JP2007535675A - Nmr重量測定検査システムにおける磁場追跡法 - Google Patents

Nmr重量測定検査システムにおける磁場追跡法 Download PDF

Info

Publication number
JP2007535675A
JP2007535675A JP2007510678A JP2007510678A JP2007535675A JP 2007535675 A JP2007535675 A JP 2007535675A JP 2007510678 A JP2007510678 A JP 2007510678A JP 2007510678 A JP2007510678 A JP 2007510678A JP 2007535675 A JP2007535675 A JP 2007535675A
Authority
JP
Japan
Prior art keywords
magnetic field
sample
magnetic
resonance
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007510678A
Other languages
English (en)
Inventor
マッケンドリー,ジェイムズ・エム
セルウェイ,ロバート
コルヴァー,ヨーゼフ・アー・ウェー・エム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer LLC
Original Assignee
BOC Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Inc filed Critical BOC Group Inc
Publication of JP2007535675A publication Critical patent/JP2007535675A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/389Field stabilisation, e.g. by field measurements and control means or indirectly by current stabilisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/085Analysis of materials for the purpose of controlling industrial production systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

方法(10)は、製造ライン上にあるバイアル(22)中の試料用磁気共鳴重量測定検査システム(20)に用いられる磁場の特性が、試料の共鳴周波数からのずれを追跡することを保証する。方法(10)は試料の磁気共鳴測定からの自由誘導減衰信号を得るステップ(50)と、自由誘導減衰信号から、前もって選択された共鳴周波数からの磁気共鳴測定の共鳴周波数のずれを監視するステップ(52)と、前もって選択された共鳴周波数を維持するための磁場を調整する(62)ステップを含む。

Description

本発明は、製造ライン内で容器が動いている間に、核磁気共鳴(NMR)技法を用いて、容器内の材料を重量測定検査することに関する。より詳細には、本発明は、NMR測定に用いられる磁場をほぼ一定に保つための方法に関する。
数多くの科学分野において測定、検出及び画像形成を試みるに当たって、NMR技法を使用することが望まれようになっている。NMRが非侵襲性及び非破壊性であることから、限定はしないが、化粧品、香水、工業用化学薬品、生物学的試料及び食品を含む種々の応用形態において、工業的な計測作業、分析作業及び制御作業に適用することが促進されてきた。一例として、製薬工業では、封止されたガラス製バイアルに薬剤を充填する間に、その薬剤の量を監視し、調節するために、重量測定検査が用いられる。薬剤の重量は数分の一グラム程度に小さい可能性もあるので、数十グラムの重さがあるバイアルにおいて、毎秒数回の割合で重量測定しながら、数パーセント以下の精度で薬剤が増量される必要がある。
参照によって本明細書に援用される、国際特許出願WO 99/67606は、以下に完全に記述されているように、NMRを利用する、製造ライン上にある試料のための重量測定検査システムを記述する。このシステムは、検査域にわたって静磁場を生成し、検査域内に配置される試料内に正味の磁化を生成するための磁石と、NMRの原理に基づいて、検査域にわたって交流磁場を印加して、試料の励磁を引き起こすためのRFコイルとを備える。
NMR技術分野において周知であるように、交流磁場による試料のパルス励磁の後、試料は、自由誘導減衰(「FID」)と呼ばれるRFコイル中に誘導される信号を発し、その信号から多くの情報、例えば試料の質量(または重量)がわかる。FIDは試料に印加される正味の磁化に正比例する。その結果、印加された磁化中のあらゆる変化は、その周波数及び空間定位(配向)を含むFID中に変化を生成し、FIDから得られる試料の重量の決定に影響をもたらす。単一のNMR測定がなされる時、NMR分光計(spectrometer)は手動で較正され、適切な結果が達せられる。しかしながら、多数のNMR測定が長期にわたってなされると、連続的に稼働中の製造ラインにおける容器の重量を測定する時のように、それらの磁場を生成するために用いられる磁石中の温度変化のため、磁場はドリフトする。従って、その様な応用形態では磁場における変化を監視し補正することは必須である。本方法でNMR磁場を調整すると、共鳴周波数が試料の共鳴周波数にとどまり、また求められた重量の正確さ精密さを改善することを保証する。
製造ライン上の試料のためのNMR重量測定検査システムに用いられる磁場の特性が、試料の共鳴周波数からのずれに追従することを保証するための方法を提供することが望ましい。
製造ライン上の試料のため磁場を有する磁気共鳴重量測定検査システムにおいて利用される方法が提供され、該方法は、
試料の磁気共鳴測定からの自由誘導減衰信号を取得するステップと、
事前に選択された共鳴周波数からの磁気共鳴測定値の共鳴周波数のずれを、自由誘導減衰信号から監視するステップと、
事前に選択された共鳴周波数を維持するために磁場を調節するステップと、
を備える。
本発明による一方法は、概略的に図2における番号10によって示されている。本方法は、製造ラインを連続的に移動している容器の中身の質量(または重量)を測定する非接触の、NMR重量測定検査システム20において利用される。このような重量測定検査を必要とする一例示的な応用形態は、医薬品パッケージングである。最良の本方法を理解するために、まず、例示的なNMR重量測定検査システムの所定の構造、およびそれと関連する製造ラインを概述することが有用である。
医薬品パッケージングのための例示的なNMR重量測定検査システム
図1は、製造ラインの一部を示しており、その製造ラインでは、ガラス製バイアル22が薬剤試料で満たされる。例示的な重量測定検査ステーション24が、その中を通り抜ける充填済みのバイアルをそれぞれ非接触で重量測定するために「インライン」に設けられており、排除ステーション26が、製品規格を満たすだけの十分な量の薬剤を含まないバイアルをラインから除去する。バイアル22は、コンベヤベルト28を有するコンベアによって、充填(及びオプションでは封止)ステーション(図示せず)から重量測定検査ステーション24まで輸送され、コンベヤベルト28は、矢印30によって表されるように、回転式コンベアホイール32の作用によって、z方向に動く。
重量測定検査ステーション24は、NMR技法を用いて、各バイアル22内の薬剤試料の質量を求める。測定過程を妨げる可能性がある信号を与えないので、容器としてガラス製バイアルが有用であることは、当業者には理解されよう。この実施形態では、重量測定検査ステーション24は、永久磁石34と、RFプローブ35(図1に概略的に示される)と、プロセッサ38を有するコンピュータ制御システム36とを備える。磁石34は、検査域40と呼ばれることもある領域において、コンベヤベルト28にわたってx方向に一様な直流(DC)又は静磁場を生成する。検査域40は、コンベヤベルト28のある長さに延在し、その中の隅々まで、永久磁石34によって静磁場が一様に印加される。バイアル22内の試料は原子核を有し、各原子核は、その原子核のスピンの結果として、磁気モーメント、たとえば1H原子核(陽子)を有する。試料の陽子が磁気モーメントを有するので、試料は、一定の磁場の影響下にあるときに、正味の磁化を受けることができる。試料が検査域40内にあるときに、印加される静磁場は、試料内に正味の磁化を生成する。検査域40に前置されるか、又は検査域40の入口にあるバイアル位置検出デバイス42(光ビーム46を有する光学位置センサ44等)が、バイアル22が重量測定検査ステーション24の前にある、コンベヤベルト28上の既知の物理的位置に達する時点を正確且つ厳密に検出する。
大部分のNMRシステムでは、静磁場は、試料のラーモア周波数が電磁スペクトルの無線周波数範囲内にあるような強度を有する。試料のラーモア周波数において、静磁場に直交するように向けられる、交流(AC)磁場を試料に印加することによって、試料の正味の磁化が、静磁場の方向から離れるように、AC磁場の軸を中心にして回転するであろう。この実施形態では、この磁場は、RFプローブ35に、対応するAC電流を印加することによって生成される。RFプローブ35に供給されるエネルギーの量を変更することにより、正味の磁化の回転角を変更することができる。
この例示される実施形態では、90°回転させる励磁場を用いて、試料が励磁される。90°パルスが試料に印加された後に、試料は高エネルギーの非平衡状態のままにされ、その状態から、その元の平衡状態に緩和されるであろう。試料が平衡状態に戻るとき、ラーモア周波数の電磁エネルギーが放射され、その磁気成分が、RFプローブ35内の電流の形で、自由誘導減衰(FID)として知られる試料の応答信号を誘導する。
RFプローブ35は、試料の正味の磁化がその元の状態に戻るときに試料によって放射されるエネルギーを監視し、放射されるエネルギーに比例する特性を有する出力信号を生成する。この例では、誘導電流の特性、すなわち振幅が、特に、試料内の磁気モーメント数に従って、試料内の分子数とともに変化する。その後、受信された信号は、コンピュータ制御システム36に渡され、コンピュータ制御システム36は、未知の試料から受信される信号の振幅を、既知の質量(又は重量)を有する較正試料から受信される信号の振幅と比較して、試験されている試料の質量(重量)を求める。
限定するためではなく、例示するために、図1に示されるようなNMR重量測定検査システム24の全般的な動作を説明する。最初に、重量測定検査システム24が初期化され、それは試験されるべき試料のために適したRFプローブ35を取り付けることを含む。生産が開始されると、コンベアベルト28が、その中の試料の質量(又は重量)が求められることになるバイアル22を連続して輸送する。各バイアル22が光学位置センサ44によって検出される位置に達するとき、光学位置センサ44は、コンピュータ制御システム36に対してそのバイアル22の位置を正確に確定する信号を生成する。その後、バイアル22内の試料が最大の試料の応答信号を返すことになる検査域40内の位置PMまでバイアル22が進むのに応じて、コンピュータ制御システム36は、コンベアベルト28の動きを追跡する。
バイアル22が位置PMにある瞬間に、RFプローブ35への短時間の電圧印加が起動され、検査域40内に交流磁場を印加して、バイアル22内の試料の正味の磁化が一時的に変更されるようにする。RFプローブ35は、試料の正味の磁化がその元の平衡状態に戻るときに、バイアル22内の試料によって放射されるエネルギーを監視し、放射されるエネルギーに比例する特性、たとえば電流振幅を有する出力信号を生成する。コンピュータ制御システム36は、RFプローブ35の出力信号を受信する。プロセッサ38が、電流振幅又は他の出力信号特性を、既知の質量の少なくとも1つの類似の試料から得られる類似のデータと比較し、その比較結果から、試料の質量を求める。
磁場の探知
図2は製造ライン上の資料用のNMR重量測定検査システムにおける磁場トラッキング(追跡)する本発明の教示に従って、一例示的な方法の最上位のフローチャートを示す。
多くのNMR分光計(spectrometer)は、NMR測定を行う毎にFID信号データをデジタル化し蓄積することを当業者は理解するであろう。その結果、図2に示される第1ステップ50において、バイアル22中の試料の磁気共鳴測定から得られる関連したFIDデータは、例えばメモリからそれを検索することにより、プロセッサ38によって得られる。
次に、ステップ52において、プロセッサ38は、前もって選択された共鳴周波数、または基準の共鳴周波数からの磁気共鳴測定値の共鳴周波数のずれと、試験用の試料の共鳴周波数を、FIDから監視する。ステップ52は、少なくとも2つのFIDから共鳴周波数を取り出し(ステップ54)、また前もって選択された共鳴周波数からの磁気共鳴測定値の共鳴周波数のずれを計算する(ステップ56)ことを含む。オプションとして、外部源及び内部源の両方からのノイズの影響を低減するために、ステップ58においてFIDから得られた共鳴周波数データは、例えば、試験用試料の複数の磁気共鳴測定値にわたって平均することによって、平滑化することができる。もちろん、共鳴周波数値の平滑は該データが得られた後であって、共鳴周波数のずれが計算される前に行わなければならない。当業者に既知のように、共鳴周波数のずれは、共鳴周波数の変化率から計算することができる。
上述したように、方法10は磁場が共鳴周波数のずれを追跡するようにする。その結果、磁場の少なくとも1つの特性は調整されなければならない。調整装置は磁場の調整に電気信号利得係数を導入する。ステップ60において、どんな利得効果も、磁場が調整される前に取り除かれる。これは、例えば最大及び最小の磁場の強さにおいて動作するための共鳴周波数を取り出し、「フルスケール」の共鳴周波数の差を計算し、そしてフルスケール共鳴周波数の差を有する共鳴周波数における変化率である補正係数を各磁場調整に印加する等、当該技術分野で既知の認識された技術のいずれによっても達成されるであろう。
ステップ62において、主要な磁場の大きさなど、前述した磁場特性のトラッキング調整が行われる。磁場調整が成される様々な方法を当業者は理解するであろう。恐らく最も簡単なものは、デジタル−アナログ変換器からの出力値を変化させることによって、一般にNMR分光計に含まれる1以上のいわゆるシム電磁石を調整することであり、通常デジタル−アナログ変換器は、シム電磁石によって生成される磁場の大きさを制御するために設けられている。また、磁場に対する試験用試料の位置の空間定位を変更すると、必要な磁場調整を提供することができる。例えば、磁石の極は互いにより近づいたり、または更に離れるように動く場合がある。その上、NMR重量測定検査システム20の他の構成要素、例えばRFコイル35の位置は移動させることが可能である。
本明細書に記述される実施形態が例示にすぎないこと、及び本発明の精神及び範囲から逸脱することなく、当業者が多数の変形及び変更を行うことができることは理解されよう。種々の実施形態は、必要に応じて、代替形態において、又は組み合わせで実施することができる。全てのそのような変更及び変形は、特許請求の範囲において規定されるような本発明の範囲内に含まれることを意図している。
重量測定ステーションの中を通り抜ける各容器が所望の量の製造物を有することを検査するための1つの例示的なNMR重量測定検査ステーションを備える製造ラインの一部の斜視図である。 製造ライン上の試料のためのNMR重量測定検査システムにおける磁場追跡のための本発明の教示に従って例示的な方法を示す最上位のフローチャートである。

Claims (7)

  1. 製造ライン上の試料用の磁場を有する磁気共鳴重量測定検査システムに用いる方法であって、
    試料の磁気共鳴測定値から自由誘導減衰信号を取得するステップと、
    前もって選択された共鳴周波数からの磁気共鳴測定値の共鳴周波数のずれを、自由誘導減衰信号から監視するステップと、
    前もって選択された共鳴周波数を維持するために磁場を調節するステップと、
    を含む方法。
  2. 請求項1に記載の方法において、前記監視ステップは自由誘導減衰信号からの共鳴周波数を取り出すステップと、前もって選択された共鳴周波数からの磁気共鳴測定値の共鳴周波数のずれを計算するステップと、を含む方法。
  3. 請求項2に記載の方法において、前記共鳴周波数を取り出すステップは、試料の複数の磁気共鳴測定値にわたって共鳴周波数の値を調整するステップを含む、方法。
  4. 請求項1に記載の方法において、前記磁気共鳴重量測定検査システムは、磁場を調整するためのシム電磁石を含み、前記磁場を調整するステップはシム電磁石を調整するステップを含む、方法。
  5. 請求項4記載の方法において、シム電磁石を調整するステップは、デジタル-アナログ変換器によって処理される値を調整するステップを含み、シム電磁石によって生成される磁場を制御する、方法。
  6. 請求項1に記載の方法において、前記磁気共鳴重量測定検査システムは複数の磁石と他の構成要素を含み、前記磁場調整ステップは、複数の磁石の1つ及び他の構成要素の空間定位を調整するステップを含む、方法。
  7. 請求項1に記載の方法において、前記磁場は電気信号利得を有する装置によって操作され、前記磁場調整ステップは更に前記磁場調整ステップの前に利得を求め、利得を取り除くステップを含む、方法。
JP2007510678A 2004-04-30 2004-06-30 Nmr重量測定検査システムにおける磁場追跡法 Withdrawn JP2007535675A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/836,797 US7061239B2 (en) 2004-04-30 2004-04-30 Method for magnetic field tracking in a NMR check weighing system
PCT/US2004/020882 WO2005111658A1 (en) 2004-04-30 2004-06-30 Method for magnetic field tracking in a nmr check weighing system

Publications (1)

Publication Number Publication Date
JP2007535675A true JP2007535675A (ja) 2007-12-06

Family

ID=35186423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510678A Withdrawn JP2007535675A (ja) 2004-04-30 2004-06-30 Nmr重量測定検査システムにおける磁場追跡法

Country Status (6)

Country Link
US (1) US7061239B2 (ja)
EP (1) EP1740977A4 (ja)
JP (1) JP2007535675A (ja)
KR (1) KR20070007871A (ja)
CN (1) CN1942784A (ja)
WO (1) WO2005111658A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006529026A (ja) * 2003-05-16 2006-12-28 ザ・ビーオーシー・グループ・インコーポレーテッド Nmr測定システム
US7084627B2 (en) * 2004-04-30 2006-08-01 The Boc Group, Inc. Method for triggering NMR measurement in a NMR check weighing system
US7061239B2 (en) * 2004-04-30 2006-06-13 The Boc Group, Inc. Method for magnetic field tracking in a NMR check weighing system
US7064548B2 (en) * 2004-04-30 2006-06-20 The Boc Group, Inc. RF probe apparatus for NMR check weighing system
DE102005006725B4 (de) * 2005-02-03 2010-06-02 Bruker Biospin Gmbh Vorrichtung und Probenkopf zum Bestimmen einer quantitativen Eigenschaft einer Probensubstanz mittels magnetischer Resonanz
GB0508547D0 (en) * 2005-04-28 2005-06-01 Boc Group Plc Conveyor system
WO2011149367A1 (en) * 2010-05-28 2011-12-01 Hts-110 Limited Nmr assessment system and method
KR101967244B1 (ko) 2012-12-05 2019-04-09 삼성전자주식회사 자기 공명 영상 방법 및 장치
US10153796B2 (en) 2013-04-06 2018-12-11 Honda Motor Co., Ltd. System and method for capturing and decontaminating photoplethysmopgraphy (PPG) signals in a vehicle
US9751534B2 (en) 2013-03-15 2017-09-05 Honda Motor Co., Ltd. System and method for responding to driver state
US10213162B2 (en) 2013-04-06 2019-02-26 Honda Motor Co., Ltd. System and method for capturing and decontaminating photoplethysmopgraphy (PPG) signals in a vehicle
US10499856B2 (en) * 2013-04-06 2019-12-10 Honda Motor Co., Ltd. System and method for biological signal processing with highly auto-correlated carrier sequences
US10537288B2 (en) 2013-04-06 2020-01-21 Honda Motor Co., Ltd. System and method for biological signal processing with highly auto-correlated carrier sequences
DE102014210778B4 (de) * 2014-06-05 2016-01-14 Siemens Aktiengesellschaft Erzeugung einer Parameterkarte in der Magnetresonanztechnik
CN105388435B (zh) * 2015-12-29 2018-09-18 沈阳东软医疗系统有限公司 一种磁共振成像系统射频线圈的调谐装置及方法
DE102016203891B4 (de) 2016-03-09 2019-07-11 Numares Ag Verfahren zur Durchführung einer NMR-Messung und NMR-Spektrometer-Anordnung
WO2018045366A2 (en) * 2016-09-02 2018-03-08 Schlumberger Technology Corporation Methods for interpreting nmr data
DE102018203845A1 (de) * 2018-03-14 2019-09-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Messen einer Magnetfeldrichtung
CN108845279B (zh) * 2018-05-03 2019-11-19 厦门大学 一种永磁低场小型化核磁共振波谱仪场频联锁系统及方法
CN109282879B (zh) * 2018-09-25 2019-07-23 深圳大学 一种微质量传感器的非接触式emat检测方法及其系统
EP3739353B1 (en) * 2019-05-15 2024-02-28 Siemens Healthineers AG Method for controlling a magnetic resonance imaging system and corresponding magnetic resonance imaging system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803372C3 (de) 1968-10-16 1979-05-17 Unilever N.V., Rotterdam (Niederlande) Verfahren und Vorrichtung zum Messen der Masse einer Reihe von Gegenständen
GB1369985A (en) * 1970-10-16 1974-10-09 Newport Instr Ltd Magnetic resonance apparatus
US3796873A (en) 1971-05-03 1974-03-12 Colgate Palmolive Co Container fill weight control using nuclear radiation
US3810001A (en) * 1972-06-15 1974-05-07 Varian Associates Nuclear magnetic resonance spectroscopy employing difference frequency measurements
US4536711A (en) * 1983-05-05 1985-08-20 Southwest Research Institute Method and apparatus for measuring flow in a pipe or conduit
GB2149509B (en) 1983-11-12 1987-04-01 Vnii Maslichnykh Kultur Im V S Controlling nuclear magnetic resonance analysis
US4727325A (en) 1985-10-16 1988-02-23 Hitachi, Ltd. NMR imaging method
DE3910297A1 (de) 1989-03-30 1990-10-04 Micro Epsilon Messtechnik Beruehrungslos arbeitendes wegmesssystem
US5015954A (en) 1989-06-30 1991-05-14 Auburn International, Inc. Magnetic resonance analysis in real time, industrial usage mode
US5049819A (en) 1989-06-30 1991-09-17 Auburn International, Inc. Magnetic resonance analysis in real time, industrial usage mode
US5530350A (en) * 1991-11-20 1996-06-25 Auburn International, Inc. Magnetic resonance analysis in real time, industrial usage mode
US5302897A (en) * 1992-05-19 1994-04-12 Auburn International, Inc. NMR analysis of polypropylene in real time
US5302896A (en) * 1991-11-20 1994-04-12 Auburn International, Inc. Magnetic resonance analysis in real time industrial usage mode
US5291422A (en) 1992-01-28 1994-03-01 Sgi International Broadband instrument for nondestructive measurement of material properties
US5596275A (en) * 1992-05-19 1997-01-21 Auburn International, Inc. NMR analysis of polypropylene in real time
US5367260A (en) * 1992-10-15 1994-11-22 Auburn International, Inc. Apparatus to obtain flow rates (melt index) in plastics via fixed frequency, pulsed NMR
DK153492A (da) * 1992-12-22 1994-06-23 Danisco Apparat til måling af kernemagnetisk resonans
US5408181A (en) * 1993-08-30 1995-04-18 Auburn International, Inc. NMR system for measuring polymer properties
US5592083A (en) * 1995-03-08 1997-01-07 Quantum Magnetics, Inc. System and method for contraband detection using nuclear quadrupole resonance including a sheet coil and RF shielding via waveguide below cutoff
BR9711082A (pt) 1996-03-29 2000-01-11 Lawrence Berkeley National Lab Realce de rmn emri na presença de gases mopbres hiperpolarizados.
EP1057047B1 (en) 1998-01-16 2008-08-06 Halliburton Energy Services, Inc. Method and apparatus for nuclear magnetic resonance measuring while drilling
US6028428A (en) 1998-04-09 2000-02-22 Cunningham; Charles H. Multiband selective RF pulse construction for NMR measurement sequences
GB9813673D0 (en) 1998-06-24 1998-08-26 Scient Genarics Ltd Contactless check weighing
US6377049B1 (en) 1999-02-12 2002-04-23 General Electric Company Residuum rare earth magnet
US6333629B1 (en) * 1999-07-22 2001-12-25 Intermagnetics General Corporation Method for non-invasively and without contact, inspecting foil enclosed packages, using magnetic resonance techniques
DE60030580T2 (de) * 1999-11-16 2007-05-16 Wollin Ventures, Inc., Marathon Magnetische-resonanz-durchflussmesser und -durchflussmessverfahren
US20040014236A1 (en) * 2002-07-22 2004-01-22 Dror Albo Frequency feedback for NMR magnet temperature control
JP2007502431A (ja) * 2003-05-16 2007-02-08 ザ・ビーオーシー・グループ・インコーポレーテッド 磁気共鳴方法
JP2006529026A (ja) * 2003-05-16 2006-12-28 ザ・ビーオーシー・グループ・インコーポレーテッド Nmr測定システム
CN1788216A (zh) * 2003-05-16 2006-06-14 波克股份有限公司 用于粉末的重量和湿度的nmr测量系统
EP1631397A4 (en) 2003-05-16 2009-01-14 Boc Group Inc CLEANING PROCEDURE FOR AN NMR MONITORING SYSTEM
US7061239B2 (en) * 2004-04-30 2006-06-13 The Boc Group, Inc. Method for magnetic field tracking in a NMR check weighing system

Also Published As

Publication number Publication date
US7061239B2 (en) 2006-06-13
EP1740977A4 (en) 2007-08-29
EP1740977A1 (en) 2007-01-10
KR20070007871A (ko) 2007-01-16
CN1942784A (zh) 2007-04-04
US20050242808A1 (en) 2005-11-03
WO2005111658A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP2007535675A (ja) Nmr重量測定検査システムにおける磁場追跡法
US7199581B2 (en) Magnetic resonance measuring system determining the mass of samples in a production line with monitored drift compensation
US7002346B2 (en) Method for accurate determination of sample temperature in a NMR check weighing system
US7015693B2 (en) NMR measuring system for weight and humidity of powders
US7084627B2 (en) Method for triggering NMR measurement in a NMR check weighing system
US7008486B2 (en) Cleaning method for NMR check weighing system
US7041914B2 (en) Method for compensation of near-neighbor sample effects in a NMR check weighing system
JP2007535677A (ja) Nmr重量測定検査システムのためのrfプローブ装置
US9442173B2 (en) NMR assessment system and method

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518