JP2007537841A - 埋め込み式バイオセンサ・システム - Google Patents

埋め込み式バイオセンサ・システム Download PDF

Info

Publication number
JP2007537841A
JP2007537841A JP2007527472A JP2007527472A JP2007537841A JP 2007537841 A JP2007537841 A JP 2007537841A JP 2007527472 A JP2007527472 A JP 2007527472A JP 2007527472 A JP2007527472 A JP 2007527472A JP 2007537841 A JP2007537841 A JP 2007537841A
Authority
JP
Japan
Prior art keywords
signal
sensor
receive
generate
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007527472A
Other languages
English (en)
Inventor
ジョウ、ピーター
パン、デシン
リ、ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veriteq Corp
Original Assignee
Digital Angel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digital Angel Corp filed Critical Digital Angel Corp
Publication of JP2007537841A publication Critical patent/JP2007537841A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/08Sensors provided with means for identification, e.g. barcodes or memory chips
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

無線周波数識別技術を利用し、埋め込み可能な受動給電式オンチップ・トランスポンダと無線通信する遠隔トランスポンダを含むバイオセンサ・システムが提供される。バイオセンサ・システムは、特に、オンチップ・トランスポンダに含まれるセンサ・アセンブリに対して実質的に安定で、かつ、正確なセンサ基準電圧を提供するようになっている。遠隔トランスポンダはまた、患者の生理的パラメータを表すデータならびに識別データを遠隔で受信するように構成され、生理的パラメータのうちの1つまたは複数のパラメータの読み出しを可能にし、1つまたは複数のパラメータは、遠隔トランスポンダによる要求によって、オンチップ・トランスポンダによって測定され、処理され、送信される。センサ基準電圧の精度および安定性は、マイクロプロセッサを使用することなく、グルコース・センサによるグルコース濃度の測定などの、生理的パラメータの比較的正確な測定を可能にするグルコース・センサの特定の回路アーキテクチャによって高められる。

Description

関連出願の相互参照
該当せず。
連邦政府による資金提供を受けた研究/開発に関する記述
該当せず。
本発明は、センサ装置に関し、より詳細には、センサを有し患者に埋め込み可能なオンチップ・トランスポンダから遠隔トランスポンダへデータを無線送信するように構成されたバイオセンサ・システムに関する。バイオセンサ・システムは、特に、患者のグルコース濃度レベルが正確に測定されるように、センサの電極システムに対して安定で、かつ、正確な電圧を印加するようになっている。
患者の血中グルコース濃度レベルは、通常、膵臓によって制御される。しかし、糖尿病を患う患者の場合、膵臓は、食物を代謝して個体のためのエネルギーにするのに必要とされるインシュリンの産生を適切に調節しない。糖尿病患者の場合、グルコース濃度を正常レベルに維持するために、インシュリンが定期的に投与されるように、1日を通して数回、グルコース・レベルが、チェックされるか、または、監視されなければならない。よく使われる1つの方法では、指の穿刺によって血液サンプルを得ることによって、グルコース・レベルが監視される。そのグルコース・レベルの血液サンプルは、次に、グルコース測定ストリップ上に置かれ、その後の化学反応によって、色の変化が生じ、その色の変化を、基準チャートと比較することができる。こうして、血液サンプルとグルコース測定ストリップとの反応は、糖尿病患者が、所定範囲内にグルコース濃度を維持するために、適切な量のインシュリンを投与し得る程度に、グルコース・レベルが異常に低いかまたは高いかについての指標を与える。こうしたインシュリンの投与は、通常、注射器を使用した自己注入によって行われる。
残念ながら、血液穿刺採取とインシュリン注入が共に、苦痛でかつ時間がかかるために、グルコース試験の指穿刺法は不快であり、その結果、多くの糖尿病患者は、1日を通して定期的に自分のグルコース・レベルをチェックするのに消極的である。残念ながら、グルコース・レベルは、1日を通して変動することが多い。したがって、普通なら、1日を通して定期的に自分のグルコース・レベルをチェックするのに一貫性がある糖尿病患者でさえも、自分のグルコース・レベルが危険なほどに低いかまたは高い期間に気づかない場合がある。さらに、指穿刺法は、正確に試験を行うには患者の技量に依存し、その結果、患者は、インシュリンの投薬レベルを決定するときに誤ったデータに依存する場合がある。最後に、グルコース・レベルの自己監視は、若年者、壮年者、および精神に障害を持つ人などの、能力の乏しい個人に大きな負荷をかける。
これを執筆している時点で、米国の1,700万人、すなわち、人口の約6%が、糖尿病にかかっていると推定されている。一部は、特に、子供の間での、食習慣および益々座ることが多い生活様式のために、糖尿病は、毎年、約7%の割合で増加することが予想され、その結果、糖尿病は最終的に蔓延することが予測される。さらに、米国のみにおける糖尿病の現在のコストは、1,200億ドルを超えると推定され、グルコース測定ストリップだけの米国での総売上高は、約20億ドルになると推定される。そのため、糖尿病と診断される人の数が増加しているため、糖尿病患者のグルコース・レベルについての、連続で、信頼性があり、低コストの監視についての要求が存在する。
連続的かつ信頼性があるグルコース監視のためのシステムを提供する試みとして、従来技術において、いくつかの埋め込み可能装置が開発された。こうした埋め込み可能装置では、電気化学センサが、患者の皮膚の下に埋め込まれる。電気化学センサは、グルコース濃度レベルを検出し、グルコース濃度レベルを表す信号を受信装置に送信する。残念ながら、こうした埋め込み可能装置は、いくつかの欠点を持つ。1つのこうした欠点は、埋め込み可能装置が、生体信号を検知し処理するときに、かなりの量の電力を消費する可能性があることである。こうした装置についての電力要件は、有効寿命を延ばすために、大きな電池の使用を必要とする。残念ながら、電力源として電池を有する埋め込み可能装置は、容量が最小レベル未満に低下すると、電池の交換のために定期的な手術を必要とする場合がある。
さらに、一部の電池は、患者に対する危害のリスクを呈する材料を含む。その理由は、埋め込み後に、患者の中に漏れる可能性がある有毒物質または化学薬品が電池内にあるためである。同様に、電池の電力容量が比較的制限されるため、埋め込み可能装置が実施することができる機能の範囲が、ある程度制限される場合がある。最後に、グルコース濃度レベル以外に、複数の生理的パラメータを監視することが望ましい場合がある。こうした場合、埋め込み可能装置は、各センサが患者の異なる生理的パラメータを同時に監視する、複数のセンサを必要とする場合がある。例えば、グルコース濃度レベルの監視以外に、患者の体温および心拍数が監視されてもよい。複数のセンサを有するこうした埋め込み可能装置は、埋め込み可能装置で使用するために小型化された電池が供給することができるよりも多くの電力を消費する場合がある。
従来技術の1つの埋め込み可能装置は、バイオセンサの動作寿命が、理論的に無制限になるように、受動的に給電されるバイオセンサ・システムを設けることによって、大きな電力要件に関連する上述の欠点を克服している。理解されるように、受動給電式バイオセンサ・システムは、患者に埋め込まれる少なくとも1つのセンサを含む。埋め込み式センサは、患者の生理的状況を監視する。埋め込み式受動トランスポンダは、センサからセンサ信号を受信し、センサ信号をデジタル化し、遠隔呼び掛け器からの呼び掛け信号を受けると、患者の体から外にデジタル化センサ信号を送信する。呼び掛け器はまた、バイオセンサ・システムが受動的に給電されるように、埋め込み式トランスポンダに電圧印加する。こうして、受動給電式バイオセンサ・システムは、電池をまったく必要とせず、その結果、システムは、本質的に、無制限の動作寿命を有する。
埋め込み可能装置の別の欠点は、患者の血液内のグルコース濃度レベルを測定するために、システム内で利用される電気化学センサに関するものである。こうしたセンサは、通常、物質濃度レベルを求めるために化合物の酸化または還元が作動電極において測定される、電流滴定検出法を使用する。基準電極に対して作動電極に一定電位または励起電圧を印加するのに、ポテンショスタットが使用される。血液中のグルコース濃度レベルを測定する際には、グルコース・オキシダーゼ(GOX)が触媒として通常使用され、グルコースが酸化され、グルコン酸が形成され、2個の電子と2個の陽子が後に残され、GOXが還元される。患者の血液内に溶解する酸素は、次に、2個の電子と2個の陽子を受け入れることによって、GOXと反応して、過酸化水素(H22)を形成し、酸化されたGOXを再生する。
再生したGOXがグルコースともう一度反応すると、このサイクルが繰り返される。その後、O2の消費またはH22の形成が、通常プラチナ電極である作動電極において測定
される。酸化は作動電極で起こり、還元も、通常銀/塩化銀電極である基準電極で起こる。消費される酸素が多ければ多いほど、患者の血液中のグルコース量が多い。同じ反応において、H22が生成される速度はまた、患者の血液中のグルコース濃度レベルを示す。ポテンショスタットは作動電極と基準電極との電圧差を制御するために、センサがグルコ
ース濃度レベルを測定する精度は、電圧が印加される精度に依存する。センサに印加される電圧が過剰である場合、銀または塩化銀基準電極は過剰に消費され、その結果、基準電極は損傷を受ける。さらに、グルコース濃度レベルの誤った測定がもたらされ、グルコース濃度レベルの異常を補正するためにインシュリンを投与する患者の能力が低下する場合がある。
2電極電気化学センサに関連する上述した欠点を克服しようと試みて、3つの電極からなる電気化学センサが開発されており、これには作動電極と基準電極と共に、補助電極が含まれる。補助電極を含むことは、基準電極を通って流れる電流の大きさを減少させることによって、銀および塩化銀の消費を低減し、それによって、電極電位を安定化させることであると理解されている。残念ながら、上述したタイプの3電極電気化学センサは、こうした電気化学センサの製造および動作の難しさが増加するために、バイオセンサ・システムに複雑さとコストを増大させる。
以上のことから明らかなように、作動電極に対する基準電極電位の安定性に関連する上述した欠点を克服する埋め込み可能バイオセンサ・システムについての必要性が存在する。より具体的には、グルコース濃度レベルを測定することができる精度を改善するために電気化学センサに安定で正確な電圧を提供する埋め込み可能バイオセンサ・システムについて、当該技術分野での必要性が存在する。電力要件と組み合わせて、埋め込み可能装置に含まれる複数バイオセンサの使用によって、患者の複数の生理的パラメータについての同時で選択的な監視を可能にする埋め込み可能バイオセンサ・システムについても、当該技術分野での必要性が存在する。さらに、データ(例えば患者の生理的パラメータ)についての要求と、こうしたデータの送信とを、同時に実施することができるように全2重通信動作を可能にする埋め込み可能バイオセンサ・システムについて、当該技術分野での必要性が存在する。最後に、遠隔装置においてデータの連続的な読み出しを可能にする埋め込み可能バイオセンサ・システムについて、当該技術分野での必要性が存在する。
無線周波数識別(RFID)技術を利用し、受動給電式オンチップ・トランスポンダと無線通信する遠隔トランスポンダを含むテレメトリック・バイオセンサ・システムが提供される。バイオセンサ・システムは、特に、埋め込み可能オンチップ・トランスポンダにセンサ・アセンブリに、実質的に安定で正確な電圧を提供するようになっている。遠隔トランスポンダは、オンチップ・トランスポンダへ電力を供給し、オンチップ・トランスポンダからテレメトリ・データを要求するために、オンチップ・トランスポンダの所定距離内に設置される。遠隔トランスポンダはまた、患者の生理的パラメータを表すデータならびに識別データを遠隔で受信するように構成され、生理的パラメータのうちの1つまたは複数のパラメータの読み出しを可能にし、1つまたは複数のパラメータは、遠隔トランスポンダによる要求によって、オンチップ・トランスポンダによって、測定され、処理され、送信される。
とりわけ、電力受信機は、生理的パラメータが測定される精度を高めるために、実質的に偏位しないセンサ基準電圧をセンサに供給する。センサ基準電圧(すなわちセンサ電力)の精度と安定性は、グルコース・センサの特定の回路アーキテクチャによって高められる。実質的に安定な電圧をセンサ・アセンブリに印加することによって、グルコース・センサよるグルコース濃度レベルの測定などの、患者の生理的パラメータの比較的正確な測定が可能になる。安定で正確な電圧を生成する技法は、マイクロプロセッサを使用することなく、2ピン・グルコース・センサならびに3ピン・グルコース・センサに適用されてもよく、その結果、オンチップ・トランスポンダのコストと電力消費が低減される場合が
ある。有利には、センサ基準電圧の安定性と精度は、オンチップ・トランスポンダの電力消費を低減するだけでなくバイオセンサ・システムの総コストも低減するために、マイクロプロセッサを使用することなく達成される。
オンチップ・トランスポンダは、2ピンまたは3ピン・グルコース・センサであってよいセンサを有するセンサ・アセンブリを含む。しかし、任意の他のセンサが、オンチップ・トランスポンダに使用されてもよい。オンチップ・トランスポンダの部品は、センサ、電力受信機、アナログ−デジタル(A/D)アセンブリ、データ・プロセッサ、およびRF送信機を含んでもよく、これら部品は、好ましくは、従来の集積回路技術を使用して相互接続されてもよく、その結果、オンチップ・トランスポンダは、患者への埋め込みのために、十分に小さなサイズにパッキングされ得る。複数のセンサの中での選択を可能にし、遠隔トランスポンダとオンチップ・トランスポンダとの間の連続的な、かつ/または、同時の双方向無線通信を可能にする全2重通信を可能にするために、オンチップ・トランスポンダにRF受信機も含まれてもよい。
遠隔トランスポンダは、オンチップ・トランスポンダの電力受信機によって受信されるスキャナ信号を放出する。電力受信機は、A/Dアセンブリ、データ・プロセッサ、およびRF送信機に給電するために、スキャナ信号を電力信号に変換する。A/Dアセンブリは、センサから出てくるアナログ電気信号に含まれる生理的パラメータを、デジタル信号のデジタル形式に変換する。A/Dアセンブリはまた、センサ信号を発生する特定のセンサを識別するために、デジタル信号に固有の識別コードを付加してもよい。
データ・プロセッサは、A/Dアセンブリからデジタル信号を受信し、処理済みデータ信号を生成するために、デジタル信号を、フィルタリングし、増幅し、かつ/または、符号化する。データ・プロセッサはまた、データ信号を送信すべき時を決定するように、データ信号をゲート制御してもよく、データ信号を他のデータ(すなわち他のセンサからの)と加算してもよい。RF送信機は所望の周波数の無線搬送波上にデータ信号を加え(すなわち変調し)、変調された搬送波を増幅し、遠隔トランスポンダに対して放射するために、搬送波をアンテナへ送出する。
本発明のこれらの特徴ならびに他の特徴は、図面を参照するとより明らかになるであろう。
ここで、図面(図面で示すものは、本発明の種々の態様を示すためであり、本発明を制限するためではない)を参照すると、無線周波数識別(RFID)技術を利用し、受動給電式オンチップ・トランスポンダ100と無線通信する遠隔トランスポンダ800を含む独自に構成されたテレメトリック・バイオセンサ・システム10が提供される。バイオセンサ・システム10は、特に、埋め込み可能オンチップ・トランスポンダ100含まれるセンサ・アセンブリ200に、実質的に安定で正確な電圧を提供するようになっている。オンチップ・トランスポンダ100は、人の患者などのホストに埋め込まれる。
コンパクトな手持ち式装置であってよい遠隔トランスポンダ800は、オンチップ・トランスポンダ100へ電力を供給し、オンチップ・トランスポンダ100からテレメトリ・データを要求するために、オンチップ・トランスポンダ100の所定距離内(例えば、数フィート以内(1フィート=30.48cm)に手で設置される。患者が、遠隔トランスポンダ800に対して所定距離内で移動するとき、遠隔トランスポンダ800は、別法として、固定して取付けられてもよく、患者、したがって、オンチップ・トランスポンダ100へ電力およびテレメトリ要求データを自動的に送信するように構成されてもよい。遠隔トランスポンダ800は、手持ち式か、固定して取付けられるか、または、その他の
方法で支持されるかどうかに無関係に、患者の生理的パラメータを表すデータならびに識別データを遠隔で受信し、該データが格納または表示されるように構成される。
とりわけ、実質的に安定な電圧をセンサ・アセンブリ200に印加することによって、グルコース・センサ210よるグルコース濃度レベルの測定などの、患者の生理的パラメータの比較的正確な測定が可能になる。以下で説明されるように、安定で正確な電圧を生成する技法は、2ピン・グルコース・センサ210ならびに3ピン・グルコース・センサ210に適用されてもよい。とりわけ、バイオセンサ・システム10は、オンチップ・トランスポンダ100のコストと電力消費を低減するように、マイクロプロセッサを使用することなく、センサ・アセンブリ200に安定で正確な電圧を提供する。
最も広い意味で、バイオセンサ・システム10とバイオセンサ・システム10を使用する動作方法とは、互いに無線通信する埋め込み可能オンチップ・トランスポンダ100と遠隔トランスポンダ800とを含む。上述したように、センサ・アセンブリ200は、オンチップ・トランスポンダ100に接続されるかまたは一体にされ、オンチップ・トランスポンダ100と共に患者に埋め込まれ得る。遠隔トランスポンダ800が、遠隔トランスポンダ800による要求によってオンチップ・トランスポンダ100によって測定され、処理され、送信された生理的パラメータのうちの1つまたは複数のパラメータの読み出しを可能にするように、バイオセンサ・システム10が構成される。バイオセンサ・システム10はまた、図1aに示すように単方向通信モードで動作するように構成されてもよい。
別法として、バイオセンサ・システム10は、図1bに示すように全2重通信モードで動作するように構成されてもよく、この場合オンチップ・トランスポンダ100は、インテリジェント無線周波数(RF)受信機をさらに含む。RF受信機700を備えると、バイオセンサ・システム10は、患者のアイデンティティ、ならびに、患者の年齢、体重、医療履歴などに関する情報を含む患者データベースに関係付けされてもよい識別データの読み出し以外に、複数センサ210間での選択および/またはデータ(例えば、患者の生理的パラメータ)の連続的な読み出しなどの機能を可能にする。
ここで、より詳細に図1aと図1bを参照すると、単方向通信動作と全2重通信動作を可能にするそれぞれの実施形態について、バイオセンサ・システム10のオンチップ・トランスポンダ100に接続されたセンサ・アセンブリ200のブロック図が示される。オンチップ・トランスポンダ100は、センサ210を有するセンサ・アセンブリ200を含む。センサ210は、先に述べたように、2ピン・グルコース・センサ210または3ピン・グルコース・センサ210として構成されてもよい。しかし、任意の他のセンンサが、オンチップ・トランスポンダ100と共に使用されてもよい。例えば、センサ210は、圧力トランスデューサ、血糖センサ、血液酸素センサ、心拍数モニタ、呼吸数センサなどのうちの少なくとも1つとして構成されてもよい。この点において、センサ210は、患者の任意のタイプの生理的パラメータを測定するか、監視するか、または検出する、任意のタイプのセンサとして構成されてもよい。
図2には、遠隔トランスポンダ800のブロック図が示される。遠隔トランスポンダ800は、スキャナ信号882をオンチップ・トランスポンダ100に送信することによって、生理的パラメータに関するデータを無線で要求するように構成される。遠隔トランスポンダ800はまた、オンチップ・トランスポンダ100から生理的パラメータを表すデータ信号462を受信するように構成される。同様に、遠隔トランスポンダ800とオンチップ・トランスポンダ100が、両者間で無線通信を可能にするのに十分に近接した範囲内に入ると、オンチップ・トランスポンダ100は、遠隔トランスポンダ800と通信し、スキャナ信号882を受信し、オンチップ・トランスポンダ100からデータ信号4
62を送信するように構成される。
単方向通信動作を可能にするバイオセンサ・システム10の実施形態について、オンチップ・トランスポンダ100の構成要素は、図1aに示すように、センサ210、電力受信機600、アナログ−デジタル(A/D)アセンブリ300、データ・プロセッサ400、およびRF送信機500を含む。全2重通信動作を可能にするバイオセンサ・システム10の実施形態の場合、RF送信機700が図1bに示すオンチップ・トランスポンダ100に含まれる。オンチップ・トランスポンダ100の構成要素のそれぞれは、従来の導電性配線によって電気的に相互接続されてもよい。しかし、電気接続は、好ましくは、従来の集積回路技術を使用して行われてもよく、その結果、オンチップ・トランスポンダ100は患者に埋め込むために十分に小さなサイズにパッケージされる。
センサ210は、図1aと図1bに示すように、患者の生理的パラメータを表し、並列に送信される正信号と負信号からなり、センサ210からA/Dアセンブリ300へ送出されるセンサ信号234を生成するように構成される。単方向通信動作を可能にするバイオセンサ・システム10の実施形態の場合、電力受信機600は、アンテナ601においてスキャナ信号882を受信し、オンチップ・トランスポンダ100を受動給電するために電力信号602を生成するように構成される。全2重通信動作を可能にするバイオセンサ・システム10の実施形態の場合、RF受信機700は、電力受信機600へ送り出すために、アンテナ701においてスキャナ信号882を受信する。A/Dアセンブリ300は、電力信号602を受信するために、電力線604を介して電力受信機600に接続される。A/Dアセンブリ300はまた、センサ210からアナログ・センサ信号234を受信するために、センサ210に接続される。電力信号602によって給電されると、A/Dアセンブリ300は、センサ210から出てくるアナログ・センサ信号234に応答してデジタル信号372を生成するように構成される。
やはり図1aと図1bを参照すると、データ・プロセッサ400は、A/Dアセンブリ300と電力受信機600に接続されており、電力線606を介して電力信号602、ならびに、A/Dアセンブリ300からのデジタル信号372を受信するように構成される。電力信号602によって給電されることによって、データ・プロセッサ400は、デジタル信号372に応答してデータ信号462を生成するように構成される。一般に、データ・プロセッサ400は、デジタル信号372を受信し、データ信号462を生成するために、デジタル信号372をフィルタリングし、増幅し、かつ/または、符号化する。データ・プロセッサ400は、データ信号462を遠隔トランスポンダ800に送信すべき時を決定するように、データ信号462をゲート制御するように構成されてもよい。さらに、データ・プロセッサ400はまた、以下でより詳細に説明されるように、データ信号462を他のデータ(すなわち他のセンサ210からの)と加算するように構成されてもよい。
RF送信機500は、電力信号602を受信するために、電力線608を介して電力受信機600に接続されている。RF送信機500はまた、データ・プロセッサ400にも接続されており、データ・プロセッサ400からデータ信号462を受信するように構成される。RF送信機500はまた、遠隔トランスポンダ800にとっての返答受信のために、データ信号462を、変調し、増幅し、フィルタリングし、送信するように構成される。一般に、RF送信機500は、所望の周波数の無線搬送波上にデータ信号462を加え(すなわち変調し)、変調された信号を増幅し、遠隔トランスポンダ800に対して放射するために、変調された信号をアンテナへ送出する。
電力受信機600の回路要素は、当該技術分野でよく知られているように、電圧レギュレータの回路要素と同様に構成され、基準ダイオードと抵抗器とが適切な電源電圧を生成
するように配列される。しかし、電力受信機600はまた、特に、複雑さを減らすために、大きな電流を送り出すことなく、センサ210の処理回路要素に適した電圧を供給するように構成される。そのため、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500に供給するために、電力を収集し、整流し、フィルタリングし、調節すること以外に、電力受信機600はセンサ・アセンブリ200にも実質的に安定で正確な電圧を提供する。
より具体的には、電力受信機600は、生理的パラメータが測定される精度を高めるために、実質的に偏位しないセンサ基準電圧信号642をセンサ210に供給するように構成される。センサ基準電圧信号642(すなわちセンサ210の電力)の精度と安定性は、図8aと図8bに示し、以下でより詳細に述べるように、グルコース・センサ210の特定の回路アーキテクチャによって高められる。こうして、グルコース・センサ210からの出力信号によって表されるグルコース濃度レベルの精度が改善される。先に述べたように、生理的パラメータが、センサ210によって測定されると、遠隔トランスポンダ800は、格納および/または表示のために、RF送信機500からデータ信号462を受信し、生理的パラメータを表すデータを抽出するように構成される。
全2重通信動作を可能にするバイオセンサ・システム10の実施形態の場合、オンチップ・トランスポンダ100は、さらに、図1bに示すように、遠隔トランスポンダ800からスキャナ信号882を受信するように構成されたRF受信機700を含む。最も広い意味において、スキャナ信号882は、アンテナ701において受信され、RF受信機700によって復号されて、データについて要求が行われたことを、メッセージ信号702によって、オンチップ・トランスポンダ100に知らせる。電力受信機600はまた、上述したように、電力線604、606、608のそれぞれの1本の電力線によってA/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500へ中継するために、スキャナ信号882を電力信号602に変換する。RF受信機700は、スキャナ信号882を、フィルタリングし、増幅し、復調し、オンチップ・トランスポンダ100の構成要素を制御するために送り出すメッセージ信号702を生成するように構成される。より具体的には、メッセージ信号702は、図1bに示すように、メッセージ/制御線704、706、708のそれぞれの1本の線によって、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500へ送信される。RF受信機700は、メッセージ信号702がそこを通って送信されるメッセージ/制御線704、706、708のそれぞれの1本の線によって、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500と双方向通信し得る。
複数のセンサ210を有するバイオセンサ・システム10の構成の場合、センサ210のそれぞれの1つセンサは、患者の明瞭な生理的パラメータを検知し、その生理的パラメータを表すセンサ信号234を生成するように動作し得る。例えば、患者の内部体温を測定するために、センサ210の追加の1つのセンサが設けられてもよい。さらに、患者の血液圧力レベルを測定するために、センサ210の追加の1つのセンサが設けられてもよい。複数のセンサ210は複数のセンサ信号234を生成し得る。RF受信機700は、以下でより詳細に述べるように、もとの遠隔トランスポンダ800へデータをその後送信するために、複数のセンサ210のうちの1つまたは複数のセンサからのデータについての要求を調整するように構成されてもよい。複数のセンサ210を有するバイオセンサ・システム10の実施形態の場合、データ・プロセッサ400は、センサ信号234を発生するセンサ210を識別するために、プリセット識別コードをデジタル信号372に割り当てるように構成されてもよい。こうした実施形態では、A/Dアセンブリ300は、メッセージ信号702に応答し、センサ信号234のその後の送信のために複数のセンサ信号234の間で選択するように動作するスイッチ310を含んでもよい。
ここで、図8aと図8bを参照すると、センサ210が、電極アセンブリ201を有するグルコース・センサ210であるバイオセンサ・システム10の構成の場合、グルコース・センサ210の特定の回路アーキテクチャは、好ましくは、センサ基準電圧信号642が正の約0.7ボルトという実質的に一定値で電極アセンブリ201に供給されるようなものである。有利には、センサ基準電圧信号642の安定性と精度は、マイクロプロセッサを使用することなく達成される。回路アーキテクチャは、共に、患者の血液と流体連通するように設置される第1端子202(すなわち作動電極)と第2端子204(すなわち基準電極)を有する電極アセンブリ201を含む。
2ピン・グルコース・センサ210は、患者の血液内でグルコースの酸化をもたらし、それによって、グルコン酸が形成され、GOXが還元されるように、触媒としてグルコース・オキシダーゼ(GOX)を使用して、グルコース・レベルを測定するように構成され得る。患者の血液内の酸素(O2)は、GOXと反応して、過酸化水素(H22)が形成
され、酸化されたGOXが再生される。O2の消費またはH22の形成は、プラチナで作
製されてもよい第1端子202で測定される。酸化は第1端子202で起こり、一方、還元は、銀/塩化銀で作製されてもよい第2端子204で測定される。O2が消費され、H22が形成される速度は、患者の血液内のグルコース濃度レベルを示す。有利には、セン
サ基準電圧信号642を正の約0.7ボルトという実質的に一定値で第1端子202に供給すると、グルコース濃度レベルを2ピン・グルコース・センサ210ならびに3ピン・グルコース・センサ210によって測定することができる精度が上がる。
やはり図8aを参照すると、2ピン・グルコース・センサ210によるグルコース濃度レベルの測定精度は、グルコース・センサ210の回路アーキテクチャによって高められる。見てわかるように、2ピン・グルコース・センサ210は、第1精密抵抗器224、第1演算増幅器220、電圧計250、第2演算増幅器230、および調節可能な第2精密抵抗器240を含む。第1精密抵抗器224は電力受信機600に接続されており、グルコース・センサ210の励起のために、電力受信機600からセンサ基準電圧信号642を受信するように構成される。第1演算増幅器220は、第1信号線212によって第1精密抵抗器224に接続されており、センサ基準電圧信号642を受信するように構成される。第1演算増幅器220は、センサ基準電圧信号642に応答して、第1演算増幅器220の非反転入力232において精密センサ基準電圧信号223を発する。
電圧計250は、第1演算増幅器220の非反転入力と第1精密抵抗器224に接続されており、精密センサ基準電圧信号223を監視するように構成される。電圧計250は、センサ210の動作点を確立し、センサ210の応答をより正確に解釈するように構成される。電圧計250はまた、非反転第1演算増幅器220と協働して、精密センサ基準電圧信号223をバッファリングし、実質的に正確なセンサ基準電圧信号226を第1端子202に印加する。第2演算増幅器230は、第2信号線214によって第2端子204に接続されており、第1端子202に印加された正確なセンサ基準電圧信号226に応答して第2端子204から放出する電流を受信するように構成される。
調節可能な第2精密抵抗器240は、第2演算増幅器230の出力と反転入力との間に接続されており、第2演算増幅器230と協働して、患者の血液のグルコース・レベルに実質的に比例するセンサ信号234を生成する。図8aに示すように、接地されている非反転入力232を有する第2演算増幅器230の反転端子に電流が送り出される。第2演算増幅器230における正確な電流測定値(例えば第2端子204から放出される)は、調節可能な第2精密抵抗器240によって確立される。このようにグルコース・センサ210を構成することによって、マイクロプロセッサについての必要性および関連する較正手順および電流ドレインがなくなる。精密センサ基準電圧223ならびにセンサ210の動作点(すなわちグルコース・レベル)および第2精密抵抗器240によって決まる第2
演算増幅器230の出力は、次に、処理され、遠隔トランスポンダ800による要求によって、送信される。
手短に図8bを参照すると、電極アセンブリ201に第3端子206(すなわち補助電極)が付加された、図8aに示す2ピン・グルコース・センサ210のブロック図と同様の3ピン・グルコース・センサ210のブロック図が示される。3ピン・グルコース・センサ210は補助制御回路260も含む。第3端子206は、第1および第2端子204,206と同じ場所に配置され、好ましくは、同様に、患者の血液と流体連通している。補助制御回路260は、第3信号線216によって、第3端子206と第2演算増幅器230との間に接続されており、第3端子206から放出される電流量を監視し、制御するように構成される。第3端子206は、第1端子202に印加される正確なセンサ基準電圧信号226の適用中に、電流を第2端子204と別の場所にそらすように構成される。3ピン・グルコース・センサ210の電極アセンブリ201に対する第3端子206の付加は、第2端子204と別の場所に電流の一部分を引き出すことによって、第2端子204に含まれる銀/塩化銀の消費を低減するのに役立ち得る。こうして、第3端子206は、電極電位を安定化するように働き、グルコース・センサ210の動作寿命は増大し得る。
ここで図5aと図5bを参照して、A/Dアセンブリ300のアーキテクチャを詳細に述べる。一般に、A/Dアセンブリ300は、含まれる生理的パラメータを、電流または電圧として表され得るアナログ電気信号に変換するように構成される。A/Dアセンブリ300はまた、センサ信号234のメッセージ暗号化、(例えばセンサ信号(複数可)234を発生する特定のセンサ210(複数可)を識別するための)固有の識別コードまたはメッセージの付加を含む、符号化を実施してもよい。さらに、A/Dアセンブリ300は、センサ信号234のインテグリティを確保するために(すなわちセンサ210から送出されたデータが、受信されたデータと同じであることを確認するために)、センサ信号234に関するエラー検出および防止ビットを含んでもよい。
より具体的に図5aを参照すると、グルコース・センサ210からなどの単一センサ210からのセンサ信号234を受信するように構成されたバイオセンサ・システム10の実施形態についてのA/Dアセンブリ300のブロック図が示される。図5bは、複数のセンサ210から送出される複数のセンサ信号234の間での選択を可能にするスイッチ310をさらに含む、バイオセンサ・システム10の実施形態についてのA/Dアセンブリ300のブロック図である。図5aと図5bにおいて、A/Dアセンブリ300の共通下位要素は、プロセッサフィルタ320、増幅器330、電圧比較器340、A/D変換器350、コバート論理装置360、およびコントローラ370を含む。プロセッサフィルタ320は、センサ210に接続されており、センサ210からセンサ信号234を受信するように構成される。センサ信号234は、グルコース・センサ210の場合、グルコース濃度に実質的に比例するアナログ電圧が特徴である。電圧は、遠隔トランスポンダ800へ送信するのに備えて、処理されてもよいし、または、処理されていなくてもよい。いずれの場合も、さらなるセンサ信号234の調製が必要とされる場合がある。
図5aと図5bに示すように、プロセッサフィルタ320は、センサ信号234を受信し、センサ信号234に応答して、フィルタリング済み信号322を生成する。プロセッサフィルタ320は、バイアス印加機能ならびにセンサ210の状態の測定を実施してもよい。プロセッサフィルタ320はまた、センサ信号234からスペクトル成分(例えば、高周波ノイズスパイク)を除去すると共に、オンチップ・トランスポンダ100の能力に整合するように、電圧レベルの正規化を実施してもよい。平均化、および、センサ210のデータの正確なサンプリングを確保するのに必要とされる他の機能などの、さらなる機能が、プロセッサフィルタ320によって実施されてもよい。
増幅器330は、プロセッサフィルタ320に接続されており、プロセッサフィルタ320からフィルタリング済み信号322を受信し、信号の最小電圧と最大電圧が、A/D変換器350の限界内になるように、フィルタリング済み信号322を増幅し、デジタル化信号の最大分解能を実現するように構成されている。フィルタリング済み信号322を受信することによって、増幅器330は、フィルタリング済み信号322に応答して増幅済み信号332を生成するように構成される。電圧比較器340は、電力受信機600に接続されており、電力受信機600から電力信号602を受信し、電力信号602に応答して正規化済み電圧信号342を生成するように構成される。より具体的には、電圧比較器340は、A/Dアセンブリ300の回路要素を正規化し、回路要素の動作条件を、デジタル化されるセンサ信号234の必要性に整合させる。
正規化済み電圧信号342は、次に、デジタル化の前に、A/Dアセンブリ300によって、初めにサンプリングされ、次に量子化される。この機能は、増幅器330と電圧比較器340との間に接続されたA/D変換器350によって実施される。A/D変換器350は、増幅済み信号332と正規化済み電圧信号342とを受信し、これらの信号332,342に応答して変換器信号352を生成するように構成される。より正確な平均を提供するため、または、ある期間にわたって(例えば、センサ210がその中に埋め込まれる患者の数心拍動にわたって)センサ信号234の変動を追跡するために、単一サンプルが収集されてもよく、または、複数サンプルが収集されてもよい。コバート論理装置360は、A/D変換器350から変換器信号352を受信する。コバート論理装置360はまた、コバート論理装置360が、変換器信号352を受信し、変換器信号352に応答して論理信号362を生成するように、コントローラ370と双方向通信している。コバート論理装置360はまた、エラー補正および/または電圧レベルシフト回路要素を含んでもよい。
コントローラ370は、データ・プロセッサ400に関して信号伝送を同期させるために、A/Dアセンブリ300をゲート制御するように構成される。図5aに示すように、コントローラ370は、コバート論理装置360と双方向通信している。図5bを参照すると、RF受信機700を含むバイオセンサ・システム10の実施形態の場合、コントローラ370は、RF受信機700に接続されており、メッセージ/制御線704を介してRF受信機700からメッセージ信号702を受信する。RF受信機700はまた、コバート論理装置360から論理信号362を受信し、メッセージ信号702と論理信号362に応答して、デジタル信号372をその後に生成するために、A/D変換器350をデータ・プロセッサ400と同期させるように構成される。
複数のセンサ210を含むバイオセンサ・システム10の実施形態の場合、A/Dアセンブリ300は、さらに、センサ選択線314を介してコントローラ370に接続されるスイッチ310を含む。スイッチ310はまた、スイッチ信号線312を介してプロセッサフィルタ320に接続される。こうした実施形態では、コントローラ370は、メッセージ信号702に応答し、スイッチ310がプロセッサフィルタ320にセンサ信号234をその後に送信するように、スイッチ310に複数のセンサ信号234の間で選択させるよう動作する。先に述べたように、複数のセンサ210を有するバイオセンサ・システム10の構成では、データ・プロセッサ400は、センサ信号234を発生するセンサ210を識別するために、デジタル信号372にプリセット識別コードを割り当てるように構成されてもよい。デジタル信号372は、メッセージ/制御線704を介してコントローラ370に送信されるメッセージ信号702の内容に応じて、直列データのパケット(すなわち一定継続時間にわたるバースト)であってもよいし、情報が遠隔トランスポンダ800によって要求される限り続くデータストリームであってもよい。
ここで、図3を参照して、データ・プロセッサ400の特定のアーキテクチャを詳細に述べる。一般に、データ・プロセッサ400は、A/Dアセンブリ300からデジタル信号372を受信し、処理済みデータ信号462を生成するために、デジタル信号372を、フィルタリングし、増幅し、かつ/または、符号化する。データ・プロセッサ400への電力は、電力線606を介してプログラム・カウンタ430へ供給される。含まれる場合、RF受信機700は、テレメトリ動作を制御し、同期させるために、メッセージ/制御線706を介してメッセージ信号702をプログラム・カウンタ430へ送信する。データ・プロセッサ400は、データ信号462を遠隔トランスポンダ800へ送信する時を決定するために、データ信号462をゲート制御するように構成されてもよい。さらに、データ・プロセッサ400はまた、データ信号462と他のデータ(すなわち他のセンサ210からの)とを加算するように構成されてもよい。図3を見てわかるように、データ・プロセッサ400は、信号フィルタ410、増幅器420、プログラム・カウンタ430、割り込み要求装置440、計算器450、およびデジタル・フィルタ460を含む。信号フィルタ410は、A/Dアセンブリ300に接続されており、デジタル信号372を受信し、好ましくないノイズまたはアナログからデジタルへのセンサ信号234の変換の結果として含まれる場合があるエイリアシング成分を除去するように構成される。信号フィルタ410は、最終的に、フィルタリング済み信号412を生成する。フィルタリング済み信号412は、デジタル形式であり、一連のhigh電圧とlow電圧で構成される。
やはり図3を参照すると、増幅器420は、信号フィルタ410に接続されており、信号フィルタ410からフィルタリング済み信号412を受信し、フィルタリング済み信号412に応答して増幅済み信号422を生成するように構成される。増幅器420は、データ・プロセッサ400を、アナログ−デジタル変換工程から分離させ、計算段階のための電圧レベルを調整する。先に述べたように、プログラム・カウンタ430は、RF受信機700と電力受信機600に接続されており、メッセージ信号702と電力信号602のそれぞれの1つの信号を受信するように構成される。プログラム・カウンタ430はまた、ゲート制御された信号443を生成する。割り込み要求装置440は、プログラム・カウンタ430に接続されており、ゲート制御された信号443を受信し、割り込み要求信号442を生成するように構成される。
計算器450は、信号フィルタ410、増幅器420、および割り込み要求装置440に接続されており、フィルタリング済み信号412、増幅済み信号422、および割り込み要求信号442のそれぞれの1つの信号を受信し、符号化信号452を生成するように構成される。この点で、プログラム・カウンタ430、割り込み要求装置440、および計算器450は、協働して、信号をゲート制御(すなわち開閉し)し、さらに、(例えば信号を発生する特定のセンサ(複数可)210を識別するために)固有のメッセージ識別コードを割り当ててもよい。さらに、同じデータパケットのメッセージの一部分またはすべてを繰り返すことによって信号の信頼性およびインテグリティを増すために、エラー検出および防止ビットが付加されてもよい。デジタル・フィルタ460は、計算器450に接続されており、計算器450から符号化信号452を受信し、データ信号462を生成するように構成される。デジタル・フィルタ460は、RF送信機500による、その後の変調のために、デジタル信号372を構成する一連のhigh電圧とlow電圧を成形する。
ここで図4を参照して、RF送信機500のアーキテクチャを詳細に述べる。一般に、RF送信機500は、所望周波数の無線搬送波上でデータ信号462を変調し、変調済み搬送波を増幅し、遠隔トランスポンダ800に対して放射するために、変調済み搬送波をRF送信機アンテナ501に送出する。図4には、データ入力フィルタ570、変調器580、第1送信機増幅器530、送信機フィルタ540、第2送信機増幅器520、表面
音響波(SAW)フィルタ510、およびRF送信機アンテナ501を備えるRF送信機500の下位要素が示される。RF送信機500は、電力線608を介して電力受信機600から、変調器580において電力信号602を受信することによって給電される。バイオセンサがRF受信機700を含む場合、メッセージ信号702もまた、メッセージ/制御線708を介して変調器580において、RF受信機700から受信される。データ入力フィルタ570は、データ・プロセッサ400に接続されており、データ・プロセッサ400からデータ信号462を受信して、高周波数スペクトル成分をフィルタリング除去し、データ信号462に応答してフィルタリング済みデータ信号585を生成するように構成される。
やはり図4を参照すると、変調器580は、電力受信機600、RF受信機700、およびデータ入力フィルタ570に接続されており、フィルタリング済みデータ信号585を、フィルタリング済みデータ信号585の振幅を変えることによってパルス・コード変調し、フィルタリング済みデータ信号585に応答して第1および第2変調済み信号583、586を生成するように構成される。第1送信機増幅器530は、変調器580に接続されており、変調器580から第1変調済み信号583を受信するように構成される。送信機フィルタ540は、第1送信機増幅器530によって受信されるフィードバック信号532を生成する。送信機フィルタ540は、第1送信機増幅器530と協働して、所望の無線伝送周波数の第1増幅済み信号522を作成する。第2送信機増幅器520は、変調器580と第1送信機増幅器530に接続されており、変調器580と第1送信機増幅器530から第2変調済み信号586と第1増幅済み信号522のそれぞれの1つの信号を受信し、好ましくは、遠隔トランスポンダ800に対する確実な送信に十分である所望の電力レベルを有する第2増幅済み信号512を生成するように構成される。
図4に示すように、変調器580はまた、変調機能を助けるために、イネーブル制御582入力と変調制御584入力からの入力を受信する。変調器580は、第1および第2送信機増幅器530,520を介して、無線搬送波上にデータ信号462の処理済みデータを加える(すなわちパルス・コード変調によって変調する)。無線搬送波の振幅は、第1および第2増幅済み信号583,586によって変わる。しかし、異なるコスト、レンジ、データ・レート、エラー・レート、および周波数帯域を実現するために、他の周知の変調法が使用されてもよい。SAWフィルタ510は、第2送信機増幅器520に接続されており、第2増幅済み信号512を受信し、バイオセンサ・システム10によって利用される無線サービスのタイプについて、割り当てられた周波数スペクトル以外にある場合がある好ましくない調波を除去するように構成される。SAWフィルタ510は、第2増幅済み信号512に応答して被送信信号502を生成する。RF送信機アンテナ501は、SAWフィルタ510に接続される。被送信信号502は、RF送信機アンテナ501に送られ、RF送信機アンテナ501は、遠隔トランスポンダ800の受信アンテナ801による受信のために、被送信信号502を放射するように構成される。
ここで図6を参照して、電力受信機600の回路アーキテクチャを詳細に述べる。先に述べたように、電力受信機600は、スキャナ信号882から電力を収集するように構成される。スキャナ信号882は、電力受信アンテナ601において受信される(RF受信機700を欠く実施形態の場合)。電力は、電力線604,606,608を介して、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500に送り出される。図6に示すように、電力受信機600の下位要素は、同調発振器610、整流器620、フィルタ630、第1レギュレータ650、第2レギュレータ660、およびセンサ基準電源640を含む。同調発振器610は、RF受信機アンテナ701または電力受信機アンテナ601に接続されてもよい。同調発振器610は、スキャナ信号882(正弦波形態)を受信し、直流(DC)電圧信号632へ変換するために、スキャナ信号882を調製するように構成される。
同調発振器610は、スキャナ信号882に応答して、交流(AC)電圧信号612を生成するように構成される。スキャナ信号882は、プラス電流とマイナス電流の間を循環し、ゼロ・マイクロアンペアの平均電流を有する。整流器620は、同調発振器610に接続されており、同調発振器610からAC電圧信号612を受信するように構成される。整流器620は、正の電流を加算し、ダイオード接合によって負の電流を反転させ、その結果、すべての電流が、一方向で加算される。ダイオードは閾値電圧を有し、閾値電圧は、超えられなければならず、また、電流の流れに不連続性を生じる。こうして、整流器620は、半周期ごとに不連続性を有する粗い直流電圧信号622を生成する。
フィルタ630は、整流器620に接続されており、整流器620から直流電圧信号622を受信するように構成される。フィルタ630は、実質的に平滑なDC電圧信号632を放出するために、全体が粗い直流電圧信号622の複数周期からのエネルギーを格納するように構成されたコンデンサ(図示せず)である。先に述べたように、電圧レベルは、遠隔トランスポンダ800の近接度に依存し、好ましくは、オンチップ・トランスポンダ100に給電するのに必要とされる電圧レベルより大きい。第1レギュレータ650は、フィルタ630に接続されており、フィルタ630からDC電圧信号632を受信し、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500に給電するために、第1電圧信号652を生成するように構成される。
第2レギュレータ660は、フィルタ630に接続されており、フィルタ630からDC電圧信号632を受信し、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500に給電するために、第2電圧信号662を生成するように構成される。第1および第2レギュレータ650,660は平滑な第1および第2電圧信号652,662を作成して、オンチップ・トランスポンダ100に対する遠隔トランスポンダ800の近接度に無関係に、オンチップ・トランスポンダ100によって要求される特定の電圧レベルの電力信号602を形成する。電力信号602は、電力線604,606,608を介してA/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500に送り出される。センサ基準電源640は、フィルタ630に接続されており、フィルタ630からDC電圧信号632を受信し、センサ・アセンブリ200に電力を供給するセンサ基準電圧信号642を生成するように構成される。
手短に図7を参照すると、オンチップ・トランスポンダ100に含まれてもよいRF受信機700のブロック図が示される。一般に、RF受信機700は、RF受信機700によって復号されるスキャナ信号882を受信し、データについての要求が行われたことをオンチップ・トランスポンダ100に報知する。復号データは、どのデータが送出されるべきか、また、何時データを送出すべきかについて、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500に知らせる。一般に、RF受信機700は、RF送信機500によって実施されるすべての送信機工程を逆に行う。RF受信機700の下位要素は、RF受信機アンテナ701、SAWフィルタ710、第1RF増幅器720、SAW遅延730、第2RF増幅器740、パルス発生器750、および検出器−フィルタ790を含む。RF受信機アンテナ701は、遠隔トランスポンダ800からスキャナ信号882を受信するように構成される。SAWフィルタ710は、RF受信機アンテナ701に接続されており、RF受信機アンテナ701からスキャナ信号882を受信し、RF受信機700の動作をオーバドライブするか、または、動作に干渉する場合がある、好ましくない信号からなるスキャナ信号882をフィルタリングするように構成される。
SAWフィルタ710は、スキャナ信号882に応答してフィルタリング済みスキャナ信号712を生成する。フィルタリング済みスキャナ信号712は、フィルタリング後に
弱い場合があり、したがって、復調回路要素が検出することができるレベルまで、第1RF増幅器720によってブーストされる(すなわち増幅される)。復調要素は、図7に示すように接続された、SAW遅延730、第2RF増幅器740、およびパルス発生器750からなる。一般に、復調要素は、協働して、スキャナ信号882に含まれるデータを再生する。第1RF増幅器720は、SAWフィルタ710に接続されており、SAWフィルタ710からフィルタリング済みスキャナ信号712を受信し、フィルタリング済みスキャナ信号712に応答して第1増幅済みRF信号722を生成するように構成される。SAW遅延730は、第1RF増幅器720に接続されており、第1RF増幅器720から第1増幅済みRF信号722を受信し、比較信号732を生成するように構成される。
第2RF増幅器740は、SAW遅延730に接続されており、SAW遅延730から比較信号732を受信するように構成される。パルス発生器750は、SAW遅延730に並列に、第1および第2RF増幅器720,740で接続され、第1および第2RF増幅器720,740と協働して、第1および第2RF増幅器720,740のそれぞれの1つの増幅器によって受信される第1および第2パルス信号752,754を生成し、それによって、第2RF増幅器740は第2増幅済みRF信号741を生成する。検出器−フィルタ790は、第2RF増幅器740に接続されており、第2RF増幅器740から第2増幅済みRF信号741を受信し、スキャナ信号882からデータを抽出し、メッセージ信号702を生成するように構成される。メッセージ信号702は、メッセージ/制御線704,706,708を介して、A/Dアセンブリ300、データ・プロセッサ400、およびRF送信機500のテレメトリ・ブロックに送られて、センサ210の読み取りが要求されたことを、ブロックに報知する。メッセージ/制御線704,706,708はまた、バイオセンサ・システム10がセンサ210のうちの複数のセンサを含む構成のために、調整およびセンサ210の選択を運び、送受信する。
ここで図2を参照して、遠隔トランスポンダ800の回路アーキテクチャを詳細に述べる。示すように、遠隔トランスポンダ800は、オンチップ・トランスポンダ100へデータを送信する送信用下位要素ならびにオンチップ・トランスポンダ100によって送信されたデータ信号462に含まれるデータを受信する受信用下位要素を含み得る。送信用下位要素は、発振器860、エンコーダ870、電力送信機880、および送信アンテナ883を含んでもよい。発振器860は、所定周波数のアナログ信号862を生成するように構成される。エンコーダ870は、発振器860に接続されており、アナログ信号862を受信し、変調し、アナログ信号862に応答して符号化信号872を生成するように構成される。電力送信機880は、エンコーダ870に接続されており、符号化信号872を受信し、増幅し、スキャナ信号882を生成するように構成される。送信アンテナ883は、電力送信機880に接続されており、オンチップ・トランスポンダ100に対して無線伝送するために、電力送信機880からスキャナ信号882を受信するように構成される。
やはり図2を参照すると、遠隔トランスポンダ800はまた、オンチップ・トランスポンダ100からのスキャナ信号882の受信を可能にする受信用下位要素も含み得る。遠隔トランスポンダ800の受信用下位要素は、図7に示し、上述したように、RF受信機700と構造的に、また、機能的に同じである。遠隔トランスポンダ800の受信用下位要素は、受信機アンテナ801、SAWフィルタ810、第1RF増幅器820、SAW遅延830、第2RF増幅器840、パルス発生器850、および検出器−フィルタ890を含む。受信機アンテナ801は、RF送信機500から被送信信号502を受信するように構成される。SAWフィルタ810は、受信機アンテナ801に接続されており、遠隔トランスポンダ800の動作に干渉する可能性がある好ましくない信号からなる被送信信号502を受信し、フィルタリングし、被送信信号502に応答してフィルタリング
されたRF信号812を生成するように構成される。第1RF増幅器820は、SAWフィルタ810に接続されており、SAWフィルタ810からフィルタリング済みRF信号812を受信し、フィルタリング済みRF信号812に応答して第1増幅済みRF信号822を生成するように構成される。
SAW遅延は、第1RF増幅器820に接続されており、第1RF増幅器820から第1増幅済みRF信号822を受信し、比較信号832を生成するように構成される。第2RF増幅器は、SAW遅延830に接続されており、SAW遅延830から比較信号832を受信するように構成される。パルス発生器は、SAW遅延830に並列に、第1および第2RF増幅器820,840で接続され、第1および第2RF増幅器820,840と協働して、第1および第2RF増幅器820,840のそれぞれの1つの増幅器によって受信される、第1および第2パルス信号852,854を生成し、それによって、第2RF増幅器840は第2増幅済みRF信号841を生成する。検出器−フィルタ890は、第2RF増幅器に接続されており、第2増幅済みRF信号841を受信し、第2増幅済みRF信号841からデジタル化データを抽出するように構成される。
図2でも示すように、バイオセンサ・システム10は、さらに、データ出力線902,904によって、検出器−フィルタ890に接続されたデコーダ900を含んでもよく、第2増幅済みRF信号841を受信し、第2増幅済みRF信号841からデジタル化データを抽出するように構成される。センサ210のそれぞれの1つのセンサが、患者の生理的パラメータを検知し、生理的パラメータに応答してセンサ信号234を生成するように動作する複数のセンサ210を有するバイオセンサ・システム10の構成の場合、デコーダ900は、データを受信すべき、複数のセンサ信号234の中から1つのセンサ信号を選択するように構成されてもよい。
デコーダ900は、デジタル化データを元の生理的データに戻すように変換するように構成されてもよい。デコーダ900はまた、テレメトリ・メッセージの受信が成功したか否かをオペレータが知らされるように、エラーについて第2増幅済みRF信号841をチェックしてもよい。デコーダ900は、センサ信号234のデータが、手持ち式装置などの遠隔トランスポンダ800上に表示されることを可能にする。別法として、センサ信号234のデータは、コンピュータデータベースに記憶されてもよい。データベースは、テレメトリ・イベントの完全な記録を作成するために、タイム・スタンプおよび患者情報を付加してもよい。他の記録と組み合わせて、傾向および挙動がグラフ化され、解析されてもよい。
ここで図1と図2を参照して、バイオセンサ・システム10の動作を次に全体的に述べる。より具体的には、バイオセンサ・システム10を使用して、生理的パラメータを遠隔で監視する方法が述べられることになり、バイオセンサ・システム10は、大きくは、遠隔トランスポンダ800と、センサ210を有し、患者に埋め込み可能なオンチップ・トランスポンダ100とを備える。この方法は、遠隔トランスポンダ800によって、スキャナ信号882を遠隔で生成し、無線送信する工程を含み、スキャナ信号882は、無線信号電力とテレメトリ・データ要求とを含む。スキャナ信号882は、オンチップ・トランスポンダ100において受信され、そこでスキャナ信号882はフィルタリングされ、増幅され、復調されて、メッセージ信号702が生成される。
次に、無線信号電力が、スキャナ信号882から収集され、スキャナ信号882に応答して電力信号602が生成される。同時に、センサ基準電圧信号642によって給電されることによって、センサ210は、上述した方法で、患者の少なくとも1つの生理的パラメータを検知し、アナログ・センサ信号234を生成する。電力信号602、アナログ・センサ信号234、およびメッセージ信号702は、すべて、A/Dアセンブリ300に
おいて受信され、A/Dアセンブリ300は、次に、アナログ・センサ信号を表すデジタル信号372を生成する。電力信号602、メッセージ信号702、およびデジタル信号372は、次に、データ・プロセッサ400において受信され、データ・プロセッサ400は、変調のためにデジタル信号372を調製する。データ・プロセッサ400は、次に、デジタル信号372を表すデータ信号462を生成する。電力信号602、メッセージ信号702、およびデータ信号462は、RF送信機500において受信され、RF送信機500は、次に、被送信信号502を変調し、増幅し、フィルタリングし、オンチップ・トランスポンダ100から無線送信する。遠隔トランスポンダ800は、次に、オンチップ・トランスポンダ100からの被送信信号502を受信し、患者の生理的パラメータを表すデータを抽出する。
センサ210が2ピン・グルコース・センサ210として構成される図8aを手短に参照すると、この方法は、さらに、正の約0.7ボルトのレベルのセンサ基準電圧信号642を生成する電力信号602を第1精密抵抗器224によって最初に調節することによって、電極アセンブリ201に供給される電力の安定性および精度を高める工程を含んでもよい。センサ基準電圧信号642は、第1精密抵抗器224で受信され、第1精密抵抗器224は、精密センサ基準電圧信号223を生成する。電圧計250は、精密センサ基準電圧信号を監視して、センサ210動作点が確立される。第1演算増幅器220は、電圧計250と協働して、精密センサ基準電圧信号223をバッファリングし、実質的に正確なセンサ基準電圧信号226が生成される。
正確なセンサ基準電圧信号226は、第1端子202に印加されて、患者の血液との反応を引き起こし、反応によって、電流が、先に述べたように、第2端子204から放出される。電流は、第2端子204において、グルコース・レベルに比例して放出する。第2演算増幅器230に並列に接続される、第2精密抵抗器240を調節することによって、グルコース・センサ210に関して、電圧分割器が形成される。第2精密抵抗器240は、第2演算増幅器230と協働して、放出する電流のレベルを測定し、患者のグルコース・レベルに実質的に比例するセンサ信号234を生成する。
図8bを手短に参照すると、センサ210が第1および第2端子202,204と同じ場所に配置される第3端子206を含む3ピン・グルコース・センサ210である場合、グルコース・レベルを検知する方法は、さらに、電流の一部分を第2端子204と別の場所にそらす工程を含む。これは、正確なセンサ基準電圧信号226を第1端子202に印加中に、第3端子206において電流を放出することによって実施される。第3端子206から、電流は、第3電極と第2演算増幅器230の間に接続された補助制御回路260を通って流される。補助制御回路260は、第3端子206から放出する電流量を監視し、制御して、第1端子202に印加された正確なセンサ基準電圧信号226を安定させ、それによって、グルコース・センサ210の動作寿命が増加し得る。
本発明のさらなる変更および改良もまた、当業者に明らかになる場合がある。したがって、本明細書に述べられ、また、示されている要素の特定の組合せは、本発明のある実施形態のみを表すことを意図しており、本発明の精神および範囲内の代替装置を限定するものとしての役割を果たすことを意図しない。
オンチップ・トランスポンダによって送信される信号の内容および継続時間が事前プログラムされている単方向通信動作を可能にする実施形態における、本発明の埋め込み可能なバイオセンサ・システムのセンサ・アセンブリおよびオンチップ・トランスポンダのブロック図。 オンチップ・トランスポンダによって遠隔トランスポンダに対して送信される信号の継続時間および内容、ならびに、その逆が選択可能である全2重通信動作を可能にする実施形態における、バイオセンサ・システムのセンサ・アセンブリおよびオンチップ・トランスポンダのブロック図。 埋め込み可能なバイオセンサ・システムの遠隔トランスポンダのブロック図。 オンチップ・トランスポンダに含まれ得るデータ・プロセッサのブロック図。 オンチップ・トランスポンダに含まれ得る無線周波数(RF)送信機のブロック図。 センサ信号のうちの単一センサ信号を受信するように構成されたバイオセンサ・システムの実施形態についての、オンチップ・トランスポンダに含まれ得るアナログ−デジタル(A/D)アセンブリのブロック図。 複数のセンサから送出されるセンサ信号を選択するスイッチを含んでもよいバイオセンサ・システムの実施形態についての、オンチップ・トランスポンダに含まれ得るA/Dアセンブリのブロック図。 オンチップ・トランスポンダに含まれ得る電力受信機のブロック図。 オンチップ・トランスポンダに含まれ得るRF受信機のブロック図。 センサ・アセンブリに組み込まれてもよい2ピン・グルコース・センサの略図。 センサ・アセンブリに組み込まれてもよい3ピン・グルコース・センサの略図。

Claims (24)

  1. 患者の生理的パラメータが正確に測定されるように、前記患者に埋め込み可能なセンサ・アセンブリに実質的に安定した電圧を供給するようになっているバイオセンサ・システムであって、
    スキャナ信号を前記センサに送信し、前記センサからデータ信号を受信するように構成された遠隔トランスポンダと、
    前記遠隔トランスポンダと無線通信しており、前記スキャナ信号を受信し、前記データ信号を送信するように構成された埋め込み可能なオンチップ・トランスポンダと、からなり、前記オンチップ・トランスポンダは、
    前記患者の前記生理的パラメータを表すセンサ信号を生成するように構成されたセンサと、
    前記スキャナ信号を前記遠隔トランスポンダから受信し、前記オンチップ・トランスポンダを給電する電力信号を生成するように構成された電力受信機と、
    前記電力受信機と前記センサとに接続されており、前記電力信号と前記センサ信号とをそれぞれ受信し、前記電力信号と前記センサ信号とに応答してデジタル信号を生成するように構成されたアナログ−デジタル(A/D)アセンブリと、
    前記A/Dアセンブリと前記電力受信機とに接続されており、前記電力信号と前記デジタル信号とをそれぞれ受信し、前記電力信号と前記デジタル信号とに応答してデータ信号を生成するように構成されたデータ・プロセッサと、
    前記電力受信機と前記データ・プロセッサとに接続されており、前記電力信号と前記データ信号とをそれぞれ受信し、前記データ信号を、変調し、増幅し、フィルタリングし、送信するように構成されたRF送信機とを備え、
    前記電力受信機は、前記生理的パラメータの正確な測定のために、前記センサに、実質的に偏位しないセンサ基準電圧を供給するように構成され、前記遠隔トランスポンダは、前記RF送信機から前記データ信号を受信し、前記生理的パラメータを表すデータを抽出するように構成される、バイオセンサ・システム。
  2. 前記センサは、前記患者の血液と流体連通する電極アセンブリを有しており、前記患者の血液のグルコース・レベルを測定するように構成されたグルコース・センサであり、
    前記センサ基準電圧は、正の約0.7ボルトの実質的に一定の値で、前記電極アセンブリに供給される請求項1に記載のバイオセンサ・システム。
  3. 前記グルコース・センサは、前記電極アセンブリが前記患者の血液と流体連通する第1および第2端子を有する2ピン・グルコース・センサであり、前記グルコース・センサはさらに、
    前記電力受信機に接続されており、前記グルコース・センサの励起のために、前記電力受信機から前記センサ基準電圧を受信するように構成された第1精密抵抗器と、
    前記第1精密抵抗器に接続されており、前記第1精密抵抗器から前記センサ基準電圧を受信し、前記センサ基準電圧に応答して精密センサ基準電圧を生成するように構成された第1演算増幅器と、
    前記第1演算増幅器と前記第1精密抵抗器とに接続されており、前記精密センサ基準電圧を監視し、センサ動作点を確立するように構成された電圧計と、前記第1演算増幅器および前記電圧計は、前記精密センサ基準電圧をバッファリングし、実質的に正確なセンサ基準電圧を前記第1端子に印加するように協働することと、
    前記第2端子に接続されており、前記第1端子に印加される前記正確なセンサ基準電圧に応答して、前記第2端子から放出される電流を受信するように構成された第2演算増幅器と、
    前記第2演算増幅器に接続されており、前記患者の血液の前記グルコース・レベルに実質的に比例するセンサ信号を生成するように、前記第2演算増幅器と協働する調節可能
    な第2精密抵抗器と、
    を含む請求項2に記載のバイオセンサ・システム。
  4. 前記グルコース・センサは、前記電極アセンブリが、前記第1および第2端子と同じ場所に配置され、前記患者の血液と流体連通する第3端子をさらに含む3ピン・グルコース・センサであり、前記グルコース・センサはさらに、
    前記第3端子と前記第2演算増幅器との間に接続されており、前記第3端子から放出される電流量を監視および制御するように構成された補助制御回路を含み、
    前記第3端子は、前記グルコース・センサの動作寿命が長くなるように、前記第1端子に印加される前記正確なセンサ基準電圧の印加中に、前記第2電極と別の場所に電流をそらすように構成される請求項3に記載のバイオセンサ・システム。
  5. 患者の生理的パラメータが正確に測定されるように、前記患者に埋め込み可能なセンサ・アセンブリに実質的に安定した電圧を供給するようになっているバイオセンサ・システムであって、
    スキャナ信号を前記センサに送信し、前記センサからデータ信号を受信するように構成された遠隔トランスポンダと、
    前記遠隔トランスポンダと無線通信しており、前記スキャナ信号を受信し、前記データ信号を送信するように構成された埋め込み可能なオンチップ・トランスポンダと、からなり、前記オンチップ・トランスポンダは、
    前記患者の前記生理的パラメータを表すセンサ信号を生成するように構成されたセンサと、
    前記遠隔トランスポンダから前記スキャナ信号を受信し、前記スキャナ信号を、フィルタリングし、増幅し、復調し、前記オンチップ・トランスポンダを制御するためのメッセージ信号を生成するように構成された無線周波数(RF)受信機と、
    前記スキャナ信号を前記遠隔トランスポンダから受信し、前記オンチップ・トランスポンダを給電する電力信号を生成するように構成された電力受信機と、
    前記電力受信機、前記RF受信機、および前記センサに接続されており、前記電力信号、前記センサ信号、および前記メッセージ信号をそれぞれ受信し、前記電力信号、前記センサ信号、および前記メッセージ信号に応答してデジタル信号を生成するように構成されたアナログ−デジタル(A/D)アセンブリと、
    前記A/Dアセンブリ、前記電力受信機、および前記RF受信機に接続されており、前記電力信号、前記デジタル信号、および前記メッセージ信号をそれぞれ受信し、前記電力信号、前記デジタル信号、および前記メッセージ信号に応答してデータ信号を生成するように構成されたデータ・プロセッサと、
    前記電力受信機、前記データ・プロセッサ、および前記RF受信機に接続されており、前記電力信号、前記データ信号、および前記メッセージ信号をそれぞれ受信し、前記データ信号を、変調し、増幅し、フィルタリングし、送信するように構成されたRF送信機とを備え、
    前記電力受信機は、前記生理的パラメータの正確な測定のために、前記センサに、実質的に偏位しないセンサ基準電圧を供給するように構成され、前記遠隔トランスポンダは、前記RF送信機から前記データ信号を受信し、前記生理的パラメータを表すデータを抽出するように構成されるバイオセンサ・システム。
  6. 前記センサは、前記患者の血液と流体連通する電極アセンブリを有しており、前記患者の血液のグルコース・レベルを測定するように構成されたグルコース・センサであり、
    前記センサ基準電圧は、正の約0.7ボルトの実質的に一定の値で、前記電極アセンブリに供給される請求項5に記載のバイオセンサ・システム。
  7. 前記グルコース・センサは、前記電極アセンブリが前記患者の血液と流体連通する第1
    および第2端子を有する2ピン・グルコース・センサであり、前記グルコース・センサはさらに、
    前記電力受信機に接続されており、前記グルコース・センサの励起のために、前記電力受信機から前記センサ基準電圧を受信するように構成された第1精密抵抗器と、
    前記第1精密抵抗器に接続されており、前記第1精密抵抗器から前記センサ基準電圧を受信し、前記センサ基準電圧に応答して精密センサ基準電圧を生成するように構成された第1演算増幅器と、
    前記第1演算増幅器と前記第1精密抵抗器に接続されており、前記精密センサ基準電圧を監視し、センサ動作点を確立するように構成された電圧計と、前記第1演算増幅器および前記電圧計は、前記精密センサ基準電圧をバッファリングし、実質的に正確なセンサ基準電圧を前記第1端子に印加するように協働することと、
    前記第2端子に接続されており、前記第1端子に印加される前記正確なセンサ基準電圧に応答して、前記第2端子から放出される電流を受信するように構成された第2演算増幅器と、
    前記第2演算増幅器に接続されており、前記患者の血液の前記グルコース・レベルに実質的に比例するセンサ信号を生成するように、前記第2演算増幅器と協働する調節可能な第2精密抵抗器と、
    を含む請求項6に記載のバイオセンサ・システム。
  8. 前記グルコース・センサは、前記電極アセンブリが、前記第1および第2端子と同じ場所に配置され、前記患者の血液と流体連通する第3端子をさらに含む3ピン・グルコース・センサであり、前記グルコース・センサはさらに、
    前記第3端子と前記第2演算増幅器との間に接続されており、前記第3端子から放出される電流量を監視し、制御するように構成された補助制御回路を含み、
    前記第3端子は、前記グルコース・センサの動作寿命が長くなるように、前記第1端子に印加される前記正確なセンサ基準電圧の印加中に、前記第2電極と別の場所に電流をそらすように構成される請求項7に記載のバイオセンサ・システム。
  9. 複数のセンサをさらに含み、前記センサのうちのそれぞれ1つのセンサは、前記患者の明瞭な生理的パラメータを検知し、前記明瞭な生理的パラメータを表すセンサ信号を生成するように動作する請求項5に記載のバイオセンサ・システム。
  10. 前記RF受信機は、前記センサのうちの1つまたは複数のセンサからのデータについての要求を調整して、前記データを前記遠隔トランスポンダにその後送信するように構成される請求項9に記載のバイオセンサ・システム。
  11. 前記データ・プロセッサは、前記センサ信号がそこから発生する前記センサを識別するために、デジタル信号にプリセット識別コードを割り当てるように構成される請求項10に記載のバイオセンサ・システム。
  12. 前記A/Dアセンブリは、
    前記バイオセンサに接続されており、前記バイオセンサから前記センサ信号を受信し、前記センサ信号に応答してフィルタリング済み信号を生成するように構成されたプロセッサ−フィルタと、
    前記プロセッサ−フィルタに接続されており、前記プロセッサ−フィルタから前記フィルタリング済み信号を受信し、前記フィルタリング済み信号に応答して増幅済み信号を生成するように構成された増幅器と、
    前記電力受信機に接続されており、前記電力受信機から前記電力信号を受信し、前記電力信号に応答して、正規化済み電圧信号を生成するように構成された電圧比較器と、
    前記増幅器と前記電圧比較器とに接続されており、前記増幅器と前記電圧比較器とから
    前記増幅済み信号および前記正規化済み信号のそれぞれの1つの信号を受信し、前記増幅済み信号および前記正規化済み信号のそれぞれの1つの信号に応答して、変換器信号を生成するように構成されたA/D変換器と、
    前記A/D変換器に接続されており、前記A/D変換器から前記変換器信号を受信し、前記変換器信号に応答して論理信号を生成するように構成されたコバート論理装置と、
    前記RF受信機と双方向通信し、前記コバート論理装置に接続されたコントローラであって、前記メッセージ信号と前記論理信号を受信し、前記メッセージ信号と前記論理信号に応答して前記デジタル信号をその後生成するために、前記A/D変換器を前記データ・プロセッサと同期させるように構成されたコントローラと、請求項5に記載のバイオセンサ・システム。
  13. 複数のセンサをさらに含み、前記センサのうちのそれぞれ1つのセンサは、前記患者の明瞭な生理的パラメータを検知し、前記明瞭な生理的パラメータを表すセンサ信号を生成するように動作し、
    前記A/Dアセンブリは、前記コントローラに接続されたスイッチをさらに含み、前記コントローラは、前記メッセージ信号に応答し、前記スイッチが、センサ信号の中から選択し、前記センサ信号を前記プロセッサフィルタへその後送信するようにさせるよう動作する請求項12に記載のバイオセンサ・システム。
  14. 前記データ・プロセッサは、
    前記A/Dアセンブリに接続されており、前記A/Dアセンブリからの前記デジタル化信号を受信し、好ましくないノイズを除去し、前記好ましくないノイズに応答してフィルタリング済み信号を生成するように構成された信号フィルタと、
    前記信号フィルタに接続されており、前記フィルタリング済み信号を受信し、前記フィルタリング済み信号に応答して増幅済み信号を生成するように構成された増幅器と、
    前記RF受信機と前記電力受信機に接続されており、前記RF受信機と前記電力受信機から前記メッセージ信号と前記電力信号のそれぞれの1つの信号を受信し、前記メッセージ信号と前記電力信号のそれぞれの1つの信号に応答してゲート制御信号を生成するように構成されたプログラム・カウンタと、
    前記プログラム・カウンタに接続されており、前記プログラム・カウンタから前記ゲート制御信号を受信し、前記ゲート制御信号に応答して割り込み要求信号を生成するように構成された割り込み要求装置と、
    前記信号フィルタ、前記増幅器、および前記割り込み要求装置に接続されており、前記信号フィルタ、前記増幅器、および前記割り込み要求装置から前記フィルタリング済み信号、前記増幅済み信号、および前記ゲート制御信号のそれぞれの1つの信号を受信し、前記フィルタリング済み信号、前記増幅済み信号、および前記ゲート制御信号のそれぞれの1つの信号に応答して、符号化信号を生成するように構成された計算器と、
    前記計算器に接続されており、前記計算器から前記符号化信号を受信し、前記符号化信号に応答して前記データ信号を生成するように構成されたデジタル・フィルタと、
    を含む請求項13に記載のバイオセンサ・システム。
  15. 前記RF送信機は、
    前記データ・プロセッサに接続されており、前記データ・プロセッサから前記データ信号を受信して、高周波数スペクトル成分をフィルタリング除去し、前記データ信号に応答してフィルタリング済みデータ信号を生成するように構成されたデータ入力フィルタと、
    前記電力受信機、前記RF受信機、および前記データ入力フィルタに接続されており、前記電力受信機、前記RF受信機、および前記データ入力フィルタから前記メッセージ信号、前記電力信号、および前記フィルタリング済みデータ信号のそれぞれの1つの信号を受信し、前記フィルタリング済みデータ信号の振幅を変えることによって前記フィルタリング済みデータ信号をパルス・コード変調し、前記フィルタリング済みデータ信号に応答
    して第1および第2変調済み信号を生成するように構成された変調器と、
    前記変調器に接続されており、前記変調器から前記1変調済み信号を受信するように構成された第1送信機増幅器と、
    前記第1送信機増幅器と協働し、無線伝送の所望の周波数で第1増幅済み信号を作成する送信機フィルタと、
    前記変調器と前記第1送信機増幅器に接続されており、前記変調器と前記第1送信機増幅器から前記第2変調済み信号と前記第1増幅済み信号のそれぞれの1つの信号を受信し、前記遠隔トランスポンダに対して伝送するための所望の電力レベルを有する第2増幅済み信号を生成するように構成された第2送信機増幅器と、
    前記第2送信機増幅器に接続されており、前記第2増幅済み信号を受信し、前記第2増幅済み信号から好ましくない調波を除去し、前記第2増幅済み信号に応答して、被送信信号を生成するように構成された表面音響波(SAW)フィルタと,
    前記SAWフィルタに接続されており、前記遠隔トランスポンダの受信アンテナによる受信のために、前記被送信信号を放射するように構成されたRF送信機アンテナと、
    を含む請求項5に記載のバイオセンサ・システム。
  16. 前記電力受信機は、
    前記RF受信機アンテナに接続されており、前記RF受信機アンテナから前記スキャナ信号を受け取り、前記スキャナ信号に応答して交流(AC)電圧信号を生成するように構成された同調発振器と、
    前記同調発振器に接続されており、前記同調発振器から前記AC電圧信号を受信し、前記AC電圧信号に応答して全体に粗い直流(DC)電圧信号を生成するように構成された整流器と、
    前記整流器に接続されており、前記整流器から前記直流電圧信号を受信するように構成されたフィルタと、前記フィルタは、実質的に平滑なDC電圧信号を放出するために、前記全体に粗いDC電圧信号の複数周期からのエネルギーを格納するように構成されたコンデンサを有することと、
    前記フィルタに接続されており、前記フィルタから前記DC電圧信号を受信し、第1電圧信号を生成して、前記A/Dアセンブリ、前記データ・プロセッサ、および前記RF送信機を給電するように構成された第1レギュレータと、
    前記フィルタに接続されており、前記フィルタから前記DC電圧信号を受信し、前記A/Dアセンブリ、前記データ・プロセッサ、および前記RF送信機を給電する第2電圧信号を生成するように構成された第2レギュレータと、
    前記フィルタに接続されており、前記フィルタから前記DC電圧信号を受信し、前記センサ・アセンブリに給電するセンサ基準電圧信号を生成するように構成されたセンサ基準電源と、
    を含む請求項5に記載のバイオセンサ・システム。
  17. 前記RF受信機は、
    前記遠隔トランスポンダから前記スキャナ信号を受信するように構成されたRF受信機アンテナと、
    前記RF受信機アンテナに接続されており、前記RF受信機アンテナから前記スキャナ信号を受信し、好ましくない信号からなる前記スキャナ信号をフィルタリングし、前記スキャナ信号に応答してフィルタリング済みスキャナ信号を生成するように構成された表面音響波(SAW)フィルタと、
    前記SAWフィルタに接続されており、前記SAWフィルタから前記フィルタリング済みスキャナ信号を受信し、前記フィルタリング済みスキャナ信号に応答して第1増幅済みスキャナ信号を生成するように構成された第1RF増幅器と、
    前記第1RF増幅器に接続されており、前記第1RF増幅器から前記第1増幅済みスキャナ信号を受信し、比較信号を生成するように構成されたSAW遅延と、
    前記SAW遅延に接続されており、前記SAW遅延から前記比較信号を受信するように構成された第2RF増幅器と、
    前記SAW遅延に並列に、前記第1および第2RF増幅器において接続されており、前記第1および第2RF増幅器と協働して、前記第1および第2RF増幅器のそれぞれの1つの増幅器によって受信される第1および第2パルス信号を生成し、それによって、前記第2RF増幅器が第2増幅済みRF信号を生成する、パルス発生器と、
    前記第2RF増幅器に接続されており、前記第2RF増幅器から前記第2増幅済みRF信号を受信し、前記メッセージ信号を生成するように構成された検出器−フィルタと、
    を含む請求項5に記載のバイオセンサ・システム。
  18. 前記遠隔トランスポンダは、
    所定の周波数でアナログ信号を生成するように構成された発振器と、
    前記発振器に接続されており、前記アナログ信号を受信し、変調し、前記アナログ信号に応答して符号化信号を生成するように構成されたエンコーダと、
    前記エンコーダに接続されており、前記符号化信号を受信し、増幅し、前記スキャナ信号を生成するように構成された電力送信機と、
    前記電力送信機に接続されており、前記オンチップ・トランスポンダに対する無線伝送のために前記電力送信機から前記スキャナ信号を受信するように構成された送信アンテナと、
    を含む請求項5に記載のバイオセンサ・システム。
  19. 前記遠隔トランスポンダは、
    前記RF送信機から前記データ信号を受信するように構成された受信アンテナと、
    前記受信アンテナに接続されており、前記遠隔トランスポンダと干渉する可能性がある好ましくない信号からなる前記データ信号を受信し、フィルタリングし、好ましくない信号からなる前記データ信号に応答してフィルタリング済みデータ信号を生成するように構成された表面音響波(SAW)フィルタと、
    前記SAWフィルタに接続されており、前記SAWフィルタから前記フィルタリング済みデータ信号を受信し、前記フィルタリング済みデータ信号に応答して第1増幅済みデータ信号を生成するように構成された第1RF増幅器と、
    前記第1RF増幅器に接続されており、前記第1RF増幅器から前記第1増幅済みデータ信号を受信し、比較信号を生成するように構成されたSAW遅延と、
    前記SAW遅延に接続されており、前記SAW遅延から前記比較信号を受信するように構成された第2RF増幅器と、
    前記SAW遅延に並列に、前記第1および第2RF増幅器において接続されており、前記第1および第2RF増幅器と協働して、前記第1および第2RF増幅器のそれぞれの1つの増幅器によって受信される第1および第2パルス信号を生成し、それによって、前記第2RF増幅器が第2増幅済みRF信号を生成する、パルス発生器と、
    前記第2RF増幅器に接続されており、前記第2増幅済みRF信号を受信して、前記第2増幅済みRF信号からデジタル化データを抽出するように構成された検出器−フィルタと、
    を含む請求項18に記載のバイオセンサ・システム。
  20. 前記検出器−フィルタに接続されており、前記第2増幅済みRF信号を受信して、前記第2増幅済みRF信号からデジタル化データを抽出するように構成されたデコーダをさらに含む請求項19に記載のバイオセンサ・システム。
  21. 複数のセンサをさらに含み、前記センサのうちのそれぞれ1つのセンサは、前記患者の明瞭な生理的パラメータを検知すると共に前記明瞭な生理的パラメータを表すセンサ信号を生成するように動作し、
    前記デコーダは、前記複数のセンサのうちの、データを受信すべき1つまたは複数のセンサを選択するように構成される請求項20に記載のバイオセンサ・システム。
  22. 遠隔トランスポンダおよび患者に埋め込み可能なセンサを有するオンチップ・トランスポンダからなるバイオセンサ・システムを使用して生理的パラメータを遠隔で監視する方法であって、
    a.前記遠隔トランスポンダによって、無線信号電力とテレメトリ・データ要求を含むスキャナ信号を、遠隔で生成し、無線で送信する工程と、
    b.前記オンチップ・トランスポンダにおいて、前記スキャナ信号を受信し、前記スキャナ信号に応答してメッセージ信号を生成するように、前記スキャナ信号を、フィルタリングし、増幅し、復調する工程と、
    c.前記スキャナ信号から前記無線信号電力を収集し、前記スキャナ信号に応答して、電力信号を生成する工程と、
    d.前記センサにおいて、前記患者の少なくとも1つの生理的パラメータを検知し、前記少なくとも1つの生理的パラメータに応答してアナログ・センサ信号を生成する工程と、
    e.アナログ−デジタル(A/D)アセンブリにおいて、前記電力信号、前記アナログ・センサ信号、および前記メッセージ信号を受信し、前記アナログ・センサ信号を表すデジタル信号を生成する工程と、
    f.データ・プロセッサにおいて、前記電力信号、前記メッセージ信号、および前記デジタル信号を受信し、前記デジタル信号を表すデータ信号を変調し、生成するために、前記デジタル信号を調製する工程と、
    g.RF送信機において、前記電力信号、前記メッセージ信号、および前記データ信号を受信し、前記データ信号を、変調し、増幅し、フィルタリングし、無線送信する工程と、
    h.前記遠隔トランスポンダにおいて前記データ信号を受信し、前記患者の前記生理的パラメータを表すデータを抽出する工程と、を含む方法。
  23. 前記センサは、前記患者のグルコース・レベルを検知するために、第1および第2端子が前記患者の血液と流体連通する電極アセンブリを有する2ピン・グルコース・センサであり、工程(d)はさらに、
    前記グルコース・センサを励起するために、正の約0.7ボルトのセンサ基準電圧を生成するように第1精密抵抗器によって前記電力信号を調節する工程と、
    前記センサ基準電圧を第1演算増幅器において受信し、精密センサ基準電圧を生成する工程と、
    センサ動作点を確立するために、前記第1演算増幅器と前記第1精密抵抗器に接続された電圧計によって、前記精密センサ基準電圧を監視する工程と、
    実質的に正確なセンサ基準電圧を生成するために、前記電圧計と協働して、前記第1演算増幅器によって前記精密センサ基準電圧をバッファリングする工程と、
    前記第1および第2端子における、前記患者の血液との反応に応答して、前記第2端子から電流が放出されるように、前記第1端子に前記実質的に正確なセンサ基準電圧を印加する工程と、
    前記第2演算増幅器において、前記患者の血液の前記グルコース・レベルに比例する前記放出電流を受信する工程と、
    前記グルコース・センサによって電圧分割器を形成するために、前記第2演算増幅器に接続された第2精密抵抗器を調節する工程と、
    前記第2演算増幅器と協働して、前記第2精密抵抗器によって前記放出電流を測定する工程と、
    前記グルコース・レベルに実質的に比例する前記センサ信号を生成する工程と、を含む請求項22に記載の方法。
  24. 前記センサは、前記電極アセンブリが、前記第1および第2端子と同じ場所に配置され、前記患者の血液と流体連通する第3端子をさらに含む3ピン・グルコース・センサであり、工程(d)はさらに、
    前記第1端子に対する前記実質的に正確なセンサ基準電圧の印加中に、前記第3端子において電流を放出することによって、前記第2端子と別の場所に前記電流の一部分をそらす工程と、
    前記第3端子と前記第2演算増幅器との間に接続された補助制御回路において、前記放出電流を受け取る工程と、
    前記第1端子に印加される前記実質的に正確なセンサ基準電圧を安定化し、前記グルコース・センサの動作寿命を増加させるために、前記第3端子から放出する電流量を監視し、制御する工程と、を含む請求項23に記載の方法。
JP2007527472A 2004-05-20 2005-05-20 埋め込み式バイオセンサ・システム Pending JP2007537841A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/849,614 US7125382B2 (en) 2004-05-20 2004-05-20 Embedded bio-sensor system
PCT/US2005/017723 WO2005112744A1 (en) 2004-05-20 2005-05-20 Embedded bio-sensor system

Publications (1)

Publication Number Publication Date
JP2007537841A true JP2007537841A (ja) 2007-12-27

Family

ID=35376122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007527472A Pending JP2007537841A (ja) 2004-05-20 2005-05-20 埋め込み式バイオセンサ・システム

Country Status (8)

Country Link
US (4) US7241266B2 (ja)
EP (1) EP1750577A4 (ja)
JP (1) JP2007537841A (ja)
CN (1) CN101022760A (ja)
AU (1) AU2005244973A1 (ja)
CA (1) CA2563953A1 (ja)
MX (1) MXPA06012810A (ja)
WO (1) WO2005112744A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516628A (ja) * 2011-04-18 2014-07-17 ノビオセンス ビー.ブイ. バイオセンサー
KR101925424B1 (ko) 2016-11-04 2018-12-06 (주)제이디 웨이퍼에 임베디드된 공정 모니터링 회로
JP2019503831A (ja) * 2016-08-08 2019-02-14 ウェルビーイングソフト インク. 複数の生体情報を測定する携帯用複合センサー装置および測定方法
JP2021036228A (ja) * 2019-08-02 2021-03-04 華廣生技股▲ふん▼有限公司Bionime Corporation マイクロバイオセンサー及びその測定方法
JP2021535783A (ja) * 2018-08-31 2021-12-23 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト モジュール式移植可能医療装置

Families Citing this family (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US7553295B2 (en) 2002-06-17 2009-06-30 Iradimed Corporation Liquid infusion apparatus
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc ELECTRODE SYSTEMS FOR ELECTROCHEMICAL DETECTORS
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US20100168542A1 (en) 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
DE602004029092D1 (de) 2003-12-05 2010-10-21 Dexcom Inc Kalibrationsmethoden für einen kontinuierlich arbeitenden analytsensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc METHOD AND SYSTEM FOR PROVIDING DATA COMMUNICATION IN A CONTINUOUS BLOOD SUGAR MONITORING AND MANAGEMENT SYSTEM
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8019413B2 (en) 2007-03-19 2011-09-13 The Invention Science Fund I, Llc Lumen-traveling biological interface device and method of use
US7850676B2 (en) 2004-04-19 2010-12-14 The Invention Science Fund I, Llc System with a reservoir for perfusion management
US8337482B2 (en) 2004-04-19 2012-12-25 The Invention Science Fund I, Llc System for perfusion management
US7998060B2 (en) 2004-04-19 2011-08-16 The Invention Science Fund I, Llc Lumen-traveling delivery device
US8353896B2 (en) 2004-04-19 2013-01-15 The Invention Science Fund I, Llc Controllable release nasal system
US8361013B2 (en) 2004-04-19 2013-01-29 The Invention Science Fund I, Llc Telescoping perfusion management system
US7857767B2 (en) 2004-04-19 2010-12-28 Invention Science Fund I, Llc Lumen-traveling device
US9011329B2 (en) 2004-04-19 2015-04-21 Searete Llc Lumenally-active device
US8092549B2 (en) 2004-09-24 2012-01-10 The Invention Science Fund I, Llc Ciliated stent-like-system
US9801527B2 (en) 2004-04-19 2017-10-31 Gearbox, Llc Lumen-traveling biological interface device
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US7241266B2 (en) * 2004-05-20 2007-07-10 Digital Angel Corporation Transducer for embedded bio-sensor using body energy as a power source
CA2858901C (en) 2004-06-04 2024-01-16 Carolyn Anderson Diabetes care host-client architecture and data management system
US7713574B2 (en) 2004-07-13 2010-05-11 Dexcom, Inc. Transcutaneous analyte sensor
US7857760B2 (en) 2004-07-13 2010-12-28 Dexcom, Inc. Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8336553B2 (en) * 2004-09-21 2012-12-25 Medtronic Xomed, Inc. Auto-titration of positive airway pressure machine with feedback from implantable sensor
WO2006055705A1 (en) * 2004-11-19 2006-05-26 Sensormatic Electronics Corporation Technique and hardware for communicating with backscatter radio frequency identification readers
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20070149162A1 (en) * 2005-02-24 2007-06-28 Powercast, Llc Pulse transmission method
JP2008532468A (ja) * 2005-02-24 2008-08-14 パワーキャスト コーポレイション 電力送信の方法、装置及びシステム
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
EP1889198B1 (en) 2005-04-28 2014-11-26 Proteus Digital Health, Inc. Pharma-informatics system
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US20060276702A1 (en) * 2005-06-03 2006-12-07 Mcginnis William Neurophysiological wireless bio-sensor
EP1924211B1 (en) 2005-08-23 2019-12-18 Smith & Nephew, Inc. Telemetric orthopaedic implant
US20080314395A1 (en) 2005-08-31 2008-12-25 Theuniversity Of Virginia Patent Foundation Accuracy of Continuous Glucose Sensors
EP1920418A4 (en) 2005-09-01 2010-12-29 Proteus Biomedical Inc IMPLANTABLE WIRELESS COMMUNICATION SYSTEMS
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US8211088B2 (en) * 2005-10-14 2012-07-03 Boston Scientific Scimed, Inc. Catheter with controlled lumen recovery
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
KR100653199B1 (ko) * 2005-11-18 2006-12-05 삼성전자주식회사 로컬 신호를 이용하여 수신 신호에서 리키지 성분을제거하는 rf 수신 장치 및 방법
US7774038B2 (en) 2005-12-30 2010-08-10 Medtronic Minimed, Inc. Real-time self-calibrating sensor system and method
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
PL3756537T3 (pl) * 2006-02-22 2024-02-19 Dexcom, Inc. Czujnik analitów
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US9220917B2 (en) 2006-04-12 2015-12-29 The Invention Science Fund I, Llc Systems for autofluorescent imaging and target ablation
US20120035540A1 (en) 2006-04-12 2012-02-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Event-based control of a lumen traveling device
EP3367386A1 (en) 2006-05-02 2018-08-29 Proteus Digital Health, Inc. Patient customized therapeutic regimens
DE102006020866A1 (de) * 2006-05-04 2007-11-15 Siemens Ag Analyseeinheit, Biosensor und Verfahren für den Nachweis oder die Konzentrationsbestimmung eines Analyten
US20070279217A1 (en) * 2006-06-01 2007-12-06 H-Micro, Inc. Integrated mobile healthcare system for cardiac care
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8917178B2 (en) 2006-06-09 2014-12-23 Dominic M. Kotab RFID system and method for storing information related to a vehicle or an owner of the vehicle
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US7832647B2 (en) * 2006-06-30 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7724145B2 (en) * 2006-07-20 2010-05-25 Intelleflex Corporation Self-charging RFID tag with long life
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP2087589B1 (en) 2006-10-17 2011-11-23 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
US20080092638A1 (en) * 2006-10-19 2008-04-24 Bayer Healthcare Llc Wireless analyte monitoring system
JP5916277B2 (ja) 2006-10-25 2016-05-11 プロテウス デジタル ヘルス, インコーポレイテッド 摂取可能な制御活性化識別子
US9658178B2 (en) 2012-09-28 2017-05-23 General Electric Company Sensor systems for measuring an interface level in a multi-phase fluid composition
US9538657B2 (en) 2012-06-29 2017-01-03 General Electric Company Resonant sensor and an associated sensing method
US9589686B2 (en) 2006-11-16 2017-03-07 General Electric Company Apparatus for detecting contaminants in a liquid and a system for use thereof
US10914698B2 (en) 2006-11-16 2021-02-09 General Electric Company Sensing method and system
US9536122B2 (en) 2014-11-04 2017-01-03 General Electric Company Disposable multivariable sensing devices having radio frequency based sensors
US8718193B2 (en) * 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
DE102006056723B3 (de) 2006-12-01 2007-07-19 Dräger Medical AG & Co. KG Medizinisches System mit Überwachungsstation, Respirationsschlauch und Verfahren zum Zuordnen von Patientendaten
US8180093B2 (en) * 2007-01-05 2012-05-15 Apple Inc. Assembly for coupling the housings of an electronic device
US8650925B2 (en) 2007-01-05 2014-02-18 Apple Inc. Extrusion method for fabricating a compact tube with internal features
US20080166006A1 (en) 2007-01-06 2008-07-10 Apple Inc Light diffuser
DE202008018654U1 (de) 2007-01-06 2017-08-29 Apple Inc. Kopfhörerelektronik
EP3840344B1 (en) 2007-01-06 2024-03-06 Apple Inc. An earbud
CN101686800A (zh) 2007-02-01 2010-03-31 普罗秋斯生物医学公司 可摄入事件标记器系统
EP2111661B1 (en) 2007-02-14 2017-04-12 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
EP2063771A1 (en) 2007-03-09 2009-06-03 Proteus Biomedical, Inc. In-body device having a deployable antenna
WO2008112577A1 (en) * 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
US20080242950A1 (en) * 2007-03-30 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational user-health testing
US20090112616A1 (en) * 2007-10-30 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Polling for interest in computational user-health test output
US20090112621A1 (en) * 2007-10-30 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational user-health testing responsive to a user interaction with advertiser-configured content
US8065240B2 (en) 2007-10-31 2011-11-22 The Invention Science Fund I Computational user-health testing responsive to a user interaction with advertiser-configured content
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
ES2817503T3 (es) 2007-04-14 2021-04-07 Abbott Diabetes Care Inc Procedimiento y aparato para proporcionar el procesamiento y control de datos en un sistema de comunicación médica
CA2683962C (en) 2007-04-14 2017-06-06 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9615780B2 (en) 2007-04-14 2017-04-11 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008128210A1 (en) 2007-04-14 2008-10-23 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
WO2008154416A2 (en) * 2007-06-07 2008-12-18 Microchips, Inc. Electrochemical biosensors and arrays
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
WO2008157821A1 (en) 2007-06-21 2008-12-24 Abbott Diabetes Care, Inc. Health monitor
WO2008157820A1 (en) 2007-06-21 2008-12-24 Abbott Diabetes Care, Inc. Health management devices and methods
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8330579B2 (en) 2007-07-05 2012-12-11 Baxter International Inc. Radio-frequency auto-identification system for dialysis systems
US8105282B2 (en) 2007-07-13 2012-01-31 Iradimed Corporation System and method for communication with an infusion device
JP5147321B2 (ja) * 2007-07-19 2013-02-20 パナソニック株式会社 半導体集積回路およびセンサ駆動/測定システム
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
WO2009026289A2 (en) 2007-08-20 2009-02-26 Hmicro, Inc. Wearable user interface device, system, and method of use
US8926509B2 (en) * 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
CN101953021A (zh) * 2007-09-06 2011-01-19 史密夫和内修有限公司 用于与遥测植入物通信的系统和方法
CA2699315A1 (en) * 2007-09-17 2009-03-26 Red Ivory Llc Self-actuating signal producing detection devices and methods
US20100210919A1 (en) * 2007-09-24 2010-08-19 Arie Ariav Method and apparatus for monitoring predetermined parameters in a body
EP4011289A1 (en) 2007-09-25 2022-06-15 Otsuka Pharmaceutical Co., Ltd. In-body device with virtual dipole signal amplification
EP4159114B1 (en) 2007-10-09 2024-04-10 DexCom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8611319B2 (en) * 2007-10-24 2013-12-17 Hmicro, Inc. Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US20110019824A1 (en) 2007-10-24 2011-01-27 Hmicro, Inc. Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
WO2009059203A1 (en) * 2007-11-02 2009-05-07 Edwards Lifesciences Corporation Analyte monitoring system having back-up power source for use in either transport of the system or primary power loss
ES2661739T3 (es) * 2007-11-27 2018-04-03 Proteus Digital Health, Inc. Sistemas de comunicación transcorporal que emplean canales de comunicación
US20090188811A1 (en) 2007-11-28 2009-07-30 Edwards Lifesciences Corporation Preparation and maintenance of sensors
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
ES2840773T3 (es) 2008-03-05 2021-07-07 Otsuka Pharma Co Ltd Sistemas y marcadores de eventos ingeribles de comunicación multimodo
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
EP2262543B1 (en) 2008-04-10 2015-07-08 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
AT505632B1 (de) * 2008-05-14 2009-03-15 Arc Austrian Res Centers Gmbh Verfahren zur datenübertragung
US8429225B2 (en) 2008-05-21 2013-04-23 The Invention Science Fund I, Llc Acquisition and presentation of data indicative of an extent of congruence between inferred mental states of authoring users
US9192300B2 (en) * 2008-05-23 2015-11-24 Invention Science Fund I, Llc Acquisition and particular association of data indicative of an inferred mental state of an authoring user
US8615664B2 (en) * 2008-05-23 2013-12-24 The Invention Science Fund I, Llc Acquisition and particular association of inference data indicative of an inferred mental state of an authoring user and source identity data
US9161715B2 (en) * 2008-05-23 2015-10-20 Invention Science Fund I, Llc Determination of extent of congruity between observation of authoring user and observation of receiving user
US9101263B2 (en) * 2008-05-23 2015-08-11 The Invention Science Fund I, Llc Acquisition and association of data indicative of an inferred mental state of an authoring user
US20090292658A1 (en) * 2008-05-23 2009-11-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Acquisition and particular association of inference data indicative of inferred mental states of authoring users
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
CN102159134B (zh) 2008-07-08 2015-05-27 普罗透斯数字保健公司 可摄取事件标记数据框架
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
WO2010012035A1 (en) * 2008-07-31 2010-02-04 Newcastle Innovation Limited A harmonics-based wireless transmission device and associated method
US8540633B2 (en) * 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
WO2010045385A2 (en) * 2008-10-14 2010-04-22 Proteus Biomedical, Inc. Method and system for incorporating physiologic data in a gaming environment
WO2010057049A2 (en) 2008-11-13 2010-05-20 Proteus Biomedical, Inc. Ingestible therapy activator system and method
JP2012509103A (ja) * 2008-11-18 2012-04-19 プロテウス バイオメディカル インコーポレイテッド 療法調整のための感知システム、デバイス、および方法
US20100140958A1 (en) * 2008-12-04 2010-06-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for powering devices from intraluminal pressure changes
US9631610B2 (en) 2008-12-04 2017-04-25 Deep Science, Llc System for powering devices from intraluminal pressure changes
US9759202B2 (en) 2008-12-04 2017-09-12 Deep Science, Llc Method for generation of power from intraluminal pressure changes
US9353733B2 (en) * 2008-12-04 2016-05-31 Deep Science, Llc Device and system for generation of power from intraluminal pressure changes
US9526418B2 (en) * 2008-12-04 2016-12-27 Deep Science, Llc Device for storage of intraluminally generated power
US9567983B2 (en) * 2008-12-04 2017-02-14 Deep Science, Llc Method for generation of power from intraluminal pressure changes
US8055334B2 (en) 2008-12-11 2011-11-08 Proteus Biomedical, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
TWI503101B (zh) 2008-12-15 2015-10-11 Proteus Digital Health Inc 與身體有關的接收器及其方法
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US20100160756A1 (en) * 2008-12-24 2010-06-24 Edwards Lifesciences Corporation Membrane Layer for Electrochemical Biosensor and Method of Accommodating Electromagnetic and Radiofrequency Fields
CN102365084B (zh) 2009-01-06 2014-04-30 普罗秋斯数字健康公司 药剂递送系统
CA2750158A1 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US8394246B2 (en) * 2009-02-23 2013-03-12 Roche Diagnostics Operations, Inc. System and method for the electrochemical measurement of an analyte employing a remote sensor
US20100213057A1 (en) * 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
GB2480965B (en) 2009-03-25 2014-10-08 Proteus Digital Health Inc Probablistic pharmacokinetic and pharmacodynamic modeling
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
TWI413770B (zh) * 2009-04-24 2013-11-01 Univ Nat Taiwan 無線生醫監測系統
EA201190281A1 (ru) * 2009-04-28 2012-04-30 Протиус Байомедикал, Инк. Высоконадежные проглатываемые отметчики режима и способы их применения
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010127051A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
WO2010127187A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
LT3689237T (lt) 2009-07-23 2021-09-27 Abbott Diabetes Care, Inc. Nuolatinio analitės matavimo sistema ir gamybos būdas
US8939928B2 (en) 2009-07-23 2015-01-27 Becton, Dickinson And Company Medical device having capacitive coupling communication and energy harvesting
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc ANALYTICAL SUBSTANCE MONITORING SYSTEM AND METHODS OF MANAGING ENERGY AND NOISE
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
DK3718922T3 (da) 2009-08-31 2022-04-19 Abbott Diabetes Care Inc Glucoseovervågningssystem og fremgangsmåde
AU2010286917B2 (en) * 2009-08-31 2016-03-10 Abbott Diabetes Care Inc. Medical devices and methods
MX2012003571A (es) * 2009-09-24 2012-04-30 Arkray Inc Metodo y aparato de medicion.
US20110077718A1 (en) * 2009-09-30 2011-03-31 Broadcom Corporation Electromagnetic power booster for bio-medical units
US8736425B2 (en) * 2009-10-30 2014-05-27 General Electric Company Method and system for performance enhancement of resonant sensors
TWI517050B (zh) 2009-11-04 2016-01-11 普羅托斯數位健康公司 供應鏈管理之系統
UA109424C2 (uk) 2009-12-02 2015-08-25 Фармацевтичний продукт, фармацевтична таблетка з електронним маркером і спосіб виготовлення фармацевтичної таблетки
CA2788336C (en) 2010-02-01 2018-05-01 Proteus Digital Health, Inc. Data gathering system
WO2011112753A1 (en) 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
EP2552532A1 (en) 2010-03-24 2013-02-06 Abbott Diabetes Care, Inc. Medical device inserters and processes of inserting and using medical devices
US9597487B2 (en) 2010-04-07 2017-03-21 Proteus Digital Health, Inc. Miniature ingestible device
CN101856218B (zh) * 2010-05-07 2012-11-14 浙江大学 植入式无源无线声表面波传感检测装置
TWI557672B (zh) 2010-05-19 2016-11-11 波提亞斯數位康健公司 用於從製造商跟蹤藥物直到患者之電腦系統及電腦實施之方法、用於確認將藥物給予患者的設備及方法、患者介面裝置
CN101856222A (zh) * 2010-05-21 2010-10-13 上海锐灵电子科技有限公司 植入式无线电子检测装置
US20110295080A1 (en) * 2010-05-30 2011-12-01 Ralink Technology Corporation Physiology Condition Detection Device and the System Thereof
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US11213226B2 (en) 2010-10-07 2022-01-04 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US8542023B2 (en) 2010-11-09 2013-09-24 General Electric Company Highly selective chemical and biological sensors
EP2642983A4 (en) 2010-11-22 2014-03-12 Proteus Digital Health Inc DEVICE INGREABLE WITH PHARMACEUTICAL PRODUCT
US8641610B2 (en) 2010-12-20 2014-02-04 Covidien Lp Access assembly with translating lumens
US8602983B2 (en) 2010-12-20 2013-12-10 Covidien Lp Access assembly having undercut structure
US8696557B2 (en) 2010-12-21 2014-04-15 Covidien Lp Access assembly including inflatable seal member
CN102648845A (zh) * 2011-02-23 2012-08-29 深圳市迈迪加科技发展有限公司 一种睡眠中心跳、呼吸无线自动监测与预警系统
CN107019515B (zh) 2011-02-28 2021-02-26 雅培糖尿病护理公司 显示传感器读数的方法与分析物监测装置及其操作方法
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP2683291B1 (en) 2011-03-11 2019-07-31 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
EP2697650B1 (en) 2011-04-15 2020-09-30 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US9649113B2 (en) 2011-04-27 2017-05-16 Covidien Lp Device for monitoring physiological parameters in vivo
US9238133B2 (en) 2011-05-09 2016-01-19 The Invention Science Fund I, Llc Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
US8690934B2 (en) 2011-05-09 2014-04-08 The Invention Science Fund I, Llc Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
KR101898964B1 (ko) 2011-07-21 2018-09-14 프로테우스 디지털 헬스, 인코포레이티드 모바일 통신 장치, 시스템, 및 방법
US20130046153A1 (en) 2011-08-16 2013-02-21 Elwha LLC, a limited liability company of the State of Delaware Systematic distillation of status data relating to regimen compliance
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
CA2864817A1 (en) * 2012-02-17 2013-08-22 University of Virginia Patent Foundation, d/b/a University of Virginia Licensing & Ventures Group Energy harvesting and control for sensor node
US9024751B2 (en) 2012-04-12 2015-05-05 Elwha Llc Dormant to active appurtenances for reporting information regarding wound dressings
US10130518B2 (en) 2012-04-12 2018-11-20 Elwha Llc Appurtenances including sensors for reporting information regarding wound dressings
US10158928B2 (en) 2012-04-12 2018-12-18 Elwha Llc Appurtenances for reporting information regarding wound dressings
US10226212B2 (en) 2012-04-12 2019-03-12 Elwha Llc Appurtenances to cavity wound dressings
US10265219B2 (en) 2012-04-12 2019-04-23 Elwha Llc Wound dressing monitoring systems including appurtenances for wound dressings
US9084530B2 (en) 2012-04-12 2015-07-21 Elwha Llc Computational methods and systems for reporting information regarding appurtenances to wound dressings
EP2653868A1 (en) 2012-04-18 2013-10-23 NovioSense B.V. Process for making biosensor
EP2869765A1 (en) * 2012-07-09 2015-05-13 California Institute of Technology Implantable vascular system biosensor with grown capillary beds and uses thereof
EP2874886B1 (en) 2012-07-23 2023-12-20 Otsuka Pharmaceutical Co., Ltd. Techniques for manufacturing ingestible event markers comprising an ingestible component
US10598650B2 (en) 2012-08-22 2020-03-24 General Electric Company System and method for measuring an operative condition of a machine
EA030927B1 (ru) 2012-08-22 2018-10-31 Дженерал Электрик Компани Система и способ беспроводного измерения параметров рабочего состояния машины
EP3395252A1 (en) 2012-08-30 2018-10-31 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc METHOD AND DEVICE FOR IMPROVING DELAY CORRECTION FUNCTION DURING IN VIVO MEASUREMENT OF ANALYZ CONCENTRATION WITH ANALYZ CONCENTRATION VARIABILITY AND RANGE DATA
US10684268B2 (en) 2012-09-28 2020-06-16 Bl Technologies, Inc. Sensor systems for measuring an interface level in a multi-phase fluid composition
CN102949760B (zh) * 2012-10-11 2016-10-12 深圳市深迈医疗设备有限公司 智能监护输液泵
MX340182B (es) 2012-10-18 2016-06-28 Proteus Digital Health Inc Aparato, sistema, y metodo para optimizar adaptativamente la disipacion de energia y la energia de difusion en una fuente de energia para un dispositivo de comunicacion.
US9173605B2 (en) * 2012-12-13 2015-11-03 California Institute Of Technology Fabrication of implantable fully integrated electrochemical sensors
US9801541B2 (en) * 2012-12-31 2017-10-31 Dexcom, Inc. Remote monitoring of analyte measurements
TWI659994B (zh) 2013-01-29 2019-05-21 美商普羅托斯數位健康公司 高度可膨脹之聚合型薄膜及包含彼之組成物
KR20150115811A (ko) 2013-02-06 2015-10-14 캘리포니아 인스티튜트 오브 테크놀로지 소형화된 이식가능 전기화학 센서 디바이스들
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
WO2014152034A1 (en) 2013-03-15 2014-09-25 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
CN105188533B (zh) * 2013-04-30 2018-09-14 雅培糖尿病护理公司 用于节能电气装置激活的系统、装置以及方法
EP2999419B1 (en) 2013-05-22 2020-12-23 Covidien LP Apparatus for controlling surgical instruments using a port assembly
EP3005281A4 (en) 2013-06-04 2017-06-28 Proteus Digital Health, Inc. System, apparatus and methods for data collection and assessing outcomes
TWI492739B (zh) * 2013-06-26 2015-07-21 Shuenn Yuh Lee 生理訊號檢測無線監控系統、生理訊號分析端裝置及生理訊號檢測端裝置
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
EP3047618B1 (en) 2013-09-20 2023-11-08 Otsuka Pharmaceutical Co., Ltd. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9577864B2 (en) 2013-09-24 2017-02-21 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US9396428B2 (en) * 2013-11-08 2016-07-19 Gurbinder S Brar Method for anchoring a linear induction generator to living tissue for RFID signal transmission
EP3865063A1 (en) 2014-03-30 2021-08-18 Abbott Diabetes Care, Inc. Method and apparatus for determining meal start and peak events in analyte monitoring systems
US9878138B2 (en) 2014-06-03 2018-01-30 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
WO2016065190A1 (en) 2014-10-23 2016-04-28 Abbott Diabetes Care Inc. Electrodes having at least one sensing structure and methods for making and using the same
CN105266213A (zh) * 2014-11-10 2016-01-27 北京至感传感器技术研究院有限公司 用于检测乳房生理变化的胸罩
WO2016086033A2 (en) * 2014-11-25 2016-06-02 Abbott Diabetes Care Inc. Analyte monitoring systems and related test and monitoring methods
EP3319518A4 (en) 2015-07-10 2019-03-13 Abbott Diabetes Care Inc. SYSTEM, DEVICE AND METHOD FOR DYNAMIC GLUCOSE PROFILE RESPONSE TO PHYSIOLOGICAL PARAMETERS
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US10368788B2 (en) 2015-07-23 2019-08-06 California Institute Of Technology System and methods for wireless drug delivery on command
US9706269B2 (en) * 2015-07-24 2017-07-11 Hong Kong Applied Science and Technology Research Institute Company, Limited Self-powered and battery-assisted CMOS wireless bio-sensing IC platform
WO2017044702A1 (en) 2015-09-11 2017-03-16 Pop Test LLC Therapeutic method and device
US10582284B2 (en) 2015-09-30 2020-03-03 Apple Inc. In-ear headphone
CA3002096C (en) 2015-12-28 2023-08-01 Dexcom, Inc. Systems and methods for remote and host monitoring communications
US11529194B2 (en) * 2016-03-31 2022-12-20 Koninklijke Philips N.V. Wireless position determination
MX2019000888A (es) 2016-07-22 2019-06-03 Proteus Digital Health Inc Percepcion y deteccion electromagnetica de marcadores de evento ingeribles.
US10765807B2 (en) * 2016-09-23 2020-09-08 Insulet Corporation Fluid delivery device with sensor
IL265827B2 (en) 2016-10-26 2023-03-01 Proteus Digital Health Inc Methods for producing capsules with ingestible event markers
US11596330B2 (en) 2017-03-21 2023-03-07 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
CN107296615A (zh) * 2017-08-28 2017-10-27 山东连发医用塑胶制品有限公司 一次性血糖信息自动采集检测系统
US11017892B1 (en) 2017-09-11 2021-05-25 Massachusetts Mutual Life Insurance Company System and method for ingestible drug delivery
EP3700416B1 (en) 2017-10-24 2024-06-26 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11268506B2 (en) 2017-12-22 2022-03-08 Iradimed Corporation Fluid pumps for use in MRI environment
US11647952B2 (en) 2018-08-01 2023-05-16 Flex Ltd. Garment integrated dry electrode for vital signal and electromyography sensing
CN109917311B (zh) * 2019-03-22 2022-05-24 上海联影医疗科技股份有限公司 磁共振多天线射频传输装置和磁共振系统
US11415619B2 (en) * 2019-09-13 2022-08-16 Joe David Watson Digital modulation/demodulation with active monitoring for measurement of power factor and capacitance in high-voltage bushings, transformers, reactors, and other electrical equipment with high-voltage insulation
CN111603176A (zh) * 2020-05-25 2020-09-01 上海梅斯医药科技有限公司 一种半植入式光学血糖监测方法、终端设备和服务器
CN111603175A (zh) * 2020-05-25 2020-09-01 上海梅斯医药科技有限公司 一种皮下半植入式血糖监测方法、终端设备和服务器
US20230248270A1 (en) * 2020-06-24 2023-08-10 Richard Postrel Autonomous bio-powered nano devices for improving health and quality of life
US20230032328A1 (en) * 2021-07-30 2023-02-02 Bank Of America Corporation Apparatus and methods for content-based biometric authentication
US11883028B2 (en) 2021-09-08 2024-01-30 Covidien Lp Systems and methods for post-operative anastomotic leak detection

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US5597534A (en) * 1994-07-05 1997-01-28 Texas Instruments Deutschland Gmbh Apparatus for wireless chemical sensing
US5704352A (en) * 1995-11-22 1998-01-06 Tremblay; Gerald F. Implantable passive bio-sensor
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US5914026A (en) * 1997-01-06 1999-06-22 Implanted Biosystems Inc. Implantable sensor employing an auxiliary electrode
US6239724B1 (en) * 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for telemetrically providing intrabody spatial position
GB9805896D0 (en) * 1998-03-20 1998-05-13 Eglise David Remote analysis system
US6497729B1 (en) * 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
WO2000032095A1 (en) * 1998-11-25 2000-06-08 Ball Semiconductor, Inc. Internal thermometer
WO2000038570A1 (en) * 1998-12-31 2000-07-06 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
WO2000040146A1 (en) * 1999-01-06 2000-07-13 Ball Semiconductor, Inc. Wireless ekg
US6415184B1 (en) * 1999-01-06 2002-07-02 Ball Semiconductor, Inc. Implantable neuro-stimulator with ball implant
GB9907815D0 (en) * 1999-04-06 1999-06-02 Univ Cambridge Tech Implantable sensor
US6546268B1 (en) * 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US20030114769A1 (en) * 1999-08-20 2003-06-19 Capital Tool Company Limited Microminiature radiotelemetrically operated sensors for small animal research
US6811534B2 (en) * 2000-01-21 2004-11-02 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
WO2001065615A2 (en) * 2000-02-23 2001-09-07 Sri International Biologically powered electroactive polymer generators
US6559620B2 (en) * 2001-03-21 2003-05-06 Digital Angel Corporation System and method for remote monitoring utilizing a rechargeable battery
KR100380653B1 (ko) * 2000-09-05 2003-04-23 삼성전자주식회사 회전압축기 조립체
US20020103425A1 (en) * 2000-09-27 2002-08-01 Mault James R. self-contained monitoring device particularly useful for monitoring physiological conditions
US7241266B2 (en) * 2004-05-20 2007-07-10 Digital Angel Corporation Transducer for embedded bio-sensor using body energy as a power source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516628A (ja) * 2011-04-18 2014-07-17 ノビオセンス ビー.ブイ. バイオセンサー
JP2019503831A (ja) * 2016-08-08 2019-02-14 ウェルビーイングソフト インク. 複数の生体情報を測定する携帯用複合センサー装置および測定方法
KR101925424B1 (ko) 2016-11-04 2018-12-06 (주)제이디 웨이퍼에 임베디드된 공정 모니터링 회로
JP2021535783A (ja) * 2018-08-31 2021-12-23 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト モジュール式移植可能医療装置
JP7250904B2 (ja) 2018-08-31 2023-04-03 エフ ホフマン-ラ ロッシュ アクチェン ゲゼルシャフト モジュール式移植可能医療装置
JP2021036228A (ja) * 2019-08-02 2021-03-04 華廣生技股▲ふん▼有限公司Bionime Corporation マイクロバイオセンサー及びその測定方法
JP7162642B2 (ja) 2019-08-02 2022-10-28 華廣生技股▲ふん▼有限公司 マイクロバイオセンサー及びその測定方法

Also Published As

Publication number Publication date
US7297112B2 (en) 2007-11-20
CN101022760A (zh) 2007-08-22
US20080033273A1 (en) 2008-02-07
EP1750577A1 (en) 2007-02-14
US20070038054A1 (en) 2007-02-15
MXPA06012810A (es) 2007-07-30
EP1750577A4 (en) 2007-10-31
AU2005244973A1 (en) 2005-12-01
US7125382B2 (en) 2006-10-24
US7241266B2 (en) 2007-07-10
CA2563953A1 (en) 2005-12-01
WO2005112744A1 (en) 2005-12-01
US20050261563A1 (en) 2005-11-24
US20050261562A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7125382B2 (en) Embedded bio-sensor system
US20220330856A1 (en) Analyte monitoring devices and methods
US7756561B2 (en) Method and apparatus for providing rechargeable power in data monitoring and management systems
US8965477B2 (en) Analyte monitoring device and methods
US6366794B1 (en) Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
EP2108948B1 (en) Biological sample measuring device
RU2683203C2 (ru) Снабженный автономным питанием датчик аналита и использующие его устройства
US8394246B2 (en) System and method for the electrochemical measurement of an analyte employing a remote sensor
US20110184265A1 (en) Method and Apparatus for Providing Notification in Analyte Monitoring Systems
US20070135697A1 (en) Method and apparatus for providing sensor guard for data monitoring and detection systems
KR20060040500A (ko) 생체신호 측정 장치 및 방법
CN110487872A (zh) 一种基于压舌板的电化学生物传感器及其传感方法
JP3552090B2 (ja) 生体信号検出装置
CN116829062A (zh) 自校准葡萄糖监测器
KR20170051716A (ko) 건식전극을 이용한 뇌파측정신호의 오류검출방법
US20220015671A1 (en) Tracking insertion and removal times of a continuous glucose monitoring sensor
AU2016349608A1 (en) Implantable devices and methods for monitoring COPD in patients