JP2007508092A - 磁気共鳴画像化システム及び方法 - Google Patents

磁気共鳴画像化システム及び方法 Download PDF

Info

Publication number
JP2007508092A
JP2007508092A JP2006534858A JP2006534858A JP2007508092A JP 2007508092 A JP2007508092 A JP 2007508092A JP 2006534858 A JP2006534858 A JP 2006534858A JP 2006534858 A JP2006534858 A JP 2006534858A JP 2007508092 A JP2007508092 A JP 2007508092A
Authority
JP
Japan
Prior art keywords
space
magnetic resonance
signal
data
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006534858A
Other languages
English (en)
Inventor
デン ブリンク,ヨハン エス ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2007508092A publication Critical patent/JP2007508092A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本発明は、磁気共鳴画像化システム及び方法に関する。高解像度画像化を実現するために、第1の共鳴周波数を用いた磁気共鳴信号をk空間の中央部分に使用し、第2の共鳴周波数を用いた磁気共鳴信号をk空間の周辺部分に用いる磁気共鳴画像化システム及び方法を提案する。本発明の好ましい実施形態において、非陽子の磁気共鳴信号をk空間の中央部分に用い、陽子磁気共鳴信号をk空間の周辺に用いる。従って、再構成された磁気共鳴画像は、陽子以外の原子核に関するコントラストと陽子による高精細度を示すものとなる。よって、本発明により、特に、陽子以外の磁気共鳴信号の取得に利用できる時間が限られているという問題を解決することができる。

Description

発明の詳細な説明
本発明は、磁気共鳴(MR)画像化システム及び方法に関する。
H原子核(陽子)を用いた磁気共鳴画像化法は、先行技術として周知である。近年、陽子以外の原子核(例えば、13Cや31P)が発する磁気共鳴信号を用いた磁気共鳴画像化法が注目されている。陽子以外の原子核を用いた磁気共鳴画像化の重要な問題点は、原子核の画像化において信号雑音比(SNR)が低いことである。SNRが低い理由はいろいろあるが、陽子と比較してこうした原子核の自然存在比が非常に低く、磁気回転比が低く、多く含んだ物質の集中度が低いことなどが挙げられる。この問題を解決しSNRを十分高くするために、原子核の偏極をいくつかの方法で強調することができる。
1つの方法として、これらの原子核を過分極することがある。しかし、最初のラジオ周波数(RF)パルスが磁場に印加され、過分極の大きさを顕著に低下させてしまい、MR信号読み出しの回数が限られてしまう。MRエコー信号の数が制限されるので、その結果得られる磁気共鳴画像の空間的分解能にも限度がある。以前にはこれらの問題を解決するため、単一ショット法を用いていた。
他の問題は、MR信号の取得中に、過分極磁化の急速な崩壊である。この崩壊により(単一の崩壊のフーリエ変換である)ポイントスプレッド関数が広がってしまう。これにより、陽子以外の原子核を用いた画像化の解像度が制限されてしまう。
陽子以外の原子核の場合、陽子よりも磁気回転比が低く、例えば、19FやHeの場合陽子の70%、13Cや129Xeの場合、陽子の25%である。これは、所与のグラディエント強度に対するk空間トラバーサルの効率が悪くなることを示している。よって、13Cと129Xeの場合、所与の解像度とグラディエント振幅に対して、繰り返し時間が4倍長くなければならない。典型的なグラディエントシステムパラメータの場合、適当な解像度(例えば、2mmの解像度)におけるオブジェクト全体の画像化の繰り返し時間は、陽子の場合で2.5から3msになる。13C等の他の原子核の場合、繰り返し時間は10から15msとなる。分極したMR信号の崩壊がゆっくりであっても、MR信号の固有のゆっくりした読み出しにより相殺されることを示している。
結果として、過分極した核種のMR画像を取得するための時間は限られており、繰り返し時間は比較的長く、画像の分解能は本来的に限られている。例として、有効視野(FOV)400mmで名目解像度2mmの場合、200位相エンコードステップが必要であり、k空間の単一平面の読み出しに2から3秒必要となる。オブジェクトを十分カバーするために、k空間の複数(一般的には40から100)のスライス、すなわち平面をサンプリングしなければならない。この結果、読み出し時間が100から300秒となる。この場合、ぼけが激しくなり、2mmの分解能はまったく達成することができない。より高い解像度(例えば、0.5から1.0mm)での画像化は、単一スライスだけで300から500位相エンコードステップと7から10msの最低繰り返し時間が必要なことを考えると、問題はより悪化する。
合成取得法は、水を含んだ化学種のMR画像化の場合、適当な時間解像度及び/または空間解像度を得るときに一定の利点を提供することが先行技術として知られている。上記の取得法は、米国特許第6,400,151号で開示されている。それでは、高周波パルスと磁場グラディエントパルスの異なったシーケンスを用いて、水の陽子からMR信号異なった組を取得する。これらの水の陽子MR信号を結合してk空間を形成する。異なる組は、k空間の異なる帯域のために使用される。しかし、提案されている方法では、非陽子MR信号の取得に利用できる時間が限られているという問題を解決することができない。
本発明の1つの目的は、水以外の化学種の原子核による高解像度画像化を可能とする磁気共鳴画像化システム及び方法を提供することである。この目的は、本発明によるMR画像化システムにより達成される。このシステムは、第1の共鳴周波数を用いてk空間の中心部分の第1の磁気共鳴信号を取得し、第2の共鳴周波数を用いてk空間の周辺部分の第2の磁気共鳴信号を取得する取得モジュールと、前記第1の磁気共鳴信号に対応する第1のk空間データと前記第2の磁気共鳴信号に対応する第2のk空間データを結合して、k空間全体を形成するデータモジュールと、k空間を画像空間に変換して画像を生成する画像モジュールと、を有する。それについて、「k空間全体」という用語は、目標となる解像度で画像を再構成するためのサンプル点を適当にカバーしているk空間として理解すべきである。
上記目的は、本発明によるMR画像化方法によっても達成することができる。該方法は、第1の共鳴周波数を用いてk空間の中心部分について第1の磁気共鳴信号を取得するステップと、第2の共鳴周波数を用いてk空間の周辺部分について第2の磁気共鳴信号を取得するステップと、前記第1の磁気共鳴信号に対応する第1のk空間データと前記第2の磁気共鳴信号に対応する第2のk空間データを結合して、k空間全体を形成するステップと、k空間を画像空間に変換することにより画像を生成するステップと、を有する。
本発明によると、k空間の中心部分の信号とk空間の周辺部分の信号とは別々に取得される。ここで、k空間の両部分は異なる情報を提供する。この情報は、MR画像化プロセスの際、有利に使用することができる。そのために、MR画像のSNRとコントラスト特徴はk空間の中心で大部分決まり、一方、k空間の周辺部はMR画像の高解像度に関する情報を提供する。強調したMR画像を提供するために、本発明は、異なるMR共鳴周波数を用いてことを示唆するものである。それゆえ、本発明で使用されるMR装置は、2つ以上のMR共鳴周波数で動作するように構成されている。
本発明の上記その他の態様は、従属項に記載した以下の実施形態に基づいてさらに詳しく説明される。
本発明の好ましい実施形態において、例えば、陽子と陽子以外の原子核(例えばHと13C)を用いた、複数原子核画像化を含む。そのため、好ましくは過分極の非陽子核種を用いて、第1の磁気共鳴信号を取得するモジュールは、例えば、過分極の13Cに適応させられる。他の核種(過分極されていない非陽子核種)を使用することもできる。例えば、31P画像化は追加的分極なしに実行することができる。
本発明のこの実施形態において、非陽子核種の磁気共鳴信号をk空間の中央部分、特に中心について取得する。k空間の周辺部分については、特に、HOのHからの磁気共鳴信号を取得する。すなわち、k空間の中心部分は非陽子原子核を有する化学種から得たデータでカバーし、k空間の外側部分は陽子データでカバーする。陽子データの取得は、非陽子データの取得の前でも後でもよい。本発明のこと増井実施形態において、MR信号を生成する原子核(陽子を除く)をオブジェクトに投与する。スキャンされるオブジェクトは、他の原子核を有する化学種を含む造影剤の投与に対して敏感である場合もあるので、例えば、素早くウォータースキャンを実行して、すべての陽子データを先に取得する方がよいかも知れない。
磁気共鳴画像は、次に、k空間の中央部分の非陽子MR信号と、k空間の周辺の陽子MR信号から再構成される。従って、再構成されたMR画像は、非陽子原子核により決まるコントラスト分布を示す。その画像の解像度は水の陽子信号によりエンハンスされる。すなわち、その画像には、高解像度の非陽子コントラスト分布が含まれる。
好ましくは、k空間の周辺部分の陽子MRデータ(例えば、HO中のHから得たデータ)は高解像度で取得できる。それにより、1から2mmの範囲の好ましい解像度を達成することができる。他の原子核(例えば、13C)のMRデータ、または他の環境におけるHのMRデータをより低い解像度(一般的には4から5mm)で取得する。k空間の範囲は所与の磁気回転比における解像度に反比例するので、k空間の中央部分と周辺部分の間の比例因子の値は、典型的には、1つの方向における中心部分について20から25%である。
k空間の中央部分の信号取得にかかる取得時間は短い。よって、この方法により、陽子以外の磁気共鳴信号の取得に利用できる時間が限られているという問題を解決することができる。取得時間が短いので、陽子以外の原子核の励起が急激に崩壊しても、再構成された結合画像のSNRも有効ポイントスプレッド関数も制限されない。再構成された磁気共鳴画像は、陽子以外の原子核に関するコントラストと陽子による高精細度とを示すものとなる。
本発明による複数原子核画像化の結合取得法を用いて、過分極の非陽子磁化の画像化に本来的に付随する解像度制限を、非陽子MR信号と陽子MR信号を結合することにより、非陽子k空間を拡張することにより、解消することができる。
一般的に、本発明は、MR法を用いて検出できるスピンを有するいかなる物質にも適用可能である。フリーラジカルは電子スピンを有し、陽子と比較して感度が非常に高い。電子スピン共鳴(ESR)を用いると集中度が非常に低くても検出することができることを示唆している。人体等のロッシーサンプルにおいて、ESRを用いた高解像度画像化を実現するため、電子スピン信号のライン幅に関する問題を解決しなければならない。本発明の他の好ましい実施形態において、第1の磁気共鳴信号を電子スピンから取得してもよい。ここで、中央のk空間はESR信号が使われ、全体のコントラスト分布を決定し、一方、解像度はk空間の外側部分をカバーする、例えば、水の陽子信号を用いてエンハンスされる。
本発明のさらに別の好ましい実施形態において、同一種の原子核(例えば、陽子のみ)から発せられたMRデータを使用する。このようなシステムは、例えば、HCSI(陽子化学シフト画像化)に使用することができる。この実施形態において、第1のMRデータは、例えば、(水の陽子と大幅に異なるラーマー周波数を示す)クレアチン、乳酸塩、コリン等のHから取得し、一方、第2のMRデータは例えばHOのHから取得する。それゆえ、本発明による方法は、例えば、脂肪のHの分光学的画像の解像度をエンハンスするために適用することもできる。この実施形態においては陽子しか使用しないことの他は、上述の方法と装置の特徴がしかるべく適用可能である。
k空間全体を形成するためのk空間データの合成は、好ましくは、第1のMR信号に対応する第1の複数のk空間ラインのデータと第2のMR信号に対応する第2の複数のk空間ラインのデータとを結合することによりなされる。それにより、本発明の好ましい一実施形態において、第1のk空間データが第2のk空間データの一部を大体して、k空間全体を形成する。この場合、第2のMR信号から得られた完全な画像を、追加的に関連するコントラストまたは構造に関する情報を含む画像に再構成することができる。本発明の好ましい一実施形態において、第1のk空間データを第2のk空間データに加算して、または組み込んで、k空間全体を形成する。中央k空間を除いて、データ取得に必要な時間は、20から25%減らすことができる。
本発明のさらに別の実施形態において、外側k空間のデータは、例えば、異なる水画像の組から選択可能である。これはMR画像化システムのユーザによってマニュアルでもできるし、対応するパラメータを分析して自動化することもできる。この手段により、目標とする結果に応じて最も適当なデータの組を選択することが可能である。
本発明によると、少なくとも2つの異なる共鳴周波数を用いたデータの取得に基づく第1と第2のMR信号に基づき、最終的な磁気共鳴画像を形成する。言い換えると、異なる磁気回転比を有する少なくとも2つの原子核から得られた、または異なる環境下にあり周波数オフセットを生じる化学シフトを示す同一の原子核(例えば、陽子)から得られたMRエコーのデータの組を結合することにより、最終的MR画像が形成される。すなわち、該MR装置は、陽子と特殊な原子核、または異なる環境下にある陽子のいずれかによる2つの共鳴周波数で動作することができる。本発明で使用する取得ストラテジーは、異なるMR周波数を用いて異なる原子核の共鳴周波数をマッチするか、または異なる環境下にある同一原子核をマッチするという点において、k空間の中央部分と周辺(すなわち外側)部分とで異なる。
磁気共鳴信号を取得する装置(MR装置)は、なかんずく、グラディエント磁場を生成するコイル、電源装置、高周波ジェネレータ、制御装置、RF信号アンテナ、読み出し装置等を有する。これらの装置はすべて本発明による方法を実行するように構成されている。特に、MR装置は、グラディエント振幅を変化させて磁気回転比の変化に対応し、適当なグラディエントパワーを供給して、十分短い時間で適当な解像度を得るように構成されている。全ての装置モジュール、例えば、RFパルス、グラディエント、エコー読み出しの時間、周波数、振幅パラメータを測定する制御装置は、本発明の奉納に従ってデータを取得しデータ処理をするように構成され、プログラムされている。
データを結合し画像を生成するステップは、好ましくは、MR装置と接続されたコンピュータで実行される。好ましくは、コンピュータはMR画像化システムの一体となった構成要素である。そのコンピュータは、なかんずく、中央処理装置(CPU)、バスシステム、メモリ手段(例えば、RAMまたはROM)、記憶手段(例えば、フレキシブルディスクまたはハードディスク装置)、及び入出力装置を含む。MRスキャンにより得られた生のMRデータは、データを結合して、画像再構成の前にk空間全体を合成するために、コンピュータに送られて格納される。
本発明の目的は、MR画像化システムのコンピュータで実行された時に、本発明によるMR画像化方法を実行するように構成されたコンピュータ命令を有するコンピュータプログラムによっても達成される。このように、本発明により磁気共鳴画像を生成するのに必要な技術的効果は、本発明によるコンピュータプログラムの命令に基づき実現することができる。このようなコンピュータプログラムは、CD−ROM等の担体に格納でき、またはインターネットその他のコンピュータネットワークを介して入手することができる。実行前に、コンピュータプログラムを(例えば、CD−ROMプレーヤにより)担体から読み取って、またはインターネットから読み取って、コンピュータのメモリに格納することにより、コンピュータにロードする。
以下の実施形態と添付した図面を参照して、例として、本発明の上記その他の態様を以下に詳しく説明する。
好ましい実施形態を実施することができる一般的なMR画像化システム1を図1の簡略化したブロック図に示した。画像化システム1は、基本的には、取得モジュール2と合成データ及び画像モジュール3を有する。
取得モジュール2は、静磁場を生成する磁石4と、磁場グラディエントシステム5とを有する。グラディエントシステム5は、空間的選択とエンコードのためのグラディエントアンプとグラディエントコイルにより構成されている。さらにまた、画像化システム1は、原子核を励起する測定パルスを生成するためのRFアンプとRF送信コイル、及び原子核から再放射された信号を検出するRFレシーバとアンプを有する。送信コイルと受信コイルは、電気的かつ物理的にRFコイル6に統合されている。これらの構成要素は、データ取得制御のための取得制御デバイス7に接続されている。取得制御デバイス7は、コンピュータシステムと、その上で実行されるように適応したコンピュータプログラムを有する。これらのコンピュータプログラムは、データ取得プロセスを制御するように構成されている。例えば、パルスシーケンスプログラムを用いて、原子核を励起するために印加する測定パルスのシーケンスを制御する。k空間の周辺部分と中心部分のデータを取得するため、取得制御デバイス7は、(例えば、フィルタを用いて)MRスペクトルの一部を選択するように構成されている。これらのフィルタも特殊なコンピュータプログラムにより制御されている。それ自体知られている他の方法を適用してもよい。例えば、一定の原子核のNMRスペクトルの幅を狭くして、スペクトルを簡単にして、信号強度を少数のスペクトル線に集中する広帯域デカップリングの使用などである。このようなデカップリング法を用いると、例えば、陽子のスピン−スピンカップリングを効果的に取り除くことができる。
さらにまた、取得モジュール2は、生のk空間データと画像データを格納してアーカイブするアーカイブシステムと、画像を表示し制御パラメータのオペレータによる入力をするビューイングコンソールとを含む。
結合データ及び画像モジュール3は、取得モジュール2に接続され、デジタル信号処理及び画像処理に使用される。データ及び画像モジュール3は、コンピュータシステムと、その上で実行されるコンピュータプログラムを有する。これらのコンピュータプログラムは、なかんずく、本発明によるデジタル信号処理と画像処理のステップを実行するように構成されている。
本発明による磁気共鳴画像化方法を実行するのに必要なステップは、図2の簡略化したフローチャートに示されている。
図示した実施形態において、陽子Hと過分極の非陽子核13Cを用いる複数核画像化方法を適用する。該方法は、4mmの解像度において、13C共鳴周波数を用いてk空間の中心部分の第1の磁気共鳴信号を取得する最初のステップ8を有する。信号振幅が低い場合、中心k空間について複数の平均を取る。取得に続いて、生のMR応答がコンピュータメモリに格納され、次のステップ9でさらに処理するため、データ及び画像モジュール3に転送される。
さらに別のステップ10において、1mmの解像度においてH共鳴周波数を用いてHOスキャンによりk空間の周辺部分について、第2の磁気共鳴信号を取得する。13Cデータの取得後、Hデータを取得する。最も単純な場合、k空間のサンプル間距離だけでなく、Hと13Cを取得する有効視野は等しい。すなわち、異なる磁気回転比に合わせるためにグラディエント強度を調節する。しかし、これは本質的なことではない。再度、結果として得られる生データが、次のステップ11において、データ及び画像モジュール3に格納及び転送される。k空間のいくつかの部分のデータを取得したので、インデックス法を実行して、内側と外側のk空間データを関係づける。
これらの取得ステップ8、10に続いて、ステップ12においてk空間全体が形成される。ここで、k空間の内側、すなわち中心部分は13Cデータでカバーされ、k空間の外側、すなわち周辺部分はHデータでカバーされる。この結合ステップ12は、データ及び画像モジュール3の一部であるコンピュータシステムにより実行される。簡単な場合、1つのコンピュータプログラムが13CデータとHデータとを加算する。この合成プロセスの際、k空間が不連続となることがあるが、あまり不利益な効果はないことが分かっている。しかし、好ましい実施形態においては、共役グラディエント法を用いたグリッド化または反復再構成等の補正方法を適宜適用する。
k空間密度がk空間の内側と外側で異なる場合、k空間フィルタリングをかけて異なる密度をマッチさせる。この目的のためには、異なるフィルタリング方法が先行技術として知られている。
k空間全体を形成した後、次のステップ13において、k空間を画像空間に変換することにより画像を生成する。画像は、合成されたk空間に画像形成アルゴリズム(一般的には、フーリエ変換)を適用することにより生成される。画像を生成するために、コンピュータシステムを使用する。このコンピュータシステムは、好ましくは、データ及び画像モジュール3の一部であり、フーリエアルゴリズムを適用するコンピュータソフトウェアを使用する。形成された画像は上で説明した複数原子核スキャン法により取得されたk空間データに基づくので、再構成画像は、13Cデータに関するコントラスト分布とHデータにより特徴付けられた高精細さを示す。画像生成後、ステップ14において、その画像はビューイングコンソールに表示され、最後に画像アーカイブに格納される。
以上説明した本発明の第1の実施形態においては、Hと13Cについて同じ有効視野を使用している。さらにまた、各次元(読み出し、第1の位相エンコード方向、及び第2の位相エンコード方向)におけるk空間ステップのサイズは等しい。この構成においては、Hと13Cについて必要なグラディエント領域は磁気回転比とスケールしなければならない。合成データの取得用のパルスプログラムは、適宜適応される。言い換えると、パルスプログラムはこの比率を考慮に入れてパルスシーケンスを指示する。これにより、両方の原子核のデジタル化されたMRデータ点は正方格子点を形成するが、このデータはこれ以上処理せずに高速フーリエ変換アルゴリズムにかけることができる。これを図3に示した。ここで、横軸はkxであり、縦軸はkyである。H共鳴周波数を用いたデータ取得の結果得られるk空間データ点15を左側に示した。13C共鳴周波数を用いたデータ取得から得られるk空間データ点16を真ん中に示した。右側には、k空間全体17を示した。このk空間17は、第1のk空間データを第2のk空間データに加算することにより再構成したものである。3次元k空間への拡張は簡単である。
本発明の第2の実施形態において、より進んだ場合を説明する。原子核が異なると、k空間の距離も異なる。このようなk空間の不連続性を格子化アプローチにより補正する。シーケンスプログラムは、デジタル化されたMRエコー信号の位置に関する情報を再構成プログラムに提供する。再構成プログラムは、その結果を直交格子に合わせる。図4には、第2の共鳴周波数を用いたデータ取得の結果得られたk空間データ点18と、第1の共鳴周波数を用いたデータ取得の結果得られたk空間データ点19が左側に示されている。距離が異なるk空間全体20と格子化されたk空間全体21が右側に示されている。
第3の実施形態においては、中央k空間に読み出しがなく、両方向で化学シフト画像化(CSI)のように位相エンコードされた正方形として取得される。この結果、等距離のk空間離散化を仮定すると、図5に示した状況となる。第2の共鳴周波数を用いたデータ取得の結果得られるk空間データ点22を左側に示した。第1の共鳴周波数を用いたデータ取得から得られるk空間データ点23を真ん中に示した。右側には、k空間全体24を示した。このk空間全体24は、第2のk空間データの一部を第1のk空間データで置き換えることにより再構成されたものである。言い換えると、第2の共鳴周波数のデータは完全なデータの組であるが、(k空間の中心を形成する)第1の共鳴周波数のデータを加算して、第2の共鳴周波数で取得したデータ点を置き換える。
本発明は上で説明した例示的実施形態の詳細に限定されず、本発明の精神や本質的属性から逸脱することなく他の形体で本発明を実施することもできることは、当業者には明らかである。それゆえ、ここに示した実施形態は、すべての点において、例示であって限定ではないと考えるべきである。本発明の範囲は、前述の説明ではなく添付した請求項により示される。それゆえ、請求項の均等の範囲内にある変化形はすべてその中に含まれるものである。さらにまた、「有する」という用語は他の構成要素やステップを排除するものではなく、「1つの」という用語は複数の場合を排除するものではないことは明らかである。請求項に記載された複数の手段の機能を1つのコンピュータシステム等が満たすことができることも明らかである。請求項中の参照符号は、その請求項を限定するものと解釈してはならない。
好ましい実施形態を実施することができるシステムの概要を示すブロック図である。 本発明による方法を実行するステップを示すフローチャートである。 本発明の第1の実施形態によるk空間データを示す概略図である。 本発明の第2の実施形態によるk空間データを示す概略図である。 本発明の第3の実施形態によるk空間データを示す概略図である。

Claims (12)

  1. 磁気共鳴画像化システムであって、
    第1の共鳴周波数を用いてk空間の中心部分の第1の磁気共鳴信号を取得し、第2の共鳴周波数を用いてk空間の周辺部分の第2の磁気共鳴信号を取得する取得モジュールと、
    前記第1の磁気共鳴信号に対応する第1のk空間データと前記第2の磁気共鳴信号に対応する第2のk空間データを結合して、k空間全体を形成するデータモジュールと、
    k空間を画像空間に変換して画像を生成する画像モジュールと、を有することを特徴とするシステム。
  2. 請求項1に記載のシステムであって、
    第1と第2のk空間データを結合する前記データモジュールは、前記第2のk空間データの一部を前記第1のk空間データで置き換えてk空間全体を形成するように構成されていることを特徴とするシステム。
  3. 請求項1に記載のシステムであって、
    第1と第2のk空間データを結合する前記データモジュールは、前記第1のk空間データを前記第2のk空間データに加算してk空間全体を形成するように構成されていることを特徴とするシステム。
  4. 請求項1に記載のシステムであって、
    第1の磁気共鳴信号を取得する前記取得モジュールは、陽子からの信号を取得するように構成されていることを特徴とするシステム。
  5. 請求項4に記載のシステムであって、
    第1の磁気共鳴信号を取得する前記取得モジュールは、HO以外の物質中の陽子からの信号を取得するように構成されていることを特徴とするシステム。
  6. 請求項1に記載のシステムであって、
    第1の磁気共鳴信号を取得する前記取得モジュールは、陽子以外の原子核からの信号を取得するように構成されていることを特徴とするシステム。
  7. 請求項6に記載のシステムであって、
    第1の磁気共鳴信号を取得する前記取得モジュールは、過分極された、陽子以外の原子核からの信号を取得するように構成されていることを特徴とするシステム。
  8. 請求項1に記載のシステムであって、
    第1の磁気共鳴信号を取得する前記取得モジュールは、電子スピンからの信号を取得するように構成されていることを特徴とするシステム。
  9. 請求項1に記載のシステムであって、
    第2の磁気共鳴信号を取得する前記取得モジュールは、陽子からの信号を取得するように構成されていることを特徴とするシステム。
  10. 請求項9に記載のシステムであって、
    第2の磁気共鳴信号を取得する前記取得モジュールは、HO中の陽子からの信号を取得するように構成されていることを特徴とするシステム。
  11. 磁気共鳴画像化方法であって、
    第1の共鳴周波数を用いてk空間の中心部分について第1の磁気共鳴信号を取得するステップと、
    第2の共鳴周波数を用いてk空間の周辺部分について第2の磁気共鳴信号を取得するステップと、
    前記第1の磁気共鳴信号に対応する第1のk空間データと前記第2の磁気共鳴信号に対応する第2のk空間データを結合して、k空間全体を形成するステップと、
    k空間を画像空間に変換することにより画像を生成するステップと、を有することを特徴とする方法。
  12. コンピュータプログラムであって、コンピュータに、
    第1の共鳴周波数を用いてk空間の中心部分について第1の磁気共鳴信号を取得するステップと、
    第2の共鳴周波数を用いてk空間の周辺部分について第2の磁気共鳴信号を取得するステップと、
    前記第1の磁気共鳴信号に対応する第1のk空間データと前記第2の磁気共鳴信号に対応する第2のk空間データを結合して、k空間全体を形成するステップと、
    k空間を画像空間に変換することにより画像を生成するステップと、を実行させることを特徴とするコンピュータプログラム。
JP2006534858A 2003-10-13 2004-10-01 磁気共鳴画像化システム及び方法 Pending JP2007508092A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03103770 2003-10-13
PCT/IB2004/051942 WO2005036197A1 (en) 2003-10-13 2004-10-01 System and method for magnetic resonance imaging

Publications (1)

Publication Number Publication Date
JP2007508092A true JP2007508092A (ja) 2007-04-05

Family

ID=34429475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006534858A Pending JP2007508092A (ja) 2003-10-13 2004-10-01 磁気共鳴画像化システム及び方法

Country Status (5)

Country Link
US (1) US7479782B2 (ja)
EP (1) EP1687650A1 (ja)
JP (1) JP2007508092A (ja)
CN (1) CN1867835B (ja)
WO (1) WO2005036197A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479782B2 (en) * 2003-10-13 2009-01-20 Koninklijke Philips Electronics N.V. System and method for MRI using MR signals from different resonant species in different regions of k-space
CN101268380A (zh) * 2005-09-20 2008-09-17 皇家飞利浦电子股份有限公司 在波谱成像中考虑移位的代谢体积的方法
JP4273138B2 (ja) * 2006-06-30 2009-06-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮像装置及び磁気共鳴受信装置
DE102006042998B4 (de) * 2006-09-13 2008-07-03 Siemens Ag Messsequenz für die dreidimensionale MR-Bildgebung sowie MR-Gerät
US8812076B2 (en) * 2006-11-21 2014-08-19 General Electric Company Proton decoupled hyperpolarized magnetic resonance imaging
US7956612B2 (en) * 2007-03-16 2011-06-07 The General Hospital Corporation System and method for displaying medical imaging spectral data as hypsometric maps
CN101711367B (zh) * 2007-05-03 2013-01-23 加拿大国家研究委员会 用于射频核磁共振成像的方法
DE102009016341B4 (de) * 2009-04-06 2011-02-10 Siemens Aktiengesellschaft Verfahren zur Bestimmung von k-Raumpositionen für eine Modellierung von HF-Pulsen für Magnetresonanzanregungen sowie Magnetresonanzgerät und Computerprogramm zur Durchführung des Verfahrens
US8653816B2 (en) * 2009-11-04 2014-02-18 International Business Machines Corporation Physical motion information capturing of a subject during magnetic resonce imaging automatically motion corrected by the magnetic resonance system
US8970217B1 (en) 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
CN103282790B (zh) * 2010-12-21 2016-01-27 皇家飞利浦电子股份有限公司 快速双对比度mr成像
US9336612B2 (en) * 2011-03-28 2016-05-10 Koninklijke Philips N.V. Contrast-dependent resolution image
CN104583796B (zh) 2012-07-16 2017-10-10 皇家飞利浦有限公司 使用对比信号评分方程对磁共振对比的预测、评分和归类
JP6317756B2 (ja) * 2012-12-06 2018-04-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 副作用の少ない局所アーチファクトの低減
CN103809140B (zh) * 2014-02-20 2016-04-20 厦门大学 基于单扫描超快速正交时空编码的小视野磁共振成像方法
CN103901375B (zh) * 2014-03-06 2016-06-08 北京大学 一种基于高速互连串行总线的磁共振成像谱仪
US10901060B2 (en) 2016-03-01 2021-01-26 Canon Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
KR101775028B1 (ko) 2016-09-26 2017-09-05 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 획득 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767991A (en) * 1986-12-03 1988-08-30 Advanced Nmr Systems, Inc. Method of high speed imaging with improved spatial resolution using partial k-space acquisitions
US5485086A (en) * 1994-07-26 1996-01-16 The Board Of Trustees Of The Leland Stanford Junior University Continuous fluoroscopic MRI using spiral k-space scanning
JP3566787B2 (ja) * 1994-08-03 2004-09-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mr法
US5539313A (en) * 1995-08-04 1996-07-23 Board Of Trustees Of The Leland Stanford Junior University Full echo spiral-in/spiral-out magnetic resonance imaging
JP2796530B2 (ja) 1996-11-15 1998-09-10 技術研究組合医療福祉機器研究所 磁気共鳴装置
JP2001513661A (ja) 1997-01-08 2001-09-04 ナイコムド イメージング エーエス 磁気共鳴画像法
WO1999014616A1 (en) * 1997-09-15 1999-03-25 Ge Medical Systems Israel, Ltd. Keyhole mri
DE19901171C2 (de) 1999-01-14 2001-12-13 Axel Haase Verfahren und Vorrichtung zum Gewinnen von Daten für Magnetresonanz-Bildgebung
EP1101127A1 (en) * 1999-05-20 2001-05-23 Koninklijke Philips Electronics N.V. Magnetic resonance imaging method with sub-sampling
US6373249B1 (en) 1999-05-21 2002-04-16 University Of Rochester System and method for three-dimensional interleaved water and fat image acquisition with chemical-shift correction
US6225804B1 (en) * 1999-10-25 2001-05-01 Analogic Corporation Correction of DC offset in magnetic resonance imaging signals
US6583623B1 (en) * 2000-03-31 2003-06-24 University Of Rochester Interleaved water and fat dual-echo spin echo magnetic resonance imaging with intrinsic chemical shift elimination
US6411089B1 (en) 2000-11-22 2002-06-25 Philips Medical Systems (Cleveland), Inc. Two-dimensional phase-conjugate symmetry reconstruction for 3d spin-warp, echo-planar and echo-volume magnetic resonance imaging
WO2002084305A2 (en) * 2001-04-13 2002-10-24 University Of Virginia Patent Foundation Optimized high-speed magnetic resonance imaging method and system using hyperpolarized noble gases
JP3866537B2 (ja) * 2001-06-28 2007-01-10 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴撮影装置
WO2003098390A2 (en) * 2002-05-15 2003-11-27 University Of Virginia Patent Foundation Method and system for rapid magnetic resonance imaging of gases with reduced diffusion-induced signal loss
WO2004086060A2 (en) * 2003-03-20 2004-10-07 Case Western Reserve University Chemical species suppression for mri imaging using spiral trajectories with off-resonance correction
US7042215B2 (en) * 2003-04-25 2006-05-09 Case Western Reserve University Three point dixon techniques in MRI spiral trajectories with off-resonance correction where each TE is a multiple of 2.2 milliseconds
WO2004104610A2 (en) * 2003-05-15 2004-12-02 Case Western Reserve University Optimized magnetic resonance data acquisition
US7479782B2 (en) * 2003-10-13 2009-01-20 Koninklijke Philips Electronics N.V. System and method for MRI using MR signals from different resonant species in different regions of k-space

Also Published As

Publication number Publication date
WO2005036197A1 (en) 2005-04-21
US7479782B2 (en) 2009-01-20
CN1867835B (zh) 2010-06-16
US20060279282A1 (en) 2006-12-14
CN1867835A (zh) 2006-11-22
EP1687650A1 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
US9766313B2 (en) MR imaging using apt contrast enhancement and sampling at multiple echo times
US10107882B2 (en) Parallel MRi with B0 distortion correction and multi-echo dixon water-fat separation using regularised sense reconstruction
US20140009156A1 (en) Compressed sensing mr image reconstruction using constraint from prior acquisition
US10203394B2 (en) Metal resistant MR imaging
RU2702859C2 (ru) Параллельная мультисрезовая мр-визуализация с подавлением артефактов боковой полосы частот
US10234523B2 (en) MRI with dixon-type water/fat separation with estimation of the main magnetic field variations
US7479782B2 (en) System and method for MRI using MR signals from different resonant species in different regions of k-space
JP5196408B2 (ja) 多重ピークを備えた種の磁気共鳴スペクトロスコピー
US20140350386A1 (en) Mri with dixon-type water/fact separation and prior knowledge about inhomogeneity of the main magnetic field
EP3044604B1 (en) Metal resistant mr imaging
JP2003500134A (ja) サブサンプリングを伴なう磁気共鳴映像法
RU2683605C1 (ru) Параллельная мр-томография с картированием чувствительности с помощью рч-катушки
US20170307716A1 (en) Propeller mr imaging with artefact suppression
US20170261577A1 (en) Zero echo time mr imaging
US9316711B2 (en) System and method for accelerated magnetic resonance imaging using spectral sensitivity
US11815582B2 (en) Dual echo steady state MR imaging using bipolar diffusion gradients
US10151814B2 (en) Apparatus and method for improving balanced steady-state free precision in magnetic resonance imaging
US20230400545A1 (en) Spin echo mr imaging with spiral acquisition