US20110019824A1 - Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use - Google Patents

Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use Download PDF

Info

Publication number
US20110019824A1
US20110019824A1 US12/739,549 US73954908A US2011019824A1 US 20110019824 A1 US20110019824 A1 US 20110019824A1 US 73954908 A US73954908 A US 73954908A US 2011019824 A1 US2011019824 A1 US 2011019824A1
Authority
US
United States
Prior art keywords
sensor
base unit
adaptable
healthcare system
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/739,549
Inventor
Venkateswara R. Sattiraju
Ali Niknejad
Louis Yun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HMICRO
HMicro Inc
Original Assignee
HMicro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US98222507P priority Critical
Application filed by HMicro Inc filed Critical HMicro Inc
Priority to US12/739,549 priority patent/US20110019824A1/en
Priority to PCT/US2008/080716 priority patent/WO2009055423A1/en
Publication of US20110019824A1 publication Critical patent/US20110019824A1/en
Assigned to HMICRO reassignment HMICRO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SATTIRAJU, VENKATESWARA, NIKNEJAD, ALI, YUN, LOUIS
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements, e.g. access security or fraud detection; Authentication, e.g. verifying user identity or authorisation; Protecting privacy or anonymity ; Protecting confidentiality; Key management; Integrity; Mobile application security; Using identity modules; Secure pairing of devices; Context aware security; Lawful interception
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/061Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • H04Q2209/47Arrangements in telecontrol or telemetry systems using a wireless architecture using RFID associated with sensors

Abstract

Provided herein is a wireless healthcare system comprising at least one sensor and a base unit adaptable to be in communication with the sensor. The sensor can be is adaptable to communicate with the base unit at a first power during formation of a communication link and is further adaptable to communicate with the base unit at a second power after the communication link has been formed, and wherein the sensor and base unit are components of a wireless healthcare system. The sensor can be a patch adaptable to be positioned on the surface of a patient. Further provided herein is a method of using the wireless healthcare system and kit.

Description

    CROSS-REFERENCE
  • This application claims the benefit of U.S. Provisional Application No. 60/982,225, filed Oct. 24, 2007, which application is incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • Wireless healthcare systems are being increasingly used to help reduce healthcare cost, increase patient independence and provide better outcomes. A typical wireless healthcare system includes sensors, a host device or relay station, and a remote server. The sensors typically sense physiological signals from the body and wirelessly transmit them to a nearby host device or relay station. The host device receives the signals from the sensors and can then process and relay them to the remote server. The signal can be relayed using a cellular or other suitable type of network.
  • One critical aspect of remote monitoring of human physiological signals is to ensure that the privacy of the patient is maintained. Wireless transmission of these physiological signals needs to be protected against unauthorized detection of the signals. One method that can be used to ensure that patient information remains confidential includes encrypting data transmission with a 128-bit or better advanced encryption standard (AES) encryption scheme. Such a scheme involves sharing of private keys between the wireless patches and the host device prior to transmission. In order to accomplish this, sharing of private keys between the wireless patches and the host device prior to transmission can be done. This is feasible when the sensors and the host device could be purchased by patients at the same time, and also the host device could be reused with the same patch at different times. Another method is to ensure private key exchange by allowing the host device to program the keys into the sensors using near field communication so that nearby detectors cannot listen to the transmissions as the near field communication's range is only about 20 cm. Such a method can be used when it is practical to have an additional wireless method (magnetic field induction using 13.56 MHz bandwidth) that is different from the ones used by the wireless healthcare systems (radio frequency (RF) bands in the hundreds of MHz and in GHz) in the wireless patches and host device.
  • Therefore, a wireless healthcare system that is capable of eliminating detection of patient information by devices external to the system by operating at a low-power RF mode during the key-exchange period would be useful.
  • SUMMARY OF THE INVENTION
  • 1. Provided herein is a wireless healthcare system comprising at least one sensor and a base unit adaptable to be in communication with the sensor in a wireless healthcare system. The sensor can be adaptable to communicate with the base unit at a first power during formation of a communication link. In some embodiments, the sensor can be in wireless communication with the base unit. The sensor can be further adaptable to communicate with the base unit at a second power after the communication link has been formed between the base unit and the sensor. The sensor can be a patch. In some embodiments, the patch can be positioned on the surface of a patient. The sensor can be adaptable to communicate with the base unit at a first power, where the first power is a low power mode. Additionally, the wireless healthcare system can comprise a sensor adaptable to sense, detect, measure, and/or monitor at least one physiological parameter from a patient. Furthermore, the wireless healthcare system can be in communication with a network server. In some embodiments, the wireless healthcare system can be in wireless communication with a network server. The wireless healthcare system can further comprise more than one sensor. The base unit can further comprise a power-amplifier. In some embodiments, the wireless healthcare system comprises a base unit wherein the base unit is adaptable to select a first power output level of −25 dBm (Decibel referenced to milliwatt) for the power amplifier and is further adaptable to attenuate the output signal by another 60 dB (Decibel). Furthermore, the base unit can further comprise an antenna. In some embodiments, the antenna can be adaptable to transmit power during the initialization phase from about −60 dBm to about −100 dBm. In some embodiments, the antenna can be adaptable to transmit power during the initialization phase of about −85 dBm. The sensor can also comprise a power-amplifier. The sensor can be adaptable to select a first power level output level of −25 dBm for the power amplifier and is further adaptable to attenuate the output signal by another 60 dB. The sensor can also comprise an antenna adaptable to transmit power during the initialization phase of about −85 dBm.
  • Further provided herein is a method for encrypting data sent between a base unit and at least one sensor of a wireless healthcare system comprising: bringing the at least one sensor of the wireless healthcare system proximate to the base unit of the wireless healthcare system when a communication link between base unit and the sensor is in low power mode; establishing an encrypted link between the sensor and the base unit; and increasing the power level to a higher power after the encrypted link has been formed between the sensor and the base unit. In some embodiments of the method, the wireless healthcare system comprises more than one sensor. The method can further comprise the step of establishing an encrypted link between the base and the more than one sensor. The method can further comprise transmitting patient information from the sensor to the base unit. The establishing step can further comprise selecting an initial low power level and attenuating the output level. In some embodiments of the method, the establishing step of the method can further comprise the steps of: (a) sending a beacon from the base unit to the at least one sensor to establish the communication link; (b) receiving the beacon with the at least one sensor; (c) sending a key continuously from the at least one sensor; (d) receiving the key with the base unit; (e) sending the key from the base unit to the at least one sensor; (f) receiving the key with the at least one sensor and notifying the base unit to encrypt the communication link; and (g) receiving the notification from the base unit and switching the base unit from the at least one sensor communication link to the encrypted link. The key can be selected from a phone number, retinal scan, finger print, or any other suitable biometric information, or combination thereof. The method provided herein can further comprise the step of transmitting patient information to a network server.
  • Further provided herein are kits for transmitting sensitive physiological data from a patient to a host device comprising at least one sensor adaptable to be positioned on a patient and a base unit in communication with the at least one sensor, wherein the sensor is adaptable to communicate with the base unit at a first power during formation of a communication link and is further adaptable to communicate with the base unit at a second power after the communication link has been formed, and wherein the sensor and base unit are components of a wireless healthcare system. The kit can comprise more than one sensor.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1 illustrates one embodiment of a wireless healthcare system; and
  • FIG. 2 illustrates the components of one embodiment of a low power-RF transmitter and one embodiment of a receiver.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Provided herein is a wireless healthcare system comprising at least one sensor and a base unit adaptable to be in communication with the sensor in a wireless healthcare system. The sensor can be adaptable to communicate with the base unit at a first power during formation of a communication link. In some embodiments, the sensor can be in wireless communication with the base unit. The sensor can be further adaptable to communicate with the base unit at a second power after the communication link has been formed between the base unit and the sensor. The sensor can be a patch. In some embodiments, the patch can be positioned on the surface of a patient. The sensor can be a wearable garment wearable by the patient that can detect signals from the patient. The sensor can be adaptable to communicate with the base unit at a first power, where the first power is a low power mode. Additionally, the wireless healthcare system can comprise a sensor adaptable to sense, detect, measure, and/or monitor at least one physiological parameter from a patient. Furthermore, the wireless healthcare system can be in communication with a network server. In some embodiments, the wireless healthcare system can be in wireless communication with a network server. The wireless healthcare system can further comprise more than one sensor. The base unit can further comprise a power-amplifier. In some embodiments, the wireless healthcare system comprises a base unit wherein the base unit is adaptable to select a first power output level of −25 dBm for the power amplifier and is further adaptable to attenuate the output signal by another 60 dB. Furthermore, the base unit can further comprise an antenna. In some embodiments, the antenna can be adaptable to transmit power during the initialization phase from about −60 dBm to about −100 dBm. In some embodiments, the antenna can be adaptable to transmit power during the initialization phase of about −85 dBm. The sensor can also comprise a power-amplifier. The sensor can be adaptable to select a first power level output level of −25 dBm for the power amplifier and is further adaptable to attenuate the output signal by another 60 dB. The sensor can also comprise an antenna adaptable to transmit power during the initialization phase of about −85 dBm.
  • I. Systems
  • Provided herein is a wireless healthcare system for use in transmitting patient information in a secure fashion using a wireless communication device. The device provided herein includes a sensor for transmitting a signal to a base unit using a key-exchange program to encrypt the signal, thereby preventing devices external to the system, but in range of the signal, from detecting the signal transmitted between the sensor and the base unit. For a wireless healthcare system to be used for private key exchange, the radio radiofrequency (RF) power of the base unit transmitter needs to be reduced close to the sensitivity of the wireless sensor receiver so that the transmitter and receiver could be brought close to each other and still maintain a wireless link. An additional external electrical device not part of the system but capable of detecting the electrical signal between the sensor and base unit, or eavesdropping, positioned one meter away from the system will only detect a signal significantly below the receiver sensitivity. For example purposes only, an external device near the system described herein will detect a signal with at least a 40 dB of free space loss, making reception by the external device nearly impossible.
  • In some embodiments, the initial placement of the patches on the human body is followed by a wireless initialization sequence at very low power by bringing the base unit and the sensor in proximity to each other. Normal data transmission of a signal from the sensors from the sensors to the base unit can then occur following the initialization at normal power-level and range of operation. This ability to bring the sensors and the base unit close to each other distinguishes the wireless healthcare system from a generic wireless network where bringing the sensor and the base unit in close proximity might not be possible. The ability to bring the sensor and base unit close together can simplify the complexity and operation of the system, and can reduce the cost of the system.
  • FIG. 1 illustrates one embodiment of a wireless healthcare system. The wireless healthcare system can comprise at least one sensor and a base unit. In some embodiments, multiple sensors are used. The sensor can be positioned on a patient as shown in FIG. 1. The sensor can be a wireless sensor. Alternatively, the sensor can be in the form of a patch. Alternatively, the sensor can be in the form of a wearable garment. The sensor can be a wired sensor, where the sensor is wired to a base unit. In some embodiments, the sensor can be a wireless sensor in wireless communication with the base unit. When the sensor is ready for use, the sensor can be powered up. During the power up processes, the sensor undergoes a boot-up process. During this time, an attempt can be made to form a connection between the sensor and the base unit. The sensor can wait to receive commands from the base unit to establish wireless link parameters to transmit data. In order to establish a wireless link, the sensor either listens in a predetermined “broadcast channel” or alternatively, the sensor can scan multiple channels where the host device may be transmitting beacons for the sensor. In some embodiments, the sensor itself could give an indication that the sensor is ready to be initialized. The patch or wearable item could also give an indication that the sensor is ready to be initialized. The sensor can give an audio indication that the sensor is ready to be initialized. Alternatively, the sensor can give a visual indication that the sensor is ready to be initialized.
  • The base unit can be a component of a host system. Alternatively the base unit can be a stand alone unit in communication with the sensor. FIG. 2 illustrates one embodiment of a sensor and base unit. The sensor in FIG. 2 has a sensitivity of −90 dBm. A receiver signal strength of −85 dBm is assumed to result in virtually error-free data reception during the initialization process. Any suitable signal and sensitivity level that results in error-free operation can be used.
  • Once the sensor has given an indication that the sensor is ready to be initialized, the end-user can then start the initialization process by bringing the base unit close to the wireless sensor. Alternatively, the wireless sensor can be brought close to the base unit. The sensor can be positioned within about 15 cm of the base unit. Additionally, the sensor can be positioned within about 10 cm of the base unit. The sensor can be positioned within about 5 cm of the base unit. In some embodiments, the sensor can be positioned within about 2 cm of the base unit.
  • The initialization process can then be started by the end-user. The base unit can select a low initialization power level of −25 dBm for the internal/external power-amplifier (PA) to send commands to the wireless patch to be initiated. The base unit can then further attenuate the output signal by another 60 dB by switching to an RF path that includes a 60 dB attenuator. This results in a −85 dBm radiated power at the transmit antenna. In some embodiments, the power radiated from antenna can range between about −60 dBm and −100 dBm. The close proximity of the sensor to the base unit can allow the sensor to receive the signal from the base unit reliably. The sensor can also verify that the signal is received error-free. In some embodiments, the signal can be checked for alteration using a cyclic redundancy check (CRC) of the received data packet. The sensor can then compare the signal after the CRC to the signal at the beginning of the initialization sequence. If the CRC fails, the sensor can ignore the signal from the base unit. No connection between the base unit and the sensor is formed and the sensor stays in listening mode.
  • The system provided herein can be a static system that establishes a link between the base and the sensor at one distance using one lower power. In some embodiments, the system can comprise a system that can be adjusted. For example, in some cases a higher complexity eavesdropping receiver with extremely low sensitivity can be in proximity to the system wherein the eavesdropping receiver can detect and demodulate transmissions at power as low as −185 dBm. The system could then lower the power transmission level to a lower level. Additionally, the base unit can be brought into closer proximity to the sensor. Using an even lower power level but having the sensor and base unit in closer proximity can help to maintain a reliable wireless link between the base unit and sensor at such low power levels.
  • Provided herein is one embodiment of a key-exchange program for sending encrypted data in order to establish a connection between the sensor and the base unit. The key-exchange program can comprise the base unit continuously sending out a beacon to be detected by the sensor. The wireless sensor can receive the beacon from the base unit, thereby establishing a preliminary connection between the base unit and the sensor. The sensor can then send out a key (information or a parameter that determines the functional output of a cryptic algorithm) continuously to the base unit. The base unit then receives the key from the sensor and then sends the key continuously back to the sensor. After receiving the key, the sensor sends continuous notification to the base unit that it is permissible to switch to the encrypted channel. The sensor then listens for a signal from the base unit on the encrypted channel. The base unit can then receive the switching message from the sensor and switches to the encrypted channel. In some embodiments, the wireless sensor can send acknowledgments or other capability parameter messages to the base unit using a similar low-power mode for transmission to the host device. Together, the host device and the wireless patch can exchange encryption key information at power levels not detectable by eavesdroppers or other external devices that are within range and are of similar setup.
  • After the key-exchange between the sensor and the base unit is complete, the sensor and base unit can communicate reliably with each other to establish and complete the initialization process. Any signal received by an eavesdropping device at this point suffers an additional 40 dB free-space path-loss (−135 dBm) or more, even at one meter distances from the base unit. This reduction in free-space path-loss can make it virtually impossible for an eavesdropping device to detect and demodulate the transmission signal between the sensor and the base-unit. Any similar signal attenuation mechanism can be used to achieve low-power transmissions. For example purposes only, different combinations of power amplified power and one or more attenuator stages could be used to achieve the desired power level. The initialization sequence can also be modified to follow near field communication (NFC) Forum's technical specifications. In some embodiments, an NFC transceiver can be employed in addition to a radiofrequency (RF) transceiver which would use the same RF antenna. In this case, the RF antenna tuned for RF frequencies can provide the adequate attenuation at the NFC frequency providing the desired privacy.
  • Additionally, any subsequent (periodic) key exchange for enhanced privacy does not need to involve low-power transmissions, as they can use the existing keys to encrypt the transmitted data containing the new keys. The key can also be the unique identification of the end-user including, but not limited to, the end user's mobile phone number, or any suitable biometric information such as finger-print, or retinal scan.
  • In some embodiments, multiple sensors can be used. The same authentication key can be used by the base unit in conjunction with multiple sensors that are in close proximity to each other. By issuing a single command on the host device, the end user needs to initiate the authentication process once. The base unit can then go through the above procedure with each wireless patch to authenticate all of the remaining sensors. This eliminates the need to authenticate all the sensors separately.
  • Once the initialization is completed successfully, subsequent transmissions between the base unit and the sensor can be encrypted. The transmit power levels are restored to normal levels by switching to higher power-levels of the power-amplifier, as well as bypassing the RF path with the 60 dB attenuation.
  • In some embodiments, the system can be adaptable to upload information from the base unit onto a network server. The base unit can be hard-wired to the network server. Alternatively the base unit can be wirelessly connected to the network server.
  • II. Methods
  • Further provided herein is a method for encrypting data sent between a base unit and at least one sensor of a wireless healthcare system comprising: bringing the at least one sensor of the wireless healthcare system proximate to the base unit of the wireless healthcare system when a communication link between base unit and the sensor is in low power mode; establishing an encrypted link between the sensor and the base unit; and increasing the power level to a higher power after the encrypted link has been formed between the sensor and the base unit. In some embodiments of the method, the wireless healthcare system comprises more than one sensor. The method can further comprise the step of establishing an encrypted link between the base and the more than sensor. The method can further comprise transmitting patient information from the sensor to the base unit. The establishing step can further comprise selecting an initial low power level and attenuating the output level. In some embodiments of the method, the establishing step of the method can further comprise the steps of: (a) sending a beacon from the base unit to the at least one sensor to establish the communication link; (b) receiving the beacon with the at least one sensor; (c) sending a key continuously from the at least one sensor; (d) receiving the key with the base unit; (e) sending the key from the base unit to the at least one sensor; (f) receiving the key with the at least one sensor and notifying the base unit to encrypt the communication link; and (g) receiving the notification from the base unit and switching the base unit from the at least one sensor communication link to the encrypted link. The key can be selected from a phone number, retinal scan, finger print, or any other suitable biometric information, or combination thereof. The method provided herein can further comprise the step of transmitting patient information to a network server.
  • III. Kits
  • Further provided herein are kits for transmitting sensitive physiological data from a patient to a host device comprising: at least one sensor adaptable to be positioned on a patient; and a base unit in communication with the at least one sensor, wherein the sensor is adaptable to communicate with the base unit at a first power during formation of a communication link and is further adaptable to communicate with the base unit at a second power after the communication link has been formed, and wherein the sensor and base unit are components of a wireless healthcare system. The kit can comprise more than one sensor.
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (25)

1. A wireless healthcare system comprising:
at least one sensor; and
a base unit adaptable to be in communication with the sensor,
wherein the sensor is adaptable to communicate with the base unit at a first power during formation of a communication link and is further adaptable to communicate with the base unit at a second power after the communication link has been formed, and wherein the sensor and base unit are components of a wireless healthcare system.
2. The wireless healthcare system of claim 1 wherein the sensor is a patch adaptable to be positioned on the surface of a patient.
3. The wireless healthcare system of claim 1 wherein the first power is a low power mode.
4. The wireless healthcare system of claim 1 wherein the sensor is adaptable to detect at least one physiological parameter from a patient.
5. The wireless healthcare system of claim 1 wherein the base unit is further adaptable to be in external communication with a network server.
6. The wireless healthcare system of claim 1 wherein the base unit is adaptable to be in wireless communication with the sensor.
7. The wireless healthcare system of claim 1 further comprising more than one sensor.
8. The wireless healthcare system of claim 1 wherein the base unit further comprises a power-amplifier.
9. The wireless healthcare system of claim 1 wherein the base unit is adaptable to select a first power level output level of −25 dBm for the power amplifier and is further adaptable to attenuate the output signal by another 60 dB.
10. The wireless healthcare system of claim 1 wherein the base unit further comprises an antenna.
11. The wireless healthcare system of claim 10 wherein the antenna is adaptable to transmit power during the initialization phase of about −85 dBm.
12. The wireless healthcare system of claim 1 wherein the sensor further comprises a power-amplifier.
13. The wireless healthcare system of claim 1 wherein the sensor is adaptable to select a first power level output level of −25 dBm for the power amplifier and is further adaptable to attenuate the output signal by another 60 dB.
14. The wireless healthcare system of claim 1 wherein the sensor further comprises an antenna.
15. The wireless healthcare system of claim 14 wherein the antenna is adaptable to transmit power during the initialization phase of about −85 dBm.
16. A method for encrypting data sent between a base unit and at least one sensor of a wireless healthcare system comprising:
(a) bringing the at least one sensor of the wireless healthcare system proximate to the base unit of the wireless healthcare system when the communication link is in lower power mode;
(b) establishing an encrypted link between the sensor and the base unit; and
(c) increasing the power level to a higher power after the link has been formed between the sensor and base unit.
17. The method of claim 16 wherein the healthcare systems further comprises more than one sensor.
18. The method of claim 16 further comprising the step of establishing an encrypted link between the base and the more than one sensor.
19. The method of claim 16 further comprising the step of transmitting patient information from the sensor to the base unit.
20. The method of claim 16 wherein the establishing step comprises selecting an initial low power level and attenuating the output level.
21. The method of claim 16 wherein the establishing step further comprises the steps of:
(a) sending a beacon from the base unit to the at least one sensor to establish a communication channel;
(b) receiving the beacon with the at least one sensor;
(c) sending a key continuously from the at least one sensor;
(d) receiving the key with the base unit;
(e) sending the key from the base unit to the at least one sensor;
(f) receiving the key with the at least one sensor and notifying the base unit to encrypt the communication channel; and
(g) receiving the notification from the base unit and switching the base unit to the at least one sensor communication link to the encrypted link.
22. The method of claim 21 wherein the key is selected from at least one of a phone number, retinal scan, fingerprint, or biometric information.
23. The method of claim 21 further comprising the step of transmitting patient information to a network server.
24. A kit for transmitting sensitive physiological data from a patient to a host device comprising:
(h) at least on sensor adaptable to be positioned on a patient; and
(i) a base unit in communication with the at least one sensor,
wherein the sensor is adaptable to communicate with the base unit at a first power during formation of a communication link and is further adaptable to communicate with the base unit at a second power after the communication link has been formed, and wherein the sensor and base unit are components of a wireless healthcare system.
25. The kit of claim 24 further comprising more than one sensor.
US12/739,549 2007-10-24 2008-10-22 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use Abandoned US20110019824A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US98222507P true 2007-10-24 2007-10-24
US12/739,549 US20110019824A1 (en) 2007-10-24 2008-10-22 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use
PCT/US2008/080716 WO2009055423A1 (en) 2007-10-24 2008-10-22 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/739,549 US20110019824A1 (en) 2007-10-24 2008-10-22 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use

Publications (1)

Publication Number Publication Date
US20110019824A1 true US20110019824A1 (en) 2011-01-27

Family

ID=40579964

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/739,549 Abandoned US20110019824A1 (en) 2007-10-24 2008-10-22 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use
US14/845,175 Pending US20160134950A1 (en) 2007-10-24 2015-09-03 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/845,175 Pending US20160134950A1 (en) 2007-10-24 2015-09-03 Low power radiofrequency (rf) communication systems for secure wireless patch initialization and methods of use

Country Status (2)

Country Link
US (2) US20110019824A1 (en)
WO (1) WO2009055423A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090054737A1 (en) * 2007-08-24 2009-02-26 Surendar Magar Wireless physiological sensor patches and systems
US20110019595A1 (en) * 2007-10-24 2011-01-27 Surendar Magar Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US20140129425A1 (en) * 2012-11-06 2014-05-08 Songnan Yang Dynamic boost of near field communications (nfc) performance/coverage in devices
US20140273821A1 (en) * 2013-03-14 2014-09-18 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9046919B2 (en) 2007-08-20 2015-06-02 Hmicro, Inc. Wearable user interface device, system, and method of use
US9595996B2 (en) * 2008-02-06 2017-03-14 Hmicro, Inc. Wireless communications systems using multiple radios
US9654846B2 (en) * 2015-05-26 2017-05-16 Intel Corporation Sensor based signal transmission methods and apparatuses
US9681807B2 (en) 2013-03-14 2017-06-20 Dexcom, Inc. Systems and methods for processing and transmitting sensor data

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313443A (en) * 1980-09-11 1982-02-02 Nasa Pocket ECG electrode
US4784162A (en) * 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US5124128A (en) * 1988-03-22 1992-06-23 Miles Inc. Process for the production of porous membranes, the membranes produced thereby and their use as supporting matrices in test strips
US5231990A (en) * 1992-07-09 1993-08-03 Spacelabs, Medical, Inc. Application specific integrated circuit for physiological monitoring
US5511553A (en) * 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5717848A (en) * 1990-06-11 1998-02-10 Hitachi, Ltd. Method and apparatus for generating object motion path, method of setting object display attribute, and computer graphics system
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability
US5913727A (en) * 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US5957854A (en) * 1993-09-04 1999-09-28 Besson; Marcus Wireless medical diagnosis and monitoring equipment
USD439981S1 (en) * 2000-08-09 2001-04-03 Bodymedia, Inc. Armband with physiological monitoring system
US6230970B1 (en) * 1995-06-07 2001-05-15 E-Comm, Incorporated Low-power hand-held transaction device
US20010003163A1 (en) * 1998-06-15 2001-06-07 Ulrich Bungert Automation system with radio sensor
US6275143B1 (en) * 1997-05-09 2001-08-14 Anatoli Stobbe Security device having wireless energy transmission
US6278499B1 (en) * 1997-03-24 2001-08-21 Evolve Products, Inc. Two-way remote control with advertising display
US6295461B1 (en) * 1997-11-03 2001-09-25 Intermec Ip Corp. Multi-mode radio frequency network system
US20010047127A1 (en) * 1999-04-15 2001-11-29 Nexan Telemed Limited Physiological sensor array
USD451604S1 (en) * 2000-09-25 2001-12-04 Bodymedia, Inc. Vest having physiological monitoring system
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US20020065828A1 (en) * 2000-07-14 2002-05-30 Goodspeed John D. Network communication using telephone number URI/URL identification handle
USD460971S1 (en) * 2001-06-21 2002-07-30 Bodymedia, Inc. Docking cradle for an electronic device
US6436058B1 (en) * 2000-06-15 2002-08-20 Dj Orthopedics, Llc System and method for implementing rehabilitation protocols for an orthopedic restraining device
US6454708B1 (en) * 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6463039B1 (en) * 1998-04-24 2002-10-08 Intelligent Ideation, Inc. Method and apparatus for full duplex sideband communication
US20030004403A1 (en) * 2001-06-29 2003-01-02 Darrel Drinan Gateway platform for biological monitoring and delivery of therapeutic compounds
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US20030139903A1 (en) * 1999-11-05 2003-07-24 Stephen E. Zweig Comprehensive verification systems and methods for analyzer-read clinical assays
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20030219035A1 (en) * 2002-05-24 2003-11-27 Schmidt Dominik J. Dynamically configured antenna for multiple frequencies and bandwidths
US20030236103A1 (en) * 2002-06-21 2003-12-25 Hitachi, Ltd. System and method for wireless communication using a management server and access points
US6677852B1 (en) * 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US20040013097A1 (en) * 2000-08-29 2004-01-22 Massimo Massa Wireless communication
US6694180B1 (en) * 1999-10-11 2004-02-17 Peter V. Boesen Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception
US20040077975A1 (en) * 2002-10-22 2004-04-22 Zimmerman Jeffrey C. Systems and methods for motion analysis and feedback
US6731962B1 (en) * 2002-10-31 2004-05-04 Smiths Medical Pm, Inc. Finger oximeter with remote telecommunications capabilities and system therefor
US20040199056A1 (en) * 2003-04-03 2004-10-07 International Business Machines Corporation Body monitoring using local area wireless interfaces
US20040236192A1 (en) * 2003-02-07 2004-11-25 Alfred E. Mann Inst. For Biomedical Engineering At The Univ. Of Southern California Implantable device with sensors for differential monitoring of internal condition
US20050035852A1 (en) * 2003-08-12 2005-02-17 Gbp Software, Llc Radio frequency identification parts verification system and method for using same
US6885191B1 (en) * 2001-02-13 2005-04-26 Stuart M. Gleman Radio-frequency imaging system for medical and other applications
US20050090718A1 (en) * 1999-11-02 2005-04-28 Dodds W J. Animal healthcare well-being and nutrition
US20050101841A9 (en) * 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
US6893396B2 (en) * 2000-03-01 2005-05-17 I-Medik, Inc. Wireless internet bio-telemetry monitoring system and interface
US20050113167A1 (en) * 2003-11-24 2005-05-26 Peter Buchner Physical feedback channel for entertainement or gaming environments
US20050119533A1 (en) * 2003-11-28 2005-06-02 Senscio Limited Radiofrequency adapter for medical monitoring equipment
US6909420B1 (en) * 1998-12-03 2005-06-21 Nicolas Frederic Device indicating movements for software
US20050197680A1 (en) * 2004-03-03 2005-09-08 Delmain Gregory J. System and method for sharing a common communication channel between multiple systems of implantable medical devices
US20050206518A1 (en) * 2003-03-21 2005-09-22 Welch Allyn Protocol, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
US20050282633A1 (en) * 2001-11-13 2005-12-22 Frederic Nicolas Movement-sensing apparatus for software
US20060004303A1 (en) * 2004-06-30 2006-01-05 Weidenhaupt Klaus P Fluid handling devices
US20060025657A1 (en) * 1999-06-23 2006-02-02 Rosenfeld Brian A System and method for providing continuous, expert network care services from a remote location(s) to geographically dispersed healthcare locations
US20060031102A1 (en) * 2000-06-16 2006-02-09 Bodymedia, Inc. System for detecting, monitoring, and reporting an individual's physiological or contextual status
US7020508B2 (en) * 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US20060103534A1 (en) * 2004-10-28 2006-05-18 Microstrain, Inc. Identifying substantially related objects in a wireless sensor network
US20060122473A1 (en) * 2004-10-13 2006-06-08 Kill Robert A Wireless patch temperature sensor system
US20060122474A1 (en) * 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US7103578B2 (en) * 2001-05-25 2006-09-05 Roche Diagnostics Operations, Inc. Remote medical device access
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US20060264767A1 (en) * 2005-05-17 2006-11-23 Cardiovu, Inc. Programmable ECG sensor patch
US20070027388A1 (en) * 2005-08-01 2007-02-01 Chang-An Chou Patch-type physiological monitoring apparatus, system and network
US20070081505A1 (en) * 2005-10-12 2007-04-12 Harris Corporation Hybrid RF network with high precision ranging
US7206630B1 (en) * 2004-06-29 2007-04-17 Cleveland Medical Devices, Inc Electrode patch and wireless physiological measurement system and method
US20070088780A1 (en) * 2002-05-27 2007-04-19 Seiko Epson Corporation Image data transmission system, process and program, image data output device and image display device
US20070100219A1 (en) * 2005-10-27 2007-05-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US20070135866A1 (en) * 2005-12-14 2007-06-14 Welch Allyn Inc. Medical device wireless adapter
US20070208262A1 (en) * 2006-03-03 2007-09-06 Kovacs Gregory T Dual-mode physiologic monitoring systems and methods
US20070208233A1 (en) * 2006-03-03 2007-09-06 Physiowave Inc. Integrated physiologic monitoring systems and methods
US7270633B1 (en) * 2005-04-22 2007-09-18 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
US20070232234A1 (en) * 2006-03-31 2007-10-04 Frank Joseph Inzerillo Method of wireless conversion by emulation of a non-wireless device
US20070244383A1 (en) * 2004-07-27 2007-10-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
US7294105B1 (en) * 2002-09-03 2007-11-13 Cheetah Omni, Llc System and method for a wireless medical communication system
US20070282218A1 (en) * 2006-05-31 2007-12-06 Medisim Ltd. Non-invasive temperature measurement
US20070279217A1 (en) * 2006-06-01 2007-12-06 H-Micro, Inc. Integrated mobile healthcare system for cardiac care
US20080001735A1 (en) * 2006-06-30 2008-01-03 Bao Tran Mesh network personal emergency response appliance
US20080054880A1 (en) * 2004-01-29 2008-03-06 Advantest Corporation Measurement device, method, program, and recording medium
US20080065877A1 (en) * 2006-09-11 2008-03-13 Samsung Electronics Co.; Ltd Peer-to-peer communication method for near field communication
US7376234B1 (en) * 2001-05-14 2008-05-20 Hand Held Products, Inc. Portable keying device and method
US20080119707A1 (en) * 2006-10-23 2008-05-22 Gary Ashley Stafford Flexible patch for fluid delivery and monitoring body analytes
US20080139894A1 (en) * 2006-12-08 2008-06-12 Joanna Szydlo-Moore Devices and systems for remote physiological monitoring
US20080252596A1 (en) * 2007-04-10 2008-10-16 Matthew Bell Display Using a Three-Dimensional vision System
US20090037670A1 (en) * 2007-07-30 2009-02-05 Broadcom Corporation Disk controller with millimeter wave host interface and method for use therewith
US20090054737A1 (en) * 2007-08-24 2009-02-26 Surendar Magar Wireless physiological sensor patches and systems
US20090051544A1 (en) * 2007-08-20 2009-02-26 Ali Niknejad Wearable User Interface Device, System, and Method of Use
US7571369B2 (en) * 2005-02-17 2009-08-04 Samsung Electronics Co., Ltd. Turbo decoder architecture for use in software-defined radio systems
US7603255B2 (en) * 2004-12-17 2009-10-13 Nike, Inc. Multi-sensor monitoring of athletic performance
US7602301B1 (en) * 2006-01-09 2009-10-13 Applied Technology Holdings, Inc. Apparatus, systems, and methods for gathering and processing biometric and biomechanical data
US20090316618A1 (en) * 1993-06-17 2009-12-24 Gilat Satellite Networks, Ltd. Multiplex Switching Scheme for Communications Network
US20100013607A1 (en) * 2007-02-26 2010-01-21 James Paul Sabo Method and apparatus for providing a communication link
US20100049006A1 (en) * 2006-02-24 2010-02-25 Surendar Magar Medical signal processing system with distributed wireless sensors
US20100316043A1 (en) * 2007-02-06 2010-12-16 Panasonic Corporation Radio communication method and radio communication device
US20110019595A1 (en) * 2007-10-24 2011-01-27 Surendar Magar Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US7969307B2 (en) * 2004-01-27 2011-06-28 Altivera Llc Diagnostic radio frequency identification sensors and applications thereof
US20120256492A1 (en) * 2006-03-31 2012-10-11 Siemens Corporate Research, Inc. Passive RF Energy Harvesting Scheme For Wireless Sensor

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313443A (en) * 1980-09-11 1982-02-02 Nasa Pocket ECG electrode
US4784162A (en) * 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US5124128A (en) * 1988-03-22 1992-06-23 Miles Inc. Process for the production of porous membranes, the membranes produced thereby and their use as supporting matrices in test strips
US5511553A (en) * 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5717848A (en) * 1990-06-11 1998-02-10 Hitachi, Ltd. Method and apparatus for generating object motion path, method of setting object display attribute, and computer graphics system
US5231990A (en) * 1992-07-09 1993-08-03 Spacelabs, Medical, Inc. Application specific integrated circuit for physiological monitoring
US20090316618A1 (en) * 1993-06-17 2009-12-24 Gilat Satellite Networks, Ltd. Multiplex Switching Scheme for Communications Network
US5957854A (en) * 1993-09-04 1999-09-28 Besson; Marcus Wireless medical diagnosis and monitoring equipment
US5913727A (en) * 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
US6230970B1 (en) * 1995-06-07 2001-05-15 E-Comm, Incorporated Low-power hand-held transaction device
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability
US6278499B1 (en) * 1997-03-24 2001-08-21 Evolve Products, Inc. Two-way remote control with advertising display
US6275143B1 (en) * 1997-05-09 2001-08-14 Anatoli Stobbe Security device having wireless energy transmission
US6295461B1 (en) * 1997-11-03 2001-09-25 Intermec Ip Corp. Multi-mode radio frequency network system
US6463039B1 (en) * 1998-04-24 2002-10-08 Intelligent Ideation, Inc. Method and apparatus for full duplex sideband communication
US20010003163A1 (en) * 1998-06-15 2001-06-07 Ulrich Bungert Automation system with radio sensor
US6909420B1 (en) * 1998-12-03 2005-06-21 Nicolas Frederic Device indicating movements for software
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6494829B1 (en) * 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6454708B1 (en) * 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US20010047127A1 (en) * 1999-04-15 2001-11-29 Nexan Telemed Limited Physiological sensor array
US20060025657A1 (en) * 1999-06-23 2006-02-02 Rosenfeld Brian A System and method for providing continuous, expert network care services from a remote location(s) to geographically dispersed healthcare locations
US6677852B1 (en) * 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6694180B1 (en) * 1999-10-11 2004-02-17 Peter V. Boesen Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
US20050090718A1 (en) * 1999-11-02 2005-04-28 Dodds W J. Animal healthcare well-being and nutrition
US20030139903A1 (en) * 1999-11-05 2003-07-24 Stephen E. Zweig Comprehensive verification systems and methods for analyzer-read clinical assays
US6893396B2 (en) * 2000-03-01 2005-05-17 I-Medik, Inc. Wireless internet bio-telemetry monitoring system and interface
US6436058B1 (en) * 2000-06-15 2002-08-20 Dj Orthopedics, Llc System and method for implementing rehabilitation protocols for an orthopedic restraining device
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20060122474A1 (en) * 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US20060031102A1 (en) * 2000-06-16 2006-02-09 Bodymedia, Inc. System for detecting, monitoring, and reporting an individual's physiological or contextual status
US20020065828A1 (en) * 2000-07-14 2002-05-30 Goodspeed John D. Network communication using telephone number URI/URL identification handle
USD439981S1 (en) * 2000-08-09 2001-04-03 Bodymedia, Inc. Armband with physiological monitoring system
US20040013097A1 (en) * 2000-08-29 2004-01-22 Massimo Massa Wireless communication
USD451604S1 (en) * 2000-09-25 2001-12-04 Bodymedia, Inc. Vest having physiological monitoring system
US6885191B1 (en) * 2001-02-13 2005-04-26 Stuart M. Gleman Radio-frequency imaging system for medical and other applications
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US7376234B1 (en) * 2001-05-14 2008-05-20 Hand Held Products, Inc. Portable keying device and method
US7103578B2 (en) * 2001-05-25 2006-09-05 Roche Diagnostics Operations, Inc. Remote medical device access
USD460971S1 (en) * 2001-06-21 2002-07-30 Bodymedia, Inc. Docking cradle for an electronic device
US20030004403A1 (en) * 2001-06-29 2003-01-02 Darrel Drinan Gateway platform for biological monitoring and delivery of therapeutic compounds
US20050282633A1 (en) * 2001-11-13 2005-12-22 Frederic Nicolas Movement-sensing apparatus for software
US20050101841A9 (en) * 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
US20030219035A1 (en) * 2002-05-24 2003-11-27 Schmidt Dominik J. Dynamically configured antenna for multiple frequencies and bandwidths
US20070088780A1 (en) * 2002-05-27 2007-04-19 Seiko Epson Corporation Image data transmission system, process and program, image data output device and image display device
US20030236103A1 (en) * 2002-06-21 2003-12-25 Hitachi, Ltd. System and method for wireless communication using a management server and access points
US7020508B2 (en) * 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7294105B1 (en) * 2002-09-03 2007-11-13 Cheetah Omni, Llc System and method for a wireless medical communication system
US20040077975A1 (en) * 2002-10-22 2004-04-22 Zimmerman Jeffrey C. Systems and methods for motion analysis and feedback
US6731962B1 (en) * 2002-10-31 2004-05-04 Smiths Medical Pm, Inc. Finger oximeter with remote telecommunications capabilities and system therefor
US20040236192A1 (en) * 2003-02-07 2004-11-25 Alfred E. Mann Inst. For Biomedical Engineering At The Univ. Of Southern California Implantable device with sensors for differential monitoring of internal condition
US7382247B2 (en) * 2003-03-21 2008-06-03 Welch Allyn, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
US20050206518A1 (en) * 2003-03-21 2005-09-22 Welch Allyn Protocol, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
US20040199056A1 (en) * 2003-04-03 2004-10-07 International Business Machines Corporation Body monitoring using local area wireless interfaces
US20050035852A1 (en) * 2003-08-12 2005-02-17 Gbp Software, Llc Radio frequency identification parts verification system and method for using same
US20050113167A1 (en) * 2003-11-24 2005-05-26 Peter Buchner Physical feedback channel for entertainement or gaming environments
US20050119533A1 (en) * 2003-11-28 2005-06-02 Senscio Limited Radiofrequency adapter for medical monitoring equipment
US7969307B2 (en) * 2004-01-27 2011-06-28 Altivera Llc Diagnostic radio frequency identification sensors and applications thereof
US20080054880A1 (en) * 2004-01-29 2008-03-06 Advantest Corporation Measurement device, method, program, and recording medium
US20050197680A1 (en) * 2004-03-03 2005-09-08 Delmain Gregory J. System and method for sharing a common communication channel between multiple systems of implantable medical devices
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US7206630B1 (en) * 2004-06-29 2007-04-17 Cleveland Medical Devices, Inc Electrode patch and wireless physiological measurement system and method
US20060004303A1 (en) * 2004-06-30 2006-01-05 Weidenhaupt Klaus P Fluid handling devices
US20070244383A1 (en) * 2004-07-27 2007-10-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
US20060122473A1 (en) * 2004-10-13 2006-06-08 Kill Robert A Wireless patch temperature sensor system
US20060103534A1 (en) * 2004-10-28 2006-05-18 Microstrain, Inc. Identifying substantially related objects in a wireless sensor network
US7603255B2 (en) * 2004-12-17 2009-10-13 Nike, Inc. Multi-sensor monitoring of athletic performance
US7571369B2 (en) * 2005-02-17 2009-08-04 Samsung Electronics Co., Ltd. Turbo decoder architecture for use in software-defined radio systems
US7270633B1 (en) * 2005-04-22 2007-09-18 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
US20060264767A1 (en) * 2005-05-17 2006-11-23 Cardiovu, Inc. Programmable ECG sensor patch
US20070027388A1 (en) * 2005-08-01 2007-02-01 Chang-An Chou Patch-type physiological monitoring apparatus, system and network
US20070081505A1 (en) * 2005-10-12 2007-04-12 Harris Corporation Hybrid RF network with high precision ranging
US20070100219A1 (en) * 2005-10-27 2007-05-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US20070135866A1 (en) * 2005-12-14 2007-06-14 Welch Allyn Inc. Medical device wireless adapter
US7602301B1 (en) * 2006-01-09 2009-10-13 Applied Technology Holdings, Inc. Apparatus, systems, and methods for gathering and processing biometric and biomechanical data
US20100049006A1 (en) * 2006-02-24 2010-02-25 Surendar Magar Medical signal processing system with distributed wireless sensors
US20070208233A1 (en) * 2006-03-03 2007-09-06 Physiowave Inc. Integrated physiologic monitoring systems and methods
US20070208262A1 (en) * 2006-03-03 2007-09-06 Kovacs Gregory T Dual-mode physiologic monitoring systems and methods
US20070232234A1 (en) * 2006-03-31 2007-10-04 Frank Joseph Inzerillo Method of wireless conversion by emulation of a non-wireless device
US20120256492A1 (en) * 2006-03-31 2012-10-11 Siemens Corporate Research, Inc. Passive RF Energy Harvesting Scheme For Wireless Sensor
US20070282218A1 (en) * 2006-05-31 2007-12-06 Medisim Ltd. Non-invasive temperature measurement
US20070279217A1 (en) * 2006-06-01 2007-12-06 H-Micro, Inc. Integrated mobile healthcare system for cardiac care
US20100160746A1 (en) * 2006-06-01 2010-06-24 Hmicro, Inc. A Delaware Corporation Integrated Mobile Healthcare System for Cardiac Care
US7733224B2 (en) * 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US20080001735A1 (en) * 2006-06-30 2008-01-03 Bao Tran Mesh network personal emergency response appliance
US20080065877A1 (en) * 2006-09-11 2008-03-13 Samsung Electronics Co.; Ltd Peer-to-peer communication method for near field communication
US20080119707A1 (en) * 2006-10-23 2008-05-22 Gary Ashley Stafford Flexible patch for fluid delivery and monitoring body analytes
US20080139894A1 (en) * 2006-12-08 2008-06-12 Joanna Szydlo-Moore Devices and systems for remote physiological monitoring
US20100316043A1 (en) * 2007-02-06 2010-12-16 Panasonic Corporation Radio communication method and radio communication device
US20100013607A1 (en) * 2007-02-26 2010-01-21 James Paul Sabo Method and apparatus for providing a communication link
US20080252596A1 (en) * 2007-04-10 2008-10-16 Matthew Bell Display Using a Three-Dimensional vision System
US20090037670A1 (en) * 2007-07-30 2009-02-05 Broadcom Corporation Disk controller with millimeter wave host interface and method for use therewith
US20090051544A1 (en) * 2007-08-20 2009-02-26 Ali Niknejad Wearable User Interface Device, System, and Method of Use
US20090054737A1 (en) * 2007-08-24 2009-02-26 Surendar Magar Wireless physiological sensor patches and systems
US20110019595A1 (en) * 2007-10-24 2011-01-27 Surendar Magar Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US20140091947A1 (en) * 2007-10-24 2014-04-03 Hmicro, Inc. Methods and Apparatus to Retrofit Wired Healthcare and Fitness Systems for Wireless Operation
US8611319B2 (en) * 2007-10-24 2013-12-17 Hmicro, Inc. Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046919B2 (en) 2007-08-20 2015-06-02 Hmicro, Inc. Wearable user interface device, system, and method of use
US20090054737A1 (en) * 2007-08-24 2009-02-26 Surendar Magar Wireless physiological sensor patches and systems
US8926509B2 (en) 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
US20110019595A1 (en) * 2007-10-24 2011-01-27 Surendar Magar Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US8611319B2 (en) 2007-10-24 2013-12-17 Hmicro, Inc. Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US9155469B2 (en) 2007-10-24 2015-10-13 Hmicro, Inc. Methods and apparatus to retrofit wired healthcare and fitness systems for wireless operation
US9595996B2 (en) * 2008-02-06 2017-03-14 Hmicro, Inc. Wireless communications systems using multiple radios
US20170264338A1 (en) * 2008-02-06 2017-09-14 Hmicro, Inc. Wireless communications systems using multiple radios
CN104813593A (en) * 2012-11-06 2015-07-29 英特尔公司 Dynamic boost of near field communications (NFC) performance/coverage in devices
US20140129425A1 (en) * 2012-11-06 2014-05-08 Songnan Yang Dynamic boost of near field communications (nfc) performance/coverage in devices
US9773241B2 (en) * 2012-11-06 2017-09-26 Intel Corporation Dynamic boost of near field communications (NFC) performance/coverage in devices
US9445445B2 (en) * 2013-03-14 2016-09-13 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9681807B2 (en) 2013-03-14 2017-06-20 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9931037B2 (en) 2013-03-14 2018-04-03 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US20140273821A1 (en) * 2013-03-14 2014-09-18 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9788354B2 (en) 2013-03-14 2017-10-10 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9931036B2 (en) 2013-03-14 2018-04-03 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9654846B2 (en) * 2015-05-26 2017-05-16 Intel Corporation Sensor based signal transmission methods and apparatuses

Also Published As

Publication number Publication date
US20160134950A1 (en) 2016-05-12
WO2009055423A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP1792442B1 (en) Secure pairing for wired or wireless communications devices
US8225094B2 (en) Device authentication in a PKI
US9326090B2 (en) Method and system for broadband near-field communication utilizing full spectrum capture (FSC) supporting screen and application sharing
JP2782954B2 (en) Dynamic encryption key selected for encrypted wireless transmission
US20030232598A1 (en) Method and apparatus for intrusion management in a wireless network using physical location determination
US8929192B2 (en) Method, apparatus, and computer program product for short-range communication based direction finding
DK3119101T3 (en) The pairing of wireless devices
CN1199390C (en) Radio network cipher change program
CN101095318B (en) Method and device for bluetooth pairing
US7725717B2 (en) Method and apparatus for user authentication
US9113464B2 (en) Dynamic cell size variation via wireless link parameter adjustment
US7353391B2 (en) Authenticating method for short-distance radio devices and a short-distance radio device
US6961541B2 (en) Method and apparatus for enhancing security in a wireless network using distance measurement techniques
US8467770B1 (en) System for securing a mobile terminal
US8103003B2 (en) Method for setting communication parameters and communication device
US7430181B1 (en) Method and apparatus for automatically configuring devices on a wireless network
US20130095757A1 (en) Methods and apparatus to control accessories
EP1898592B1 (en) Peer-to-peer communication method for near field communication
EP1926335A1 (en) Wireless device monitoring system
KR100584429B1 (en) Method for security monitoring in a bluetooth equipment
JP6334658B2 (en) The wireless communication device and wireless communication method
AU2010349709B2 (en) Methods for authentication using near-field
AU2007207487B2 (en) Battery authentication in a wireless communication device
EP1393494B1 (en) Method for ensuring data transmission security, communication system and communication device
US8818273B2 (en) Method and apparatus for wireless communication using an acoustic signal

Legal Events

Date Code Title Description
AS Assignment

Owner name: HMICRO, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUN, LOUIS;SATTIRAJU, VENKATESWARA;NIKNEJAD, ALI;SIGNINGDATES FROM 20100901 TO 20100930;REEL/FRAME:028338/0701