JP2007519089A - Method and apparatus for predictive evaluation of heat load for solid waste incineration facilities - Google Patents

Method and apparatus for predictive evaluation of heat load for solid waste incineration facilities Download PDF

Info

Publication number
JP2007519089A
JP2007519089A JP2006541966A JP2006541966A JP2007519089A JP 2007519089 A JP2007519089 A JP 2007519089A JP 2006541966 A JP2006541966 A JP 2006541966A JP 2006541966 A JP2006541966 A JP 2006541966A JP 2007519089 A JP2007519089 A JP 2007519089A
Authority
JP
Japan
Prior art keywords
combustion gas
temperature
waste
heat load
steam flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006541966A
Other languages
Japanese (ja)
Other versions
JP2007519089A5 (en
Inventor
ジャン‐シュリストフ・ウアル
Original Assignee
ジャン‐シュリストフ・ウアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャン‐シュリストフ・ウアル filed Critical ジャン‐シュリストフ・ウアル
Publication of JP2007519089A publication Critical patent/JP2007519089A/en
Publication of JP2007519089A5 publication Critical patent/JP2007519089A5/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Incineration Of Waste (AREA)
  • Feedback Control In General (AREA)

Abstract

本発明は、焼却加熱炉に投入された際に固形廃棄物によって発される熱負荷の予測的評価の方法及びその関連装置に関する。本発明は、第一の一次空気吸入口の下の空気圧力及び自動引火により生じたガスの温度の測定に基づき、前記測定は廃棄物を加熱炉へ供給するフィーダのすぐ次に来る第一の燃焼部内で行われる。本発明の方法により、前述のパラメータ及び測定された蒸気流の割合間の関係を確立することができ、ボイラーから生じた前記蒸気(又は燃焼ガスの温度)は、加熱炉に関連し、廃棄物の焼却が実際に始まった数分後の加熱炉の中心での完全燃焼の結果生じるものである。このようにして、投入される廃棄物と蒸気流(又は燃焼ガスの温度)レートにおける廃棄物の影響との間の内部時間に関連する困難さが決定される。その結果、固形廃棄物の焼却加熱炉への廃棄物の流れを制御するために、装置の自動調整が実施可能である。  The present invention relates to a method for predictive evaluation of a heat load generated by solid waste when put into an incinerator, and a related apparatus. The present invention is based on the measurement of the air pressure under the first primary air inlet and the temperature of the gas generated by auto-ignition, said measurement being the first immediately following the feeder supplying waste to the furnace. Performed in the combustion section. The method of the present invention allows the establishment of a relationship between the aforementioned parameters and the measured steam flow rate, wherein the steam (or the temperature of the combustion gas) generated from the boiler is associated with the furnace and waste This occurs as a result of complete combustion at the center of the furnace a few minutes after the actual incineration of the furnace. In this way, the difficulty associated with the internal time between the input waste and the effect of the waste on the steam flow (or combustion gas temperature) rate is determined. As a result, automatic adjustment of the device can be performed to control the flow of waste to the incinerator for solid waste.

Description

本発明はここに、本目的のために考案された焼却加熱炉(可動性の火格子又はロール等を備えた振動するプッシュロッド格子炉)に導入されたとき固形廃棄物によって発生させられる熱負荷の予測的評価のための方法及び予測的評価に関連した装置に関する。   The present invention here also relates to the heat load generated by solid waste when introduced into an incinerator (vibrating push rod grid furnace with movable grate or roll etc.) devised for this purpose. The present invention relates to a method for predictive evaluation of and a device related to predictive evaluation.

多くの物理的及び化学的特徴が知られていない固形廃棄物のそれ自体の性質により、 廃棄物焼却施設中における焼却中の実時間において、固形廃棄物の燃焼は複雑で費用が掛かる作業を意味する。実際に、化学的組成も、含水量も、より低い発熱量も、格付けも、特定の比重も、瞬間の廃棄物処理能力でさえも、この廃棄物が加熱炉の中へ取り入れられた時に知られていない。   Due to the nature of solid waste itself, for which many physical and chemical characteristics are unknown, solid waste combustion represents a complex and costly task in real time during incineration in a waste incineration facility To do. In fact, chemical composition, moisture content, lower heating value, rating, specific gravity, even instantaneous waste treatment capacity, know when this waste is taken into the furnace. It is not done.

固形廃棄物の特性の平均の統計的手法を実現する専門化された機関によって、数週間かけて実行されたサンプリングキャンペーンに基づいた知識のみが利用可能である。さらに、焼却処理について、継続的に焼却処理がその時間中稼動するとき、加熱炉に関連したボイラーの蒸気量、又は蒸気生成器とともに提供されない装置のための全体の空気吸入口によって修正された燃焼ガス温度を通じて、熱負荷値もまた利用可能である。従って、熱負荷値は、発熱量平均及び処理されるべき廃棄物が取り入れられる前の数分間の廃棄物処理能力の知識を有することを可能にする。   Only knowledge based on sampling campaigns carried out over a period of weeks by specialized agencies that implement mean statistical methods of solid waste characteristics is available. In addition, for incineration processes, when the incineration process runs continuously during that time, the amount of steam in the boiler associated with the furnace, or the combustion modified by the overall air inlet for equipment not provided with the steam generator Through the gas temperature, heat load values are also available. Thus, the heat load value makes it possible to have knowledge of the calorific value average and the waste treatment capacity for several minutes before the waste to be treated is introduced.

しかしながら、フィーダによって取り入れられるであろう固形廃棄物量が制限されると、製品処理能力特性は前の二つの方法によって与えられる平均値とは大きく異なる。   However, when the amount of solid waste that may be taken up by the feeder is limited, the product throughput characteristics differ greatly from the average values given by the previous two methods.

実際のところ、固形廃棄物の前述の特徴(瞬間処理能力、化学的組成、発熱量、格付け等)は、ランダムな変数として考えられ得る。そして前記変数の唯一の統計的手法である平均値及び標準偏差が、今まで取り掛かられていた。その結果、全ての瞬間において取り入れられた廃棄物処理能力は、ランダムな変数の実現である。そして前記変数について、所与の特性を関連付けることは困難である。   In fact, the aforementioned characteristics of solid waste (instantaneous processing capacity, chemical composition, calorific value, rating, etc.) can be considered as random variables. The average value and standard deviation, which are the only statistical methods for the variables, have been undertaken so far. As a result, the waste treatment capacity incorporated at every moment is a random variable realization. And it is difficult to associate a given property with the variable.

これは、全ての加熱炉制御方法が、付随的な他の燃焼パラメータ(温度、空気ダクト圧力、蒸気生成器において測定された燃焼ガスにおける酸素の割合、他の汚染ガスの割合等)のように、主に蒸気量(又は燃焼ガスの温度)の平均値を考慮するために、その時間中非常に低く遅い変化を有する、非常に安定し円滑化された供給速度に基づいている理由である。この目的のために、加熱炉制御方法は、制御作動中に知られる平均焼却処理特性に基づく加熱炉制御最適条件に適合する設定点の設定を含む。この設定点の設定の欠点は、確立することが難しく長いこと、壊れやすいこと、かなり削減された操作範囲を有することである。   This is because all furnace control methods are associated with other combustion parameters (temperature, air duct pressure, percentage of oxygen in the combustion gas measured in the steam generator, percentage of other pollutant gases, etc.) This is why it is based on a very stable and smooth feed rate, which has a very low and slow change during that time, mainly to take into account the average value of the steam volume (or the temperature of the combustion gas). To this end, the furnace control method includes setting a set point that meets the furnace control optimal conditions based on the average incineration process characteristics known during control operation. The disadvantages of setting this set point are that it is difficult and long to establish, fragile and has a significantly reduced operating range.

従って、平均廃棄物処理能力と生成された平均発生蒸気流(又は燃焼ガスの温度)が充分制御されている場合、連続的な蒸気流の変動(又は燃焼ガスの温度の変動)が、特に小容量の施設(廃棄物のトン数が一時間につき十トン未満)において存在する。   Therefore, continuous steam flow fluctuations (or combustion gas temperature fluctuations) are particularly small when the average waste treatment capacity and the generated average generated steam flow (or combustion gas temperature) are well controlled. Present in capacity facilities (waste tonnage less than 10 tons per hour).

これらの変動に適応するために焼却施設(加熱炉、ボイラー、ガス清浄等)が大きめに設計されることとなり、そのため投資費用が余計にかかり、施設にも負担が多く、確実な標準偏差を持つ設定点を設けて運転する必要性のため維持費がかさむことになる。同様に、施設の試運転が難しくなるため始動時間が短くなる。その上、蒸気は処理蒸気の直接的な形、又は発電の形のいずれかで第三者に売られるが、蒸気流の可変性が強いと施設はエネルギーの販売契約を最大限に利用することが出来ない。   Incineration facilities (heating furnaces, boilers, gas purifiers, etc.) will be designed to be large in order to adapt to these fluctuations. Therefore, the investment cost is excessive, the facilities are burdensome, and there is a certain standard deviation. Maintenance costs increase due to the need to set up and operate. Similarly, the start-up time is shortened because the trial operation of the facility becomes difficult. In addition, steam is sold to third parties either directly in process steam or in the form of electricity generation, but the facility must make the best use of energy sales contracts when steam flow variability is strong. I can't.

またこれらの変動により、大量の不燃残留物、現在の規制基準よりも低い燃焼ガス温度、好ましからぬ汚染を生じうる可変性等の、環境規制に準拠しない副産物を発生する廃棄物の焼却処理が難しくなる。   These fluctuations also make it difficult to incinerate waste that produces by-products that do not comply with environmental regulations, such as large amounts of incombustible residues, combustion gas temperatures lower than current regulatory standards, and variability that can cause undesirable contamination. Become.

本発明は、焼却炉で常に投入される廃棄物の物理的及び化学的特性の知られざる問題の独自の解決策を提供し、フィーダによって焼却炉に投入された直後に、フィーダ及び装置の制御を可能にし、蒸気流変動(又は燃焼ガスの温度)の範囲及び焼却ライン全体の固形廃棄物の燃焼制御パラメータを制限する方法を用いて、加熱炉内の廃棄物処理能力の制御を可能にする。   The present invention provides a unique solution to the unknown problem of the physical and chemical properties of waste that is constantly charged in an incinerator, and controls the feeder and equipment immediately after being introduced into the incinerator by the feeder. Enabling the control of waste throughput in the furnace using a method that limits the range of steam flow fluctuations (or combustion gas temperature) and the combustion control parameters of solid waste throughout the incineration line .

本発明は廃棄物処理能力により生じる熱負荷の予測的評価の方法であり、フィーダにより投入された時、加熱炉に投入された直後、及び廃棄物量の効果的な燃焼によりそれ自体が物質化する前、少し経った後、生成物が完全燃焼の有効域に達する時に測定する。この熱負荷の予測的評価は、ボイラー(又は燃焼ガスの温度)により生じた蒸気流の評価を通して行われ、その測定(又は温度測定)前、燃焼部内の火格子上に廃棄物を投入してから火格子の中心に到着するまでの廃棄物の移動に相当する時間の後に行われる。   The present invention is a method for predictive evaluation of the heat load caused by waste treatment capacity, and when it is introduced by a feeder, it is materialized by itself after being introduced to a heating furnace and by effective combustion of the amount of waste. Measured when the product reaches the effective range of complete combustion before, after a while. Predictive evaluation of this heat load is done through evaluation of the steam flow generated by the boiler (or the temperature of the combustion gas). Before the measurement (or temperature measurement), waste is put on the grate in the combustion section. After a time corresponding to the movement of waste until it reaches the center of the grate.

廃棄物処理能力により生じるこの蒸気流(又は燃焼ガスの温度)の評価は、加熱炉の火格子へと廃棄物が入ってくる部分でフィーダのすぐ近く位置する一組の温度及び圧力センサ手段により行われる。圧力センサは、加熱炉の火格子の第一の部分(火格子の第一区分又は第一ロール)内へと注入される一次空気吸入口上に位置する。温度センサは、燃焼炉の第一の領域のすぐ近くの、加熱炉の下側デッキ又は側壁上に位置する。このためこれらのセンサは、フィーダによって投入される廃棄物処理能力に関して、フィーダのすぐ近くの、燃焼炉の第一の領域内の圧力及び温度を測定することができる。   The evaluation of this steam flow (or combustion gas temperature) resulting from waste treatment capacity is based on a set of temperature and pressure sensor means located in the immediate vicinity of the feeder where waste enters the furnace grate. Done. The pressure sensor is located on the primary air inlet that is injected into the first part of the furnace grate (first section or first roll of grate). The temperature sensor is located on the lower deck or sidewall of the furnace, in the immediate vicinity of the first region of the combustion furnace. Thus, these sensors can measure the pressure and temperature in the first region of the combustion furnace, in the immediate vicinity of the feeder, with respect to the waste treatment capacity input by the feeder.

この加熱炉の火格子の第一の領域の下で注入される一次空気吸入口の圧力により、格付けと共に生成処理能力のイメージが与えられる。これらの圧力は測定空気流により修正されるか、一定の空気流で再度測定できる。   The pressure of the primary air inlet injected below the first area of the furnace grate gives an image of the production capacity along with the rating. These pressures can be corrected by measuring airflow or measured again with constant airflow.

加熱炉の火格子の第一の領域のすぐ近くの加熱炉の下側デッキ又は側壁上で測定したガスの温度により、生成物の質、特に可燃性と含水量のイメージが与えられる。また、生成処理能力についての輪郭も与えられる。   The temperature of the gas measured on the lower deck or sidewall of the furnace in the immediate vicinity of the first area of the furnace grate gives an image of product quality, in particular flammability and moisture content. An outline of the generation processing capability is also given.

廃棄物の実際の熱負荷は、加熱炉の火格子の第一の領域のすぐ近くへと続く、火格子の燃焼部の中心で廃棄物が完全燃焼となった時に得られる。この熱負荷により廃棄物が完全燃焼部へ到着するのに必要な一定時間後に、ボイラーに一定の蒸気流(又は燃焼ガスの温度)を発生させる。熱負荷はまた燃焼空気量がわかっており又は一定であれば、燃焼ガスに含まれる酸素(又は二酸化炭素)の測定から計算することもできる。   The actual heat load of the waste is obtained when the waste is completely burned in the center of the combustion section of the grate, which continues very close to the first area of the furnace grate. This heat load causes the boiler to generate a constant steam flow (or combustion gas temperature) after a certain time required for the waste to reach the complete combustion section. The heat load can also be calculated from measurements of oxygen (or carbon dioxide) contained in the combustion gas if the amount of combustion air is known or constant.

本発明は、加熱炉の火格子の第一の領域のすぐ近くで実施される圧力と温度の測定間に数学的関係を確立し、火格子から投入されて燃焼部に到達するまでの廃棄物の移動に相当する時間の後に蒸気流(又は燃焼ガスの温度)測定を行うことを可能にする方法を含む。   The present invention establishes a mathematical relationship between pressure and temperature measurements carried out in the immediate vicinity of the first zone of the furnace grate, and the waste from the grate to the combustion section A method which makes it possible to make a vapor flow (or combustion gas temperature) measurement after a time corresponding to the movement of

従って、本発明は、フィーダによって焼却用加熱炉へ投入される固形廃棄物により生成された熱負荷の予測的評価方法である。図1は固形廃棄物の焼却用加熱炉の立面図における測定及び測定点を示す本発明の機能図である。本発明は次のステップに分かれる(図1参照)。
1.加熱炉の火格子上の廃棄物の投入部の下に突出し、フィーダのすぐ近くの部分(2)で、火格子の第一の領域(3)の下で一次空気吸入口に重なる部分において、フィーダにできるだけ近い部分(火格子の第一の部分、又は第一ロール)(1)の圧力を測定すること。
2.加熱炉又は側壁のより高い部分上、つまり加熱炉の火格子上の廃棄物の投入部のすぐ近くにおいて、フィーダのすぐ近くの部分(4)の燃焼ガスの温度を測定すること。
3.その特性がすでに1.と2.において測定されている、廃棄物が投入され燃焼部(6)内の火格子の中心に到達するのに必要な時間に相当する一定時間の後にボイラー(5)から発生する蒸気流(又は燃焼ガスの温度)を測定すること。
4.圧力、温度、蒸気流(又は燃焼ガスの温度)の測定間に数学的関係を確立すること。
5.数学的関係を焼却処理の間に同時に行われる圧力及び温度の測定に適用し、蒸気流(又は燃焼ガスの温度)の推定値の計算を可能にすること。
Therefore, this invention is a predictive evaluation method of the heat load produced | generated with the solid waste thrown into the heating furnace for incineration with a feeder. FIG. 1 is a functional diagram of the present invention showing measurements and measurement points in an elevation view of a furnace for incineration of solid waste. The present invention is divided into the following steps (see FIG. 1).
1. Projecting below the waste input on the furnace grate, in the part (2) near the feeder and in the part that overlaps the primary air inlet under the first area (3) of the grate, Measure the pressure of the part (1st part of the grate or the first roll) (1) as close as possible to the feeder.
2. Measure the temperature of the combustion gas in the part (4) in the immediate vicinity of the feeder on the higher part of the furnace or on the side walls, ie in the immediate vicinity of the waste input on the furnace grate.
3. Its characteristics are already 1. And 2. The steam flow (or combustion gas) generated from the boiler (5) after a certain time corresponding to the time required to reach the center of the grate in the combustion section (6) when waste is charged Temperature).
4). Establish a mathematical relationship between pressure, temperature, and steam flow (or combustion gas temperature) measurements.
5). Apply mathematical relationships to pressure and temperature measurements that occur simultaneously during the incineration process to allow calculation of an estimate of steam flow (or combustion gas temperature).

その結果、蒸気流(又は燃焼ガスの温度)の推定値が焼却炉の燃焼制御用の、特に廃棄物の供給及び搬送の機能を持つ移動部の、供給ホッパへの投入からスラグリムーバによる排出までの制御用の入力データとして利用可能となる。   As a result, the estimated steam flow (or combustion gas temperature) is used to control the combustion of the incinerator, especially from the input to the supply hopper to the discharge by the sluggish mover, which has a waste supply and transfer function. It can be used as input data for the control.

圧力及び蒸気流の測定(又は燃焼ガスの温度)のみ、又は温度測定及び蒸気流(又は燃焼ガスの温度)のみを用いると、構築できる数学的モデルの質が低下し、圧力/温度のデータの組に基づく数学的モデルの結果よりも平均誤差が大きい予測的評価となることに注意する必要がある。   Using only pressure and steam flow measurements (or combustion gas temperature) or only temperature measurements and steam flow (or combustion gas temperature) reduces the quality of the mathematical model that can be built, and the pressure / temperature data Note that this is a predictive evaluation with a larger mean error than the result of the tuple-based mathematical model.

数学的関係は圧力及び温度測定の加算結果であり、蒸気流(又は燃焼ガスの温度)の計算結果である係数により測られる。   The mathematical relationship is the sum of pressure and temperature measurements and is measured by a coefficient that is the result of calculating the steam flow (or the temperature of the combustion gas).

この方法はまた、時間経過によるモデルの変動を考慮に入れるための、これらの係数の自動的かつ周期的な更新を含む。変動は固形廃棄物の性質による突然の変化により起こりうるものであるが、燃焼空気吸入口の変化や蒸気流の変動等の焼却処理の変化に影響するパラメータのポイント設定時の固形廃棄物加熱炉の作動状態の変動によるものでもある。この更新は信号処理に関する自己適応フィルタリング技術により実行されるが、ニューラルネットワークに依存する訓練方法、又はファジー論理等の実証方法によっても取得可能である。図2は、このアルゴリズムを示し、Piは圧力測定結果のセット、Tiは温度測定結果のセット、SFは蒸気流(TCG、燃焼ガスの温度とすることも可能)、Tは時間変数、diffは廃棄物の火格子部への投入から燃焼部への到着の移動時間に相当する時間をそれぞれ表す。   The method also includes an automatic and periodic update of these coefficients to take into account model variations over time. Fluctuations can occur due to sudden changes due to the nature of solid waste, but solid waste heating furnaces when setting parameters that affect changes in the incineration process, such as changes in the combustion air inlet and changes in steam flow This is also due to fluctuations in the operating state. This update is performed by a self-adaptive filtering technique related to signal processing, but can also be obtained by a training method depending on a neural network, or a verification method such as fuzzy logic. Figure 2 shows this algorithm, where Pi is a set of pressure measurement results, Ti is a set of temperature measurement results, SF is a steam flow (TCG or combustion gas temperature can be used), T is a time variable, and diff is The time corresponding to the movement time from the introduction of the waste into the grate portion to the arrival at the combustion portion is shown.

この係数の自動更新により、加熱炉のモデルが取得でき、これを同時に実際に測定したモデルの計算値と比較し、オンラインの修正を行う(図2を参照のこと)。これにより確実なモデルを非常に容易に取得できる。   By automatically updating this coefficient, a furnace model can be obtained, and this is simultaneously compared with the calculated value of the actually measured model, and online correction is made (see FIG. 2). This makes it possible to obtain a reliable model very easily.

本発明は工場デジタル制御システム方法の実施、又は制御システムに標準化信号によって蒸気流(又は燃焼ガスの温度)の推定値を測定及び送信する単独機器において用いられる。   The present invention may be used in a factory digital control system method implementation or in a single device that measures and transmits an estimate of steam flow (or combustion gas temperature) by means of a standardized signal to the control system.

上記の方法(1.、2.及び3.)でこれらの値を測定するために、又はデータ測定システムによって関連させ、組み合わせて測定を行い、かつこれらのデータ測定システムと関連付け、データ取得及び計算ユニット、圧力センサ、温度センサ、蒸気流センサ(又は燃焼ガスの温度センサ)からなる単独機器の使用することにより、製造者又は固形廃棄物焼却炉の保有者は、焼却処理に影響することなく、又は固形廃棄物焼却炉の現在の制御方法を変更することなく、この熱負荷(蒸気流、燃焼ガスの温度、酸素又は二酸化炭素の割合等)の予測値を得ることが可能となることも特記すべき点である。この種の単独機器を使ったこの方法はより実施が容易である。   In order to measure these values in the above method (1., 2. and 3.) or related by a data measurement system, take measurements in combination and associate with these data measurement systems, data acquisition and calculation By using a single device consisting of a unit, pressure sensor, temperature sensor, and steam flow sensor (or combustion gas temperature sensor), the manufacturer or owner of the solid waste incinerator will not affect the incineration process. Or it is possible to obtain the predicted value of this heat load (steam flow, combustion gas temperature, oxygen or carbon dioxide ratio, etc.) without changing the current control method for solid waste incinerators. It is a point to be done. This method using a single device of this kind is easier to implement.

前述の方法の構造の結果、特に蒸気流(又は燃焼ガスの温度)の予測値の同時比較による自動係数更新、実際に測定した蒸気流(又は燃焼ガスの温度)のモデル出力、温度、圧力及び蒸気流(又は燃焼ガスの温度)センサは、厳密かつ定期的な補正を必要としない。センサのおおまかな結果は測定された係数の計算の性質により補正される。その結果、この方法を用いた機器は耐久性があり、維持費も低コストとなる。   As a result of the structure of the method described above, in particular, automatic coefficient update by simultaneous comparison of predicted values of steam flow (or combustion gas temperature), model output of actual measured steam flow (or combustion gas temperature), temperature, pressure and Vapor flow (or combustion gas temperature) sensors do not require strict and periodic correction. The approximate result of the sensor is corrected by the nature of the measured coefficient calculation. As a result, the equipment using this method is durable and the maintenance cost is low.

固形廃棄物の焼却用加熱炉の立面図における測定及び測定点を示す本発明の機能図である。It is a functional diagram of the present invention showing measurement and measurement points in an elevation view of a heating furnace for incineration of solid waste. 信号処理に関する自己適応フィルタリング技術のアルゴリズムを示す図である。It is a figure which shows the algorithm of the self-adaptive filtering technique regarding a signal processing.

Claims (5)

焼却炉技術(火格子加熱炉のロッドの押し込み、ロールの使用、振動又はその他)とは無関係である、焼却炉内部の火格子上にフィーダにより固形廃棄物が導入される際の固形廃棄物量の熱負荷の予測的評価の方法であって、
廃棄物が投入される加熱炉の火格子上(図1の部分1)部分の下にあり、フィーダのすぐ近く(図1の部分2)であり、焼却火格子の第一の領域の下の一次空気吸入口ダクト上であり(図1の部分3)、フィーダ(火格子の第一の部分又は第一ロール)にできる限り近い部分である一次空気吸入口の圧力の測定を行い、これらの圧力は測定空気流で補正可能であるか、又は一定の空気流で測定した結果よりもかなり精度が良い第一のステップと、
加熱炉の火格子上の廃棄物が投入される部分に非常に近い、フィーダのすぐ近くの、加熱炉の高い部分又は側壁上(図1の部分4)の燃焼ガスの温度を測定する第二のステップと、
第一のステップ及び第二のステップにおいて特性が測定された廃棄物が投入されて燃焼部内の火格子の中心(図1の部分6)に到着するまでに必要な時間に相当する時間の後に、ボイラーが発生した蒸気流を測定し(図1の部分5)、この時蒸気流又燃焼ガスの温度の測定により熱負荷の式が導かれるが、これは燃焼ガスに含まれる酸素の割合又は二酸化炭素の割合の測定により算出することもできる第三のステップと、
圧力と温度と熱負荷(通常蒸気流又は燃焼ガスの温度)の測定結果間の数学的関係を構築し、前記数学的関係は重み付けされた係数を有し、その結果は計算後の熱負荷(蒸気流又は燃焼ガスの温度、又は燃焼ガスの酸素の割合又は二酸化炭素の割合)である第四のステップと、
数学的関係を、焼却過程の間に同時に行われる圧力及び温度の測定結果に適用し、蒸気流(通常蒸気流又は燃焼ガスの温度)の熱負荷の推定値を計算可能にする第五のステップ
からなる五つのステップを特徴とする方法。
The amount of solid waste when the solid waste is introduced by the feeder onto the grate inside the incinerator, independent of the incinerator technology (grating heating rod push, roll use, vibration or other) A method for predictive evaluation of heat load,
Located on the furnace grate (part 1 in FIG. 1) where the waste is charged, near the feeder (part 2 in FIG. 1) and below the first area of the incineration grate Measure the primary air inlet pressure on the primary air inlet duct (part 3 in FIG. 1) and as close as possible to the feeder (first part of the grate or first roll) The pressure can be corrected with the measured air flow, or the first step is much more accurate than the result measured with a constant air flow;
A second measuring the temperature of the combustion gas on the high part or side wall of the furnace (part 4 in FIG. 1), very close to the feeder, very close to the part where the waste on the furnace grate is charged And the steps
After a time corresponding to the time required for the waste characterized in the first step and the second step to be introduced and arrive at the center of the grate in the combustion section (portion 6 in FIG. 1), The steam flow generated by the boiler is measured (part 5 in FIG. 1), and the measurement of the steam flow or the temperature of the combustion gas at this time leads to an equation for the heat load, which is the proportion of oxygen contained in the combustion gas or the A third step that can also be calculated by measuring the proportion of carbon;
Build a mathematical relationship between the measurement results of pressure, temperature and heat load (usually steam flow or combustion gas temperature), said mathematical relationship has a weighted coefficient, the result is the calculated heat load ( A fourth step which is the temperature of the steam stream or the combustion gas, or the proportion of oxygen or carbon dioxide in the combustion gas);
Fifth step to apply the mathematical relationship to the pressure and temperature measurements that occur simultaneously during the incineration process and to calculate an estimate of the heat load of the steam flow (normal steam flow or combustion gas temperature) A method characterized by five steps consisting of:
請求項1の第一のステップに記述した通りの圧力の測定値と、請求項1の第三のステップに記述した通りの熱負荷(通常蒸気流又は燃焼ガスの温度)の測定値のみにより、又は請求項1の第二のステップに記述した通りの温度測定と、請求項1の第三のステップに記述した通りの熱負荷(通常蒸気流又は燃焼ガスの温度)の測定値のみにより、簡易化された数学的モデルを構築することによって代替例が実施され得ることを特徴とする、請求項1に記載の方法。   By only the pressure measurement as described in the first step of claim 1 and the measurement of the heat load (normal steam flow or combustion gas temperature) as described in the third step of claim 1, Or simply by measuring the temperature as described in the second step of claim 1 and the measured value of the heat load (normal steam flow or combustion gas temperature) as described in the third step of claim 1. The method of claim 1, wherein an alternative can be implemented by building a generalized mathematical model. 実際の測定との相関の結果をリアルタイムに比較することにより行われ、信号処理にリンクされた自己適応型フィルタリングの技術(図2)を通じて、又はニューラルネットワークにリンクされた訓練方法を通じて、又はさらに経験的方法のタイプであるファジー論理等を通じて相関のラインにおける修正に導く、時間に伴うモデルの変動を考慮に入れるために、重み付けをされた係数が自動的かつ周期的に更新されることを特徴とする、請求項1又は2に記載の方法。   This is done by comparing real-time results with actual measurements and through self-adaptive filtering techniques linked to signal processing (Figure 2), or through training methods linked to neural networks, or even more experience. The weighted coefficients are automatically and periodically updated to take into account model variations over time leading to corrections in the line of correlation, such as through fuzzy logic, which is a type of dynamic method The method according to claim 1 or 2. 熱負荷の評価値(蒸気流若しくは燃焼ガスの温度、又は燃焼ガスの酸素の割合若しくは二酸化炭素の割合)と、焼却炉の燃焼制御についての、特にフィードホッパーへの導入からスラグ除去器による排出まで廃棄物を供給し搬送する移動部品の制御についての入力データを提供するように導くことを特徴とする、請求項1乃至3のいずれかに記載の方法。   Evaluation value of heat load (temperature of steam or combustion gas or oxygen or carbon dioxide in combustion gas) and combustion control of incinerator, especially from introduction to feed hopper to discharge by slag remover 4. A method according to claim 1, characterized in that it leads to provide input data for the control of moving parts for supplying and transporting waste. 請求項1乃至4のいずれかに記載の方法が実施される、データ取得及び計算ユニットからなることを特徴とする装置。   An apparatus comprising a data acquisition and calculation unit in which the method according to claim 1 is implemented.
JP2006541966A 2003-12-03 2004-09-20 Method and apparatus for predictive evaluation of heat load for solid waste incineration facilities Pending JP2007519089A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0314186A FR2863371B1 (en) 2003-12-03 2003-12-03 METHOD AND DEVICE FOR PREDICTIVE EVALUATION OF THE THERMAL LOAD FOR SOLID WASTE INCINERATION PLANTS
PCT/FR2004/002365 WO2005066727A1 (en) 2003-12-03 2004-09-20 Method and device for predictive assessment of thermal load for solid waste incineration plants

Publications (2)

Publication Number Publication Date
JP2007519089A true JP2007519089A (en) 2007-07-12
JP2007519089A5 JP2007519089A5 (en) 2008-01-24

Family

ID=34586270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006541966A Pending JP2007519089A (en) 2003-12-03 2004-09-20 Method and apparatus for predictive evaluation of heat load for solid waste incineration facilities

Country Status (4)

Country Link
EP (1) EP1692576A1 (en)
JP (1) JP2007519089A (en)
FR (1) FR2863371B1 (en)
WO (1) WO2005066727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942697A (en) * 2017-12-08 2018-04-20 上海电机学院 It is a kind of with fuel gas detect based on highly integrated intelligent domestic system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783417A (en) * 2016-08-24 2018-03-09 中国石油化工股份有限公司 A kind of burning process control method and the control device for burning process
CN107066657B (en) * 2016-12-23 2020-09-11 北京京能科技有限公司 Coal mill outlet temperature optimization energy-saving effect evaluation method and device
CN111625941B (en) * 2020-05-13 2023-05-26 埃睿迪信息技术(北京)有限公司 Method, device and storage medium for determining the operating state of an incineration line
CN114035450B (en) * 2021-11-11 2024-06-04 北京工业大学 MSWI process-oriented multi-input multi-output loop control semi-physical simulation experiment platform
CN114527646A (en) * 2021-12-18 2022-05-24 北京工业大学 Multi-loop quasi-diagonal recurrent neural network PID control method for urban solid waste incineration process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599820B1 (en) * 1986-06-05 1990-01-05 Shell France METHOD FOR REGULATING AN INDUSTRIAL PROCESS, IN PARTICULAR METHOD FOR REGULATING A CONTINUOUS COMBUSTION PROCESS WITH A VARIABLE HEAT LOAD OVER TIME, IN PARTICULAR CONTINUOUS COMBUSTION OF URBAN WASTE
JPH0739854B2 (en) * 1990-03-27 1995-05-01 日本鋼管株式会社 How to measure the supply of waste for incineration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942697A (en) * 2017-12-08 2018-04-20 上海电机学院 It is a kind of with fuel gas detect based on highly integrated intelligent domestic system
CN107942697B (en) * 2017-12-08 2021-01-22 上海电机学院 Highly-integrated intelligent home system mainly based on combustible gas detection

Also Published As

Publication number Publication date
EP1692576A1 (en) 2006-08-23
FR2863371B1 (en) 2006-02-03
WO2005066727A1 (en) 2005-07-21
FR2863371A1 (en) 2005-06-10

Similar Documents

Publication Publication Date Title
JP4876057B2 (en) Plant control device and thermal power plant control device
JPH10267245A (en) Combustion control method of refuse incinerator and apparatus therefor
JP2007519089A (en) Method and apparatus for predictive evaluation of heat load for solid waste incineration facilities
JP4188859B2 (en) Operation control method and operation control apparatus for waste treatment plant equipment
JP2007519089A5 (en)
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP2011214773A (en) Device and method of controlling temperature of sludge incinerator
JPH04208307A (en) Method for controlling supplying of fuel for solid item combustion device
CN211554672U (en) Self-adjusting fuzzy Smith-PID temperature control system
US20080015826A1 (en) Method And Device Of Predictive Assessment Of Thermal Load For Solid Waste Incineration Plants
JP2001082719A (en) Combustion control for refuse incinerating plant
JPH0240410A (en) Automatic combustion control of municipal waste incinerating furnace
JP2000257824A (en) Method and device for controlling combustion facility
JP5277036B2 (en) Temperature control device for sludge incinerator and temperature control method for sludge incinerator
JP2022013163A (en) Information processor, information processing method, program, medicine feeder, exhaust gas processor and exhaust gas processing method
JPH11257634A (en) Operation-supporting device for combustion controller in waste incinerating furnace
WO1993025849A1 (en) Method of controlling concentration of oxygen in combustion exhaust gas for combustion equipment
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JP2007139412A (en) Refuse incineration plant regulation method using operation of support burner
JPH11325433A (en) Method and apparatus for controlling fluidized bed type incinerator
JP2790780B2 (en) Incinerator combustion control device
JP2000234717A (en) Method and apparatus for controlling pressure of combustion furnace
JPH116607A (en) Method and device for estimating fire grate combustion air flow rate for refuse incinerator
Porzuczek Transfer function matrix model of the bubbling fluidized bed boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100408