JP2008001238A - Bearing unit for driving wheel - Google Patents

Bearing unit for driving wheel Download PDF

Info

Publication number
JP2008001238A
JP2008001238A JP2006173076A JP2006173076A JP2008001238A JP 2008001238 A JP2008001238 A JP 2008001238A JP 2006173076 A JP2006173076 A JP 2006173076A JP 2006173076 A JP2006173076 A JP 2006173076A JP 2008001238 A JP2008001238 A JP 2008001238A
Authority
JP
Japan
Prior art keywords
hub wheel
peripheral surface
bearing unit
outboard
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006173076A
Other languages
Japanese (ja)
Other versions
JP5101051B2 (en
Inventor
Zenichi Fukumura
善一 福村
Masayuki Kuroda
正幸 黒田
Hisaaki Kura
久昭 藏
Makoto Tomoue
真 友上
Hiroshi Kawamura
浩志 河村
Shigeaki Fukushima
茂明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006173076A priority Critical patent/JP5101051B2/en
Publication of JP2008001238A publication Critical patent/JP2008001238A/en
Application granted granted Critical
Publication of JP5101051B2 publication Critical patent/JP5101051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing for a driving wheel capable of securely unite a hub wheel and an outside joint member without using a nut, and preventing influences to an inner race even when the hub wheel is slightly deformed due to pressing-in. <P>SOLUTION: Of the hub wheel 10 and the outside joint member 31, a male portion 61 is provided at a stem portion 13b of the outside joint member 31, and a female portion 52 having a different shape from the male portion 51 is formed on an inner peripheral surface of the hub wheel 10. By pressing the male portion 51 into the female portion 52, plastic flow is generated at a joint portion, filling a clearance between the hub wheel 10 and the outside joint member 31, thereby plastically uniting the both. A press-in portion of the male portion 51 and the female portion 52 is arranged on an axial center line of a rolling element 23 on an in-board side and a rolling element 23 on an out-board side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の駆動車輪(FF車の前輪、FR車の後輪、4WD車の全輪)用の軸受ユニットに関する。   The present invention relates to a bearing unit for driving wheels (front wheels of FF vehicles, rear wheels of FR vehicles, all wheels of 4WD vehicles) of automobiles.

エンジンからの動力を駆動車輪に伝達するドライブシャフト1は、図16に示すように、アウトボード側(車幅方向の車体側部の側)の固定型等速自在継手J1と、インボード側(車幅方向の車体中心の側)の摺動型等速自在継手J2とを中間軸2で結合した構成を有する。アウトボード側の等速自在継手J1(アウトボード側等速自在継手)は、車輪軸受3で回転自在に支持されたハブ輪4に結合され、インボード側の等速自在継手J2(インボード側等速自在継手)は、ディファレンシャル5に結合される。   As shown in FIG. 16, the drive shaft 1 that transmits the power from the engine to the drive wheel includes a fixed type constant velocity universal joint J1 on the outboard side (the side of the vehicle body in the vehicle width direction) and the inboard side ( The intermediate shaft 2 is connected to a sliding type constant velocity universal joint J2 on the vehicle center side in the vehicle width direction. The constant velocity universal joint J1 (outboard side constant velocity universal joint) on the outboard side is coupled to the hub wheel 4 rotatably supported by the wheel bearing 3, and the constant velocity universal joint J2 (inboard side) on the inboard side. A constant velocity universal joint) is coupled to the differential 5.

車輪軸受3は、ハブ輪4の外周に固定した軸受内輪3aと、車体側の懸架装置から延びるナックル部材6に固定した軸受外輪3bと、軸受内輪3aと軸受外輪3bの間に複列配置した転動体3cとを有する。通常、ハブ輪4の外周に軸受内輪3aを圧入することによって両者が固定される。軸受外輪3bとナックル部材6の固定は、軸受外輪3bのフランジ3b1をナックル部材6にボルト止めして行うのが通例である。   The wheel bearing 3 is arranged in double rows between a bearing inner ring 3a fixed to the outer periphery of the hub wheel 4, a bearing outer ring 3b fixed to a knuckle member 6 extending from a suspension on the vehicle body side, and a bearing inner ring 3a and a bearing outer ring 3b. And rolling elements 3c. Usually, both are fixed by press-fitting the bearing inner ring 3 a on the outer periphery of the hub ring 4. The bearing outer ring 3b and the knuckle member 6 are usually fixed by bolting the flange 3b1 of the bearing outer ring 3b to the knuckle member 6.

従来のドライブシャフト1の車両への組付けは、予めハブ輪4および車輪軸受3をナックル部材6に固定した状態で、ドライブシャフト1のアウトボード側の軸端(外側継手部材7のステム部7a)をハブ輪4の内周に挿入し、ハブ輪4から突出した軸端にナット8を螺合させることによって行われる(例えば、特許文献1参照)。ナット8の締め付けに伴い、ドライブシャフト1の全体がアウトボード側にスライドし、外側継手部材7の肩部7bが軸受内輪3aの端面に当接する。これにより、外側継手部材7とハブ輪4とが軸方向で位置決めされ、かつ車輪軸受3に所定の予圧が付与される。外側継手部材7のステム部7aの外周面とハブ輪4の内周面は、図示しないスプラインで結合され、外側継手部材7に伝達されたエンジンの駆動力は、当該スプライン、さらにはハブ輪4を介して車輪に伝達される。
特開2004−270855号公報
The conventional assembly of the drive shaft 1 to the vehicle is performed in a state where the hub wheel 4 and the wheel bearing 3 are fixed to the knuckle member 6 in advance, and the shaft end on the outboard side of the drive shaft 1 (the stem portion 7a of the outer joint member 7). ) Is inserted into the inner periphery of the hub wheel 4 and a nut 8 is screwed onto the shaft end protruding from the hub wheel 4 (see, for example, Patent Document 1). As the nut 8 is tightened, the entire drive shaft 1 slides toward the outboard side, and the shoulder 7b of the outer joint member 7 comes into contact with the end surface of the bearing inner ring 3a. As a result, the outer joint member 7 and the hub wheel 4 are positioned in the axial direction, and a predetermined preload is applied to the wheel bearing 3. The outer peripheral surface of the stem portion 7a of the outer joint member 7 and the inner peripheral surface of the hub wheel 4 are coupled by a spline (not shown), and the driving force of the engine transmitted to the outer joint member 7 is the spline and further the hub wheel 4 It is transmitted to the wheel via.
JP 2004-270855 A

しかしながら、上記従来工程では、車輪軸受3およびハブ輪4を組付けたナックル部材6を、予め中立位置からキングピンセンタを中心として旋回させた位置で待機させ、この状態でアウトボード側等速自在継手J1をハブ輪4に固定し、さらにナックル部材6を中立位置に戻してからインボード側等速自在継手J2をディファレンシャル5に固定するという煩雑な作業が必要となる。加えて、軸受外輪3bのナックル部材6へのボルト止めやナット8の締め込み等の多くの締結作業が必要となる。従って、ドライブシャフトの組付け工程が煩雑化しており、この点がコスト高の要因となっている。また、多くのナットやボルトを必要とし、部品点数が多くなることもコスト面で不利になっている。さらに、ナックル部材の旋回に伴ってドライブシャフトが旋回するので、広い作業スペースが必要となる点も問題となる。   However, in the above-described conventional process, the knuckle member 6 assembled with the wheel bearing 3 and the hub wheel 4 is made to wait in advance at a position rotated from the neutral position around the kingpin center, and in this state, the outboard side constant velocity universal joint The complicated work of fixing J1 to the hub wheel 4 and further fixing the inboard side constant velocity universal joint J2 to the differential 5 after returning the knuckle member 6 to the neutral position is required. In addition, many fastening operations such as bolting of the bearing outer ring 3b to the knuckle member 6 and tightening of the nut 8 are required. Therefore, the assembly process of the drive shaft is complicated, and this point is a factor of high cost. Moreover, many nuts and bolts are required, and the number of parts is also disadvantageous in terms of cost. Further, since the drive shaft turns with the turning of the knuckle member, a large work space is required.

ところで、ナットの締め付け作業は、アウトボード側等速自在継手J1の外側継手部材7とハブ輪4とを予め結合一体化しておくことで省略することができる。しかしながら、両者の結合部には、コーナリング中のモーメント荷重をはじめ、車両走行に伴って大荷重が作用するので、これに耐え得るような高強度を有しかつコスト的にも安価な結合構造が必要とされる。   By the way, the tightening operation of the nut can be omitted by previously connecting and integrating the outer joint member 7 of the outboard side constant velocity universal joint J1 and the hub wheel 4. However, since a large load acts on the joint between the two, including the moment load during cornering, as the vehicle travels, the joint structure has a high strength that can withstand this and is inexpensive. Needed.

そこで、本発明は、ナットを用いることなく、ハブ輪と外側継手部材を高強度に結合することができ、しかも、圧入によってハブ輪が僅かに変形した場合でも、その影響がインナレースに及ぶ事態を防止することができる駆動車輪用軸受ユニットを提供する。   Therefore, the present invention can connect the hub wheel and the outer joint member with high strength without using a nut, and even if the hub wheel is slightly deformed by press-fitting, the influence on the inner race is affected. Provided is a bearing unit for a drive wheel that can prevent the above.

本発明は、上記目的を達成するために、内周に複数のアウタレースを有する外方部材と、前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された複数列の転動体と、車輪に取り付けられるハブ輪と、アウトボード側等速自在継手とを備える駆動車輪用軸受ユニットにおいて、ハブ輪およびアウトボード側等速自在継手の外側継手部材のうち、何れか一方に設けられた雄部を、他方に設けられ、雄部と異形の雌部に圧入することにより、ハブ輪と外側継手部材とを塑性結合し、雄部と雌部の圧入部をインボード側の転動体とアウトボード側の転動体の軸方向中心線上に配した。   In order to achieve the above object, the present invention provides an outer member having a plurality of outer races on the inner periphery, an inner member having a plurality of inner races facing the outer races, and an outer member and an inner race facing each other. In a drive wheel bearing unit comprising a plurality of rows of rolling elements arranged in a wheel, a hub wheel attached to the wheel, and an outboard side constant velocity universal joint, the outer joint member of the hub wheel and the outboard side constant velocity universal joint Of these, the male part provided on either side is provided on the other side, and the male part and the female part deformed are press-fitted to plastically connect the hub wheel and the outer joint member, and The press-fitting part was arranged on the axial center line of the rolling element on the inboard side and the rolling element on the outboard side.

この場合、圧入に伴って生じる塑性流動により、雄部と雌部の接合部分に存在する空隙の一部または全てが充足されるので、雄部と雌部を強固に結合し、一体化することができる。しかもこの結合は、雄部と雌部の何れか一方を他方に圧入するだけで行われるので作業性も良好であるという特徴を備える。   In this case, since the plastic flow generated by the press-fitting will fill a part or all of the gap existing in the joint between the male part and the female part, the male part and the female part should be firmly coupled and integrated. Can do. In addition, since this connection is performed simply by press-fitting either one of the male part and the female part into the other, the workability is good.

インボード側の転動体とアウトボード側の転動体の軸方向中心線上で、雄部を雌部に圧入するので、圧入によってハブ輪が僅かに変形した場合でも、その影響がインナレースに及ぶ事態を防止することができる。   The male part is press-fitted into the female part on the axial center line of the inboard-side rolling element and the outboard-side rolling element, so even if the hub wheel is slightly deformed by the press-fitting, the effect will affect the inner race. Can be prevented.

以上の構成においては、外方部材の外周面を車体側のナックル部材の内周面に嵌合組込し、アウトボード側等速自在継手の最大外径寸法をナックル部材の最小内径寸法よりも小さくするのが望ましい。外方部材の外周面は円筒面状に形成することができる。ここで、「等速自在継手」の用語は、ブーツ、ブーツバンド等の付属品も含むものとする(以下のインボード側等速自在継手でも同じ)。これら付属品も含めたアウトボード側等速自在継手の最大外径寸法がナックル部材の最小内径寸法よりも小さく設定される。   In the above configuration, the outer peripheral surface of the outer member is fitted and assembled into the inner peripheral surface of the knuckle member on the vehicle body side, and the maximum outer diameter dimension of the constant velocity universal joint on the outboard side is larger than the minimum inner diameter dimension of the knuckle member. It is desirable to make it smaller. The outer peripheral surface of the outer member can be formed in a cylindrical surface shape. Here, the term “constant velocity universal joint” includes accessories such as boots and boot bands (the same applies to the following inboard constant velocity universal joints). The maximum outer diameter of the outboard constant velocity universal joint including these accessories is set smaller than the minimum inner diameter of the knuckle member.

かかる構成から、アウトボード側等速自在継手の外側継手部材とハブ輪とを結合した状態でアウトボード側から外方部材をナックル部材に組込み嵌合することにより、軸受ユニットをナックル部材に固定することが可能となる。かかる作業は、軸受ユニットを車軸方向へ押し込むだけで行うことができ、しかも基本的に外方部材をナックル部材にボルト止めする必要もない。従って、軸受ユニットの車両への組付け作業を簡略化することができる。以上の効果が特に必要とされない場合、従来と同様に、外方部材の外周面に、車輪に取り付けるためのフランジを形成してもよい。このフランジをナックル部材にボルト止めすることにより、外方部材をナックル部材に確実に固定することができる。   From such a configuration, the outer unit member of the constant velocity universal joint on the outboard side and the hub wheel are coupled to each other, and the outer member is assembled and fitted into the knuckle member from the outboard side, thereby fixing the bearing unit to the knuckle member. It becomes possible. Such an operation can be performed simply by pushing the bearing unit in the direction of the axle, and there is basically no need to bolt the outer member to the knuckle member. Therefore, the work of assembling the bearing unit to the vehicle can be simplified. When the above effects are not particularly required, a flange for attaching to the wheel may be formed on the outer peripheral surface of the outer member as in the conventional case. By bolting the flange to the knuckle member, the outer member can be securely fixed to the knuckle member.

本発明によれば、雄部と雌部を強固に結合して一体化することができ、この際、ナットを用いる必要はない。しかもこの結合は、雄部と雌部の何れか一方を他方に圧入するだけで行うことができる。従って、ハブ輪と外側継手部材とを良好な作業性でもって、低コストにかつ高強度に結合できるという特徴が発揮される。しかも、圧入によってハブ輪が僅かに変形した場合でも、その影響がインナレースに及ぶ事態を防止することができ、駆動車輪用軸受ユニットとして安定した機能を発揮する。   According to the present invention, the male part and the female part can be firmly coupled and integrated, and at this time, it is not necessary to use a nut. In addition, this coupling can be performed by simply press-fitting one of the male part and the female part into the other. Therefore, the feature that the hub wheel and the outer joint member can be coupled at low cost and high strength with good workability is exhibited. In addition, even when the hub wheel is slightly deformed by press fitting, it is possible to prevent the influence from affecting the inner race and to exhibit a stable function as a drive wheel bearing unit.

本発明に係る駆動車輪用軸受ユニットの実施形態を以下に詳述する。   Embodiments of a drive wheel bearing unit according to the present invention will be described in detail below.

図1に示す第1実施形態の駆動輪用軸受ユニットは、ハブ輪10、軸受部20、およびアウトボード側等速自在継手30で構成される。   The drive wheel bearing unit of the first embodiment shown in FIG. 1 includes a hub wheel 10, a bearing portion 20, and an outboard side constant velocity universal joint 30.

ハブ輪10は、その外周面に車輪(図示せず)を取り付けるための車輪取付フランジ11を備えている。この車輪取付フランジ11の円周方向に複数の雌ねじ12が形成され、この雌ねじ12にはホイール、ディスクを固定するためのホイールボルト(図示省略)が嵌合される。ハブ輪10の外周面に形成された小径段部13には、内輪28が適当な締め代をもって圧入されている。内輪28の内周面と小径段部13の外周面との間には、止め輪29が介装され、この止め輪29によって内輪28とハブ輪10の軸方向の位置決めがなされる。ハブ輪10は、旋削あるいは鍛造によって製作される。   The hub wheel 10 includes a wheel mounting flange 11 for mounting a wheel (not shown) on its outer peripheral surface. A plurality of female screws 12 are formed in the circumferential direction of the wheel mounting flange 11, and wheel bolts (not shown) for fixing a wheel and a disk are fitted to the female screws 12. An inner ring 28 is press-fitted into the small-diameter step 13 formed on the outer peripheral surface of the hub ring 10 with an appropriate tightening allowance. A retaining ring 29 is interposed between the inner circumferential surface of the inner ring 28 and the outer circumferential surface of the small diameter step portion 13, and the positioning of the inner ring 28 and the hub wheel 10 in the axial direction is performed by the retaining ring 29. The hub wheel 10 is manufactured by turning or forging.

軸受部10は、背面配列した複列アンギュラ玉軸受構造で、複列のインナレース21およびアウタレース22と、対向するインナレース21とアウタレース22との間に配置した転動体23と、アウトボード側(図面左側)の転動体列およびインボード側(図面右側)の転動体列をそれぞれ円周方向等間隔に保持する保持器24とを有する。図示例では、アウトボード側のインナレース21がハブ輪10の外周面に、インボード側のインナレース21が内輪28の外周面に形成されている。この場合、ハブ輪10および内輪28が複列のインナレースを有する内方部材25を構成する。   The bearing portion 10 has a double-row angular ball bearing structure arranged on the back surface, and includes a double-row inner race 21 and an outer race 22, a rolling element 23 disposed between the inner race 21 and the outer race 22 facing each other, and an outboard side ( The holder 24 holds the rolling element row on the left side of the drawing and the rolling element row on the inboard side (right side of the drawing) at equal intervals in the circumferential direction. In the illustrated example, the inner race 21 on the outboard side is formed on the outer peripheral surface of the hub wheel 10, and the inner race 21 on the inboard side is formed on the outer peripheral surface of the inner ring 28. In this case, the hub wheel 10 and the inner ring 28 constitute an inner member 25 having a double row inner race.

アウタレース22は、リング状一体の外方部材26の内周面に形成されている。外方部材26の外周面26aは、止め輪溝26bを除く全体が均一径の円筒面状である。従来の外方部材と異なり、ナックル部材6に取り付けるためのフランジ(26c:図9に示す第4実施形態、図10に示す第5実施形態、及び図11に示す第6実施形態参照)は設けられていない。外方部材26の軸方向両端の内周面には、シール27a、27bが圧入固定されている。   The outer race 22 is formed on the inner peripheral surface of the ring-shaped integrated outer member 26. The outer peripheral surface 26a of the outer member 26 is a cylindrical surface having a uniform diameter as a whole except for the retaining ring groove 26b. Unlike a conventional outer member, a flange (26c: refer to the fourth embodiment shown in FIG. 9, the fifth embodiment shown in FIG. 10, and the sixth embodiment shown in FIG. 11) for attaching to the knuckle member 6 is provided. It is not done. Seals 27 a and 27 b are press-fitted and fixed to the inner peripheral surfaces of both ends in the axial direction of the outer member 26.

アウトボード側のシール27aは、芯金をゴム等の弾性材料で被覆して内径側に複数(例えば3つ)のシールリップを形成した構成で、芯金を外方部材26の内周面に圧入することで外方部材26に固定される。シールリップは、ハブ輪10の外周面とフランジ部11のインボード側端面にそれぞれ接触している。   The outboard-side seal 27a has a configuration in which a core metal is covered with an elastic material such as rubber and a plurality of (for example, three) seal lips are formed on the inner diameter side, and the core metal is formed on the inner peripheral surface of the outer member 26. The outer member 26 is fixed by press-fitting. The seal lip is in contact with the outer peripheral surface of the hub wheel 10 and the inboard side end surface of the flange portion 11.

インボード側のシール27bは、カセットシールと呼ばれるもので、芯金の内径側に形成した複数(例えば3つ)のシールリップを断面逆L字型のスリンガに接触させた構成を有する。芯金を外方部材26の内周面に圧入し、スリンガを内輪28の外周面に圧入することで、シール27bが開口部に固定される。このシール27a、27bによって軸受部20の両端開口部が密封され、内部に充填されたグリースの漏洩ならびに外部からの水や異物の侵入を防止するようになっている。   The inboard-side seal 27b is called a cassette seal, and has a configuration in which a plurality of (for example, three) seal lips formed on the inner diameter side of the core metal are brought into contact with a slinger having an inverted L-shaped cross section. The seal 27b is fixed to the opening by pressing the cored bar into the inner peripheral surface of the outer member 26 and pressing the slinger into the outer peripheral surface of the inner ring 28. Both ends of the bearing portion 20 are sealed by the seals 27a and 27b to prevent leakage of grease filled in the inside and intrusion of water and foreign matters from the outside.

なお、図示例の軸受部20では、転動体23としてボールを例示しているが、車重が嵩む場合等には、円錐ころを転動体23として使用することもできる。   In the illustrated bearing portion 20, a ball is illustrated as the rolling element 23, but a tapered roller can be used as the rolling element 23 when the vehicle weight increases.

アウトボード側等速自在継手30は、中間軸2のアウトボード側の一端に設けられ、内周面にトラック溝が形成された外側継手部材31と、外側継手部材31のトラック溝と対向するトラック溝が外周面に形成された内側継手部材32と、外側継手部材31のトラック溝と内側継手部材32のトラック溝との間に組み込まれたトルク伝達ボール33と、外側継手部材31と内側継手部材32との間に介在してトルク伝達ボール33を円周方向等間隔に保持するケージ34とで構成される。内側継手部材32は、その内周に挿入した中間軸2のアウトボード側の軸端とセレーション35を介して結合されている。   The outboard-side constant velocity universal joint 30 is provided at one end of the intermediate shaft 2 on the outboard side, and has an outer joint member 31 having a track groove formed on the inner peripheral surface, and a track facing the track groove of the outer joint member 31. An inner joint member 32 having a groove formed on the outer peripheral surface, a torque transmission ball 33 incorporated between a track groove of the outer joint member 31 and a track groove of the inner joint member 32, and the outer joint member 31 and the inner joint member. And a cage 34 that is interposed between them and holds the torque transmission balls 33 at equal intervals in the circumferential direction. The inner joint member 32 is coupled to the shaft end on the outboard side of the intermediate shaft 2 inserted in the inner periphery thereof via a serration 35.

外側継手部材31は、例えば鍛造によって製作され、内側継手部材32、ケージ34およびトルク伝達ボール33を収容したマウス部31aと、マウス部31aから軸方向に一体的に延びる中実のステム部31bとを有する。マウス部31aの開口側の外周面と中間軸2の外周面には、それぞれブーツバンド36を介して蛇腹状ブーツ37の大径開口端および小径開口端が固定されている。このように外側継手部材31と中間軸2の間の空間をブーツ37で被覆することにより、グリースが外部へ漏洩したり、あるいは継手内部へ水やダスト等の異物が侵入したりする事態を防止している。   The outer joint member 31 is manufactured by forging, for example, and includes a mouth portion 31a that houses the inner joint member 32, the cage 34, and the torque transmission ball 33, and a solid stem portion 31b that extends integrally from the mouth portion 31a in the axial direction. Have A large-diameter open end and a small-diameter open end of a bellows-shaped boot 37 are fixed to the outer peripheral surface of the mouth portion 31a and the outer peripheral surface of the intermediate shaft 2 via a boot band 36, respectively. Thus, by covering the space between the outer joint member 31 and the intermediate shaft 2 with the boot 37, it is possible to prevent a situation where grease leaks to the outside or foreign matters such as water and dust enter the joint. is doing.

外側継手部材31のステム部31bは、以下に述べる方法でハブ輪10と塑性結合される。ハブ輪10と外側継手部材31とを塑性結合する際、外側継手部材31の肩面38を内輪28のインボード側の端面と当接させ、さらに内輪28のアウトボード側の端面もハブ輪10と軸方向で当接させることで、複列のインナレース21の間隔が規定寸法に保持され、予圧(予備予圧)が付与される。   The stem portion 31b of the outer joint member 31 is plastically coupled to the hub wheel 10 by the method described below. When the hub wheel 10 and the outer joint member 31 are plastically coupled, the shoulder surface 38 of the outer joint member 31 is brought into contact with the end surface on the inboard side of the inner ring 28, and the end surface of the inner ring 28 on the outboard side is also the hub wheel 10. , The distance between the double-row inner races 21 is maintained at a specified size, and a preload (preliminary preload) is applied.

ハブ輪10と外側継手部材31の塑性結合は、何れか一方の部材に雄部51を形成すると共に、他方の部材に雄部51と異形の雌部52を形成し、雄部51と雌部52を相互に圧入することによって行われる。図1では、雄部51を外側継手部材31のステム部31bに形成すると共に、雌部52を同じくハブ輪10のインボード側端部に形成した場合を例示している。雄部51および雌部52のうち、何れか一方は断面真円形状に形成され、他方は断面非真円形状に形成される。図5(a)は、その一例として、雄部51をセレーションのような歯形面に形成すると共に、雌部51を円筒面状に形成した場合を例示している。断面非真円状の雄部51は鍛造や転造で効率的にかつ精度良く形成することができる。   The plastic coupling between the hub wheel 10 and the outer joint member 31 is such that a male part 51 is formed on one of the members, and a male part 51 and a deformed female part 52 are formed on the other member. This is done by press-fitting 52 together. FIG. 1 illustrates a case where the male part 51 is formed on the stem part 31 b of the outer joint member 31 and the female part 52 is also formed on the inboard side end part of the hub wheel 10. One of the male part 51 and the female part 52 is formed in a perfect circle shape in cross section, and the other is formed in a non-circular shape in cross section. As an example, FIG. 5A illustrates a case where the male part 51 is formed in a tooth-shaped surface such as a serration and the female part 51 is formed in a cylindrical surface shape. The male part 51 having a non-circular cross section can be formed efficiently and accurately by forging or rolling.

この他、雄部51の形状としては、図6に示すように角筒面を採用することもできる。何れの形状であっても、断面真円状の雌部52の内径寸法Dfは、雄部51の断面輪郭線に内接する円Aの直径よりも大きく、外接する円Bの直径よりも小さい。   In addition, as the shape of the male part 51, a rectangular tube surface can be adopted as shown in FIG. Regardless of the shape, the inner diameter dimension Df of the female part 52 having a perfectly circular cross section is larger than the diameter of the circle A inscribed in the cross-sectional outline of the male part 51 and smaller than the diameter of the circumscribed circle B.

以上の形状を有する雄部51を雌部52の内周に圧入することで、接合部分に塑性流動が生じて両者間の隙間の全部または一部が充足される。これにより、ハブ輪10と外側継手部材31が塑性結合され、一体化される。   By press-fitting the male part 51 having the above shape into the inner periphery of the female part 52, plastic flow is generated in the joint part, and all or part of the gap between the two parts is satisfied. Thereby, the hub wheel 10 and the outer joint member 31 are plastically coupled and integrated.

図7に示すように、圧入後、さらにステム部31bの中実軸端の外周部(破線で示す)を加締め具59で加締めてフランジ部58を形成すれば、ハブ輪10の抜け止め効果が更に高まる。圧入のみで十分な結合強度が得られるのであれば、この加締め工程を省略することもできる。   As shown in FIG. 7, if the flange portion 58 is formed by crimping the outer peripheral portion (shown by a broken line) of the solid shaft end of the stem portion 31 b with a crimping tool 59 after press-fitting, the hub wheel 10 is prevented from coming off. The effect is further increased. If sufficient bonding strength can be obtained only by press-fitting, this caulking step can be omitted.

この結合構造においては、予め断面非真円状の雄部51に熱処理を施して、図7に示すようにその表層Hを雌部52よりも高硬度にしておくのが望ましい。これにより、圧入に伴う雄部51の変形が抑えられ、雄部51が雌部52に食い込み易くなるので、結合強度をより一層高めることができる。図7に示す加締め加工を行う場合、加締めにより塑性変形させるステム部31bの軸端部分は未焼入れとし、フランジ部58の形成を容易なものとする。雄部51の熱処理方法としては、焼入れ範囲および焼入れ深さのコントロールが容易な高周波焼入れが望ましい。雌部52は基本的に熱処理を加えない生材とするが、雄部51の表面硬度を越えなければ熱処理を施しても構わない。   In this connection structure, it is desirable to heat-treat the male part 51 having a non-circular cross section in advance so that the surface layer H is harder than the female part 52 as shown in FIG. Thereby, the deformation of the male part 51 due to the press-fitting is suppressed, and the male part 51 easily bites into the female part 52, so that the coupling strength can be further increased. When the caulking process shown in FIG. 7 is performed, the shaft end portion of the stem portion 31b to be plastically deformed by caulking is not quenched, and the flange portion 58 can be easily formed. As a heat treatment method for the male part 51, induction hardening in which the quenching range and the quenching depth are easily controlled is desirable. The female part 52 is basically a raw material not subjected to heat treatment, but may be subjected to heat treatment as long as the surface hardness of the male part 51 is not exceeded.

以上の説明では、雄部51を断面非真円状に形成し、雌部52を断面真円状に形成する場合を例示したが、コスト面等で特に問題がなければ、これとは逆に雄部51を断面真円状に形成し、雌部52を断面非真円状に形成しても構わない。断面非真円状の雌部52は例えばブローチ加工で形成することができる。この場合、断面非真円状の雌部52を断面真円状の雄部51よりも高硬度に形成する。   In the above description, the case where the male part 51 is formed in a non-circular shape in cross section and the female part 52 is formed in a circular shape in cross section has been exemplified. The male part 51 may be formed in a perfect circle shape in cross section, and the female part 52 may be formed in a non-circular shape in cross section. The female part 52 having a non-circular cross section can be formed by broaching, for example. In this case, the female part 52 having a non-circular cross section is formed with a higher hardness than the male part 51 having a circular cross section.

ところで、雄部51を雌部52に圧入すると、ハブ輪10が僅かに拡径方向に変形し、その影響がインナレース21におよぶ可能性がある。かかる事態を極力回避するため、両者の圧入部(塑性結合部)は、図1に示すように、インボード側およびアウトボード側の転動体23の軸方向中心線O上に配置するのが好ましい。なお、軸方向中心線O上に配置する場合、図例のように、圧入部の軸方向中心がこの軸方向中心線O上に配置されずに、多少ずれていてもよい。要は、圧入によって、インナレース21に影響を及ぼさない範囲にあればよい。ここで、影響を及ぼさないとは、転動体23の転動が損なわれないことである。   By the way, when the male part 51 is press-fitted into the female part 52, the hub wheel 10 is slightly deformed in the diameter increasing direction, and the influence may be exerted on the inner race 21. In order to avoid such a situation as much as possible, it is preferable that the press-fit portions (plastic joint portions) of both are disposed on the axial center line O of the rolling elements 23 on the inboard side and the outboard side as shown in FIG. . In addition, when arrange | positioning on the axial centerline O, the axial center of a press-fit part is not arrange | positioned on this axial centerline O like FIG. In short, it may be in a range that does not affect the inner race 21 by press-fitting. Here, having no influence means that the rolling of the rolling element 23 is not impaired.

図1に示す軸受ユニットにおいては、外方部材26の外周面26aが車体側のナックル部材6の内周面6aに嵌合組込みされる。嵌合組込みは、外方部材26をナックル部材6に嵌合することにより両者の組込みが完了することを意味する。この組込みは、例えば外方部材26の円筒面状の外周面26aをナックル部材6の円筒状内周面6aにアウトボード側から圧入することにより行うことができる。   In the bearing unit shown in FIG. 1, the outer peripheral surface 26a of the outer member 26 is fitted and incorporated into the inner peripheral surface 6a of the knuckle member 6 on the vehicle body side. The fitting integration means that the integration of both is completed by fitting the outer member 26 to the knuckle member 6. This incorporation can be performed, for example, by press-fitting the cylindrical outer peripheral surface 26a of the outer member 26 into the cylindrical inner peripheral surface 6a of the knuckle member 6 from the outboard side.

必要に応じて、ナックル部材6の内周面6aのインボード側端部には、外方部材26の端面と軸方向で係合する凸部6bが設けられる。あるいは外方部材26の外周面とナックル部材6の内周面6aとの間に止め輪53を介在させる。これら凸部6bや止め輪53を使用することにより、外方部材26とナックル部材6の抜け止め効果がさらに高まる。図1に示すように、止め輪53と凸部6bの双方を設けた場合、アウトボード側から圧入した外方部材26のインボード側端面が凸部6bに当接すると同時に、ナックル部材6の内周面6aに形成した止め輪溝6cと外方部材26の外周面26aに形成した止め輪溝26bとが対向し、外方部材26の止め輪溝26bに収容した止め輪53が弾性的に拡径してナックル部材6および外方部材26の双方と軸方向で係合する。   If necessary, the inboard side end of the inner peripheral surface 6a of the knuckle member 6 is provided with a convex portion 6b that engages with the end surface of the outer member 26 in the axial direction. Alternatively, the retaining ring 53 is interposed between the outer peripheral surface of the outer member 26 and the inner peripheral surface 6 a of the knuckle member 6. By using these convex portions 6b and retaining rings 53, the effect of preventing the outer member 26 and the knuckle member 6 from coming off is further enhanced. As shown in FIG. 1, when both the retaining ring 53 and the convex portion 6b are provided, the inboard side end surface of the outer member 26 press-fitted from the outboard side contacts the convex portion 6b, and at the same time, the knuckle member 6 The retaining ring groove 6c formed on the inner circumferential surface 6a and the retaining ring groove 26b formed on the outer circumferential surface 26a of the outer member 26 face each other, and the retaining ring 53 accommodated in the retaining ring groove 26b of the outer member 26 is elastic. And is engaged with both the knuckle member 6 and the outer member 26 in the axial direction.

圧入だけでも十分な固定力が得られる場合は、凸部6bおよび止め輪53の何れか一方または双方を省略することもできる。図14は凸部6bを省略した場合を示し、図15は止め輪53を省略した場合を示している(図15に示すように、併せてハブ輪10と内輪28の間の止め輪29を省略することもできる)。   When a sufficient fixing force can be obtained only by press-fitting, either one or both of the convex portion 6b and the retaining ring 53 can be omitted. FIG. 14 shows a case where the convex portion 6b is omitted, and FIG. 15 shows a case where the retaining ring 53 is omitted (as shown in FIG. 15, a retaining ring 29 between the hub wheel 10 and the inner ring 28 is also attached. Can be omitted).

止め輪53を使用する際、極力アウトボード側に止め輪53を配置するのが望ましい。具体的には、図1に示すように、インボード側の転動体23とアウトボード側の転動体23との間の軸方向中心線Oよりもアウトボード側に止め輪53を配設するのが望ましい。これにより、外方部材26を圧入する際、止め輪53のナックル部材内周面6aに対する摺動距離を短縮できるので、止め輪53の引きずりによるナックル部材内周面6aの損傷回避を図ることができる。   When the retaining ring 53 is used, it is desirable to dispose the retaining ring 53 on the outboard side as much as possible. Specifically, as shown in FIG. 1, a retaining ring 53 is disposed on the outboard side with respect to the axial center line O between the inboard side rolling element 23 and the outboard side rolling element 23. Is desirable. Thus, when the outer member 26 is press-fitted, the sliding distance of the retaining ring 53 relative to the knuckle member inner circumferential surface 6 a can be shortened, so that the knuckle member inner circumferential surface 6 a can be prevented from being damaged by dragging the retaining ring 53. it can.

このように外方部材26の外周面26aに圧入面を設け、この外方部材26をナックル部材6の内周に圧入固定することにより、従来のように、フランジ付き外方部材をナックル部材の複数箇所にボルト止めする場合に比べ、ボルトの締結作業を省略でき、その分だけ部品点数や作業工数を減じて低コスト化を図ることができる。   Thus, by providing a press-fit surface on the outer peripheral surface 26a of the outer member 26 and press-fitting and fixing the outer member 26 to the inner periphery of the knuckle member 6, the outer member with a flange can be attached to the knuckle member as in the prior art. Compared with the case of bolting to a plurality of locations, the bolt fastening operation can be omitted, and the number of parts and the number of work steps can be reduced accordingly, thereby reducing the cost.

また、外方部材26をナックル部材6に圧入することで、圧入後の外方部材26には、ラジアル方向の縮径力が作用し、この縮径力によって軸受隙間が縮小する。従って、上記予備予圧量を加味して圧入代を適切に設定すれば、圧入後に適正量の負隙間(例えば0〜100μm、好ましくは0〜30μm)を得ることが可能となる。この場合、ナットの締め込みによる予圧付与作業が不要となるので、軸受ユニットの組付け作業性を更に向上させることができる。なお、0よりも大きい正隙間であると、軸受剛性が不充分となって耐久性が低下し、負隙間量が100μmを上回ると、逆に予圧が過大となって異常発熱の原因となる点が問題となる。   In addition, by pressing the outer member 26 into the knuckle member 6, radial contraction force acts on the outer member 26 after press-fitting, and the bearing gap is reduced by the contraction force. Accordingly, if the press-fitting allowance is appropriately set in consideration of the preliminary preload amount, an appropriate amount of negative gap (for example, 0 to 100 μm, preferably 0 to 30 μm) can be obtained after press-fitting. In this case, since the preload application work by tightening the nut is not necessary, the assembly workability of the bearing unit can be further improved. If the positive clearance is larger than 0, the bearing rigidity is insufficient and the durability is lowered, and if the negative clearance exceeds 100 μm, the preload is excessively increased, causing abnormal heat generation. Is a problem.

かかる嵌合組込みにおいては、アウトボード側等速自在継手30の最大外径寸法D1をナックル部材6の最小内径寸法Dnよりも小さくする(D1<Dn)。これにより、まずアウトボード側等速自在継手30をナックル部材6の内周に挿入し、引き続いて軸受部20の外方部材26をナックル部材6の内周に圧入することにより、ハブ輪10、軸受部20およびアウトボード側等速自在継手30を予めアセンブリにした状態で車両に組付けることが可能となる。この組み付け時には、アセンブリの押し込み方向が一定となるので、組み付け時の作業性も良好となる。   In such fitting and incorporation, the maximum outer diameter D1 of the outboard side constant velocity universal joint 30 is made smaller than the minimum inner diameter Dn of the knuckle member 6 (D1 <Dn). As a result, first, the outboard side constant velocity universal joint 30 is inserted into the inner periphery of the knuckle member 6, and then the outer member 26 of the bearing portion 20 is press-fitted into the inner periphery of the knuckle member 6. The bearing portion 20 and the outboard side constant velocity universal joint 30 can be assembled to the vehicle in a state of being assembled in advance. At the time of this assembly, the pushing direction of the assembly is constant, so that the workability at the time of assembly is also good.

ここで、ナックル部材6の「最小内径寸法Dn」は、ナックル部材6のうちで最も内径側に存在する部分の内径寸法を意味する。図1に示す実施形態のように、ナックル部材6の内周面に凸部6bを設けた場合、凸部6bの内径寸法が「最小内径寸法」となる。図14に示すように凸部6bを省略した場合、ナックル部材6の内周面6aが「最小内径寸法」となる。   Here, the “minimum inner diameter dimension Dn” of the knuckle member 6 means the inner diameter dimension of the portion of the knuckle member 6 that is present on the innermost diameter side. As in the embodiment shown in FIG. 1, when the convex portion 6 b is provided on the inner peripheral surface of the knuckle member 6, the inner diameter dimension of the convex portion 6 b becomes the “minimum inner diameter dimension”. When the convex portion 6b is omitted as shown in FIG. 14, the inner peripheral surface 6a of the knuckle member 6 has a “minimum inner diameter dimension”.

また、アウトボード側等速自在継手の「最大外径寸法D1」は、ブーツ37およびブーツバンド36等の付属品も含めた状態で、最も外径側に存在する部分の外径寸法をいう。例えば図1に示すアウトボード側等速自在継手30では、ブーツ最大径部37aの外径寸法がアウトボード側等速自在継手30の最大外径寸法D1となる。   Further, the “maximum outer diameter dimension D1” of the outboard side constant velocity universal joint refers to the outer diameter dimension of the portion existing on the outermost diameter side in a state including accessories such as the boot 37 and the boot band 36. For example, in the outboard-side constant velocity universal joint 30 shown in FIG. 1, the outer diameter of the boot maximum diameter portion 37 a is the maximum outer diameter D1 of the outboard-side constant velocity universal joint 30.

併せて図4に示すように、ドライブシャフト1のインボード側等速自在継手40の最大外径寸法D2をナックル部材6の最小内径寸法Dnよりも小さくすれば(D2<Dn)、ドライブシャフト1とハブ輪10と軸受部20とを予めアセンブリにした状態(以下、ドライブシャフトアセンブリと呼ぶ)でも車両への組み付けが可能となる。すなわち、ドライブシャフトアセンブリを、インボード側等速自在継手40、中間軸2、アウトボード側等速自在継手30の順に順次ナックル部材6の内周に挿入し、次いで外方部材26の外周面26aをナックル部材6の内周面に圧入することにより、車両への組み付けが完了する。これにより、組付け作業現場での作業工数を減じることができ、作業性が高まる。この場合、従来工程のようにナックル部材6を旋回させる必要もないので、作業スペースも最小限で足りる。インボード側等速自在継手40の最大外径寸法D2は、アウトボード側等速自在継手30の場合と同様に、ブーツ37およびブーツバンド36等の付属品も含めた状態でのインボード側等速自在継手40の最大外径寸法を意味する。   In addition, as shown in FIG. 4, if the maximum outer diameter D2 of the inboard constant velocity universal joint 40 of the drive shaft 1 is made smaller than the minimum inner diameter Dn of the knuckle member 6 (D2 <Dn), the drive shaft 1 Even in a state in which the hub wheel 10 and the bearing portion 20 are assembled in advance (hereinafter referred to as a drive shaft assembly), it can be assembled to the vehicle. That is, the drive shaft assembly is sequentially inserted into the inner periphery of the knuckle member 6 in the order of the inboard side constant velocity universal joint 40, the intermediate shaft 2, and the outboard side constant velocity universal joint 30, and then the outer peripheral surface 26a of the outer member 26. Is pressed into the inner peripheral surface of the knuckle member 6 to complete the assembly to the vehicle. Thereby, the work man-hour at the assembly work site can be reduced, and workability is enhanced. In this case, it is not necessary to turn the knuckle member 6 as in the conventional process, so that the work space is minimized. The maximum outer diameter D2 of the inboard side constant velocity universal joint 40 is the same as that of the outboard side constant velocity universal joint 30, and the inboard side in a state including accessories such as the boot 37 and the boot band 36. This means the maximum outer diameter of the quick universal joint 40.

また、インボード側の転動体とアウトボード側の転動体の軸方向中心線上で、雄部を雌部に圧入するので、圧入によってハブ輪が僅かに変形した場合でも、その影響がインナレースに及ぶ事態を防止することができる。このため、駆動車輪用軸受ユニットとして安定した機能を発揮する。   In addition, the male part is press-fitted into the female part on the axial center line of the inboard-side rolling element and the outboard-side rolling element, so even if the hub wheel is slightly deformed by the press-fitting, the influence will affect the inner race. Can be prevented. For this reason, the stable function is demonstrated as a bearing unit for drive wheels.

図2、図3は、駆動車輪用軸受ユニットの他の構成を示すものである。このうち、図2に示す第2実施形態の軸受ユニットでは、軸受部20の複列のインナレース21が何れもハブ輪10の外周に圧入した一体構造の内輪28外周面に形成されている。この場合、内輪28が複列のインナレース21を有する内方部材25を構成する。図3に示す第3実施形態は、図2に示す一体構造の内輪28を軸方向で二分割してそれぞれハブ輪10の外周面に圧入し、二つの内輪28a、28bの各外周面にインナレース21を形成した例である。この構成では、二つの内輪28a、28bが複列のインナレース21を有する内方部材25を構成する。図2および図3に示す何れの軸受ユニットでも、軸受部20の両端開口部はカセットシール27a、27bで密封されている。   2 and 3 show other configurations of the drive wheel bearing unit. Among these, in the bearing unit of the second embodiment shown in FIG. 2, the double row inner races 21 of the bearing portion 20 are all formed on the outer peripheral surface of the integral inner ring 28 press-fitted into the outer periphery of the hub wheel 10. In this case, the inner ring 28 constitutes the inner member 25 having the double-row inner race 21. In the third embodiment shown in FIG. 3, the integral inner ring 28 shown in FIG. 2 is divided into two parts in the axial direction and press-fitted into the outer peripheral surface of the hub wheel 10 respectively, and the inner ring 28a, 28b is inserted into each outer peripheral surface. This is an example in which a race 21 is formed. In this configuration, the two inner rings 28 a and 28 b constitute the inner member 25 having the double-row inner race 21. In any of the bearing units shown in FIGS. 2 and 3, both end openings of the bearing portion 20 are sealed with cassette seals 27a and 27b.

以上に説明した点を除き、図2および図3に示す軸受ユニットの構成は、図1に示す軸受ユニットの構成と共通するので、共通する部材・要素には共通の参照番号を付して、重複部分の説明を省略する。   Except for the points described above, the configuration of the bearing unit shown in FIG. 2 and FIG. 3 is the same as the configuration of the bearing unit shown in FIG. The description of the overlapping part is omitted.

図1〜図3では、ハブ輪10と内輪28、28a、28bの位置決めを止め輪29で行っているが、これに代えて揺動加締めで両者の位置決めを行うこともできる。図8はその一例で、ハブ輪10の小径段部13の円筒状の軸端を内輪28のインボード側端面を超えるまで延ばし、その突出部分の内径側で加締め具を揺動させることにより、突出部分を外径側に塑性変形させてフランジ17を形成したものである。フランジ17は内輪28のインボード側端面と密着している。図2および図3に示す軸受ユニットでも、同様に揺動加締めを施してフランジ17を形成することにより、ハブ輪10と内輪28、28a、28bの軸方向の位置決めを行うことができる。   In FIGS. 1 to 3, the hub wheel 10 and the inner rings 28, 28 a, 28 b are positioned by the retaining ring 29, but they can also be positioned by swing caulking instead. FIG. 8 shows an example of this, by extending the cylindrical shaft end of the small-diameter step 13 of the hub wheel 10 until it exceeds the inboard side end surface of the inner ring 28, and swinging the crimping tool on the inner diameter side of the protruding portion. The flange 17 is formed by plastically deforming the protruding portion toward the outer diameter side. The flange 17 is in close contact with the end face on the inboard side of the inner ring 28. In the bearing unit shown in FIGS. 2 and 3 as well, the hub ring 10 and the inner rings 28, 28 a, 28 b can be positioned in the axial direction by similarly performing rocking caulking to form the flange 17.

この他、駆動車輪用軸受ユニットとしては、図12の第7実施形態に示すように、アウトボード側のインナレース21をハブ輪10の外周面に形成し、インボード側のインナレース21を外側継手部材31の外周面に形成したタイプも使用することができる。この軸受ユニットでも、ハブ輪10と外側継手部材31とが、雄部51の雌部52への圧入、さらには図7に示す加締め加工によって塑性結合される。この場合、ハブ輪10のうち、インボード側の中実端部16の外周面に雄部51が形成され、これに対向するステム部31bの内周面に雌部52が形成される。外側継手部材31の端面がハブ輪10と軸方向に当接することで、複列のインナレース21間の寸法が規定され、かつ軸受部20に予備予圧が付与されている。この場合、ハブ輪10と外側継手部材31が複列のインナレース21を有する内方部材25を構成する。   In addition, as a drive wheel bearing unit, as shown in the seventh embodiment of FIG. 12, an inner race 21 on the outboard side is formed on the outer peripheral surface of the hub wheel 10, and the inner race 21 on the inboard side is formed outside. A type formed on the outer peripheral surface of the joint member 31 can also be used. Also in this bearing unit, the hub wheel 10 and the outer joint member 31 are plastically coupled by press-fitting the male part 51 into the female part 52 and further by caulking as shown in FIG. In this case, a male part 51 is formed on the outer peripheral surface of the solid end part 16 on the inboard side of the hub wheel 10, and a female part 52 is formed on the inner peripheral surface of the stem part 31 b facing this. The end surface of the outer joint member 31 is in contact with the hub wheel 10 in the axial direction, whereby the dimension between the double-row inner races 21 is defined, and a preliminary preload is applied to the bearing portion 20. In this case, the hub wheel 10 and the outer joint member 31 constitute the inner member 25 having the double-row inner race 21.

図12では、中空状のステム部31bの内周にハブ輪10を嵌合して両者を塑性結合する場合を例示しているが、これとは逆に、中空状ハブ輪10の内周に中実状のステム部31bを嵌合して両者を塑性結合することもできる。   FIG. 12 illustrates the case where the hub wheel 10 is fitted to the inner periphery of the hollow stem portion 31b and the both are plastic-coupled, but conversely, on the inner periphery of the hollow hub wheel 10 The solid stem portion 31b can be fitted to be plastically coupled to each other.

図1〜図3では、外方部材26の外周面26aをその全体にわたって円筒面状に形成し、この外周面をナックル部材6の内周面6aに嵌合組込みする場合を例示しているが、図9に示すように、外方部材26の外周面26aにフランジ26cを形成し、このフランジ26cをナックル部材6にボルト止めしてもよい。この場合、外方部材26の外周面26aとナックル部材6の内周面6aとは隙間嵌めで嵌合させる。図9は、内方部材25をハブ輪10と内輪28で形成した図1相当品であるが、同様の構成は、図10に示すように、内方部材25を一体内輪28で形成した図2相当品、および、図11に示すように、内方部材25を分割内輪28a、28bで形成した図3相当品においても適用することができる。   1 to 3 exemplify a case where the outer peripheral surface 26a of the outer member 26 is formed into a cylindrical surface over the entire surface, and this outer peripheral surface is fitted and incorporated into the inner peripheral surface 6a of the knuckle member 6. As shown in FIG. 9, a flange 26 c may be formed on the outer peripheral surface 26 a of the outer member 26, and the flange 26 c may be bolted to the knuckle member 6. In this case, the outer peripheral surface 26a of the outer member 26 and the inner peripheral surface 6a of the knuckle member 6 are fitted with a clearance fit. FIG. 9 is equivalent to FIG. 1 in which the inner member 25 is formed by the hub wheel 10 and the inner ring 28, but the same configuration is a view in which the inner member 25 is formed by the integrated inner ring 28 as shown in FIG. The present invention can also be applied to a 2-equivalent product and a product equivalent to FIG. 3 in which the inner member 25 is formed of divided inner rings 28a, 28b as shown in FIG.

以上の各実施形態では、転動体23を保持器24で保持した軸受部20を例示しているが、保持器を用いない総転動体形式を採用することもできる。総転動体形式であれば、保持器を使用する場合に比べて組み込み可能な転動体数が増えるので、個々の転動体の負荷荷重を低減することができる。従って、高荷重条件下でも軸受ユニットの寿命向上を図ることができる。総転動体形式は、インボード側の転動体列とアウトボード側の転動体列との負荷荷重に差がある場合は、高荷重側にのみ採用することができる。もちろん双方の転動体列が同程度の荷重条件である場合は、双方を総転動体形式にすることもできる。通常は、インボード側のモーメント荷重が大きくなるので、インボード側の転動体列を総転動体形式にする。   In each above embodiment, although the bearing part 20 which hold | maintained the rolling element 23 with the holder | retainer 24 is illustrated, the total rolling element form which does not use a holder | retainer is also employable. In the case of the total rolling element type, the number of rolling elements that can be incorporated is increased as compared with the case of using a cage, so that the load load of each rolling element can be reduced. Accordingly, the life of the bearing unit can be improved even under high load conditions. The total rolling element type can be used only on the high load side when there is a difference in load load between the inboard side rolling element row and the outboard side rolling element row. Of course, when both rolling element rows have the same load condition, both can be made into a total rolling element type. Usually, since the moment load on the inboard side becomes large, the rolling element row on the inboard side is made the total rolling element type.

なお、総転動体形式の場合、転動体間の円周方向の隙間が大きすぎると、転動体同士が激しく衝突して打音や発熱を生じる可能性があるので、転動体間の総隙間を転動体23の直径寸法よりも小さくする(特に転動体23としてボールを使用する場合、総隙間はボール直径の約40%以下に設定する)のが望ましい。   In the case of the total rolling element type, if the circumferential gap between the rolling elements is too large, the rolling elements may collide violently and generate sound and heat generation. It is desirable to make the diameter smaller than the diameter of the rolling element 23 (particularly, when a ball is used as the rolling element 23, the total clearance is set to about 40% or less of the ball diameter).

保持器24を使用した軸受形式においても、アウトボード側の転動体列のPCDとインボード側の転動体列のPCDとの間に差を設けることにより、高剛性化や長寿命化の効果が期待できる。これは、一方のPCDを大きくすれば、軸受ユニットの軸方向寸法の増大なしに軸受スパン(両レース面に加わる力の作用方向の作用線と軸心との交点の間隔)の増大を図ることができること、組み込み可能な転動体数が増えること、等の理由による。インボード側の転動体列のPCDを大きくしても、反対にアウトボード側の転動体列のPCDを大きくしてもよい。また、インボード側の保持器24とアウトボード側の保持器24を異なる設計とすることで、何れか一方の側の保持器24に他方の側より多い転動体を組み込んでも同様の効果が得られる。さらには、インボード側の転動体23の径とアウトボード側の転動体23の径を異ならせても同様の効果が得られる。   Even in the bearing type using the cage 24, by providing a difference between the PCD of the rolling body row on the outboard side and the PCD of the rolling body row on the inboard side, an effect of increasing rigidity and extending the life can be obtained. I can expect. This is because if one PCD is increased, the bearing span (interval between the line of action in the direction of action of the force applied to both race surfaces and the axis) is increased without increasing the axial dimension of the bearing unit. The reason is that the number of rolling elements that can be incorporated and the number of rolling elements that can be incorporated increase. Even if the PCD of the rolling element row on the inboard side is increased, the PCD of the rolling element row on the outboard side may be increased. Further, by making the inboard side retainer 24 and the outboard side retainer 24 different from each other, the same effect can be obtained even if more rolling elements are incorporated in the retainer 24 on either side. It is done. Furthermore, the same effect can be obtained even if the diameter of the rolling element 23 on the inboard side is different from the diameter of the rolling element 23 on the outboard side.

図13に第8実施形態を示す。この駆動車輪用軸受ユニットは、ホイール80の内周に嵌合する円筒状のパイロット部72をハブ輪10と別部材、例えばブレーキロータ70に設けた例である。ブレーキロータ70は、ハブ輪10のフランジ11のアウトボード側端面とホイール80の間に配置され、その円周方向複数箇所にはホイールボルトを挿通するための孔71が形成されている。   FIG. 13 shows an eighth embodiment. This bearing unit for a drive wheel is an example in which a cylindrical pilot portion 72 fitted to the inner periphery of the wheel 80 is provided on a member different from the hub wheel 10, for example, the brake rotor 70. The brake rotor 70 is disposed between the end surface on the outboard side of the flange 11 of the hub wheel 10 and the wheel 80, and holes 71 for inserting wheel bolts are formed at a plurality of locations in the circumferential direction.

図1〜図3に示すように、通常、パイロット部72はハブ輪10のアウトボード側の端部に一体形成されており、それ故にハブ輪10の形状が複雑化している。そのため、実際にはハブ輪10を鍛造のみで成形することは難しく、旋削加工を加える場合が多い。また、パイロット部72には、部分的に防錆塗装を施す必要がある。以上から、ハブ輪10の製作コストは高騰する傾向にある。   As shown in FIGS. 1 to 3, the pilot portion 72 is usually formed integrally with the end portion on the outboard side of the hub wheel 10, and thus the shape of the hub wheel 10 is complicated. Therefore, in practice, it is difficult to form the hub wheel 10 only by forging, and turning is often performed. Further, the pilot portion 72 needs to be partially rust-proofed. From the above, the manufacturing cost of the hub wheel 10 tends to increase.

これに対し、ハブ輪10のパイロット部72を廃し、これを図13に示すように、ブレーキロータ70の例えば内径端部に設ければ、ハブ輪10のアウトボード側の形状が簡略化されるため、これを鍛造成形することが可能となり、かつハブ輪10への防錆塗装処理も不要となる。従って、ハブ輪10の低コスト化を図ることができ、かつ軽量化設計も可能となる。通常、ブレーキロータ70は鋳造で成形されるので、パイロット部72を有するブレーキロータ70は低コストに製作可能である。   On the other hand, if the pilot portion 72 of the hub wheel 10 is eliminated and is provided at, for example, the inner diameter end portion of the brake rotor 70 as shown in FIG. 13, the shape of the hub wheel 10 on the outboard side is simplified. Therefore, it becomes possible to forge-mold this, and the antirust coating process to the hub wheel 10 is also unnecessary. Therefore, the cost of the hub wheel 10 can be reduced, and a light weight design can be achieved. Since the brake rotor 70 is usually formed by casting, the brake rotor 70 having the pilot portion 72 can be manufactured at low cost.

図13は、中空ハブ輪10と内輪28とで内方部材25を形成した図1相当の軸受ユニットを表しているが、同様の構成は、一体内輪28で内方部材25を形成した図2相当の軸受ユニット、および分割内輪28a、28bで内方部材25を形成した図3相当の軸受ユニットでも採用することができる。   FIG. 13 shows a bearing unit corresponding to FIG. 1 in which the inner member 25 is formed by the hollow hub wheel 10 and the inner ring 28, but a similar configuration is shown in FIG. 2 in which the inner member 25 is formed by the integrated inner ring 28. A corresponding bearing unit and a bearing unit corresponding to FIG. 3 in which the inner member 25 is formed by the divided inner rings 28a and 28b can also be employed.

本発明の第1実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 1st Embodiment of this invention. 本発明の第2実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 2nd Embodiment of this invention. 本発明の第3実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 3rd Embodiment of this invention. ドライブシャフトの断面図である。It is sectional drawing of a drive shaft. (a)図はハブ輪と外側継手部材の結合部分における雄部の断面図、(b)図は同じく雌部の断面図である。(A) The figure is sectional drawing of the male part in the coupling | bond part of a hub ring and an outer joint member, (b) Figure is sectional drawing of a female part similarly. 雄部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a male part. ハブ輪と外側継手部材の塑性結合工程を示す断面図である。It is sectional drawing which shows the plastic coupling process of a hub ring and an outer joint member. 前記図1の駆動輪用車輪軸受ユニットの変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the wheel bearing unit for drive wheels of the said FIG. 本発明の第4実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 4th Embodiment of this invention. 本発明の第5実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 5th Embodiment of this invention. 本発明の第6実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 6th Embodiment of this invention. 本発明の第7実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 7th Embodiment of this invention. 本発明の第8実施形態の駆動車輪用軸受ユニットの断面図である。It is sectional drawing of the bearing unit for drive wheels of 8th Embodiment of this invention. 前記図1の駆動輪用車輪軸受ユニットの他の変形例を示す要部断面図である。FIG. 6 is a cross-sectional view of a main part showing another modification of the wheel bearing unit for driving wheels of FIG. 前記図1の駆動輪用車輪軸受ユニットの別の変形例を示す要部断面図である。It is principal part sectional drawing which shows another modification of the wheel bearing unit for drive wheels of the said FIG. 車両の懸架装置周りの概略構造を示す断面図である。It is sectional drawing which shows schematic structure around the suspension apparatus of a vehicle.

符号の説明Explanation of symbols

6 ナックル部材
6a 内周面
10 ハブ輪
21 インナレース
22 アウタレース
23 転動体
25 内方部材
26 外方部材
26a 外周面
30 アウトボード側等速自在継手
31 外側継手部材
Dn ナックル部材の最小内径寸法
D1 アウトボード側等速自在継手の最大外径寸法
O 軸方向中心線
6 Knuckle member 6a Inner peripheral surface 10 Hub wheel 21 Inner race 22 Outer race 23 Rolling element 25 Inner member 26 Outer member 26a Outer peripheral surface 30 Outboard side constant velocity universal joint 31 Outer joint member Dn Minimum inner diameter dimension D1 of knuckle member Out Maximum outer diameter of the board side constant velocity universal joint O Axial centerline

Claims (2)

内周に複数のアウタレースを有する外方部材と、前記アウタレースと対向する複数のインナレースを有する内方部材と、対向するアウタレースとインナレースとの間に配置された複数列の転動体と、車輪に取り付けられるハブ輪と、アウトボード側等速自在継手とを備える駆動車輪用軸受ユニットにおいて、
ハブ輪およびアウトボード側等速自在継手の外側継手部材のうち、何れか一方に設けられた雄部を、他方に設けられ、雄部と異形の雌部に圧入することにより、ハブ輪と外側継手部材とを塑性結合し、雄部と雌部の圧入部をインボード側の転動体とアウトボード側の転動体の軸方向中心線上に配したことを特徴とする駆動車輪用軸受ユニット。
An outer member having a plurality of outer races on the inner periphery, an inner member having a plurality of inner races facing the outer races, a plurality of rows of rolling elements disposed between the outer races and the inner races facing each other, and wheels In a drive wheel bearing unit comprising a hub wheel attached to an outboard and a constant velocity universal joint on the outboard side,
Out of the hub wheel and the outer joint member of the constant velocity universal joint on the outboard side, the male part provided on one side is provided on the other side, and the male part and the female part deformed are pressed into the outer part of the hub wheel and the outer part. A bearing unit for a drive wheel, wherein the joint member is plastically coupled, and the press-fitting portions of the male part and the female part are arranged on the axial center line of the inboard side rolling element and the outboard side rolling element.
外方部材の外周面が車体側のナックル部材の内周面に嵌合組込みされ、アウトボード側等速自在継手の最大外径寸法がナックル部材の最小内径寸法よりも小さいことを特徴とする請求項1記載の駆動車輪用軸受ユニット。   The outer peripheral surface of the outer member is fitted and incorporated into the inner peripheral surface of the knuckle member on the vehicle body side, and the maximum outer diameter dimension of the outboard-side constant velocity universal joint is smaller than the minimum inner diameter dimension of the knuckle member. Item 2. A drive wheel bearing unit according to Item 1.
JP2006173076A 2006-06-22 2006-06-22 Drive wheel bearing unit Expired - Fee Related JP5101051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173076A JP5101051B2 (en) 2006-06-22 2006-06-22 Drive wheel bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173076A JP5101051B2 (en) 2006-06-22 2006-06-22 Drive wheel bearing unit

Publications (2)

Publication Number Publication Date
JP2008001238A true JP2008001238A (en) 2008-01-10
JP5101051B2 JP5101051B2 (en) 2012-12-19

Family

ID=39005970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173076A Expired - Fee Related JP5101051B2 (en) 2006-06-22 2006-06-22 Drive wheel bearing unit

Country Status (1)

Country Link
JP (1) JP5101051B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150831A (en) * 1984-08-16 1986-03-13 レ−ル・ウント・ブロンカンプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Coupling shaft
JPH1162951A (en) * 1997-08-13 1999-03-05 Nippon Seiko Kk Rolling bearing unit for wheel
JP2000142009A (en) * 1998-02-16 2000-05-23 Nsk Ltd Axle unit for wheel driving
JP2002172911A (en) * 2000-12-06 2002-06-18 Koyo Seiko Co Ltd Hub unit for vehicle
JP2003127608A (en) * 2001-10-22 2003-05-08 Nsk Ltd Wheel rotation supporting device
JP2003130072A (en) * 2001-10-24 2003-05-08 Nsk Ltd Rotary support device for wheel
JP2005193757A (en) * 2004-01-06 2005-07-21 Ntn Corp Bearing apparatus for driving wheel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150831A (en) * 1984-08-16 1986-03-13 レ−ル・ウント・ブロンカンプ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Coupling shaft
JPH1162951A (en) * 1997-08-13 1999-03-05 Nippon Seiko Kk Rolling bearing unit for wheel
JP2000142009A (en) * 1998-02-16 2000-05-23 Nsk Ltd Axle unit for wheel driving
JP2002172911A (en) * 2000-12-06 2002-06-18 Koyo Seiko Co Ltd Hub unit for vehicle
JP2003127608A (en) * 2001-10-22 2003-05-08 Nsk Ltd Wheel rotation supporting device
JP2003130072A (en) * 2001-10-24 2003-05-08 Nsk Ltd Rotary support device for wheel
JP2005193757A (en) * 2004-01-06 2005-07-21 Ntn Corp Bearing apparatus for driving wheel

Also Published As

Publication number Publication date
JP5101051B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5079270B2 (en) Wheel bearing unit
US8480306B2 (en) Bearing unit for driving wheels
JP2008002578A (en) Bearing unit for drive wheel
JP4338095B2 (en) Drive wheel bearing unit
JP2008002579A (en) Bearing unit for drive wheel
WO2013042595A1 (en) Wheel bearing and bearing device
JP2008001243A (en) Bearing unit for driving wheel
JP6253909B2 (en) Wheel bearing device
JP2006248373A (en) Bearing device for wheel
JP6042142B2 (en) WHEEL BEARING, WHEEL BEARING DEVICE, AND METHOD FOR MANUFACTURING WHEEL BEARING DEVICE
WO2008007474A1 (en) Bearing device for wheel
JP2008230487A (en) Bearing device for driving wheel
JP2008018765A (en) Bearing unit for drive wheel
JP2008002582A (en) Bearing unit for drive wheel
JP2008018767A (en) Drive shaft assembly
JP2008002581A (en) Bearing unit for drive wheel
JP6239310B2 (en) Wheel bearing device
JP5101051B2 (en) Drive wheel bearing unit
JP2008001237A (en) Bearing unit for driving wheel
JP2008247274A (en) Wheel bearing device
JP2007162828A (en) Wheel bearing device and axle module equipped therewith
JP2007321903A (en) Bearing device for wheel
JP2005319889A (en) Bearing device for driving wheel
JP5143442B2 (en) Drive wheel bearing device
JP2008001239A (en) Bearing unit for driving wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees