JP2007525666A - Particle measuring instrument and particle measuring method - Google Patents

Particle measuring instrument and particle measuring method Download PDF

Info

Publication number
JP2007525666A
JP2007525666A JP2006553059A JP2006553059A JP2007525666A JP 2007525666 A JP2007525666 A JP 2007525666A JP 2006553059 A JP2006553059 A JP 2006553059A JP 2006553059 A JP2006553059 A JP 2006553059A JP 2007525666 A JP2007525666 A JP 2007525666A
Authority
JP
Japan
Prior art keywords
particle
particles
guide duct
size
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006553059A
Other languages
Japanese (ja)
Inventor
アン,ガン−ホ
Original Assignee
ヒュンダイ カリブレーション アンド サーティフィケーション テクノロジーズ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒュンダイ カリブレーション アンド サーティフィケーション テクノロジーズ カンパニー リミテッド filed Critical ヒュンダイ カリブレーション アンド サーティフィケーション テクノロジーズ カンパニー リミテッド
Publication of JP2007525666A publication Critical patent/JP2007525666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects thereof, e.g. conductivity or capacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • G01N27/66Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber and measuring current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0019Means for transferring or separating particles prior to analysis, e.g. hoppers or particle conveyors
    • G01N2015/1028
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples

Abstract

本発明は、クリーンルームなどの清浄空間内に存在する低濃度の粒子の個数と大きさ別の分布などを迅速且つ容易に測定することが可能な粒子測定器及び粒子測定方法を開示する。本発明に係る粒子測定器及び粒子測定方法は、粒子を単極性に荷電させ、電極に電圧を印加して一定の大きさ以下の荷電粒子を付着させて捕集させ、一定の大きさ以上の荷電粒子を粒子分離ダクトによって粒子の大きさ別に分離して粒子の個数を測定する。本発明に係る粒子測定器は、1回の測定により空気中の粒子の大きさ分布を求めることができ、空気中に含まれた粒子の個数が少なくても、粒子の大きさ別の分布を迅速且つ容易に求めることができるという効果がある。
The present invention discloses a particle measuring instrument and a particle measuring method capable of quickly and easily measuring the number and size distribution of low concentration particles existing in a clean space such as a clean room. In the particle measuring instrument and the particle measuring method according to the present invention, particles are charged unipolarly, a voltage is applied to the electrodes to attach and collect charged particles of a certain size or less, and a particle size of more than a certain size Charged particles are separated according to particle size by a particle separation duct, and the number of particles is measured. The particle measuring device according to the present invention can determine the particle size distribution in the air by one measurement, and even if the number of particles contained in the air is small, the particle size distribution according to the particle size can be obtained. There is an effect that it can be quickly and easily obtained.

Description

本発明は、粒子測定器及び粒子測定方法に係り、より詳しくは、クリーンルームなどの清浄空間内に存在する低濃度の粒子の個数と大きさ別の分布などを迅速且つ容易に測定することが可能な粒子測定器及び粒子測定方法に関する。   The present invention relates to a particle measuring instrument and a particle measuring method, and more specifically, it is possible to quickly and easily measure the number of low-concentration particles present in a clean space such as a clean room and the distribution according to size. The present invention relates to a particle measuring instrument and a particle measuring method.

周知の如く、クリーンルームなどの清浄空間内に存在する粒子の測定は、半導体生産工程で非常に重要な要素である。従来の技術として、粒子の大きさを測定するために、レーザを用いて粒子の大きさを分析する光学粒子計数器(OPC)、またはブラウン拡散を用いた拡散バッテリなどが用いられている。   As is well known, the measurement of particles present in a clean space such as a clean room is a very important factor in the semiconductor production process. Conventionally, in order to measure the particle size, an optical particle counter (OPC) that analyzes the particle size using a laser, a diffusion battery using Brownian diffusion, or the like is used.

半導体技術の発達によって半導体の線幅が減少するにつれて、粒径10nm程度の大きさを持つ粒子は必須的に測定されなければならない。ところが、上述した従来の光学粒子計数器の場合、レーザの散乱により直径0.1μm以下の粒子を測定することができない。また、拡散バッテリで粒子を測定する場合には、測定結果が正確でないという問題点がある。   As the semiconductor line width decreases due to the development of semiconductor technology, particles having a particle size of about 10 nm must be measured. However, in the case of the conventional optical particle counter described above, particles having a diameter of 0.1 μm or less cannot be measured due to laser scattering. Moreover, when measuring particles with a diffusion battery, there is a problem that the measurement result is not accurate.

現在、直径10nm程度の粒子を測定するために、粒子測定器(Differential Mobility Particle Counter)が開発された。この粒子測定器は、粒子分離装置(Differential Mobility Analyzer、DMA)と粒子計数装置(Condensation Particle Counter)の組み合わせから構成されている。粒子分離装置は、粒子の直径、粒子の流動、静電気力を用いて所望の直径の粒子を選別し、粒子計数装置は、粒子分離装置によって選別された粒子の個数をコンピュータを用いて測定する。   Currently, in order to measure particles having a diameter of about 10 nm, a differential mobility particle counter has been developed. This particle measuring device is composed of a combination of a particle separation device (Differential Mobility Analyzer, DMA) and a particle counting device (Condensation Particle Counter). The particle separation device sorts particles having a desired diameter using particle diameter, particle flow, and electrostatic force, and the particle counting device measures the number of particles sorted by the particle separation device using a computer.

図1は従来の技術の粒子測定器を示す図である。図1を参照すると、従来の粒子測定器は、粒子流入装置10、粒子分離装置20及び粒子計数装置30から構成されている。   FIG. 1 is a view showing a conventional particle measuring instrument. Referring to FIG. 1, the conventional particle measuring device includes a particle inflow device 10, a particle separation device 20, and a particle counting device 30.

粒子流入装置10は、粒子分離装置20の上流に位置する。粒子流入装置10は、粒子供給装置12と、供給される粒子を荷電させる粒子荷電装置としてのニュートラライザー14と、清浄空気供給装置16とから構成されている。ニュートラライザー14は、放射能を用いて粒子を陽極性に荷電し、電気的に中和させる装置である。このようなニュートラライザーは、本発明の属する技術分野における通常の知識を有する者にはよく知られている装備なので、ここで関連した構成と作用に関する説明は省略する。   The particle inflow device 10 is located upstream of the particle separation device 20. The particle inflow device 10 includes a particle supply device 12, a neutralizer 14 as a particle charging device for charging supplied particles, and a clean air supply device 16. The neutralizer 14 is a device that electrically neutralizes particles by anodically charging them using radioactivity. Such a neutralizer is well-known to those having ordinary knowledge in the technical field to which the present invention pertains, and therefore the description of the configuration and operation related here will be omitted.

粒子分離装置20は、円筒型の外部ガイドダクト21と、内部ガイドダクト22と、内部ガイドダクト22の内部に設置される電極23と、電極23の下端から延長された一つの粒子分離ダクト24とから構成されている。電極23は電源供給部25と連結されており、外部ガイドダクト21は接地されている。粒子分離ダクト24には外周面に沿って多数の粒子進入孔24aが設けられている。粒子進入孔24aは、同一の高さに位置し、直径1mm程度の大きさを持つ。   The particle separation device 20 includes a cylindrical external guide duct 21, an internal guide duct 22, an electrode 23 installed inside the internal guide duct 22, and one particle separation duct 24 extended from the lower end of the electrode 23. It is composed of The electrode 23 is connected to the power supply unit 25, and the external guide duct 21 is grounded. The particle separation duct 24 is provided with a large number of particle entry holes 24a along the outer peripheral surface. The particle entry holes 24a are located at the same height and have a diameter of about 1 mm.

次に、このような構成を持つ従来の粒子測定器の動作について説明する。粒子供給装置12によって粒子が供給されると、粒子は、ニュートラライザー14によって陽極性に荷電される。荷電された粒子は、外部ガイドダクト21と内部ガイドダクト22との間に流入される。一方、内部ガイドダクト22としては、荷電された粒子を円滑に移送するために清浄空気が流入される。電極23と反対の極性に荷電された粒子は電極側へ移動する。これにより、小さい荷電粒子は電極23の上端部に付着され、大きい荷電粒子は電極23の下部に移動する。下方に移動する荷電粒子は電極23の下部に付着され、電極23に付着されない非常に大きい荷電粒子はガイドダクト21の外部に流出される。この際、粒子分離ダクト24を介して強制に若干の空気を吸入すると、電極23の下部に到達した一定サイズの粒子は、上述した空気吸入作用によって粒子進入孔24aを介して粒子分離ダクト24の内部に進入して外部に流出される。このように粒子分離ダクト24によって流出される荷電粒子は、一定の範囲の大きさを持つ。選別された荷電粒子は、粒子分離装置20の下流に位置する粒子計数装置30に流入されて粒子の個数が測定される。   Next, the operation of the conventional particle measuring apparatus having such a configuration will be described. When particles are supplied by the particle supply device 12, the particles are positively charged by the neutralizer 14. The charged particles flow between the outer guide duct 21 and the inner guide duct 22. On the other hand, as the internal guide duct 22, clean air is introduced to smoothly transfer charged particles. Particles charged with a polarity opposite to that of the electrode 23 move to the electrode side. Thereby, small charged particles are attached to the upper end portion of the electrode 23, and large charged particles move to the lower portion of the electrode 23. The charged particles that move downward are attached to the lower part of the electrode 23, and very large charged particles that are not attached to the electrode 23 flow out of the guide duct 21. At this time, if a slight amount of air is forcibly sucked through the particle separation duct 24, particles of a certain size that have reached the lower portion of the electrode 23 are passed through the particle entry holes 24a by the above-described air suction action. It enters the inside and flows out to the outside. In this way, the charged particles flowing out by the particle separation duct 24 have a certain range of sizes. The selected charged particles are introduced into a particle counter 30 located downstream of the particle separator 20 and the number of particles is measured.

したがって、電極23に印加される電圧を調節すると、荷電粒子は大きさ別に選別できる。電極23に印加される電圧の大きさを調節して上述の過程を繰り返し行うと、大きさ別に粒子の個数を測定することができるようになって、全体粒子の大きさ別の分布を知ることができる。   Therefore, when the voltage applied to the electrode 23 is adjusted, the charged particles can be sorted by size. If the above process is repeated by adjusting the magnitude of the voltage applied to the electrode 23, the number of particles can be measured according to the size, and the distribution according to the size of the whole particles can be known. Can do.

ところが、従来の粒子測定器は、1回の測定では特定の範囲内の大きさをもった荷電粒子のみの個数を測定することができる。したがって、全体粒子の個数と大きさ別の分布などを知るためには、電極に供給される電圧を調節して繰り返し行わなければならないという欠点がある。しかも、クリーンルームの清浄空間内に存在する空気中の粒子を測定する場合、清浄空間内の粒子の個数は基本的に少ない。したがって、実際には電圧を異にして大きさ別に荷電粒子を選別して測定することは殆ど不可能である。   However, the conventional particle measuring instrument can measure only the number of charged particles having a size within a specific range in one measurement. Therefore, in order to know the number of particles and the distribution according to size, there is a drawback that the voltage supplied to the electrodes must be adjusted and repeated. Moreover, when measuring particles in the air present in the clean space of the clean room, the number of particles in the clean space is basically small. Therefore, in practice, it is almost impossible to select and measure charged particles according to size with different voltages.

したがって、本発明は、上述した従来の技術のいろいろの問題点を解決するためのもので、その目的は、1回の測定により空気中の粒子の個数と大きさ別の分布を迅速に求めることが可能な粒子測定器及び粒子測定方法を提供することにある。   Therefore, the present invention is intended to solve the various problems of the above-described conventional technology, and its purpose is to quickly determine the number of particles in the air and the distribution according to size by a single measurement. It is an object of the present invention to provide a particle measuring apparatus and a particle measuring method capable of performing the above.

本発明の他の目的は、空気中に含まれた粒子の個数が少なくても、粒子の個数と大きさ別の分布を容易に求めることが可能な粒子測定器及び粒子測定方法を提供することにある。   Another object of the present invention is to provide a particle measuring instrument and a particle measuring method capable of easily obtaining the distribution according to the number and size of particles even if the number of particles contained in the air is small. It is in.

上記目的を達成するための本発明の第1特徴によれば、粒子を単極性に荷電させる粒子荷電手段と、清浄空気が導入される内部ガイドダクトと、高電圧が印加され、前記内部ガイドダクト内に前記内部ガイドダクトの長さ方向に設置された電極と、前記電極に電源を供給する電源供給手段と、前記内部ガイドダクトの外側に位置し、前記内部ガイドダクトの長さより長く、前記内部ガイドダクトとの間に、前記粒子荷電手段によって荷電された粒子が流入される外部ガイドダクトと、外部ガイドダクトの下側内部に上端が位置し、荷電粒子を大きさ別に分離する粒子分離手段と、前記粒子分離手段と連結されており、前記粒子分離手段によって大きさ別に分離された粒子の個数を測定する粒子計数手段とを含んでなる、粒子測定器を提供する。   According to a first aspect of the present invention for achieving the above object, a particle charging means for charging particles to a unipolar polarity, an internal guide duct into which clean air is introduced, a high voltage is applied, and the internal guide duct An electrode installed in the longitudinal direction of the internal guide duct, power supply means for supplying power to the electrode, and located outside the internal guide duct, longer than the length of the internal guide duct, An external guide duct into which particles charged by the particle charging means are introduced, and a particle separating means for separating charged particles according to size, the upper end being located inside the lower side of the external guide duct; And a particle counter connected to the particle separator and including a particle counter for measuring the number of particles separated by size by the particle separator.

本発明の第2特徴によれば、粒子を荷電させる粒子荷電手段と、清浄空気が導入される内部ガイドダクトと、前記内部ガイドダクト内に前記内部ガイドダクトの長さ方向に設置された電極と、前記内部ガイドダクトの外側に位置し、前記内部ガイドダクトの長さより長く、前記内部ガイドダクトとの間に、前記粒子荷電手段によって荷電された粒子が流入され、下流には粒子収去部を有する外部ガイドダクトを備える多数の粒子分離装置と、前記多数の粒子分離装置のそれぞれの電極に電圧差が形成されるように互いに異なる電源を供給する電源供給手段と、前記粒子分離装置によって収去された粒子の個数を測定する多数の粒子計数手段とを含んでなる、粒子測定器を提供する。   According to the second feature of the present invention, a particle charging means for charging particles, an internal guide duct into which clean air is introduced, an electrode installed in the length direction of the internal guide duct in the internal guide duct, , Located outside the internal guide duct, longer than the length of the internal guide duct, and charged with the particles by the particle charging means between the internal guide duct and a particle collection unit downstream. A large number of particle separators having external guide ducts, power supply means for supplying different power sources so that a voltage difference is formed between the electrodes of the multiple particle separators, and the particles separated by the particle separator There is provided a particle measuring instrument comprising a plurality of particle counting means for measuring the number of particles formed.

本発明の第3特徴によれば、測定しようとする粒子を単極性に荷電させる段階と、前記荷電された粒子と清浄空気をガイドダクトの内部に流入させる段階と、前記ガイドダクトの内部に設置される電極に電圧を印加する段階と、一定の大きさ以下の荷電粒子を電極に付着させる段階と、前記電極に付着されない荷電粒子を大きさ別に分離する段階と、前記分離された荷電粒子の大きさ別の個数を測定する段階とを含んでなる、粒子測定方法を提供する。   According to the third aspect of the present invention, the step of charging the particles to be measured to a single polarity, the step of flowing the charged particles and clean air into the guide duct, and the interior of the guide duct Applying a voltage to the electrode to be applied, attaching a charged particle having a predetermined size or less to the electrode, separating charged particles not attached to the electrode according to size, and And measuring the number of particles according to size.

本発明の第4特徴によれば、ガイドダクトと、前記ガイドダクト内に設けられる電極をそれぞれ備える多数の粒子分離装置を準備する段階と、測定しようとする粒子を単極性に荷電させる段階と、荷電された粒子と清浄空気を前記ガイドダクトの内部に流入させる段階と、前記電極に互いに異なる電圧を印加する段階と、前記粒子分離装置によって分離された荷電粒子の個数を測定する段階と、前記測定され結果から粒子が大きさ別の分布を計算する段階とを含んでなる粒子測定方法を提供する。   According to a fourth aspect of the present invention, preparing a plurality of particle separation devices each including a guide duct and an electrode provided in the guide duct, charging a particle to be measured to a unipolar state, Flowing charged particles and clean air into the guide duct, applying different voltages to the electrodes, measuring the number of charged particles separated by the particle separator, and And a method for calculating a particle size distribution from the measured results.

以下、本発明に係る粒子測定器の実施例を添付図面に基づいて詳細に説明する。   Embodiments of a particle measuring device according to the present invention will be described below in detail with reference to the accompanying drawings.

図2は本発明に係る粒子測定器の第1実施例を示す図である。図2に示すように、本実施例に係る粒子測定器は、粒子流入装置50と粒子分離装置60と粒子計数装置70とから構成されている。   FIG. 2 is a view showing a first embodiment of the particle measuring apparatus according to the present invention. As shown in FIG. 2, the particle measuring instrument according to the present embodiment includes a particle inflow device 50, a particle separation device 60, and a particle counting device 70.

粒子流入装置50は、粒子分離装置60の上流に位置する。粒子流入装置50は、粒子供給装置52、供給される粒子を荷電させる粒子荷電装置54、及び清浄空気供給装置56を備えている。図1に示した上述の粒子荷電装置であるニュートラライザー14が粒子を陽極性に荷電させることに対し、本発明の特徴として、本発明の粒子荷電装置54は流入される粒子を単極性に荷電させる。このように、粒子荷電装置54はコロナ放電、放射能、X−RAY、紫外線などを用いて粒子を荷電させる。単極性に粒子を荷電させる粒子荷電装置は、当業者にはよく知られているものなので、ここでは詳細な説明を省略する。   The particle inflow device 50 is located upstream of the particle separation device 60. The particle inflow device 50 includes a particle supply device 52, a particle charging device 54 that charges the supplied particles, and a clean air supply device 56. The neutralizer 14, which is the above-described particle charging device shown in FIG. 1, charges particles anodicly. As a feature of the present invention, the particle charging device 54 of the present invention charges incoming particles unipolarly. Let In this way, the particle charging device 54 charges particles using corona discharge, radioactivity, X-RAY, ultraviolet rays, or the like. Since a particle charging device for charging particles unipolarly is well known to those skilled in the art, a detailed description thereof is omitted here.

粒子荷電装置54によって単極性に荷電された粒子は、粒子分離装置60に流入される。粒子分離装置60は、供給される粒子を大きさ別に分離する。粒子分離装置60は、円筒型の外部ガイドダクト61と、内部ガイドダクト62と、内部ガイドダクト62の内部に設置される電極63と、外部ガイドダクト61の内部下側に外部ガイドダクト61と同心に設置され、粒子を大きさ別に分離するための多数の粒子分離ダクト64(64a、64b)とから構成されている。本実施例によって、粒子が大きさ別に選別されて分離される。電極63は電源供給部65と連結されており、外部ガイドダクト61は接地されている。電極63は、荷電粒子が大きさ別に分離されて流出されるように、粒子分離ダクト64a、64bの上端部と所定の距離だけ、例えば1cm〜5cm程度離隔している。以上の如く、本実施例に係る粒子分離装置60は、図1の従来の粒子分離装置20とは、粒子分離ダクト(64、24)の形状及び個数が異なり、電極(63、23)と粒子分離ダクト(64、24)間の間隔も異なる。   Particles charged unipolarly by the particle charging device 54 flow into the particle separation device 60. The particle separation device 60 separates supplied particles according to size. The particle separator 60 includes a cylindrical external guide duct 61, an internal guide duct 62, an electrode 63 installed inside the internal guide duct 62, and a concentricity with the external guide duct 61 on the lower side inside the external guide duct 61. And a plurality of particle separation ducts 64 (64a, 64b) for separating particles according to size. According to this embodiment, the particles are sorted and separated according to size. The electrode 63 is connected to the power supply unit 65, and the external guide duct 61 is grounded. The electrode 63 is separated from the upper ends of the particle separation ducts 64a and 64b by a predetermined distance, for example, about 1 cm to 5 cm so that the charged particles are separated according to size and flow out. As described above, the particle separation device 60 according to the present embodiment is different from the conventional particle separation device 20 of FIG. 1 in the shape and number of the particle separation ducts (64, 24), and the electrodes (63, 23) and the particles. The spacing between the separation ducts (64, 24) is also different.

粒子計数装置70a、70b、70cは、粒子分離装置60の下流に位置する。粒子計数装置は、測定しようとする粒子の大きさ別に設置される。粒子計数装置は、慣用技術なので、関連した詳細な説明は省略する。   The particle counting devices 70 a, 70 b and 70 c are located downstream of the particle separating device 60. The particle counter is installed for each particle size to be measured. Since the particle counter is a conventional technique, a detailed description thereof will be omitted.

次に、上述の構成を有する本発明に係る粒子測定器の第1実施例の作用について説明する。   Next, the operation of the first embodiment of the particle measuring apparatus according to the present invention having the above-described configuration will be described.

図3を参照すると、粒子供給装置52を介して供給される粒子は、粒子荷電装置54によって単極性に荷電され、荷電された粒子は、粒子分離装置60に流入される。荷電粒子Pは、外部ガイドダクト61と内部ガイドダクト62との間に流入され、流入される荷電粒子Pは、粒子の大きさによって異なる軌跡に沿って移動しながら下降する。電極63に荷電粒子Pの極性と反対の極性を有する高電圧を印加すると、荷電粒子Pは、静電気力によって電極63側に移動する。したがって、粒子の荷電量が粒子の大きさに関係なく一定であると仮定すると(100nm以下の粒子の場合、一般に1個の電荷を帯びる)、粒子の大きさと印加圧の関数によって粒子の移動速度を予測することができる。   Referring to FIG. 3, the particles supplied via the particle supply device 52 are charged unipolarly by the particle charging device 54, and the charged particles flow into the particle separation device 60. The charged particles P are introduced between the outer guide duct 61 and the inner guide duct 62, and the charged particles P that flow in descend while moving along different trajectories depending on the size of the particles. When a high voltage having a polarity opposite to that of the charged particle P is applied to the electrode 63, the charged particle P moves to the electrode 63 side by electrostatic force. Therefore, assuming that the charge amount of a particle is constant regardless of the size of the particle (a particle of 100 nm or less generally has one charge), the particle moving speed depends on the function of the particle size and the applied pressure. Can be predicted.

図3を参照すると、一定の電圧が電極63に印加されると、小さい粒子は電極63に付着されて捕集され、大きい粒子は電極63に捕集されずに粒子分離装置60の外部に流出される。電極63に捕集されていない荷電粒子Pのうち、最も大きいサイズの粒子は電極63の中心線から最も遠い外部ガイドダクト61と粒子分離ダクト64bとの間に移動して分離され、中間サイズの粒子は粒子分離ダクト64aと粒子分離ダクト64bとの間に移動して分離され、最も小さいサイズの粒子は電極63の中心線に最も近い粒子分離ダクト64aに移動して分離される。   Referring to FIG. 3, when a constant voltage is applied to the electrode 63, small particles are attached to the electrode 63 and collected, and large particles are not collected by the electrode 63 and flow out of the particle separator 60. Is done. Among the charged particles P that are not collected by the electrode 63, the largest size particle moves and is separated between the external guide duct 61 and the particle separation duct 64b that are farthest from the center line of the electrode 63, and has an intermediate size. The particles move and are separated between the particle separation duct 64a and the particle separation duct 64b, and the smallest size particles move to the particle separation duct 64a closest to the center line of the electrode 63 and are separated.

これにより、外部ガイドダクト61の下流に位置する多数の粒子計数装置70a、70b、70cは、大きさ別に分離された荷電粒子Pの個数をそれぞれ測定する。粒子計数装置70a、70b、70cによって測定された荷電粒子Pの個数が測定されることにより、清浄空間内に存在する空気粒子の大きさ別の分布を知ることができる。   As a result, the large number of particle counters 70a, 70b, 70c located downstream of the external guide duct 61 respectively measure the number of charged particles P separated by size. By measuring the number of charged particles P measured by the particle counters 70a, 70b, and 70c, it is possible to know the distribution of air particles present in the clean space according to size.

次に、本発明に係る粒子測定器の第2実施例について説明する。   Next, a second embodiment of the particle measuring device according to the present invention will be described.

図4は本発明の第2実施例を示す図である。本実施例に係る粒子測定器は、粒子荷電装置50と、多数の粒子分離装置60a〜60eと、粒子分離装置60a〜60eのそれぞれの電極に電圧を印加する電源供給部65a〜65eと、粒子分離装置60a〜60eのそれぞれに対応して連結、設置された多数の粒子計数装置70a〜70eとから構成されている。   FIG. 4 is a diagram showing a second embodiment of the present invention. The particle measuring apparatus according to the present embodiment includes a particle charging device 50, a large number of particle separation devices 60a to 60e, power supply units 65a to 65e that apply voltages to respective electrodes of the particle separation devices 60a to 60e, and particles It consists of a large number of particle counters 70a to 70e connected and installed corresponding to each of the separators 60a to 60e.

粒子分離装置60a〜60eは、図2の粒子分離装置60と基本的な構成は同様である。但し、本実施例の粒子分離装置60a〜60eは、図2の粒子分離装置60と同様に、別途に多数の粒子分離ダクト64a、64bがなく、外部ガイドダクト61自体が粒子分離ダクトの役割を行う。外部ガイドダクトの下部は、漸次入り口が狭くなる略漏斗状を有し、粒子は、外部ガイドダクトと連通されている粒子計数装置に直ちに流出される。   The particle separators 60a to 60e have the same basic configuration as the particle separator 60 of FIG. However, the particle separation devices 60a to 60e of the present embodiment do not have a large number of particle separation ducts 64a and 64b separately as in the particle separation device 60 of FIG. 2, and the external guide duct 61 itself serves as the particle separation duct. Do. The lower part of the external guide duct has a substantially funnel shape with a gradually narrowing entrance, and the particles immediately flow out to the particle counter connected to the external guide duct.

電源供給部65a〜65eは、一つの高電圧電源65aと、高電圧電源65aに連続して連結された多数の抵抗65b〜65eとからなっている。多数の抵抗65b〜65eによって、粒子分離装置60a〜60eそれぞれの電極には抵抗65b〜65eによって降下された電圧がそれぞれ印加され、最後の粒子分離装置60eの電極には0の電圧が印加される。   The power supply units 65a to 65e are composed of one high voltage power supply 65a and a number of resistors 65b to 65e connected in series to the high voltage power supply 65a. Due to the large number of resistors 65b to 65e, the voltage dropped by the resistors 65b to 65e is applied to the electrodes of the particle separators 60a to 60e, respectively, and the voltage of 0 is applied to the electrode of the last particle separator 60e. .

本実施例によって、粒子分離装置60a〜60eと粒子計数装置70a〜70eが平行に設置される。粒子分離装置60a〜60eのそれぞれの電極に互いに異なる電圧が印加されることにより、第1粒子分離装置60aによっては最も大きいサイズの粒子のみが分離されて流出され、第2粒子分離装置60bによってはその次に大きいサイズ以上の粒子が分離されて流出される。また、次の第3粒子分離装置60cと第4粒子分離装置60dによってさらに小さいサイズ以上の粒子が分離されて流出される。最終に、第5粒子分離装置60eには0の電圧が印加されるので、第5粒子分離装置60eを介しては全てのサイズの全体粒子が流出される。このように各粒子分離装置60a〜60eと各粒子計数装置70a〜70eによって、各装置別に特定の大きさ以上の粒子の個数を測定することができる。したがって、本実施例の粒子測定器にコンピュータを連結し、収集された資料を分析すると、清浄空間内に存在する粒子の大きさ別の分布を測定することができる。   According to this embodiment, the particle separators 60a to 60e and the particle counters 70a to 70e are installed in parallel. By applying different voltages to the respective electrodes of the particle separators 60a to 60e, only the largest size particles are separated and flowed out depending on the first particle separator 60a, and depending on the second particle separator 60b. The next larger particles are separated and discharged. Further, particles having a size smaller than that are separated and flowed out by the next third particle separation device 60c and the fourth particle separation device 60d. Finally, since a voltage of 0 is applied to the fifth particle separation device 60e, all particles of all sizes flow out through the fifth particle separation device 60e. As described above, the number of particles having a specific size or more can be measured for each device by the particle separation devices 60a to 60e and the particle counting devices 70a to 70e. Therefore, when a computer is connected to the particle measuring instrument of the present embodiment and the collected data is analyzed, the distribution of particles present in the clean space can be measured.

次に、図5を参照して本発明に係る粒子測定方法の第1実施例について説明する。   Next, a first embodiment of the particle measuring method according to the present invention will be described with reference to FIG.

粒子の個数を測定するために、まず測定しようとする粒子を単極性に荷電させる(S10)。粒子を単極性に荷電させる方法は、前述した粒子荷電装置によって行われる。その後、荷電された粒子と清浄空気をガイドダクトに流入させる(S20)。ガイドダクトは、内部ガイドダクトと、内部ガイドダクトの外側に位置し、内部ガイドダクトの長さより長い外部ガイドダクトとから構成されている。荷電された粒子は外部ガイドダクトと内部ガイドダクトとの間に流入され、清浄空気は内部ガイドダクト内に流入される。   In order to measure the number of particles, first, the particles to be measured are charged unipolarly (S10). The method of charging particles unipolarly is performed by the particle charging apparatus described above. Thereafter, charged particles and clean air are caused to flow into the guide duct (S20). The guide duct is composed of an internal guide duct and an external guide duct that is located outside the internal guide duct and is longer than the length of the internal guide duct. Charged particles flow between the outer guide duct and the inner guide duct, and clean air flows into the inner guide duct.

その後、内部ガイドダクト内に設置された電極に電圧を印加する(S30)。電極は、ガイドダクトの長さ方向に設置されており、内部ガイドダクトより長く外部ガイドナクトよりは短い。電極に印加された電圧によって、ガイドダクトに流入された荷電粒子のうち、一定の大きさ以下の荷電粒子は電極に付着される(S40)。付着される荷電粒子の大きさは、電極に加えられる電圧を制御することにより調節することができる。   Thereafter, a voltage is applied to the electrodes installed in the internal guide duct (S30). The electrode is installed in the length direction of the guide duct and is longer than the inner guide duct and shorter than the outer guide nakt. Due to the voltage applied to the electrode, among the charged particles flowing into the guide duct, charged particles having a certain size or less are attached to the electrode (S40). The size of the charged particles deposited can be adjusted by controlling the voltage applied to the electrodes.

次に、電極に付着されない一定の大きさ以上の荷電粒子を大きさ別に分離する(S50)。粒子を分離するために、上述した粒子測定器の第1実施例と同様に、外部ガイドダクトの下端に多数の粒子分離ダクトを設置する。粒子分離ダクトは、同心に設置されている。荷電粒子は、その大きさによってガイドダクト内で互いに異なる軌跡を描きながら下降するので、ガイドダクトの下端に設置された粒子分離ダクトへ移動して分離される。粒子分離ダクトによって分離された粒子は、その大きさ別に区分されており、各粒子分離ダクトによって分離された粒子の個数を測定すると(S60)、粒子の大きさ別の分布を求めることができる。   Next, charged particles of a certain size or larger that are not attached to the electrode are separated by size (S50). In order to separate particles, a large number of particle separation ducts are installed at the lower end of the external guide duct, as in the first embodiment of the particle measuring instrument described above. The particle separation ducts are installed concentrically. Since the charged particles descend while drawing different trajectories in the guide duct depending on the size, the charged particles move to the particle separation duct installed at the lower end of the guide duct and are separated. The particles separated by the particle separation duct are classified according to their sizes, and when the number of particles separated by each particle separation duct is measured (S60), the distribution according to the size of the particles can be obtained.

次に、図6を参照して本発明に係る粒子測定方法の第2実施例について説明する。   Next, a second embodiment of the particle measuring method according to the present invention will be described with reference to FIG.

粒子測定方法の第2実施例では、まず、ガイドダクトと、ガイドダクトの長さ方向に設置された電極をそれぞれ備える多数の粒子分離装置を準備する(S10)。ガイドダクトは、内部ガイドダクトと、内部ガイドダクトの外側に位置し、内部ガイドダクトの長さより長い外部ガイドダクトとから構成されている。次に、測定しようとする粒子を単極性に荷電させる(S20)。荷電された粒子を内部ガイドダクトと外部ガイドダクトとの間に流入させ、清浄空気を内部ガイドダクトの内部に流入させる(S30)。   In the second embodiment of the particle measuring method, first, a large number of particle separation apparatuses each including a guide duct and electrodes installed in the length direction of the guide duct are prepared (S10). The guide duct is composed of an internal guide duct and an external guide duct that is located outside the internal guide duct and is longer than the length of the internal guide duct. Next, the particles to be measured are charged unipolarly (S20). Charged particles are caused to flow between the inner guide duct and the outer guide duct, and clean air is caused to flow into the inner guide duct (S30).

次に、粒子分離装置の電極に相互異なる電圧を印加する(S40)。電極のいずれか一つには0Vの電圧を印加し、残りの各電極には高電圧から順次低い電圧を印加する。粒子分離装置のそれぞれの電極に互いに異なる電圧が印加されることにより、高電圧が印加された電極の粒子分離装置によっては大きさが最も大きい粒子のみが分離されて流出され、順次低い電圧が印加された粒子分離装置によってはそれぞれ順次小さい大きさ以上の粒子が分離されて流出される。0の電圧が印加された粒子分離装置によっては、全ての大きさを有する全体の粒子が流出される。   Next, different voltages are applied to the electrodes of the particle separator (S40). A voltage of 0 V is applied to any one of the electrodes, and a low voltage is sequentially applied to the remaining electrodes from a high voltage. By applying different voltages to each electrode of the particle separator, depending on the particle separator of the electrode to which a high voltage is applied, only the largest particles are separated and flowed out, and a lower voltage is applied sequentially. Depending on the particle separation apparatus, particles having a size smaller than that are separated and discharged sequentially. Depending on the particle separator to which a voltage of 0 is applied, the entire particles of all sizes flow out.

各粒子分離装置によって流出された荷電粒子は、分離された荷電粒子の個数を測定する段階(S50)によって、各粒子分離装置別に特定の大きさ以上の粒子個数を測定することができる。最後に、前記測定された結果から粒子の大きさ別の分布を計算する(S60)。この段階(S60)でコンピュータを用いて各粒子分離装置から測定された資料を分析すると、清浄空間内に存在する粒子の大きさ別の分布を測定することができる。すなわち、一つの高電圧が印加された粒子分離装置によって分離された粒子の個数から、高電圧より小さい低電圧が印加された粒子分離装置によって分離された粒子の個数を差し引くと、特定の大きさを有する領域の粒子の個数を計算することができる。したがって、本発明に係る粒子測定方法によって粒子の大きさ別の分布を迅速に測定することができる。   The charged particles discharged by each particle separation device can measure the number of particles having a specific size or more for each particle separation device by measuring the number of separated charged particles (S50). Finally, a distribution for each particle size is calculated from the measured result (S60). If the data measured from each particle separation device is analyzed using a computer in this stage (S60), the distribution according to the size of the particles present in the clean space can be measured. That is, when the number of particles separated by a particle separator applied with a low voltage lower than a high voltage is subtracted from the number of particles separated by a particle separator applied with one high voltage, a specific size is obtained. The number of particles in a region having can be calculated. Therefore, the particle size distribution according to the present invention can be quickly measured for each particle size distribution.

以上説明した実施例は、本発明に係る粒子測定器及び粒子測定方法の例示に過ぎず、本発明の権利範囲はこれらの実施例に限定されるものではなく、本発明の技術的思想と特許請求の範囲内において、この分野の当業者によって種々変更、変形または置換を加え得るのは勿論であり、それらについても本発明の範囲に属するものと理解されるべきである。   The embodiments described above are merely examples of the particle measuring instrument and the particle measuring method according to the present invention, and the scope of rights of the present invention is not limited to these embodiments. It should be understood that various changes, modifications, and substitutions may be made by those skilled in the art within the scope of the claims, and these also belong to the scope of the present invention.

以上述べたように、本発明に係る粒子測定器及び粒子測定方法は、1回の測定によって空気中の粒子の大きさ別の分布を求めることができる。また、本発明に係る粒子測定器及び粒子測定方法は、空気中に含まれた粒子の個数が少なくても、粒子の大きさ別の分布を容易に求めることができる。   As described above, the particle measuring instrument and particle measuring method according to the present invention can determine the distribution of particles in the air according to the size by one measurement. In addition, the particle measuring instrument and particle measuring method according to the present invention can easily determine the distribution by particle size even if the number of particles contained in the air is small.

従来の技術に係る粒子測定器を示す構成図である。It is a block diagram which shows the particle | grain measuring device which concerns on a prior art. 本発明に係る粒子測定器の第1実施例を示す構成図である。It is a block diagram which shows 1st Example of the particle | grain measuring device which concerns on this invention. 図2による粒子分離装置内における荷電粒子の運動を説明する拡大断面図である。It is an expanded sectional view explaining the motion of the charged particle in the particle | grain separator by FIG. 本発明に係る粒子測定器の第2実施例を示す構成図である。It is a block diagram which shows 2nd Example of the particle | grain measuring device which concerns on this invention. 本発明に係る粒子測定方法の第1実施例を示す流れ図である。It is a flowchart which shows 1st Example of the particle | grain measuring method which concerns on this invention. 本発明に係る粒子測定方法の第2実施例を示す流れ図である。It is a flowchart which shows 2nd Example of the particle | grain measuring method which concerns on this invention.

Claims (9)

粒子を単極性に荷電させる粒子荷電手段と、
清浄空気が導入される内部ガイドダクトと、
高電圧が印加され、前記内部ガイドダクト内に前記内部ガイドダクトの長さ方向に設置された電極と、
前記電極に電源を供給する電源供給手段と、
前記内部ガイドダクトの外側に位置し、前記内部ガイドダクトの長さより長く、前記内部ガイドダクトとの間に、前記粒子荷電手段によって荷電された粒子が流入される外部ガイドダクトと、
外部ガイドダクトの下側内部に上端が位置し、荷電粒子が大きさ別に分離させる粒子分離手段と、
前記粒子分離手段と連結されており、前記粒子分離手段によって大きさ別に分離された粒子の個数を測定する粒子計数手段とを含んでなることを特徴とする粒子測定器。
A particle charging means for charging the particles unipolarly;
An internal guide duct into which clean air is introduced;
A high voltage is applied, and an electrode installed in the length direction of the internal guide duct in the internal guide duct;
Power supply means for supplying power to the electrodes;
An external guide duct located outside the internal guide duct, longer than the length of the internal guide duct, and into which the particles charged by the particle charging means flow between the internal guide duct;
A particle separating means for separating the charged particles according to size, the upper end being located inside the lower side of the external guide duct;
A particle measuring instrument, comprising: a particle counter connected to the particle separator and measuring the number of particles separated by size by the particle separator.
前記粒子分離手段は、前記電極の下端と距離を置いている多数の粒子分離ダクトを備え、前記粒子計数手段は、前記粒子分離ダクトのそれぞれに連結されている多数の粒子計数器を備えていることを特徴とする請求項1に記載の粒子測定器。   The particle separation means comprises a number of particle separation ducts spaced from the lower end of the electrode, and the particle counting means comprises a number of particle counters connected to each of the particle separation ducts. The particle measuring instrument according to claim 1. 前記粒子分離ダクトが同心に設置されたことを特徴とする請求項2に記載の粒子測定器。   3. The particle measuring instrument according to claim 2, wherein the particle separation ducts are installed concentrically. 粒子を荷電させる粒子荷電手段と;
清浄空気が導入される内部ガイドダクトと、前記内部ガイドダクト内に前記内部ガイドダクトの長さ方向に設置された電極と、前記内部ガイドダクトの外側に位置し、前記内部ガイドダクトの長さより長く、前記内部ガイドダクトとの間に、前記粒子荷電手段によって荷電された粒子が流入され、下流には粒子収去部を有する外部ガイドダクトとを備える多数の粒子分離装置と;
前記多数の粒子分離装置のそれぞれの電極に電圧差が形成されるように互いに異なる電源を供給する電源供給手段と;
前記粒子分離装置によって収去された粒子の個数を測定する多数の粒子計数手段とを含んでなることを特徴とする粒子測定器。
Particle charging means for charging the particles;
An internal guide duct into which clean air is introduced, an electrode installed in the internal guide duct in the length direction of the internal guide duct, and located outside the internal guide duct and longer than the length of the internal guide duct A plurality of particle separation devices including an external guide duct having a particle collection portion downstream of the particles charged by the particle charging means between the internal guide duct;
Power supply means for supplying different power sources so that a voltage difference is formed between the electrodes of the multiple particle separation devices;
A particle measuring instrument comprising a number of particle counting means for measuring the number of particles collected by the particle separator.
前記電源供給手段が、一つの電源と多数の抵抗からなることを特徴とする請求項4に記載の粒子測定器。   The particle measuring instrument according to claim 4, wherein the power supply means comprises one power source and a number of resistors. 測定しようとする粒子を単極性に荷電させる段階と、
前記荷電された粒子と清浄空気をガイドダクトの内部に流入させる段階と、
前記ガイドダクトの内部に設置される電極に電圧を印加する段階と、
一定の大きさ以下の荷電粒子を電極に付着させる段階と、
前記電極に付着されない荷電粒子を大きさ別に分離する段階と、
前記分離された荷電粒子の大きさ別の個数を測定する段階とを含んでなることを特徴とする粒子測定方法。
Charging the particles to be measured unipolarly;
Flowing the charged particles and clean air into a guide duct;
Applying a voltage to an electrode installed inside the guide duct;
Attaching charged particles of a certain size or less to the electrode;
Separating charged particles not attached to the electrode by size;
And measuring the number of the separated charged particles according to size.
前記電極に印加される電圧を変化させ、電極に付着される荷電粒子の大きさを制御することを特徴とする請求項6に記載の粒子測定方法。   The particle measuring method according to claim 6, wherein the size of charged particles attached to the electrode is controlled by changing a voltage applied to the electrode. ガイドダクトと、前記ガイドダクト内に設けられる電極をそれぞれ備える多数の粒子分離装置を準備する段階と、
測定しようとする粒子を単極性に荷電させる段階と、
荷電された粒子と清浄空気を前記ガイドダクトの内部に流入させる段階と、
前記電極に互いに異なる電圧を印加する段階と、
前記粒子分離装置によって分離された荷電粒子の個数を測定する段階と、
前記測定され結果から粒子が大きさ別の分布を計算する段階とを含んでなることを特徴とする粒子測定方法。
Providing a plurality of particle separation devices each including a guide duct and an electrode provided in the guide duct;
Charging the particles to be measured unipolarly;
Flowing charged particles and clean air into the guide duct;
Applying different voltages to the electrodes;
Measuring the number of charged particles separated by the particle separator;
And a step of calculating a distribution of particles according to size from the measured results.
前記電圧を印加する段階において、電極のいずれか一つには電圧を印加しないことを特徴とする請求項8に記載の粒子測定方法。   The particle measuring method according to claim 8, wherein no voltage is applied to any one of the electrodes in the step of applying the voltage.
JP2006553059A 2004-02-13 2005-02-14 Particle measuring instrument and particle measuring method Pending JP2007525666A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040009492A KR100567788B1 (en) 2004-02-13 2004-02-13 Apparatus for Measuring Numbers of Particles and Method Thereof
PCT/KR2005/000401 WO2005078409A1 (en) 2004-02-13 2005-02-14 Apparatus for measuring numbers of particles and method thereof

Publications (1)

Publication Number Publication Date
JP2007525666A true JP2007525666A (en) 2007-09-06

Family

ID=34858708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006553059A Pending JP2007525666A (en) 2004-02-13 2005-02-14 Particle measuring instrument and particle measuring method

Country Status (6)

Country Link
US (1) US7471076B2 (en)
EP (1) EP1714136A4 (en)
JP (1) JP2007525666A (en)
KR (1) KR100567788B1 (en)
CN (1) CN1969178B (en)
WO (1) WO2005078409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502551A (en) * 2015-01-20 2015-04-08 成都海兰天澄科技有限公司 Online monitoring system for measuring inhalable particles in air

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668787B1 (en) * 2005-01-25 2007-01-12 연세대학교 산학협력단 Particle sampler for sampling particulate contaminants from inside of hard disk drive, and performance valuation device of the same
KR100865712B1 (en) * 2006-07-12 2008-10-28 안강호 System and method for measuring particles
WO2008130135A1 (en) * 2007-04-23 2008-10-30 Hyundai Calibration & Certification Technologies Co., Ltd. Particle measuring apparatus
US8395398B2 (en) * 2009-04-24 2013-03-12 Beckman Coulter, Inc. Method of characterizing particles
GB2471102A (en) * 2009-06-17 2010-12-22 Mantis Deposition Ltd Apparatus for producing cored nanoparticles
US8739602B2 (en) * 2010-10-20 2014-06-03 The University Of Vermont And State Agricultural College Portable ultrafine particle sizer (PUPS) apparatus
KR101269275B1 (en) * 2011-03-31 2013-05-29 연세대학교 산학협력단 Measurement Sensor of Nano-Particles in Air
US9239279B1 (en) * 2011-06-03 2016-01-19 Arkansas State University—Jonesboro Sequential differential mobility analyzer and method of using same
KR101875132B1 (en) 2011-10-28 2018-07-09 삼성디스플레이 주식회사 Organic electroluminescent display device and method of fabricating the same
JP6918806B2 (en) * 2016-01-08 2021-08-11 ティーエスアイ インコーポレイテッド Wearable mask fit monitor
CN106018200A (en) * 2016-05-21 2016-10-12 深圳市青核桃科技有限公司 Method for improving measurement result accuracy of laser particle counter
KR102024565B1 (en) * 2017-04-20 2019-09-24 엘지전자 주식회사 Device and method for measuring dust
CN107203803B (en) * 2017-05-31 2019-12-13 京东方科技集团股份有限公司 Charged particle counter and method for manufacturing same
CN110208149B (en) * 2019-04-28 2021-09-17 南京航空航天大学 Sand grain throwing device with accurate and controllable sand grain speed and direction
CN112578243A (en) * 2020-12-08 2021-03-30 广西电网有限责任公司电力科学研究院 Method for evaluating internal defect discharge of GIS disconnecting link air chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145544A (en) * 1982-02-23 1983-08-30 Nissan Motor Co Ltd Seat belt retractor
JPH07256146A (en) * 1994-03-18 1995-10-09 Agency Of Ind Science & Technol Superfine particle classifier
JPH10288600A (en) * 1997-04-16 1998-10-27 Rikagaku Kenkyusho Differential type electric mobility measuring unit
JP2000046720A (en) * 1998-07-28 2000-02-18 Rikagaku Kenkyusho Differential electrical-mobility measuring apparatus
US6639671B1 (en) * 2002-03-01 2003-10-28 Msp Corporation Wide-range particle counter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526828A (en) * 1967-08-07 1970-09-01 Univ Minnesota Method and apparatus for measuring particle concentration
US3679973A (en) * 1970-10-20 1972-07-25 Us Interior Electrogasdynamic dust monitor
US3763428A (en) * 1971-11-26 1973-10-02 Varian Associates Simultaneous measurement of the size distribution of aerosol particles and the number of particles of each size in a flowing gaseous medium
US4769609A (en) * 1986-09-19 1988-09-06 Senichi Masuda Measurement of ultra-fine particles utilizing pulsed corona signals
GB8828277D0 (en) * 1988-12-03 1989-01-05 Glasgow College Enterprises Lt Dust monitors & dust monitoring
DE3907387A1 (en) * 1989-03-08 1990-09-13 Singer Hermann METHOD FOR MEASURING PARTICLES IN POLYDISPERSE SYSTEMS AND OF PARTICLE CONCENTRATIONS OF MONODISPERS AEROSOLS AND MEASURING DEVICE FOR IMPLEMENTING THE METHOD
US5489506A (en) * 1992-10-26 1996-02-06 Biolife Systems, Inc. Dielectrophoretic cell stream sorter
US5922976A (en) * 1995-10-12 1999-07-13 California Institute Of Technology Method of measuring aerosol particles using automated mobility-classified aerosol detector
US6230572B1 (en) * 1998-02-13 2001-05-15 Tsi Incorporated Instrument for measuring and classifying nanometer aerosols
JP3086873B2 (en) * 1998-08-04 2000-09-11 工業技術院長 Particle size distribution measuring method and device
FI113406B (en) * 2000-09-01 2004-04-15 Dekati Oy Apparatus for determining the size distribution of aerosol particles
US6607597B2 (en) * 2001-01-30 2003-08-19 Msp Corporation Method and apparatus for deposition of particles on surfaces
US20030015045A1 (en) * 2001-07-23 2003-01-23 Takehito Yoshida Particle counting method and particle counter
WO2003041114A2 (en) * 2001-11-02 2003-05-15 Yale University Method and apparatus to increase the resolution and widen the range of differential mobility analyzers (dmas)
ATE525635T1 (en) * 2001-11-13 2011-10-15 Univ California ION MOBILITY ANALYSIS OF BIOLOGICAL PARTICLES
CN1219073C (en) * 2002-09-06 2005-09-14 中国科学院上海光学精密机械研究所 Ultraviolet laser biomone counter
US6905029B2 (en) * 2002-09-12 2005-06-14 California Institute Of Technology Cross-flow differential migration classifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145544A (en) * 1982-02-23 1983-08-30 Nissan Motor Co Ltd Seat belt retractor
JPH07256146A (en) * 1994-03-18 1995-10-09 Agency Of Ind Science & Technol Superfine particle classifier
JPH10288600A (en) * 1997-04-16 1998-10-27 Rikagaku Kenkyusho Differential type electric mobility measuring unit
JP2000046720A (en) * 1998-07-28 2000-02-18 Rikagaku Kenkyusho Differential electrical-mobility measuring apparatus
US6639671B1 (en) * 2002-03-01 2003-10-28 Msp Corporation Wide-range particle counter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502551A (en) * 2015-01-20 2015-04-08 成都海兰天澄科技有限公司 Online monitoring system for measuring inhalable particles in air
CN104502551B (en) * 2015-01-20 2016-04-06 成都海兰天澄科技有限公司 Measure the on-line monitoring system of Inhalable Particulate

Also Published As

Publication number Publication date
US7471076B2 (en) 2008-12-30
KR100567788B1 (en) 2006-04-05
KR20050081308A (en) 2005-08-19
EP1714136A1 (en) 2006-10-25
US20070194775A1 (en) 2007-08-23
WO2005078409A1 (en) 2005-08-25
CN1969178A (en) 2007-05-23
EP1714136A4 (en) 2011-10-05
CN1969178B (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2007525666A (en) Particle measuring instrument and particle measuring method
KR100567789B1 (en) Apparatus for Measuring Numbers of Particles and Method Thereof
US9534998B2 (en) System and method for counting aerosol particles in atmosphere with respect to each particle size by appropriately setting ratio of flow rate of sample gas and sheath gas in DMA
JP4561835B2 (en) Classification device and fine particle measuring device
US10675639B2 (en) Device for collecting particles contained in an aerosol, comprising electrometres to determine nanoparticle concentration and particle size
US6881246B2 (en) Collecting device for suspended particles
EP2352008A2 (en) Differential mobility analyzer, particle measuring system, and particle sorting system
CN107847945B (en) Method for selectively purifying aerosols
JP2000055801A (en) Method and device for measuring distribution of particle size
JP2018528400A (en) Particle sensor and particle sensing method
JP2008128739A (en) Method and instrument for measuring number of fine particles
JP3459359B2 (en) Differential electric mobility meter
KR101460311B1 (en) Apparatus for classifying particle
KR101322689B1 (en) Method and system for separating fibrous particles
JP2007127427A (en) Collection device of fine particles and collection method of fine particles
US10775290B2 (en) Highly portable radial differential mobility analyzer
JP4732952B2 (en) Fine particle classifier
JPH08261911A (en) Particle size distribution measuring device
JP2011202965A (en) Device for specifying charge quantity of charged particles
CN112924342B (en) Differential type total scattering suspended particle concentration monitoring device and use method and application thereof
JP2006122890A (en) Fine particle classification apparatus, and fine particle measuring instrument
Alsharifi Differential Mobility Classifiers in the Non-Ideal Assembly
KR20240008528A (en) Pm 10 pm 2.5 .
JPH0353175A (en) Method for measuring electrostatic charge quantity of toner particle
KR20200044486A (en) Fine dust measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101020

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308