JP2008002727A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008002727A
JP2008002727A JP2006171119A JP2006171119A JP2008002727A JP 2008002727 A JP2008002727 A JP 2008002727A JP 2006171119 A JP2006171119 A JP 2006171119A JP 2006171119 A JP2006171119 A JP 2006171119A JP 2008002727 A JP2008002727 A JP 2008002727A
Authority
JP
Japan
Prior art keywords
compressor
temperature
heater
energized
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006171119A
Other languages
Japanese (ja)
Other versions
JP4736970B2 (en
Inventor
Takayuki Izeki
貴之 井関
Naoki Matsumoto
直樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006171119A priority Critical patent/JP4736970B2/en
Publication of JP2008002727A publication Critical patent/JP2008002727A/en
Application granted granted Critical
Publication of JP4736970B2 publication Critical patent/JP4736970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively prevent accumulation of liquid refrigerant inside of a compressor with a simple constitution, so as to improve reliability of an apparatus and to reduce power consumption. <P>SOLUTION: The compressor is provided with plural electric heaters and a compressor temperature detecting device for detecting a temperature of an outer hull of the compressor, a control device is disposed to change the number of electric heaters to which power is distributed on the basis of a value of the compressor outer hull temperature in stopping the compressor, and the number of electric heaters to which power is distributed is increased when the compressor outer hull temperature is low during the stop of the compressor. In particular, the increase of cost is prevented by using the electric heater of standard specification, when a heat capacity is high. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和装置の制御に関するものである。   The present invention relates to control of an air conditioner.

従来の空気調和機では、室外気温度により電気ヒータの通電時間を制御し発熱量を制御している(例えば、特許文献1参照)。
特開平7−43027号公報
In a conventional air conditioner, the amount of heat generated is controlled by controlling the energization time of the electric heater according to the outdoor air temperature (see, for example, Patent Document 1).
JP 7-43027 A

しかしながら、従来の空気調和装置では、通電時間を制御することにより低電力への制御は可能だが、極低温時圧縮機の温度を上げたい場合は電気ヒータの出力を上げざるを得ない。この場合電気ヒータの信頼性の点でヒータのワット密度に制限があり(例えば40W/m)、温度を上げる場合はヒータを長くする必要がある。この場合、圧縮機外周長さよりヒータ長さが極端に長くなり、取り付けが複雑になったり、標準仕様から外れ特殊な長さの電気ヒータが必要になったりして高価格になる。また、通電時間制御回路追加による装置の複雑化、高価格化など欠点があった。   However, in the conventional air conditioner, it is possible to control to low power by controlling the energization time, but in order to increase the temperature of the cryogenic compressor, the output of the electric heater must be increased. In this case, the watt density of the heater is limited in terms of the reliability of the electric heater (for example, 40 W / m), and it is necessary to lengthen the heater when raising the temperature. In this case, the heater length becomes extremely longer than the outer peripheral length of the compressor, so that the installation becomes complicated, or the electric heater having a special length is required because it is out of the standard specification. In addition, there are disadvantages such as complicated equipment and high price due to the addition of an energization time control circuit.

本発明は、前記従来の課題を解決するもので、圧縮機に複数個の電気ヒータを設け、圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータの個数を変更することにより、効果的に圧縮機内部に液冷媒が溜まることを防止することができるとともに、そのために複雑化、高価格化とならない空気調和装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and is effective by providing a plurality of electric heaters in the compressor and changing the number of electric heaters to be energized according to the value of the compressor outer temperature when the compressor is stopped. Another object of the present invention is to provide an air conditioner that can prevent liquid refrigerant from accumulating inside the compressor and that is not complicated and expensive.

前記従来の課題を解決するために、本発明の空気調和装置は、圧縮機に複数個の電気ヒータと圧縮機外郭の温度を検出する圧縮機温度検出装置とを設け、圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータの個数を変更する制御装置を設けたもので、圧縮機停止中の圧縮機外郭温度が低い場合は通電する電気ヒータの個数を増やし、効果的に圧縮機内部に液冷媒が溜まることを防止する。   In order to solve the above-described conventional problems, an air conditioner according to the present invention is provided with a plurality of electric heaters and a compressor temperature detecting device for detecting the temperature of the outer shell of the compressor, and the compressor is stopped when the compressor is stopped. A control device is provided to change the number of electric heaters to be energized according to the value of the outer temperature. When the compressor outer temperature is low when the compressor is stopped, the number of electric heaters to be energized is increased, effectively This prevents liquid refrigerant from accumulating.

本発明の空気調和装置は、圧縮機停止中の圧縮機外郭温度が低い場合は通電する電気ヒータの個数を増やし、効果的に圧縮機内部に液冷媒が溜まることを防止することにより、圧縮機の損傷を防止して信頼性を向上することができる。また、温度が高い場合はヒータに通電する個数を減らすことにより消費電力が低減できるとともに、圧縮機周辺に配置された電気部品等の温度上昇を抑制でき、信頼性と寿命が向上する。そして、標準仕様の電気ヒータの使用により、空気調和機が複雑化、高価格化となることを抑制する。   The air conditioner of the present invention increases the number of electric heaters that are energized when the compressor outer temperature is low while the compressor is stopped, and effectively prevents liquid refrigerant from accumulating inside the compressor. The reliability can be improved by preventing the damage. In addition, when the temperature is high, power consumption can be reduced by reducing the number of energized heaters, and an increase in the temperature of electrical components and the like arranged around the compressor can be suppressed, improving reliability and life. The use of standard electric heaters prevents the air conditioner from becoming complicated and expensive.

第1の発明は、圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機とを接続し、圧縮機に複数個の電気ヒータと圧縮機外郭の温度を検出する圧縮機温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータの個数を変更する制御装置を設けたもので、圧縮機停止中の圧縮機外郭温度が低い場合は通電する電気ヒータの個数を増やし、効果的に圧縮機内部に液冷媒が溜まることを防止することにより、圧縮機の損傷を防止して信頼性を向上することができる。また、温度が高い場合はヒータに通電する個数を減らすことにより消費電力
が低減できるとともに、圧縮機周辺に配置された電気部品等の温度上昇を抑制でき、信頼性と寿命が向上する。
A first invention connects a compressor, an outdoor heat exchanger, an outdoor fan, a four-way valve, an outdoor unit having a throttle device, an indoor unit having an indoor heat exchanger and an indoor fan, and a plurality of compressors. In the air conditioner that performs at least the cooling operation, the dehumidifying operation, or the heating operation, the electric heater is energized according to the value of the compressor outer temperature when the compressor is stopped. A control device that changes the number of electric heaters is provided. When the compressor outer temperature is low while the compressor is stopped, the number of electric heaters to be energized is increased, and liquid refrigerant is effectively accumulated inside the compressor. By preventing the damage of the compressor, the reliability can be improved. In addition, when the temperature is high, power consumption can be reduced by reducing the number of energized heaters, and an increase in the temperature of electrical components and the like arranged around the compressor can be suppressed, improving reliability and life.

第2の発明は、圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機とを接続し、圧縮機に複数個の電気ヒータと圧縮機外郭の温度を検出する圧縮機温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータの個数を変更する制御装置を設け、圧縮機停止時に、圧縮機外郭温度の値にかかわらず必ず通電する電気ヒータを少なくとも1個設けたもので、センサー故障時でも、圧縮機停止時に確実に電気ヒータに通電し、圧縮機内部に液冷媒が溜まることを防止することにより、圧縮機の損傷を防止して信頼性を向上することができる。また、この常時通電回路に圧縮機リレーのB接点を使用することにより、コストダウンが可能となる。   The second invention connects a compressor, an outdoor heat exchanger, an outdoor fan, a four-way valve, an outdoor unit having a throttle device, an indoor heat exchanger, and an indoor unit having an indoor fan, and a plurality of compressors In the air conditioner that performs at least the cooling operation, the dehumidifying operation, or the heating operation, the electric heater is energized according to the value of the compressor outer temperature when the compressor is stopped. A control device that changes the number of electric heaters is provided, and at least one electric heater that is always energized when the compressor is stopped regardless of the value of the compressor outer temperature is provided. In addition, it is possible to improve the reliability by preventing the compressor from being damaged by energizing the electric heater and preventing the liquid refrigerant from accumulating inside the compressor. Further, by using the B contact of the compressor relay for this always-on circuit, the cost can be reduced.

第3の発明は、圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機とを接続し、圧縮機に複数個の電気ヒータと圧縮機外郭の温度を検出する圧縮機温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータの個数を変更する制御装置を設け、圧縮機停止時に、圧縮機外郭温度の値にかかわらず必ず通電する電気ヒータを少なくとも1個設け、このヒータを他の電気ヒータより下方に設けたもので、圧縮機内部に液冷媒が溜まることがより効果的に防止でき、圧縮機の損傷を防止して信頼性を向上することができる。   A third invention connects a compressor, an outdoor heat exchanger, an outdoor blower, a four-way valve, an outdoor unit having a throttle device, an indoor heat exchanger, and an indoor unit having an indoor blower, and a plurality of compressors. In the air conditioner that performs at least the cooling operation, the dehumidifying operation, or the heating operation, the electric heater is energized according to the value of the compressor outer temperature when the compressor is stopped. A control device that changes the number of electric heaters is provided, and at least one electric heater that is always energized regardless of the compressor outer temperature when the compressor is stopped is provided, and this heater is provided below the other electric heaters. Thus, it is possible to more effectively prevent liquid refrigerant from accumulating inside the compressor, and it is possible to prevent damage to the compressor and improve reliability.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和装置の冷凍サイクル図であり、図2は制御ブロック図、図3はクランクケース通電のフローチャートである。
(Embodiment 1)
1 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram, and FIG. 3 is a flowchart of crankcase energization.

図1において、室外機1には圧縮機2と、室外熱交換器3と、室外送風機4と、冷媒液管5aと、冷媒ガス管6aと、冷暖房切換用の四方弁7と、絞り装置8が設けられている。また、室外機1には室外熱交換器3の温度を検出する室外熱交換器温度検出装置9と圧縮機2の吐出温度を検出する吐出温度検出装置10と、圧縮機2に第1の電気ヒータ(以下第1のクランクケースヒータ)11a、第2の電気ヒータ(以下第2のクランクケースヒータ)11bが複数個(ここでは例えば2個)設けられている。   In FIG. 1, the outdoor unit 1 includes a compressor 2, an outdoor heat exchanger 3, an outdoor blower 4, a refrigerant liquid pipe 5a, a refrigerant gas pipe 6a, a cooling / heating switching four-way valve 7, and a throttle device 8. Is provided. The outdoor unit 1 includes an outdoor heat exchanger temperature detection device 9 that detects the temperature of the outdoor heat exchanger 3, a discharge temperature detection device 10 that detects the discharge temperature of the compressor 2, and a first electric power supply to the compressor 2. A plurality of heaters (hereinafter referred to as first crankcase heaters) 11a and second electric heaters (hereinafter referred to as second crankcase heaters) 11b are provided (for example, two here).

一方、室内機12には室内送風機13と、室内熱交換器14と、室内熱交換器14の温度を検出する室内熱交換器温度検出装置15と、部屋の室温を検出する室内吸込み温度検知装置16と、居住者が希望する運転モード(冷房、除湿または暖房)、室温、運転あるいは停止、風量及び風向などを設定できる運転設定装置17が設けられている。そして、室外機1と室内機12とは接続配管5b,6bで接続されて、冷凍サイクルが構成されている。   On the other hand, the indoor unit 12 includes an indoor blower 13, an indoor heat exchanger 14, an indoor heat exchanger temperature detecting device 15 for detecting the temperature of the indoor heat exchanger 14, and an indoor suction temperature detecting device for detecting the room temperature of the room. 16 and an operation setting device 17 capable of setting an operation mode (cooling, dehumidification or heating) desired by a resident, room temperature, operation or stop, air volume and direction. And the outdoor unit 1 and the indoor unit 12 are connected by the connection piping 5b and 6b, and the refrigerating cycle is comprised.

上記冷凍サイクルにおいて、冷房あるいは除湿運転時、圧縮機2から吐出された冷媒は四方弁7を介して室外熱交換器3へと流れ、室外送風機4により室外熱交換器3で室外空気と熱交換して凝縮液化し、次に冷媒液管5aを通って絞り装置8を通過することにより減圧された冷媒は室内熱交換器14で蒸発した後に、冷媒ガス管6aを通り四方弁7を介して再び圧縮機2に吸入される。暖房運転時は圧縮機2から吐出された冷媒は四方弁7を介して室内熱交換器14へと流れ、室内送風機13により室内熱交換器14で室内空気と
熱交換して凝縮液化し、次に絞り装置8を通過することにより減圧された冷媒は室外熱交換器3で蒸発した後に、四方弁7を介して再び圧縮機2に吸入される。
In the refrigeration cycle, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 through the four-way valve 7, and exchanges heat with outdoor air by the outdoor heat exchanger 3 by the outdoor fan 4. The refrigerant is condensed and liquefied, and then decompressed by passing through the expansion device 8 through the refrigerant liquid pipe 5a, evaporates in the indoor heat exchanger 14, passes through the refrigerant gas pipe 6a, and passes through the four-way valve 7. It is sucked into the compressor 2 again. During the heating operation, the refrigerant discharged from the compressor 2 flows to the indoor heat exchanger 14 via the four-way valve 7, and heat is exchanged with the indoor air in the indoor heat exchanger 14 by the indoor blower 13 to be condensed and liquefied. Then, the refrigerant depressurized by passing through the expansion device 8 evaporates in the outdoor heat exchanger 3 and then is sucked into the compressor 2 again through the four-way valve 7.

次に、本発明の制御について図2,3を用いて説明する。図2において、本発明の空気調和装置の制御装置18には、居住者が希望する運転モード切替スイッチ19(冷房、除湿または暖房)と室内温度設定スイッチ20と運転停止スイッチ21と風量設定スイッチ22と風向設定スイッチ23で構成されている運転設定装置17の信号を記憶する運転モード記憶装置24と、室内熱交換器温度検出装置15と室内吸込み温度検出装置16と、室外熱交換器検出装置9と、圧縮機吐出温度検出装置10と、第1のクランクケースヒータ11a,第2のクランクケースヒータ11bのそれぞれの通電を判断する第1ヒータ温度設定装置25a、第2ヒータ温度設定装置25bと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置26と、判定装置26の信号により、圧縮機2や第1のクランクケースヒータ11a,第2のクランクケースヒータ11bや室内送風機13、室外送風機4等を駆動する出力リレー回路27を有している。   Next, the control of the present invention will be described with reference to FIGS. In FIG. 2, the control device 18 of the air conditioner of the present invention includes an operation mode changeover switch 19 (cooling, dehumidification or heating) desired by a resident, an indoor temperature setting switch 20, an operation stop switch 21, and an air volume setting switch 22. And an operation mode storage device 24 that stores signals of the operation setting device 17 constituted by the wind direction setting switch 23, an indoor heat exchanger temperature detection device 15, an indoor suction temperature detection device 16, and an outdoor heat exchanger detection device 9. A compressor discharge temperature detecting device 10, a first heater temperature setting device 25a for determining energization of each of the first crankcase heater 11a and the second crankcase heater 11b, a second heater temperature setting device 25b, A determination device 26 that receives the above signals every sampling time and determines the operation of the compressor 2, the indoor fan 12, the outdoor fan 4, and the like; The signal of the constant unit 26, the compressor 2 and the first crank case heater 11a, a second crank case heater 11b and the indoor blower 13, and an output relay circuit 27 for driving the outdoor blower 4 and the like.

居住者が運転モード切替スイッチ19で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置24、室内吸い込み温度検出装置16、室内温度設定装置20の信号により出力リレー回路27が圧縮機2を駆動するが、図3において、圧縮機2が停止中の場合(S2のY)、圧縮機吐出温度検出装置10の検出Td(S3)が第1ヒータ温度設定装置25aに設定されている温度より低い場合は(ここでは例えばTd<20℃)(S4のY)第1のクランクケースヒータ11aを通電し(S6)、さらに圧縮機吐出温度検出装置10の検出Td(S3)が第2ヒータ温度設定装置25bに設定されている温度より低い場合は(ここでは例えばTd<0℃)(S5のY)第1のクランクケースヒータ11aと第2のクランクケースヒータ11bとを通電する(S6、S7)。そして、圧縮機2が運転を開始するとヒータの通電を解除する。   When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 19 and starts operation, the output relay circuit 27 is driven by the signals from the operation mode storage device 24, the indoor suction temperature detection device 16, and the indoor temperature setting device 20. In FIG. 3, when the compressor 2 is stopped (Y in S2), the detection Td (S3) of the compressor discharge temperature detection device 10 is set in the first heater temperature setting device 25a. If the temperature is lower (here, for example, Td <20 ° C.) (Y in S4), the first crankcase heater 11a is energized (S6), and the detection Td (S3) of the compressor discharge temperature detecting device 10 is the second. When the temperature is lower than the temperature set in the heater temperature setting device 25b (here, for example, Td <0 ° C.) (Y in S5), the first crankcase heater 11a and the second crankcase Energizing the heater 11b (S6, S7). When the compressor 2 starts operation, the heater is deenergized.

以上の構成によれば、圧縮機停止中の圧縮機外郭温度が低い場合は通電するクランケースヒータの個数を増やし温度が高くなるにつれてヒータに通電する個数を減らすことにより、消費電力が低減できるとともに効果的に圧縮機内部に液冷媒が溜まることを防止でき、圧縮機の損傷を防止して信頼性を向上することができる。また、温度が高い場合はヒータに通電する個数を減らすことにより、圧縮機周辺に配置された電気部品等の温度上昇を抑制でき、信頼性と寿命が向上する。また、クランクケースヒータに必要な熱量が大きい場合、特別に大きな仕様を設定せずに標準仕様のものを複数使用することによって、高価格化することを抑制できる。   According to the above configuration, when the compressor outer temperature when the compressor is stopped is low, power consumption can be reduced by increasing the number of energized crancase heaters and decreasing the number of energized heaters as the temperature increases. It is possible to effectively prevent liquid refrigerant from accumulating inside the compressor, and it is possible to prevent damage to the compressor and improve reliability. In addition, when the temperature is high, by reducing the number of energized heaters, it is possible to suppress an increase in the temperature of electrical components and the like arranged around the compressor, and the reliability and life are improved. Further, when the amount of heat required for the crankcase heater is large, it is possible to suppress an increase in price by using a plurality of standard specifications without setting a particularly large specification.

なお、ここでは圧縮機外郭温度を圧縮機吐出温度で代用し、制御しているが、直接圧縮機外郭に温度検出装置を取り付けても良いし、圧縮機外郭温度ではなく、室外空気温度で判断しても同様の効果がある。   Here, the compressor outer temperature is substituted and controlled by the compressor discharge temperature, but a temperature detection device may be directly attached to the compressor outer wall, or it is judged not by the compressor outer temperature but by the outdoor air temperature. But it has the same effect.

(実施の形態2)
本発明の実施の形態2にかかる空気調和装置の冷凍サイクル図は実施の形態1と同一なので説明は省略する。図4は実施の形態2における空気調和装置の制御ブロック図であり、図5は圧縮機のリレー回路図と圧縮機の外観模式図で、クランクケースヒータの通電の機能も示す図である。図6はクランクケース通電のフローチャートである。
(Embodiment 2)
Since the refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention is the same as that of Embodiment 1, description thereof is omitted. FIG. 4 is a control block diagram of the air conditioner according to Embodiment 2, and FIG. 5 is a relay circuit diagram of the compressor and a schematic external view of the compressor, and also shows a function of energizing the crankcase heater. FIG. 6 is a flowchart of crankcase energization.

図4において、本発明の空気調和装置の制御装置18には、居住者が希望する運転モード切替スイッチ19(冷房、除湿または暖房)と室内温度設定スイッチ20と運転停止スイッチ21と風量設定スイッチ22と風向設定スイッチ23で構成されている運転設定装置17の信号を記憶する運転モード記憶装置24と、室内熱交換器温度検出装置15と室
内吸込み温度検出装置16と、室外熱交換器検出装置9と、圧縮機吐出温度検出装置10と、第2のクランクケースヒータ11bの通電を判断する第2ヒータ温度設定装置25bと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置26と、判定装置26の信号により、圧縮機2や第2のクランクケースヒータ11bや室内送風機13、室外送風機4等を駆動する出力リレー回路27を有している。図5に示すように第1のクランクケースヒータ11aは圧縮機2のリレー27aのB接点(圧縮機リレーA接点がオフのときB接点側オン)に接続されており、圧縮機2がオフすると第1のクランクケースヒータ11aに通電されるように構成されている。
4, the control device 18 of the air conditioner of the present invention includes an operation mode changeover switch 19 (cooling, dehumidification or heating) desired by a resident, an indoor temperature setting switch 20, an operation stop switch 21, and an air volume setting switch 22. And an operation mode storage device 24 that stores signals of the operation setting device 17 constituted by the wind direction setting switch 23, an indoor heat exchanger temperature detection device 15, an indoor suction temperature detection device 16, and an outdoor heat exchanger detection device 9. The compressor discharge temperature detecting device 10, the second heater temperature setting device 25b for determining the energization of the second crankcase heater 11b, the compressor 2, the indoor blower 12, The determination device 26 that determines the operation of the outdoor blower 4 and the like, and the signal from the determination device 26, the compressor 2, the second crankcase heater 11 b, Wind machine 13 has an output relay circuit 27 for driving the outdoor blower 4 and the like. As shown in FIG. 5, the first crankcase heater 11a is connected to the B contact of the relay 27a of the compressor 2 (the B contact side is on when the compressor relay A contact is off), and when the compressor 2 is turned off. The first crankcase heater 11a is configured to be energized.

居住者が運転モード切替スイッチ19で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置24、室内吸い込み温度検出装置16、室内温度設定装置20の信号により出力リレー回路27が圧縮機2を駆動するが、図6において、圧縮機2が停止中の場合(S9のY)、第1のクランクケースヒータ11aに通電され(S10)、さらに圧縮機吐出温度検出装置10の検出Td(S11)が第2ヒータ温度設定装置25bに設定されている温度より低い場合は(ここでは例えばTd<0℃)(S12のY)第2のクランクケースヒータ11bも通電する(S13)。そして、圧縮機2が運転を開始するとヒータの通電を解除する。   When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 19 and starts operation, the output relay circuit 27 is driven by the signals from the operation mode storage device 24, the indoor suction temperature detection device 16, and the indoor temperature setting device 20. 6, when the compressor 2 is stopped (Y in S9), the first crankcase heater 11a is energized (S10), and the detection Td ( When S11) is lower than the temperature set in the second heater temperature setting device 25b (here, for example, Td <0 ° C.) (Y in S12), the second crankcase heater 11b is also energized (S13). When the compressor 2 starts operation, the heater is deenergized.

以上の構成によれば、圧縮機停止中の圧縮機外郭温度が低い場合は通電するクランケースヒータの個数を増やし温度が高くなるにつれてヒータに通電する個数を減らすことにより、消費電力が低減できるとともに効果的に圧縮機内部に液冷媒が溜まることを防止でき、圧縮機の損傷を防止して信頼性を向上することができる。また、温度が高い場合はヒータに通電する個数を減らすことにより、圧縮機周辺に配置された電気部品等の温度上昇を抑制でき、信頼性と寿命が向上する。   According to the above configuration, when the compressor outer temperature when the compressor is stopped is low, power consumption can be reduced by increasing the number of energized crancase heaters and decreasing the number of energized heaters as the temperature increases. It is possible to effectively prevent liquid refrigerant from accumulating inside the compressor, and it is possible to prevent damage to the compressor and improve reliability. In addition, when the temperature is high, by reducing the number of energized heaters, it is possible to suppress an increase in the temperature of electrical components and the like arranged around the compressor, and the reliability and life are improved.

また、クランケースヒータをひとつ圧縮機のリレーのB接点に接続することにより、
回路構成が単純になりコストダウンが図れ、かつ圧縮機温度センサー故障時でも圧縮機への通電が可能となり、圧縮機の損傷を防止して信頼性を向上することができる。
Also, by connecting one clan case heater to the B contact of the compressor relay,
The circuit configuration is simplified, the cost can be reduced, and the compressor can be energized even when the compressor temperature sensor fails, thereby preventing damage to the compressor and improving reliability.

(実施の形態3)
本発明の実施の形態3にかかる空気調和装置の冷凍サイクル図は図1で、実施の形態1と同一なので説明は省略する。図4の制御ブロック図と、図6のフローチャートも同一である。図7は圧縮機のリレー回路図と圧縮機の外観模式図である。
(Embodiment 3)
The refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 3 of the present invention is the same as that in Embodiment 1 shown in FIG. The control block diagram of FIG. 4 and the flowchart of FIG. 6 are the same. FIG. 7 is a relay circuit diagram of the compressor and a schematic external view of the compressor.

本発明の制御について図4を用いて説明する。図4において、本発明の空気調和装置の制御装置18には、居住者が希望する運転モード切替スイッチ19(冷房、除湿または暖房)と室内温度設定スイッチ20と運転停止スイッチ21と風量設定スイッチ22と風向設定スイッチ23で構成されている運転設定装置17の信号を記憶する運転モード記憶装置24と、室内熱交換器温度検出装置15と室内吸込み温度検出装置16と、室外熱交換器検出装置9と、圧縮機吐出温度検出装置10と、第2のクランクケースヒータ11bの通電を判断する第2ヒータ温度設定装置25bと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置26と、判定装置26の信号により、圧縮機2や第2のクランクケースヒータ11bや室内送風機13、室外送風機4等を駆動する出力リレー回路27を有している。図7に示すように、第1のクランクケースヒータ11aは圧縮機2のリレー27aのB接点に接続されており、圧縮機2がオフすると第1のクランクケースヒータ11aに通電されるように構成されている。   The control of the present invention will be described with reference to FIG. 4, the control device 18 of the air conditioner of the present invention includes an operation mode changeover switch 19 (cooling, dehumidification or heating) desired by a resident, an indoor temperature setting switch 20, an operation stop switch 21, and an air volume setting switch 22. And an operation mode storage device 24 that stores signals of the operation setting device 17 constituted by the wind direction setting switch 23, an indoor heat exchanger temperature detection device 15, an indoor suction temperature detection device 16, and an outdoor heat exchanger detection device 9. The compressor discharge temperature detecting device 10, the second heater temperature setting device 25b for determining the energization of the second crankcase heater 11b, the compressor 2, the indoor blower 12, The determination device 26 that determines the operation of the outdoor blower 4 and the like, and the signal from the determination device 26, the compressor 2, the second crankcase heater 11 b, Wind machine 13 has an output relay circuit 27 for driving the outdoor blower 4 and the like. As shown in FIG. 7, the first crankcase heater 11 a is connected to the B contact of the relay 27 a of the compressor 2, and the first crankcase heater 11 a is energized when the compressor 2 is turned off. Has been.

圧縮機2には第1のクランクケースヒータ11a、第2のクランクケースヒータ11b
が取り付けられているが、圧縮機2にはアキュームレータ28があるために、ひとつはアキュームレータ28の上方につけざるをえなく、第1のクランクケースヒータ11aはアキュームレータ28の下方、第2のクランクケースヒータ11bはアキュームレータ28の上方に取り付けられている。
The compressor 2 includes a first crankcase heater 11a and a second crankcase heater 11b.
However, since the compressor 2 has the accumulator 28, one must be placed above the accumulator 28. The first crankcase heater 11a is located below the accumulator 28, and the second crankcase heater. 11 b is attached above the accumulator 28.

居住者が運転モード切替スイッチ19で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置24、室内吸い込み温度検出装置16、室内温度設定装置20の信号により出力リレー回路27が圧縮機2を駆動するが、図6において、圧縮機2が停止中の場合(S9のY)、第1のクランクケースヒータ11aを通電し(S10)、さらに圧縮機吐出温度検出装置10の検出Td(S11)が第2ヒータ温度設定装置25bに設定されている温度より低い場合は(ここでは例えばTd<0℃)(S12のY)第2のクランクケースヒータ11bも通電する(S13)。そして、圧縮機2が運転を開始するとヒータの通電を解除する。   When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 19 and starts operation, the output relay circuit 27 is driven by the signals from the operation mode storage device 24, the indoor suction temperature detection device 16, and the indoor temperature setting device 20. 6, when the compressor 2 is stopped (Y in S9), the first crankcase heater 11a is energized (S10), and the detection Td ( When S11) is lower than the temperature set in the second heater temperature setting device 25b (here, for example, Td <0 ° C.) (Y in S12), the second crankcase heater 11b is also energized (S13). When the compressor 2 starts operation, the heater is deenergized.

以上の構成によれば、圧縮機停止中の圧縮機外郭温度が低い場合は通電するクランケースヒータの個数を増やし温度が高くなるにつれてヒータに通電する個数を減らすことにより、消費電力が低減できるとともに効果的に圧縮機内部に液冷媒が溜まることを防止でき、圧縮機の損傷を防止して信頼性を向上することができる。また、液冷媒は低温時圧縮機冷凍機油より下に溜まるので、常時通電側のクランケースヒータを下方に取り付けることで、より効果的に圧縮機内部に液冷媒が溜まることを防止できる。また、温度が高い場合はヒータに通電する個数を減らすことにより、圧縮機周辺に配置された電気部品等の温度上昇を抑制でき、信頼性と寿命が向上する。   According to the above configuration, when the compressor outer temperature when the compressor is stopped is low, power consumption can be reduced by increasing the number of energized crancase heaters and decreasing the number of energized heaters as the temperature increases. It is possible to effectively prevent liquid refrigerant from accumulating inside the compressor, and it is possible to prevent damage to the compressor and improve reliability. In addition, since the liquid refrigerant is stored below the low-temperature compressor refrigerator oil, the liquid refrigerant can be more effectively prevented from accumulating inside the compressor by attaching the energized clan case heater downward. In addition, when the temperature is high, by reducing the number of energized heaters, it is possible to suppress an increase in the temperature of electrical components and the like arranged around the compressor, and the reliability and life are improved.

また、クランケースヒータをひとつ圧縮機のリレーのB接点に接続することにより、回路構成が単純になりコストダウンが図れ、かつ圧縮機温度センサー故障時でも圧縮機への通電が可能となり、圧縮機の損傷を防止して信頼性を向上することができる。   In addition, by connecting one Crancase heater to the B contact of the relay of the compressor, the circuit configuration is simplified and the cost can be reduced, and the compressor can be energized even when the compressor temperature sensor fails. The reliability can be improved by preventing the damage.

以上のように本発明にかかる空気調和装置は、圧縮機へのヒータ通電量を制御し圧縮機内部への液冷媒の溜まりを防止しているので、多室型空気調和装置にも応用できる。   As described above, the air conditioner according to the present invention controls the heater energization amount to the compressor and prevents liquid refrigerant from accumulating inside the compressor, and therefore can be applied to a multi-chamber air conditioner.

本発明の空気調和装置の実施の形態1〜3における冷凍サイクル図Refrigeration cycle diagram in the first to third embodiments of the air-conditioning apparatus of the present invention 同実施の形態1における制御ブロック図Control block diagram in the first embodiment 同実施の形態1におけるクランクケース通電のフローチャートFlowchart of crankcase energization in the first embodiment 同実施の形態2、3における制御ブロック図Control block diagram in the second and third embodiments 同実施の形態2における圧縮機外観模式図Compressor appearance schematic diagram in the second embodiment 同実施の形態2、3におけるクランクケース通電のフローチャートFlow chart of crankcase energization in the second and third embodiments 同実施の形態3における圧縮機外観模式図Compressor appearance schematic diagram in the third embodiment

符号の説明Explanation of symbols

1 室外機
2 圧縮機
3 室外熱交換器
4 室外送風機
5 冷媒液管
6 冷媒ガス管
7 四方弁
8 絞り装置
9 室外熱交換器温度検知装置
10 圧縮機吐出温度検知装置
11 室内機
12 室内送風機

DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 Outdoor blower 5 Refrigerant liquid pipe 6 Refrigerant gas pipe 7 Four-way valve 8 Throttle device 9 Outdoor heat exchanger temperature detection device 10 Compressor discharge temperature detection device 11 Indoor unit 12 Indoor blower

Claims (3)

圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機とを接続し、前記圧縮機に複数個の電気ヒータと圧縮機外郭の温度を検出する圧縮機温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、前記圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータの個数を変更する制御装置を設けたことを特徴とする空気調和装置。 A compressor, an outdoor heat exchanger, an outdoor blower, a four-way valve, an outdoor unit having a throttle device, an indoor heat exchanger, and an indoor unit having an indoor blower are connected, and a plurality of electric heaters and a compressor are connected to the compressor The number of electric heaters that are energized according to the value of the compressor outer temperature when the compressor is stopped in the air conditioner that performs at least the cooling operation, the dehumidifying operation, or the heating operation. An air conditioner provided with a control device for changing the air conditioner. 圧縮機停止時に、圧縮機外郭温度の値にかかわらず必ず通電する電気ヒータを少なくとも1個設けた請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein at least one electric heater that is always energized regardless of the value of the compressor outer temperature is provided when the compressor is stopped. 圧縮機停止時に、圧縮機外郭温度の値にかかわらず必ず通電する電気ヒータを少なくとも1個設け、前記圧縮機停止時に圧縮機外郭温度の値により通電する電気ヒータより圧縮機の下部に設けたことを特徴とする請求項1又は2に記載の空気調和装置。

At least one electric heater that is always energized when the compressor is stopped regardless of the value of the compressor outer temperature is provided at the lower part of the compressor than the electric heater that is energized according to the value of the compressor outer temperature when the compressor is stopped. The air conditioning apparatus according to claim 1 or 2, wherein

JP2006171119A 2006-06-21 2006-06-21 Air conditioner Expired - Fee Related JP4736970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171119A JP4736970B2 (en) 2006-06-21 2006-06-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171119A JP4736970B2 (en) 2006-06-21 2006-06-21 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008002727A true JP2008002727A (en) 2008-01-10
JP4736970B2 JP4736970B2 (en) 2011-07-27

Family

ID=39007261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171119A Expired - Fee Related JP4736970B2 (en) 2006-06-21 2006-06-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP4736970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133726A1 (en) 2008-04-28 2009-11-05 ホーチキ株式会社 Alarm device
JP2016503485A (en) * 2012-11-29 2016-02-04 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Pressure control for refrigerant systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375757A (en) * 1986-09-19 1988-04-06 Canon Inc Image forming device
JPH01178562A (en) * 1987-12-30 1989-07-14 Nippon Oil & Fats Co Ltd Antifouling agent for fishing net
JPH05312419A (en) * 1992-05-14 1993-11-22 Daikin Ind Ltd Energization control device for freezer device
JPH07305910A (en) * 1994-05-12 1995-11-21 Mitsubishi Heavy Ind Ltd Heat pump apparatus
JPH1062028A (en) * 1996-08-23 1998-03-06 Sanyo Electric Co Ltd Air conditioner
JP2001248877A (en) * 2000-03-07 2001-09-14 Daikin Ind Ltd Air conditioner and controlling method
JP2002277076A (en) * 2001-03-14 2002-09-25 Matsushita Refrig Co Ltd Air conditioner
JP2002277075A (en) * 2001-03-14 2002-09-25 Matsushita Refrig Co Ltd Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375757U (en) * 1986-11-07 1988-05-20
JPH01178562U (en) * 1988-06-06 1989-12-21

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375757A (en) * 1986-09-19 1988-04-06 Canon Inc Image forming device
JPH01178562A (en) * 1987-12-30 1989-07-14 Nippon Oil & Fats Co Ltd Antifouling agent for fishing net
JPH05312419A (en) * 1992-05-14 1993-11-22 Daikin Ind Ltd Energization control device for freezer device
JPH07305910A (en) * 1994-05-12 1995-11-21 Mitsubishi Heavy Ind Ltd Heat pump apparatus
JPH1062028A (en) * 1996-08-23 1998-03-06 Sanyo Electric Co Ltd Air conditioner
JP2001248877A (en) * 2000-03-07 2001-09-14 Daikin Ind Ltd Air conditioner and controlling method
JP2002277076A (en) * 2001-03-14 2002-09-25 Matsushita Refrig Co Ltd Air conditioner
JP2002277075A (en) * 2001-03-14 2002-09-25 Matsushita Refrig Co Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133726A1 (en) 2008-04-28 2009-11-05 ホーチキ株式会社 Alarm device
EP2618318A2 (en) 2008-04-28 2013-07-24 Hochiki Corporation Alarm device
JP2016503485A (en) * 2012-11-29 2016-02-04 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Pressure control for refrigerant systems

Also Published As

Publication number Publication date
JP4736970B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US11686490B2 (en) HVAC functionality restoration systems and methods
JP5405076B2 (en) Air conditioning refrigeration system
WO2014203828A1 (en) Air conditioner and method for controlling air conditioner
JP2014190600A (en) Air conditioner
JP2016008742A (en) Air conditioning device
JP5407342B2 (en) Air conditioner
JP2006349258A (en) Air conditioner
JP2008286419A (en) Air conditioning device
JP2006207932A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
JP2013253718A (en) Air conditioner control device
JP5910610B2 (en) Air conditioning system
JP2005049022A (en) Air conditioner
JP2009085463A (en) Air conditioner
JP4736970B2 (en) Air conditioner
JP2007212023A (en) Air conditioning system
JP2011007346A (en) Air conditioner
JP2000130866A (en) Air conditioner
JP5790738B2 (en) Air conditioning system
KR20100069404A (en) Air conditioner and control method thereof
JP2005055053A (en) Air conditioner
JP2005016884A (en) Air conditioner
JP2013108672A (en) Air conditioner with crankcase heater
JP6716024B2 (en) Air conditioner
JP2008202868A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees