008005194A (en) 2006-06-22 2006-06-22 Detecting device and detecting method for defective pixel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172352A JP2008005194A (en) 2006-06-22 2006-06-22 Detecting device and detecting method for defective pixel

Publications (1)

Publication Number Publication Date
JP2008005194A true JP2008005194A (en) 2008-01-10

Family

ID=39009221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172352A Pending JP2008005194A (en) 2006-06-22 2006-06-22 Detecting device and detecting method for defective pixel

Country Status (1)

Country Link
JP (1) JP2008005194A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151792A (en) * 2009-12-22 2011-08-04 Canon Inc Image processing apparatus and method
US20130258386A1 (en) * 2012-04-03 2013-10-03 David Wagner Bitmap Compare Mechanism
JP2014528130A (en) * 2011-09-12 2014-10-23 ヤフー! インコーポレイテッド Integrated building-based air treatment equipment for server farm cooling systems
WO2021192644A1 (en) * 2020-03-27 2021-09-30 Hoya株式会社 Endoscope and endoscope system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151792A (en) * 2009-12-22 2011-08-04 Canon Inc Image processing apparatus and method
JP2014528130A (en) * 2011-09-12 2014-10-23 ヤフー! インコーポレイテッド Integrated building-based air treatment equipment for server farm cooling systems
JP2016183853A (en) * 2011-09-12 2016-10-20 エクスカリバー アイピー リミテッド ライアビリティ カンパニー Integrated building based air handler for server farm cooling system
US20130258386A1 (en) * 2012-04-03 2013-10-03 David Wagner Bitmap Compare Mechanism
US8705071B2 (en) * 2012-04-03 2014-04-22 Infoprint Solutions Company Llc Bitmap compare mechanism
WO2021192644A1 (en) * 2020-03-27 2021-09-30 Hoya株式会社 Endoscope and endoscope system

Similar Documents

Publication Publication Date Title
CN101464418B (en) Flaw detection method and apparatus
US7024041B2 (en) Pattern inspection apparatus and method
JP2010057114A (en) Device and method for detecting/correcting defect
JP4591046B2 (en) Defect detection correction circuit and defect detection correction method
JP2008005194A (en) Detecting device and detecting method for defective pixel
JP2010021858A (en) Pixel defect correction device
CN104980718A (en) Color correction devices and methods
JP2009097959A (en) Defect detecting device and defect detection method
JP2005265467A (en) Defect detection device
JP2010093471A (en) Imaging device, semiconductor integrated circuit for the same, and method of determining defective pixel
JP5544285B2 (en) Image signal processing apparatus and image signal processing method
JP2009192358A (en) Defect inspection device
JP2005223796A (en) Pixel defect correcting device
JP4600350B2 (en) Image processing apparatus and program
JP2010244537A (en) Method for correcting image distortion
CN102572315A (en) Method for detecting twill noise of digital image
JP2006148748A (en) Pixel defect correcting device and pixel defect correcting method
JP2006345279A (en) Method of detecting pixel defect for solid state imaging device
JP2000206052A (en) Defect-inspecting device and method and storage medium
JP5968145B2 (en) Image processing apparatus and control method thereof
JP2008148129A (en) Imaging apparatus, control method thereof, and program
JP2009264822A (en) Line width measuring device and setting method of illumination level of line width measuring device
KR100860307B1 (en) Correction Device of Bad Pixel and Method thereof
CN101335827B (en) Image defect correcting system using oriented detection method
JP2007312233A (en) Image processor and program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126