JP2007522014A - ゼネレータ電流のバッテリ依存バッファリングを特徴とする自動車電気システム - Google Patents

ゼネレータ電流のバッテリ依存バッファリングを特徴とする自動車電気システム Download PDF

Info

Publication number
JP2007522014A
JP2007522014A JP2006552508A JP2006552508A JP2007522014A JP 2007522014 A JP2007522014 A JP 2007522014A JP 2006552508 A JP2006552508 A JP 2006552508A JP 2006552508 A JP2006552508 A JP 2006552508A JP 2007522014 A JP2007522014 A JP 2007522014A
Authority
JP
Japan
Prior art keywords
battery
electrical system
line
distributor
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006552508A
Other languages
English (en)
Inventor
ウーハーエル,ギュンター
Original Assignee
カテム・デュフェレーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カテム・デュフェレーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング filed Critical カテム・デュフェレーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Publication of JP2007522014A publication Critical patent/JP2007522014A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明は、ゼネレータと、バッテリと、大容量コンデンサと、前記自動車の各負荷回路にエネルギーを制御自在に供給するための配電器とを含む自動車電気システムを提供する。ゼネレータとバッテリと大容量コンデンサとは並列接続されている。バッテリと配電器との間の電気接続ラインが2m未満の長さである場合には、このラインは10mm未満の断面積を持つのに対して、ラインが2mを超える長さである場合には40mm未満の断面積を持つ。

Description

本発明は、改良型自動車電気システムに関連する。さらに詳しく述べると、本発明は、より確実なエンジン始動を可能にする新規の自動車電気システムに関連する。
自動車電気システムは、自動車の複数の制御装置と信号部品に電力を供給する。電力は、エネルギー蓄積部としてのバッテリから、または自動車エンジンが作動している時にはゼネレータから得られる。複数のアプリケーションにはそれぞれ、リレーまたは半導体スイッチを備える電子配電器により各負荷回路を介して自動車電気システムから電力が供給される。
14Vの電圧を持つ従来の電気システムは、12Vのバッテリ電圧に基づいている。今後の電気システムは36Vバッテリを備える。14ボルトから42ボルトシステムへの転換が進む移行期間には、両方の自動車システムが平行して使用される。
従来設計の自動車電気システムの概略図が図1に見られる。図示された電気システム100では、ゼネレータ120とバッテリ150とスタータ110とが並列接続されている。概して、片方のゼネレータ120とスタータ110、もう片方のバッテリ150の間のライン長130は、それぞれ約1mに達する。スタータとゼネレータとはエンジンブロックに取り付けられ、ショートケーブルで相互に接続されている。ゼネレータに供給される電流の変動ゆえに、そしてスタータ電流の伝達のため、ライン断面積は約25mmに達する。
電力は、従来の配電ポイントつまり配電器140により自動車の電気システムの別々の負荷回路160へ供給される。各負荷回路160は一つ以上の消費部に電力を供給する。負荷回路のライン長が約1mであるので、これらのラインはライン130よりも狭い、つまり約5mmの断面積を持つ。
スタータ110は300A、短時間では600Aもの非常に高い電力消費量を持つが、自動車電気システムの他のすべての消費部の電力消費量は著しく低い。自動車電気システムの消費部の一般的な電流値は、すべてのランプがパーキングランプとして使用された時の約1.5Aから、ストップライトとフラッシャ用の3A、ウインドスクリーンワイパ用の8A、フォグランプとメインヘッドランプ用の8.5A、減光ヘッドライトと空調システムの乗員室ファン用の10A、燃料ポンプによるエンジン制御用の18A、シートヒータ用の20A、約100Aの範囲の電力消費量を持つ電気PTCヒータまでの範囲を持つ。
短絡が発生するとすぐに各負荷回路160への電力供給が遮断されるように、すべての負荷回路は過電流保護装置によって短絡から保護されている。これにより、各負荷回路のケーブルおよびプラグコネクタの過熱が防止される。
改良型自動車電気システムを提供することが、本発明の目的である。
この目的は、請求項1の特徴により達成される。
本発明によれば、ゼネレータと、バッテリと、大容量コンデンサと、自動車の負荷回路にエネルギーを制御自在に供給するための配電器とを含む自動車電気システムが提供される。ゼネレータとバッテリと大容量コンデンサとは並列接続されている。バッテリと配電器との間の電気接続ラインが2m未満の長さである場合には、このラインは10mm未満の断面積を持つのに対して、ラインが2mを超える長さである場合には40mm未満の断面積を持つ。
従来のようにバッテリによってではなく大容量コンデンサによって、ゼネレータにより供給される電流の電圧変動の抑制を実施することが、本発明に固有のアプローチである。そのため、電気システムのゼネレータと消費部との間にバッテリを取り付ける必要はもはやない。さらに、始動プロセス用のエネルギーは、もはやバッテリによってではなく大容量コンデンサによって供給される。バッテリと配電器との間の接続ラインに高電流が流れることがないため、小さな断面積が可能である。そのため、バッテリと配電器との間の電気接続はもはや大量の電流に対応する必要はなく、きわめて小さなライン断面積でこれを実現できる。従来では、バッテリがエンジン室に取り付けられる場合には25mm、バッテリが後端部に取り付けられる場合には95mmの断面積が用いられるのに対して、本発明によれば、バッテリがエンジン室に取り付けられる場合には10mm未満、バッテリが自動車の後端部に取り付けられる場合には40mm未満の断面積を用いることができる。ゆえに、軽量で低費用の自動車電気システムを実現できる。
大容量コンデンサは配電器に設けられることが好ましい。ゆえに、ゼネレータとコンデンサ、またはスタータとコンデンサの間の電気接続がそれぞれ高い電流負荷のために設計されなければならないだけで、自動車のバッテリの構成は現在の電気システムの持つ従来からの制約から解放されていずれにも取り付けることができる。
ゼネレータと配電器との間の電気接続は、10mm未満、より好ましくは約5mmの断面積を持つことが好ましい。
バッテリと配電器との間の接続ラインが最長で2m、好ましくは1mの長さである場合には、このラインは約5mmの最大断面積を持つことが好ましい。このライン長により、特に小さなライン断面積を使用して自動車のエンジン室にバッテリを取り付けることが可能となる。
本発明の別の実施例によれば、配電器とバッテリとの間のラインは最長で4mの長さであり、最大ライン断面積は約25mmである。このライン長のため、バッテリを自動車のいずれの場所にも、特に後端部に取り付けることが可能となり、約95mmという従来のライン断面積と比較して、約25mmの最大ライン断面積が必要であるに過ぎない。
さらに好都合な実施例が、従属クレームの主題となっている。
添付図面に関連させて好適な実施例により本発明を説明する。
図2は、独創性を持つ自動車電気システムの構造を概略的に示す。スタータ110とゼネレータ120は、別々の供給ライン120によって電子配電器210に接続されている。電子配電器には同様に、供給ライン240を介してバッテリ150が接続されている。ゼネレータ120は自動車エンジンの作動中に自動車電気システム200へ電流を提供するのに対して、バッテリ150は、エンジンの作動中に、ゼネレータ120により提供されたエネルギーを蓄積する。起動させるため、エンジン電気エネルギーがバッテリ150の化学反応により発生し、スタータ110へ供給される。
配電器210は、各負荷回路230を自動車電気システムに制御自在に接続する。
従来の自動車電気システム100の他に、独創性を持つ電気システム200のバッテリ150は、大きなライン断面積を持つライン接続を使用する必要なく、自動車のいずれの箇所に配置してもよい。長さLZul1が約1mである図1による従来の電気システム100の供給ライン130は、25mmの断面積を持つが、同じ長さを持つ本発明による供給ライン220は、約5mmの断面積を持つに過ぎない。配電ポイントから始まる負荷回路は、5mmの断面積を持ち、長さLZul2は約1mである。
エンジン室の配電ポイント140の付近にバッテリ150が取り付けられる場合には、バッテリと配電ポイントとの電気接続も、約5mmの断面積を持ち、長さLZul3は最大で約1mである。
あるいは、配電ポイントを持つバッテリが、自動車の後端部に取り付けられる。この構成では、配電ポイント140またはバッテリ150とのすべての接続ラインはそれぞれ、従来の電気システム100ではかなり長い。同時に、ライン長が長く、これに対応して抵抗が高いことから見て、ラインの発熱を回避するため、ライン断面積を増大させなければならない。このため、長さLZul1を持つライン130の断面積は従来では約4mで約95mmまで増大し、長さLZul2を持つ負荷回路160のラインのライン断面積は約5mで約25mmまで増大する。
本発明によれば、これらの断面積をかなり減少させられる。このため、電子配電器210とバッテリ150とが、相互に物理的に分離されるように配置される。同時に、ゼネレータ120の電圧変動を補正するため従来バッテリで実施されたバッファ機能が、電子配電器210へ移行する。この構成では、約1mの最大長さを持つすべてのラインが5mm程度の断面積を持つ。バッテリ150が自動車の後端部に取り付けられる場合のみ、自動車のエンジン室に残っている電子配電器210は、電子配電器210とバッテリ150との間で必要とされる長いライン接続である。長さLZul3が約4mまでならば、ライン断面積は約25mmである。
本発明によれば、それぞれのアプリケーションに基づいて、配電器210の保護作用を制御するための能動的電流監視を実施することにより、ライン断面積のさらなる縮小が可能である。負荷回路230へ流入する電流の能動的監視により、指定のタイムレスポンスで、特に所定値では速い上昇率で、負荷回路の切り換えが可能である。
これと対照的に、従来のラインの断面積は、ラインの熱的過負荷を伴わずに負荷回路の短時間電流ピークに対処できるように公称電流を2倍にするように設計されるのが普通である。マイクロプロセッサ制御の制御ユニットによる独創性を持つ電流監視により、短時間過負荷ピークおよび短絡作用に過負荷保護を一層正確に適合させることができる。こうして、自動車電気システムの断面積と重量と費用とを簡単に減少させることが可能である。
独創性を持つ電気システムのさらなる詳細が、図3に図示されている。図3に図示された実施例では、バッテリ150は自動車の後端部に取り付けられることが好ましい。
電子配電器210は、各負荷回路412を自動車電気システムに制御自在に接続する、つまり各負荷回路への通電を起動または遮断する複数の半導体スイッチ410を含む。このような半導体スイッチとしては、特に自動電力制御を行う半導体スイッチが使用される。このような半導体スイッチ、例えばInternational I.R. Rectifier社の部品980268は、接続された負荷回路へ流入する電流を測定する。測定された電流に比例する電流が、上述した半導体部品の別々の端子を介して出力される。各半導体スイッチ410により測定される電流は、電子配電器210の制御装置440へ供給される。電子配電器210の内側に、またはこれとは別に配置されるこの制御装置は、それぞれ、各負荷回路について許容電流を監視する。
各負荷回路に許容可能な電流値は、各負荷回路412について制御装置440で別々に調節自在であることが好ましい。好適な実施例によれば、各負荷回路412について別々に選択できる様々な電流レベルと様々な「トリガ」特性が制御装置440に設けられる。負荷回路412について測定された電流がこれについて決定された最大値を超えるとすぐに、許容可能な過負荷電流を考慮に入れることにより、制御装置440は半導体スイッチ410に電気接続を遮断させる。
このような半導体スイッチは可逆スイッチオフ動作を可能にし、例えば安全ヒューズを交換せずに負荷回路を作動状態に復帰させることができる。能動的電流監視はさらに、短絡の場合に高速反応を可能にする。そのため非常に高い短絡電流は、数ミリ秒しか流れない。こうして、各負荷回路のラインとコネクタは、明らかにもっと長い時間、高い電流が流れる短絡事象のために設計される必要がない。
制御装置440の各負荷回路の「インテリジェント」監視は、負荷回路への通電のための電気接続を遮断せずに、短時間の過電流を許容する。こうして各基準に基づいて応答特性が設定される。特に各負荷回路の機能および電流需要(と短時間過電流需要)に適合させることができ、ゆえに、エンジンの始動、ライトやヒータなどの切り換えの際の短時間過電流を考慮に入れなければならない。
保護機能とは、過電流または短絡がそれぞれ負荷回路で発生して、ラインとコネクタの熱的過負荷を引き起こすのを防止することである。熱的過負荷は、転換されたエネルギー、つまり過電流が存在する時間を電流レベルに掛けたものである。ダメージを発生させずに1秒間に負荷回路へ流入する公称電流を10倍にすることが、何らかの方法で可能である。このような過電流は、制御装置440により問題なしと認識されなければならないが、このような過電流の場合、安全ヒューズは(ヒューズが交換されるまで)回路を不可逆的に遮断および破損させる結果となる。
例えば電動モータが始動する時に、公称電流の何倍もの値を持つ短時間過電流が発生する。電動モータを始動させる時には、周囲温度が低い際には特に、最初はロータが重い、つまり動きが悪い。公称電流の何倍かに相当する過電流が、およそ100msの間、発生する。自動車の乗員室へ流入する空気の加熱に使用される電気PTCヒータでも、約10秒の時間間隔内である始動時に電流が発生し、これは公称電流の2倍に相当する。このような過電流の発生はきわめて短時間であるため、ラインとコネクタに関しては問題ない。
従来の安全ヒューズは概して、公称電流の2倍より高い反応電流に対して採用される。しかし、このような従来のヒューズも、公称電流の1.8倍に相当する持続的過電流を受け取ることがある。これと対照的に、本発明による電子ヒューズ保護は、このような過電流を検出して、時間基準、例えば10秒を超える時に電気接続を遮断する。そのため、各負荷回路の寸法は実際の公称電流に合わせて設計されるため、ライン断面積とコネクタは、公称電流の2倍に長時間耐える必要はない。
本発明による制御装置440は、付加的な温度センサによる現在周囲温度に適応させることができる。周囲温度が低い際には、冷却の改良によって、高い電流が得られる。そのため、温度に基づいて、つまり好適な実施例では、印加される電流の上限と検出される周囲温度との間の所定の依存状態に基づいて、過電流検出と負荷回路の切断が実施されることが好ましい。
別の好都合な実施例によれば、制御装置はやはり外部信号を受けて負荷回路412を切断できる。負荷回路の消費部のトラブルは、例えば別々のセンサによって検出され、このトラブルから生じる自動車の危険が早期に回避される。
図3は、消費部としてのPTCヒータ510と分散型配電器520とを、単なる例として示す。分散型配電器520は、同様に、複数の半導体スイッチ525によって付随の負荷回路を接続および切断できる。これらの負荷回路は例に過ぎない。当該技術の熟練者は、自動車の各電気消費部が、このような負荷回路412によって直接的に、または分散型配電器520によって間接的に制御できることを理解するだろう。
本発明によれば、ゼネレータ120とバッテリ150とに並列接続された配電器510に大容量コンデンサ400が設けられる。コンデンサ400は、小さな構造容積で高い容量値を持つ。自動車では、450から600Fの範囲の容量が使用されることが好ましい。現在、二重層コンデンサは数千Fまでの容量にも達している。
アルミニウム電解コンデンサと比較して、二重層コンデンサは、何倍も高いエネルギー密度と、鉛蓄電池よりも数倍高いパワー密度とを達成する。バッテリの電気エネルギーは電気化学的に蓄積されるが、コンデンサの電気エネルギーは、コンデンサのプレートに正または負の電荷の形で直接的に蓄積され、電極表面の化学反応が必要である。このような二重層コンデンサ、例えば“UltraCap”という名称のEPCOS社の二重層コンデンサは、電気エネルギーを蓄積してこれを再び高効率で放出する。バッテリと対照的に、磨耗を発生させずに非常に高い電流での充電と放電が可能である。さらに、非常に低い温度と低い電圧値でも確実な機能が可能である。400Aまでの放電電流で、遅延なく、そして非常に低い損失で高出力を発生させる。
ゼネレータ120およびスタータバッテリ51に対して大容量コンデンサ400を並列接続することで、いくつかの長所が達成できる。始動プロセスはもはや、バッテリ150でなく高性能コンデンサ400が担当する。コンデンサ400は、始動プロセスに先立ってバッテリ150によって充電される。次にコンデンサ400は、蓄積されたエネルギーをスタータ110へ放出する。こうして、コンデンサはやはり低い温度で短時間に多量のエネルギーを放出できるので、より確実な方法で始動プロセスを実現できる。これと対照的に、従来の自動車では、バッテリ150で生じる化学反応が高い電流を受け入れないので、低温では頻繁に始動問題が見られる。
本発明の特に好都合な実施例によれば、コンデンサの容量を増やさずにコンデンサに蓄積されるエネルギーを増大させることにより、始動作用をさらに改善できる。このため、始動プロセスに備えるように、バッテリ150とコンデンサ400との間に独創性を持つ方法で変圧器310が接続される。変圧器310は、バッテリ150によって供給される電圧を高電圧に変換する。こうして、同じ容量では、コンデンサははるかに多量のエネルギーを吸収できるのである。コンデンサに蓄積されるエネルギーの量は、以下の方程式(数1)によって決定できる。
Figure 2007522014
・・・(数1)
同時に、バッテリ150とコンデンサ400との間の電気接続には、変圧器310と平行に遮断装置320が接続されている。遮断装置はバッテリとコンデンサとの間の直接電気接続を遮断するため、非常に高い電圧がコンデンサに供給される。
変圧器と遮断装置とを含む本発明による装置300は、始動プロセスに利用可能なエネルギーの著しい増大を簡単な方法で可能にする。こうして、わずかなエネルギー保存量しか残っていない低バッテリでも、自動車の確実な始動が容易である。
本発明による変圧器が使用される始動プロセスを、例を用いて以下に説明する。
自動車の休止時間中、つまりエンジンとイグニションがオフに切り換えられている間、変圧器(DC/DC変換器)310はオフに切り換えられ、配電器210とバッテリ150との間の電気接続がスイッチ320によって発生する。こうして、コンデンサ400はバッテリ150に並列接続され、バッテリ電圧UBATT、従来の電気システムでは約12.5Vの電圧、将来的電気システムでは約42Vまで充電される。
内燃機関の始動プロセスに先立って、変圧器310が起動し、同時にスイッチ320が開放する。必要であれば、各負荷回路は電子配電器210によって切断されることが好ましい。特に、出力需要の大きな負荷回路412が切断される。特定実施例によれば、バッテリが低い場合にも確実な始動を保証するように、バッテリ電圧レベルにも基づいて制御装置440により切断が実施される。
変圧器は、コンデンサに印加される出力電圧を発生させ、この出力電圧はバッテリ電圧を上回っている。バッテリ電圧が12.5Vであれば、上昇した出力電圧は例えば16Vである。ゆえに電圧はバッテリ電圧を3.5V上回り、これに応じてコンデンサをより高く充電する。こうして、12.5Vという従来の充電電圧と比較して、コンデンサに蓄積されるエネルギーは約60%高い。
これにより、バッテリ電圧が12.5Vより低い低バッテリの状態であっても、充分なエネルギー保存量が始動プロセスに利用可能である。変圧器が常に16Vの電圧でコンデンサ400を充電する場合には、バッテリの性能に関係なく、同量のエネルギーが始動プロセスに利用可能である。
変圧器により達成される長所は、始動プロセスのための増加エネルギー保存量に変圧されることと、コンデンサの容量の縮小に利用できることのいずれかである。蓄積エネルギーの量が同じであれば、確実な始動プロセスのためにはコンデンサ400は少ない容量で充分である。
従来の電気システムの16Vを超えるまで充電電圧をさらに上昇させることによって、コンデンサ400のエネルギー量のさらなる増加が得られる。充電電圧を16Vに制限すると、この増加が、電気システムの他の電気部品に関する複雑性を伴うことがないという長所が見られる。現在、自動車電気システムの電気および電子部品はすべて、16Vの最高動作電圧用に設計されている。そのため、コンデンサ400の充電電圧は、電気システムの電気部品の設計とコンデンサそのものの電圧安定性によって決定されることが好ましい。42Vのシステム電圧を持つ将来的電気システムでは、他の電気部品が短時間の電圧上昇に問題なく耐えられるとして、コンデンサはきわめて高電圧まで充電可能である。
あるいは、変圧器の出力電圧が特に高いならば、半導体スイッチ410によってすべての負荷回路または消費部をそれぞれ切断することにより、他の電気システム部品に関する複雑性を排除することができ、特に安全な始動プロセスを実現できる。
始動プロセスの開始に先立って、コンデンサの充電が適時に行われる。コンデンサ400の充電プロセスを開始するには、いくつかのトリガが使用される。例えば、イグニションキーが挿入されるか、イグニションロックが「イグニションオン」位置となった場合に、運転者は充電を開始できる。あるいは、車両ドアを開けることによって充電プロセスが起動し、任意の車両ドアが開いたことと運転者側の車両ドアが開いたことが検出され、充電のためのトリガ信号として使用される。車両ドアが充電プロセスの開始のためのトリガ事象として使用される場合には、イグニションキー位置の検出と比較して長い時間が利用可能である。
イグニションキー位置が「スタート」であると、変圧器はオフに切り換えられる。始動プロセスが継続するかぎり、遮断装置320は開いたままである。内燃機関が単独で作動するとすぐに、遮断装置320が閉じて、電気システムが再び約12.5Vの電圧に設定される。
コンデンサ400は、始動プロセスの改良を可能にするばかりでなく、さらに従来バッテリ150のバッファ動作を行う。従来バッテリ150の等価回路図が図4に示されている。
バッテリ150の等価回路図600から、バッテリは化学エネルギー蓄積部610の機能ばかりでなく、バッファコンデンサ620の機能も持つことが分かる。このコンデンサ作用は、鉛蓄電池の内部機構から生じる。
従来バッテリのコンデンサ作用は、ゼネレータ120によって生じる電圧変動を抑制するのにこれまでも使用されていた。
自動車エンジンが作動中には、ダイオードにより整流される三相電流をゼネレータ120が発生させる。現在の自動車電気システムでは、ゼネレータ120と負荷回路412の消費部との間となるようにバッテリが物理的に取り付けられる。とりわけ、バッテリ容量CBattと、ゼネレータ120とバッテリ150との間の電気接続ラインの供給ライン抵抗RZul1との組合せから、ローパスが形成される。ローパスは、ゼネレータにより発生する電流の電圧変動の抑制という機能を行う。
本発明によれば、この機能は大容量コンデンサ400によって行われる。
ゼネレータとバッテリとの間の電気接続ラインを高電流が流れて電圧変動を補正するように従来電気システムは設計されているが、本発明によれば、エネルギーの蓄積とバッファリングの機能は、自動車電気システムの別々のモジュールによって行われる。コンデンサ400は電圧変動のバッファリングを担当するが、バッテリ150は始動プロセスのためのエネルギーを提供する。こうして、バッテリとの電気ライン接続240のための従来の費用を必要とせずに、バッテリをゼネレータおよび配電器から離して簡単な方法で取り付けることができる。対照的に、図2に関連して例として述べたように、断面積はかなり小さい値まで減少させることができる。これにより、自動車電気システムはより軽量かつ安価となる。
バッファ機能は、調節ローパスフィルタに関連するゼネレータ、バッテリ、配電器、消費物の順の構成により達成される。一方ではゼネレータとバッテリとの間の供給ライン抵抗RZul1と、他方ではバッテリの容量CBattから、ローパスが形成される。ライン断面積が小さいので、さらに、供給ライン抵抗RZul1をさらに高くして、ローパスの時定数Tauの方程式(数2)に基づいてローパス作用を改良する。
Figure 2007522014
・・・(数2)
要約すると、本発明による新規の自動車電気システムは、従来の電気システムと比較していくつかの長所を持つ。スタータバッテリはもはや始動機能を持たず、小さいパルスと電流負荷を受け、低温作用に関する低い要件を満たすのみでよく、蓄積容量の小さいバッテリでよい。変圧器により、エネルギー、ゆえに始動確実性が向上する。ラインの断面積は小さいため、自動車の後端部にバッテリが取り付けられる場合には特に、コストと重量の長所が達成される。
従来の自動車電気システムの構造を示す。 独創性を持つ自動車電気システムの構造を示す。 本発明による独創性を持つ自動車電気システムの詳細な構造を示す。 従来の自動車バッテリの電気等価回路図を示す。
符号の説明
110 スタータ
120 ゼネレータ
150 バッテリ
310 変圧器
320 遮断装置
400 コンデンサ

Claims (12)

  1. ゼネレータ(120)と、バッテリ(150)と、大容量コンデンサ(400)と、自動車の各負荷回路(230)にエネルギーを制御自在に供給するための配電器(210)とを含み、
    前記ゼネレータ(120)と前記バッテリ(150)と前記大容量コンデンサ(400)とが並列接続され、
    前記バッテリ(150)と前記配電器(210)との間の電気接続ライン(240)が2m未満の長さ(LZul3)である場合に、該ラインが10mm未満の断面積を持つのに対して、該ラインが2mを超える長さ(LZul3)である場合に40mm未満の断面積を持つ、自動車電気システム。
  2. 前記大容量コンデンサ(400)が前記配電器(210)の付近に取り付けられる、請求項1に記載の自動車電気システム。
  3. 前記大容量コンデンサ(400)が前記配電器(210)の内側に取り付けられる、請求項1に記載の自動車電気システム。
  4. 前記ゼネレータ(120)と前記配電器(210)との間の電気接続ライン(220)が10mm未満の断面積を持つ、請求項1または請求項2に記載の自動車電気システム。
  5. 前記ゼネレータ(120)と前記配電器(210)との間の前記電気接続ライン(220)が5mm未満の断面積を持つ、請求項1から4のいずれか一項に記載の自動車電気システム。
  6. 前記ゼネレータ(120)と前記配電器(210)との間の前記電気接続ライン(220)が、2m未満、好ましくは1.5m未満のライン長(LZul1)を持つ、請求項1から5のいずれか一項に記載の自動車電気システム。
  7. 前記ゼネレータ(120)と前記配電器(210)との間の前記電気接続ライン(220)が、約1mの最大ライン長(LZul1)を持つ、請求項6に記載の自動車電気システム。
  8. 前記バッテリ(150)と前記配電器(210)との間の電気接続ライン(240)が最長で約2mの長さ(LZul3)である場合に、該ラインが約5mmの最大断面積を持つ、請求項1から7のいずれか一項に記載の自動車電気システム。
  9. 前記バッテリ(150)と前記配電器(210)とが前記自動車のエンジン室に取り付けられる、請求項8に記載の自動車電気システム。
  10. 前記バッテリ(150)と前記配電器(210)との間の前記電気接続ライン(240)が最長で約4m(LZul3)の長さである場合に、該ラインが約25mmの最大断面積を持つ、請求項1から6のいずれか一項に記載の自動車電気システム。
  11. 前記バッテリ(150)が前記自動車の後端部に、前記配電器(210)が前記エンジン室に取り付けられる、請求項10に記載の自動車電気システム。
  12. 前記大容量コンデンサ(400)が前記ゼネレータ(120)と前記配電器(210)との間に接続される、請求項1から11のいずれか一項に記載の自動車電気システム。
JP2006552508A 2004-02-16 2005-02-02 ゼネレータ電流のバッテリ依存バッファリングを特徴とする自動車電気システム Pending JP2007522014A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04003414A EP1564863B1 (de) 2004-02-16 2004-02-16 Kraftfahrzeug-Bordnetz mit von der Batterie getrennter Pufferung des Generatorstroms
PCT/EP2005/001044 WO2005078891A1 (de) 2004-02-16 2005-02-02 Kraftfahrzeug-bordnetz mit von der battereie getrennter pufferung des generatorstroms

Publications (1)

Publication Number Publication Date
JP2007522014A true JP2007522014A (ja) 2007-08-09

Family

ID=34684701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006552508A Pending JP2007522014A (ja) 2004-02-16 2005-02-02 ゼネレータ電流のバッテリ依存バッファリングを特徴とする自動車電気システム

Country Status (8)

Country Link
US (1) US20080224537A1 (ja)
EP (1) EP1564863B1 (ja)
JP (1) JP2007522014A (ja)
KR (1) KR100878033B1 (ja)
CN (1) CN100433499C (ja)
DE (1) DE502004005698D1 (ja)
ES (1) ES2295715T3 (ja)
WO (1) WO2005078891A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036814B4 (de) * 2004-07-29 2006-06-01 Siemens Ag Vorrichtung zur Versorgung einer Kraftstoffpumpe einer Brennkraftmaschine eines Kraftfahrzeuges mit elektrischem Strom
US20070112485A1 (en) * 2005-11-17 2007-05-17 Snap-On Incorporated Vehicle service device and system powered by capacitive power source
US20090200864A1 (en) * 2008-02-12 2009-08-13 Josef Maier Chip on bus bar
JP5406574B2 (ja) * 2008-12-17 2014-02-05 ソニーモバイルコミュニケーションズ株式会社 電源装置および電子機器
DE102009000046A1 (de) * 2009-01-07 2010-07-08 Robert Bosch Gmbh Bordnetz für ein Fahrzeug mit Start-Stopp-System
DE102010017417A1 (de) * 2010-06-17 2011-12-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisches Versorgungs- und Startsystem für ein Kraftfahrzeug und Verfahren zum Betrieb des elektrischen Versorgungs- und Startsystems
DE102015202453A1 (de) * 2015-02-11 2016-08-11 Volkswagen Ag Verfahren zur Steuerung eines Verbrauchers eines Niedervoltbordnetzes
CN106160040B (zh) * 2015-04-07 2021-01-29 低碳动能开发股份有限公司 车用二次锂电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175439A (en) * 1987-12-21 1992-12-29 Robert Bosch Gmbh Power supply circuit for motor vehicles
US5256956A (en) * 1988-12-27 1993-10-26 Isuzu Motors Limited Power supply apparatus for automotive vehicles
JP2518368B2 (ja) * 1988-12-27 1996-07-24 いすゞ自動車株式会社 車両用電源装置
JP3516361B2 (ja) * 1995-01-17 2004-04-05 富士重工業株式会社 車両用電源装置
DE19742092A1 (de) * 1997-09-24 1999-03-25 Bosch Gmbh Robert Elektrisch leitendes Kabel
DE19846319C1 (de) * 1998-10-08 2000-02-17 Daimler Chrysler Ag Energieversorgungsschaltung für ein Kraftfahrzeugbordnetz mit zwei Spannungsversorgungszweigen
FR2808630B1 (fr) * 2000-04-13 2002-10-25 Peugeot Citroen Automobiles Sa Circuit d'alimentation electrique a tension multiple pour vehicule automobile
JP4550363B2 (ja) * 2001-02-16 2010-09-22 シーメンス アクチエンゲゼルシヤフト 自動車用電気システム
FR2835106B1 (fr) * 2002-01-24 2004-09-03 Peugeot Citroen Automobiles Sa Systeme d'alimentation en energie electrique d'un vehicule automobile

Also Published As

Publication number Publication date
DE502004005698D1 (de) 2008-01-24
WO2005078891A1 (de) 2005-08-25
ES2295715T3 (es) 2008-04-16
KR100878033B1 (ko) 2009-01-13
CN1918768A (zh) 2007-02-21
US20080224537A1 (en) 2008-09-18
EP1564863A1 (de) 2005-08-17
EP1564863B1 (de) 2007-12-12
KR20070009999A (ko) 2007-01-19
CN100433499C (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
JP2007524541A (ja) 変圧器を含む自動車電気システム
JP2007522014A (ja) ゼネレータ電流のバッテリ依存バッファリングを特徴とする自動車電気システム
JP4862823B2 (ja) 電源安定化装置およびそれを用いた車両
US5691619A (en) Automatic safety switch for preventing accidental battery discharge
KR100701377B1 (ko) 온도 센서가 통합된 전기 가열 장치
JP2008500223A (ja) 電子式バッテリ安全スイッチ
US9180826B2 (en) In-vehicle power supply apparatus
JP2002374602A (ja) 車両用電源装置
JP2007228753A (ja) 電動車両
CN102084574A (zh) 用于车载电网的电压稳定化的电路
CN105408621A (zh) 汽车的电子安全断路器
JP2020096402A (ja) 車両用電源装置
JP3539598B2 (ja) 搭載用電源システム
US5838136A (en) 3-pole battery switches
KR100829308B1 (ko) 하이브리드 전기차량의 디씨디씨 컨버터의 제어방법
JP4124729B2 (ja) 短時間使用可能なエネルギーを形成することによって搭載電源回路網を安定化する方法
JP7212099B2 (ja) 車用スーパーキャパシタモジュールの保護方法及びこの保護方法を実行する車用スーパーキャパシタモジュールの保護装置
WO1994004394A1 (en) 3-pole battery switches
EP1564077A1 (de) Elektronischer Stromverteiler für ein Kraftfahrzeug-Bordnetz
EP0655037A1 (en) THREE-POLE BATTERY SWITCH.
CN211032203U (zh) 电动车辆的电池并联供电系统及其电力并联器
KR100858115B1 (ko) 전자식 배터리 안전 스위치
JP2018067977A (ja) 車両の電源供給装置
JP2009005508A (ja) 車両用蓄電装置
CN116569433A (zh) 车辆控制装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602