JP2007334140A - Optical retardation film - Google Patents

Optical retardation film Download PDF

Info

Publication number
JP2007334140A
JP2007334140A JP2006167687A JP2006167687A JP2007334140A JP 2007334140 A JP2007334140 A JP 2007334140A JP 2006167687 A JP2006167687 A JP 2006167687A JP 2006167687 A JP2006167687 A JP 2006167687A JP 2007334140 A JP2007334140 A JP 2007334140A
Authority
JP
Japan
Prior art keywords
film
retardation film
retardation
stretching
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167687A
Other languages
Japanese (ja)
Inventor
Isao Higuchi
勲夫 樋口
Seiji Nozato
省二 野里
Yoshihiro Takagi
義宏 高榎
Kazunari Yagi
一成 八木
Takahiko Sawada
貴彦 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006167687A priority Critical patent/JP2007334140A/en
Publication of JP2007334140A publication Critical patent/JP2007334140A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical retardation film which can be easily and inexpensively produced, is excellent in low photoelastic coefficient and low wavelength dispersibility, and can maintain high optical retardation even if it is heated. <P>SOLUTION: The optical retardation film is obtained by drawing a raw roll film composed of a cyclic olefin resin and characterized in that the difference between the glass transition temperature measured by thermomechanical analysis, of the raw roll film and the heat shrinkage temperature measured by thermomechanical analysis, of the optical retardation film is not higher than 20°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、簡易かつ安価に製造することができ、低光弾性係数、及び、低波長分散性に優れるとともに、加熱を行った場合でも高い位相差を保持できる位相差フィルムに関する。 The present invention relates to a retardation film that can be produced easily and inexpensively, has a low photoelastic coefficient and low wavelength dispersibility, and can retain a high retardation even when heated.

近年、コンピューター等の表示装置において、ブラウン管式のCRT(Cathode Ray Tube)とともに、液晶表示装置(Liquid Crystal Display:LCD)が多用されている。このような液晶表示装置は、通常、液晶分子を封入した電極が組み込まれたガラスセルに透明な粘着剤を介して位相差フィルムが貼り合わされ、更にその上に粘着剤を介して偏光板が貼り合わされた構成となっている。 2. Description of the Related Art In recent years, liquid crystal display devices (Liquid Crystal Display: LCD) have been widely used in display devices such as computers as well as cathode ray tube CRT (Cathode Ray Tube). In such a liquid crystal display device, a retardation film is usually bonded to a glass cell in which an electrode encapsulating liquid crystal molecules is incorporated via a transparent adhesive, and a polarizing plate is further bonded thereon via an adhesive. It has a combined structure.

このような液晶表示装置に用いられる位相差フィルムは、一般的にポリカーボネート系樹脂、セルロース系樹脂、塩化ビニル系樹脂、アクリロニトリル系樹脂、スチレン系樹脂、ポリオレフィン系樹脂、ポリサルホン系樹脂、熱可塑性飽和ノルボルネン系樹脂等の熱可塑性樹脂を、流延(溶液キャスト)製膜法、カレンダー製膜法、溶融押出製膜法等により製膜し、これを縦方向又は横方向若しくは双方に延伸することで作製されている。なかでも、熱可塑性飽和ノルボルネン系樹脂は、耐熱性、低比重性、低複屈折性、低光弾性係数、及び、低波長分散性等の優れた特徴を有するため、位相差フィルムとして検討されている。
しかし、熱可塑性飽和ノルボルネン系樹脂は、位相差フィルムとして機能付与するための延伸処理を施した後の位相差の発現性が低く、得られる位相差フィルムの位相差補償範囲が制約されるという問題があった。このような樹脂を用いて要求される位相差値を得る方法としては、例えば、位相差フィルムを厚くする方法や、延伸工程において、延伸倍率を上げたり、延伸温度を下げたりする等の方法が考えられる。
しかしながら、位相差フィルムを厚くする方法では、位相差フィルムを実装する際に制約を受け、用途が限定されてしまうという問題があった。また、延伸倍率を上げる方法では、位相差発現性が低い場合に、フィルム厚が薄くなって効果が相殺されてしまうという問題があり、延伸温度を下げる方法では、要求される位相差値を得ることができても、耐熱性試験を行った際に、位相差値が低下するという問題があった。
Retardation films used in such liquid crystal display devices are generally polycarbonate resins, cellulose resins, vinyl chloride resins, acrylonitrile resins, styrene resins, polyolefin resins, polysulfone resins, thermoplastic saturated norbornene. It is produced by forming a thermoplastic resin such as a resin based on a casting (solution cast) film forming method, a calender film forming method, a melt extrusion film forming method, etc., and stretching it in the vertical direction, the horizontal direction, or both. Has been. Among these, thermoplastic saturated norbornene resins are considered as retardation films because they have excellent characteristics such as heat resistance, low specific gravity, low birefringence, low photoelastic coefficient, and low wavelength dispersion. Yes.
However, the thermoplastic saturated norbornene-based resin has a low expression of retardation after being subjected to a stretching treatment for imparting a function as a retardation film, and the retardation compensation range of the obtained retardation film is limited. was there. Examples of a method for obtaining a required retardation value using such a resin include a method of increasing a retardation film and a method of increasing a stretching ratio and a stretching temperature in a stretching step. Conceivable.
However, the method of increasing the thickness of the retardation film has a problem in that the application is limited due to restrictions when the retardation film is mounted. In addition, the method of increasing the draw ratio has a problem that the effect of the reduction of the film thickness is reduced when the retardation development property is low, and the method of decreasing the stretching temperature obtains the required retardation value. Even if it was possible, there was a problem that the phase difference value decreased when the heat resistance test was performed.

これに対して、位相差フィルムの位相差の発現性を高める方法としては、例えば、特許文献1に、フィルムの添加剤として特定構造のレタデーション調整剤を配合する方法が開示されている。
しかし、この方法では、レタデーション調整剤を配合する工程を別途必要とすることから工程の煩雑化、コスト上昇等の問題があり、樹脂組成物をフィルム状に製膜した後延伸処理を施すのみの簡易な方法で充分に高い位相差を示す位相差フィルムが望まれていた。
また、このような位相差の発現性の高い位相差フィルムを簡易な方法で得ることができることは、今後ますます需要が伸びることが見込まれる大型液晶テレビ分野において、幅広の位相差フィルムを提供する必要があることから特に望まれている。
特開2004−051562号公報
On the other hand, as a method for increasing the retardation of the retardation film, for example, Patent Document 1 discloses a method of blending a retardation adjusting agent having a specific structure as an additive of the film.
However, in this method, there is a problem of complication of the process and an increase in cost because it requires a separate step of blending the retardation adjusting agent, and only a stretching process is performed after the resin composition is formed into a film. A retardation film showing a sufficiently high retardation by a simple method has been desired.
In addition, the fact that such a retardation film having high retardation can be obtained by a simple method provides a wide retardation film in the field of large-sized liquid crystal televisions, for which demand is expected to increase further. It is especially desirable because it is necessary.
Japanese Patent Application Laid-Open No. 2004-051562

本発明は、上記現状に鑑み、簡易かつ安価に製造することができ、低光弾性係数、及び、低波長分散性に優れるとともに、加熱を行った場合でも高い位相差を保持できる位相差フィルムを提供することを目的とする。 In view of the above situation, the present invention provides a retardation film that can be easily and inexpensively manufactured, has a low photoelastic coefficient and low wavelength dispersibility, and can retain a high retardation even when heated. The purpose is to provide.

本発明は、環状オレフィン系樹脂からなる原反フィルムを延伸してなる位相差フィルムであって、前記原反フィルムの熱機械分析により測定されるガラス転移温度と、位相差フィルムの熱機械分析により測定される加熱収縮温度との差が20℃以内であることを特徴とする位相差フィルムである。以下に本発明を詳述する。 The present invention is a retardation film obtained by stretching a raw film made of a cyclic olefin-based resin, the glass transition temperature measured by thermomechanical analysis of the raw film, and the thermomechanical analysis of the retardation film The retardation film is characterized in that the difference from the measured heat shrinkage temperature is within 20 ° C. The present invention is described in detail below.

本発明では、原反フィルムの熱機械分析(以下、TMAという)により測定されるガラス転移温度(以下、Tgという)と、位相差フィルムの熱機械分析により測定される加熱収縮温度との差を20℃以下とする。
従来より問題となっていた、加熱による位相差値の低下を防止する方法としては、原反フィルムの材料としてTgの高い樹脂を用いる方法が挙げられる。しかしながら、Tgの高い樹脂を用いただけでは、加熱時における位相差値の低下を確実に防止することができなかった。そこで、本発明者らは鋭意検討した結果、原反フィルムのTMAにより測定されるTgと、得られる位相差フィルムのTMAで測定される加熱収縮温度との差を小さくし、更にその差の上限を20℃とした場合に、加熱による位相差値の変化を大幅に小さくできることを見出し、本発明を完成させるに至った。
原反フィルムのTMAにより測定されるTgと、位相差フィルムのTMAで測定される加熱収縮温度との差が20℃を超えると、耐熱性が低下したり、加熱によって位相差値が大幅に低下したりする。好ましい上限は18℃である。
In the present invention, the difference between the glass transition temperature (hereinafter referred to as Tg) measured by thermomechanical analysis of the raw film (hereinafter referred to as TMA) and the heat shrinkage temperature measured by thermomechanical analysis of the retardation film is determined. 20 ° C. or less.
As a method for preventing a decrease in retardation value due to heating, which has been a problem in the past, there is a method using a resin having a high Tg as a material for a raw film. However, if only a resin having a high Tg is used, a decrease in retardation value during heating could not be reliably prevented. Therefore, as a result of intensive studies, the present inventors reduced the difference between the Tg measured by TMA of the raw film and the heat shrinkage temperature measured by TMA of the obtained retardation film, and further increased the upper limit of the difference. When the temperature is set to 20 ° C., it has been found that the change in retardation value due to heating can be greatly reduced, and the present invention has been completed.
When the difference between the Tg measured by TMA of the raw film and the heat shrinkage temperature measured by TMA of the retardation film exceeds 20 ° C., the heat resistance is lowered, or the retardation value is greatly lowered by heating. To do. A preferred upper limit is 18 ° C.

本発明において、加熱による位相差の低下を防止することが可能となる理由としては、以下のように考えられる。即ち、位相差フィルムにおいては、分子鎖の配向によって位相差を生じさせているが、このような分子鎖の配向は、分子そのものの配向に由来する主鎖の配向と、分子の末端部の配向とに大きく分けられる。ここで、分子の末端部の配向は、運動の自由度が高いため、加熱によって配向が緩和しやすいと考えられる。
従って、同じ位相差値を有する位相差フィルムであっても、分子の末端部の配向が大きい場合には、局所的に見かけのTgが下がり、TMAを測定した際に加熱収縮温度が低温側にシフトすると考えられる。本発明では、得られる位相差フィルムの加熱収縮温度を高くして、原反フィルムのTgとの差を小さくすることで、局所的に配向が緩和しやすい部分を少なくすることが可能となり、加熱による位相差の低下を防止することが可能となる。
In the present invention, the reason why it is possible to prevent a decrease in phase difference due to heating is considered as follows. That is, in the retardation film, the phase difference is caused by the orientation of the molecular chain. Such molecular chain orientation is the orientation of the main chain derived from the orientation of the molecule itself and the orientation of the end of the molecule. And can be broadly divided. Here, since the orientation of the molecular end portion has a high degree of freedom of movement, it is considered that the orientation is easily relaxed by heating.
Therefore, even in the case of retardation films having the same retardation value, when the orientation of the end of the molecule is large, the apparent Tg is locally lowered, and when the TMA is measured, the heat shrinkage temperature is lowered to the low temperature side. It is thought to shift. In the present invention, by increasing the heat shrinkage temperature of the obtained retardation film and reducing the difference from the Tg of the original film, it becomes possible to reduce the portion where the orientation is easily relaxed, It is possible to prevent a decrease in phase difference due to.

本発明の位相差フィルムは、上述した特徴を有することから、実際の製品において一般的に実施されている加熱耐久試験を行った場合であっても、位相差値が低下しないという利点を有する。例えば、液晶テレビ等の一般的な液晶ディスプレイに要求される温度である80℃で耐久性試験を行った場合でも、位相差値が低下せず、優れた加熱耐久性を有する。 Since the retardation film of the present invention has the above-described characteristics, it has an advantage that the retardation value does not decrease even when a heat durability test generally performed in actual products is performed. For example, even when a durability test is performed at 80 ° C., which is a temperature required for a general liquid crystal display such as a liquid crystal television, the retardation value does not decrease, and the heat durability is excellent.

本発明において、上記原反フィルムのTMAにより測定されるTgの好ましい下限は、120℃である。120℃未満であると、苛酷な使用環境を想定した耐熱試験における加熱による位相差の低下を充分に防止することができないことがある。
また、本発明の位相差フィルムのTMAにより測定される加熱収縮温度の好ましい下限は、115℃である。115℃未満であると、加熱による位相差の低下を充分に防止することができないことがある。
In this invention, the preferable minimum of Tg measured by TMA of the said raw film is 120 degreeC. When the temperature is lower than 120 ° C., a decrease in phase difference due to heating in a heat resistance test assuming a severe use environment may not be sufficiently prevented.
Moreover, the preferable minimum of the heat shrinkage temperature measured by TMA of the retardation film of this invention is 115 degreeC. When the temperature is lower than 115 ° C., a decrease in retardation due to heating may not be sufficiently prevented.

本発明において、上記Tg及び加熱収縮温度は、TMAにより測定される。TMAによりTgを測定する方法としては、具体的には例えば、原反フィルムを所定の幅で切り出し、熱機械分析装置にセットした後、所定の昇温速度で昇温することにより、フィルムの変形を測定する方法が挙げられる。図1は、上述した方法で原反フィルムのTgを測定した場合における温度と加熱膨張率との関係を示すグラフである。図1に示すように、延伸前の原反フィルムを測定した場合、線膨張によって直線的に膨張した後、加熱膨張率が急激に上昇する。本明細書では、上昇前後の曲線に接線を引き、この接線の交点をTgとする。 In the present invention, the Tg and the heat shrinkage temperature are measured by TMA. As a method for measuring Tg by TMA, specifically, for example, a raw film is cut out with a predetermined width, set in a thermomechanical analyzer, and then heated at a predetermined heating rate to deform the film. The method of measuring is mentioned. FIG. 1 is a graph showing the relationship between the temperature and the thermal expansion coefficient when the Tg of the raw film is measured by the method described above. As shown in FIG. 1, when the raw film before stretching is measured, the coefficient of thermal expansion rapidly increases after linear expansion by linear expansion. In this specification, a tangent line is drawn on the curve before and after the ascent, and the intersection of the tangent lines is defined as Tg.

TMAにより加熱収縮温度を測定する場合も上述した方法と同様の操作を行うことで測定することができる。図2は、位相差フィルムの加熱収縮温度を測定した場合における温度と加熱膨張率との関係を示すグラフである。図2に示すように、延伸後の位相差フィルムを測定した場合、低温域では線膨張によって直線的に膨張するが、延伸の緩和により、膨張が収縮に転じる温度がある。本明細書では、この極大値を加熱収縮温度とする。
なお、上記加熱収縮温度を測定する場合、加熱膨張率は延伸方向、即ち、正の複屈折を持つ材料であれば、位相差を測定したときに遅相軸方向となる方向の加熱膨張率を測定する。
Even when the heat shrinkage temperature is measured by TMA, it can be measured by performing the same operation as described above. FIG. 2 is a graph showing the relationship between the temperature and the thermal expansion coefficient when the heating shrinkage temperature of the retardation film is measured. As shown in FIG. 2, when the retardation film after stretching is measured, it expands linearly by linear expansion in the low temperature range, but there is a temperature at which expansion turns into contraction due to relaxation of stretching. In this specification, this maximum value is defined as the heat shrinkage temperature.
When measuring the above heat shrinkage temperature, the thermal expansion coefficient is the stretching direction, that is, if the material has positive birefringence, the thermal expansion coefficient in the direction that becomes the slow axis direction when the phase difference is measured. taking measurement.

上記環状オレフィン系樹脂としては特に限定されず、例えば、環状オレフィン系モノマーの開環(共)重合体(以下、単に開環(共)重合体ともいう)、環状オレフィン系モノマーとオレフィン系モノマーとからなる付加(共)重合体(以下、単に付加(共)重合体ともいう)、環状オレフィン系モノマー同士の付加(共)重合体及びこれらの誘導体等が挙げられ、単独で用いてもよく、2種以上を併用してもよい。
上記付加(共)重合体は、開環(共)重合体と比較して、位相差発現性が低くなる傾向がある。即ち、同形状の付加(共)重合体からなるフィルムと、開環(共)重合体からなるフィルムとを、同様の延伸条件(延伸温度;Tg)で延伸した場合、付加(共)重合体からなるフィルムを延伸した場合の方が、位相差値が低くなる。
従って、本発明は、特に位相差発現性が低い樹脂からなるフィルムを延伸する場合に有効な手段であることから、上記環状オレフィン系モノマーとオレフィン系モノマーとからなる付加(共)重合体を用いた場合、更に本発明の効果を発揮することができ、上記環状オレフィン系モノマーと非環状オレフィン系モノマーとからなる付加(共)重合体を用いることがより好ましい。以下、環状オレフィン系モノマーとして、ノルボルネン系モノマーを用いる場合について説明する。
The cyclic olefin resin is not particularly limited. For example, a ring-opening (co) polymer of a cyclic olefin monomer (hereinafter, also simply referred to as a ring-opening (co) polymer), a cyclic olefin monomer, and an olefin monomer. Addition (co) polymers (hereinafter also simply referred to as addition (co) polymers), addition (co) polymers of cyclic olefin monomers and their derivatives, etc., may be used alone, Two or more kinds may be used in combination.
The addition (co) polymer tends to have lower retardation as compared with a ring-opening (co) polymer. That is, when a film made of an addition (co) polymer of the same shape and a film made of a ring-opening (co) polymer are stretched under the same stretching conditions (stretching temperature; Tg), the addition (co) polymer When the film made of is stretched, the retardation value is lowered.
Therefore, since the present invention is an effective means for stretching a film made of a resin having a low retardation, the addition (co) polymer comprising the cyclic olefin monomer and the olefin monomer is used. In this case, the effects of the present invention can be further exerted, and it is more preferable to use an addition (co) polymer composed of the cyclic olefin monomer and the acyclic olefin monomer. Hereinafter, a case where a norbornene monomer is used as the cyclic olefin monomer will be described.

上記ノルボルネン系モノマーとしては、ノルボルネン環を有するものであれば特に限定されず、例えば、ノルボルネン、ノルボルナジエン等の二環体;ジシクロペンタジエン、ジヒドロキシジシクロペンタジエン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジエン三量体等の五環体;テトラシクロペンタジエン等の七環体;これらのメチル、エチル、プロピル、ブチル等のアルキル、ビニル等のアルケニル、エチリデン等のアルキリデン、フェニル、トリル、ナフチル等のアリール等の置換体;更にこれらのエステル基、エーテル基、シアノ基、ハロゲン原子、アルコキシカルボニル基、ピリジル基、水酸基、カルボン酸基、アミノ基、無水酸基、シリル基、エポキシ基、アクリル基、メタクリル基等の炭素、水素以外の元素を含有する基、いわゆる極性基を有する置換体等が挙げられる。なお、上記ノルボルネン系モノマーは、単独で用いてもよく、2種以上を併用してもよい。 The norbornene-based monomer is not particularly limited as long as it has a norbornene ring. For example, bicyclic compounds such as norbornene and norbornadiene; tricyclic compounds such as dicyclopentadiene and dihydroxydicyclopentadiene; tetracyclododecene and the like A pentacycle such as cyclopentadiene trimer; a heptacycle such as tetracyclopentadiene; an alkyl such as methyl, ethyl, propyl and butyl; an alkenyl such as vinyl; an alkylidene such as ethylidene; a phenyl; Substituents such as aryl such as tolyl and naphthyl; furthermore, these ester groups, ether groups, cyano groups, halogen atoms, alkoxycarbonyl groups, pyridyl groups, hydroxyl groups, carboxylic acid groups, amino groups, no hydroxyl groups, silyl groups, epoxy groups Other than carbon, hydrogen such as acrylic group, methacrylic group, etc. Containing group, substitution products having a so-called polar group. In addition, the said norbornene-type monomer may be used independently and may use 2 or more types together.

上記ノルボルネン系モノマーの開環(共)重合体は、例えば、ノルボルネン系モノマーを、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金等の金属のハロゲン化物、硝酸塩もしくはアセチルアセトン化合物と、還元剤とからなる触媒系、又は、チタン、タングステン、モリブデン等の金属のハロゲン化物もしくはアセチルアセトン化合物と、有機アルミニウム化合物とからなる触媒系等を用いて、溶媒中又は無溶媒で、通常、−50℃〜100℃の重合温度、0〜5MPaの重合圧力で開環(共)重合させることにより得ることができる。 The ring-opening (co) polymer of the norbornene monomer includes, for example, a norbornene monomer comprising a metal halide such as ruthenium, rhodium, palladium, osmium, iridium, platinum, a nitrate or an acetylacetone compound, and a reducing agent. Using a catalyst system or a catalyst system composed of a metal halide such as titanium, tungsten, molybdenum, or an acetylacetone compound and an organoaluminum compound, in a solvent or without a solvent, usually at -50 ° C to 100 ° C. It can be obtained by ring-opening (co) polymerization at a polymerization temperature and a polymerization pressure of 0 to 5 MPa.

また、上記ノルボルネン系モノマーとオレフィン系モノマーとからなる付加(共)重合体としては、例えば、ノルボルネン系モノマーとα−オレフィンとからなる付加(共)重合体、ノルボルネン系モノマーと環状オレフィン系モノマーとからなる付加(共)重合体が挙げられる。
上記ノルボルネン系モノマーとしては、力学物性とTgに代表される熱物性とのバランスや、共重合性の観点から、ノルボルネンが特に好ましい。
Examples of the addition (co) polymer comprising a norbornene monomer and an olefin monomer include, for example, an addition (co) polymer comprising a norbornene monomer and an α-olefin, a norbornene monomer and a cyclic olefin monomer. Addition (co) polymers consisting of:
As the norbornene-based monomer, norbornene is particularly preferable from the viewpoint of the balance between mechanical properties and thermophysical properties represented by Tg and copolymerization.

上記α−オレフィンとしては、炭素数が2〜20のα−オレフィンが好ましく、炭素数が2〜10のα−オレフィンがより好ましい。具体的には例えば、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン等が挙げられ、共重合性が高いことから、エチレンが好ましい。
また、上記環状オレフィン系モノマーとしては、例えば、シクロオクタジエン、シクロオクテン、シクロヘキセン、シクロドデセン、シクロドデカトリエン等が挙げられる。
As the α-olefin, an α-olefin having 2 to 20 carbon atoms is preferable, and an α-olefin having 2 to 10 carbon atoms is more preferable. Specifically, for example, ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, Examples include 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and the like, and ethylene is preferable because of high copolymerizability.
Examples of the cyclic olefin monomer include cyclooctadiene, cyclooctene, cyclohexene, cyclododecene, cyclododecatriene and the like.

上記ノルボルネン系モノマーとオレフィン系モノマーとの付加(共)重合体を合成する際に用いる重合触媒としては、例えば、Ziegler−Natta型触媒やメタロセン触媒が挙げられ、具体的には、バナジウム化合物やチタン、ジルコニウム等からなる化合物と有機アルミニウム化合物(好ましくはハロゲン含有有機アルミニウム化合物)とからなる触媒系が挙げられる。 Examples of the polymerization catalyst used when synthesizing the addition (co) polymer of the norbornene monomer and the olefin monomer include a Ziegler-Natta type catalyst and a metallocene catalyst, and specifically include a vanadium compound and titanium. And a catalyst system comprising a compound comprising zirconium and an organoaluminum compound (preferably a halogen-containing organoaluminum compound).

上述した環状オレフィン系樹脂のうち、開環を伴う(共)重合体には必然的に不飽和結合が残留し、また付加(共)重合体であってもモノマーの種類によっては不飽和結合が残留することがある。このような場合、熱履歴による酸化劣化や紫外線等による着変色といった耐久性を重視する観点から、これらの不飽和結合を水素添加しておくことが好ましい。上記ノルボルネン系モノマーの開環(共)重合体を水素添加する方法としては、上記ノルボルネン系モノマーを公知の方法で開環(共)重合させた後、残留している二重結合を公知の方法で水素添加すればよい。 Of the cyclic olefin-based resins described above, an unsaturated bond inevitably remains in a (co) polymer with ring opening, and even an addition (co) polymer has an unsaturated bond depending on the type of monomer. May remain. In such a case, it is preferable to hydrogenate these unsaturated bonds from the viewpoint of emphasizing durability such as oxidative degradation due to thermal history and discoloration due to ultraviolet rays. As a method of hydrogenating the ring-opening (co) polymer of the norbornene-based monomer, after the ring-opening (co) polymerization of the norbornene-based monomer by a known method, the remaining double bond is a known method. Hydrogenation may be performed at

上記環状オレフィン系樹脂の具体例としては、例えば、特開平1−240517号公報等に記載されているものが挙げられ、開環(共)重合体の市販品としては、例えば、JSR社製の商品名「アートン」シリーズ、日本ゼオン社製の商品名「ゼオノア」シリーズが挙げられる。また、付加(共)重合体の市販品としては、チコナ社製の商品名「トパス」シリーズ、三井化学社製の商品名「アペル」シリーズ等が挙げられる。 Specific examples of the cyclic olefin-based resin include those described in JP-A-1-240517, for example, and examples of commercially available ring-opening (co) polymers include those manufactured by JSR Corporation. Product name "Arton" series, product name "Zeonor" series made by Nippon Zeon Co., Ltd. can be mentioned. Moreover, as a commercial item of an addition (co) polymer, the brand name "Topas" series made from Ticona, the brand name "Apel" series made from Mitsui Chemicals, etc. are mentioned.

上記環状オレフィン系樹脂の数平均分子量の好ましい下限は5000、好ましい上限は8万である。5000未満であると、位相差フィルムの機械的強度が低下することがあり、15万を超えると、溶融粘度が上昇することに伴い、原反フィルムの成形性が低下することがある。より好ましい下限は1万、より好ましい上限は5万である。なお、上記数平均分子量は、ゲルパーミエーションクロマトグラフィ法によって測定された標準ポリスチレン換算値のことをいう。 The preferable lower limit of the number average molecular weight of the cyclic olefin-based resin is 5000, and the preferable upper limit is 80,000. When it is less than 5,000, the mechanical strength of the retardation film may be lowered, and when it exceeds 150,000, the melt viscosity is increased and the moldability of the original film may be lowered. A more preferable lower limit is 10,000, and a more preferable upper limit is 50,000. In addition, the said number average molecular weight means the standard polystyrene conversion value measured by the gel permeation chromatography method.

本発明の位相差フィルムは、位相差フィルムの機能を阻害しない範囲内において、成形中の環状オレフィン系樹脂の劣化防止や位相差フィルムの耐熱性、耐紫外線性、平滑性等を向上させるために、フェノール系、リン系等の酸化防止剤;ラクトン系等の熱劣化防止剤;ベンゾフェノン系、ベンゾトリアゾール系、アクリロニトリル系等の紫外線吸収剤;脂肪族アルコールのエステル系、多価アルコールの部分エステル系、部分エーテル系等の滑剤;アミン系等の帯電防止剤等の各種添加剤が添加されていてもよい。なお、上記添加剤は単独で用いてもよく、2種以上を併用してもよい。 The retardation film of the present invention is for preventing deterioration of the cyclic olefin-based resin during molding and improving the heat resistance, ultraviolet resistance, smoothness, etc. of the retardation film within a range that does not hinder the function of the retardation film. Antioxidants such as phenols and phosphoruss; Thermal degradation inhibitors such as lactones; UV absorbers such as benzophenones, benzotriazoles, and acrylonitriles; Aliphatic alcohol esters and polyhydric alcohol partial esters Various additives such as a partial ether type lubricant, an amine type antistatic agent and the like may be added. In addition, the said additive may be used independently and may use 2 or more types together.

本発明の位相差フィルムは、上述したような、環状オレフィン系樹脂を製膜して原反フィルムを作製した後、延伸処理を施すことにより製造することができる。 The retardation film of the present invention can be produced by producing a raw film by forming a cyclic olefin-based resin as described above, and then performing a stretching treatment.

上記環状オレフィン系樹脂を製膜して原反フィルムを作製する方法としては特に限定されず、従来公知の製膜法を用いることができ、例えば、溶融押出製膜法、カレンダー製膜法、溶液キャスト(流延)製膜法等が挙げられ、なかでも、生産性に優れ、環境共生的でもあることから、溶融押出製膜法が好ましい。 The method for producing the raw film by forming the cyclic olefin resin into a film is not particularly limited, and a conventionally known film forming method can be used. For example, a melt extrusion film forming method, a calender film forming method, a solution Cast (casting) film forming methods and the like are mentioned, and among them, the melt extrusion film forming method is preferable because of excellent productivity and environmental symbiosis.

上記延伸処理の方法としては特に限定されず、例えば、縦一軸延伸、横一軸延伸、同時二軸延伸、逐次二軸延伸等の延伸方法が挙げられる。また、連続方式であってもバッチ方式であってもよい。 The stretching method is not particularly limited, and examples thereof include stretching methods such as longitudinal uniaxial stretching, lateral uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching. Moreover, a continuous system or a batch system may be used.

一般的に、上記延伸処理における温度は、低温であるほど得られる位相差フィルムの位相差補償性能が高くなるが、条件によっては、クレーズ等の発生による光学フィルムとしては致命的なフィルムの白化や破断が起こったり、加熱耐久試験をしたときに大きく位相差が落ちたりするといった問題がおこる可能性がある。
このような現象を回避するためには、延伸条件を適宜調整する必要があるが、その手段としては、延伸温度・延伸倍率・延伸速度を連続的に変化させることが挙げられるが、これらの条件は非常に複雑に絡み合い、一元的に比較することは困難であった。
しかしながら、本発明では、原反フィルムのTgと、位相差フィルムの加熱収縮温度との差を調整することで、これらの不具合を回避することが可能となる。
In general, the temperature in the stretching treatment is such that the lower the temperature, the higher the retardation compensation performance of the retardation film obtained.However, depending on the conditions, whitening of the film, which is fatal as an optical film due to the occurrence of craze, etc. There is a possibility that breakage may occur or a phase difference may greatly decrease when a heat durability test is performed.
In order to avoid such a phenomenon, it is necessary to appropriately adjust the stretching conditions. As a means for that, it is possible to continuously change the stretching temperature, the stretching ratio, and the stretching speed. Were intricately intertwined and difficult to compare centrally.
However, in the present invention, it is possible to avoid these problems by adjusting the difference between the Tg of the raw film and the heat shrinkage temperature of the retardation film.

本発明によれば、原反フィルムのTMAにより測定されるTgと、得られる位相差フィルムのTMAで測定される加熱収縮温度との差を20℃以下とすることで、分子鎖の末端部において、局所的に配向が緩和しやすい部分を少なくすることが可能となり、加熱時においても高い位相差値を示す位相差フィルムを提供することができる。これにより、本発明の位相差フィルムを用いた製品は、加熱耐久試験を行った場合であっても、位相差値の低下が起きず、高い信頼性を有する。また、本発明の位相差フィルムは、簡易かつ安価に製造することができ、低光弾性係数、及び、低波長分散性に優れるものとすることができる。 According to the present invention, the difference between the Tg measured by TMA of the raw film and the heat shrinkage temperature measured by TMA of the obtained retardation film is 20 ° C. or less, so that at the end of the molecular chain In addition, it is possible to reduce a portion where the orientation is easily relaxed locally, and it is possible to provide a retardation film that exhibits a high retardation value even during heating. Thereby, even if the product using the retardation film of the present invention is subjected to a heat durability test, the retardation value does not decrease and has high reliability. In addition, the retardation film of the present invention can be produced easily and inexpensively, and can be excellent in low photoelastic coefficient and low wavelength dispersibility.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(原反フィルムの作製)
ノルボルネンとエチレンとの共重合体(Ticona社製、Topas6013)を一軸押出機(GMエンジニアリング社製、GM50)を用いて溶融押出し、厚さ150μmの原反フィルムを作製した。
Example 1
(Preparation of raw film)
A copolymer of norbornene and ethylene (manufactured by Ticona, Topas 6013) was melt-extruded using a single screw extruder (GM Engineering, GM50) to produce a 150 μm thick raw film.

(ガラス転移温度の測定)
得られた原反フィルムについて、幅3mm×長さ20mmに切り出してサンプルを作製し、熱機械分析装置(セイコーインスツル社製、TMA)にチャック間10mmにセットし、温度を30℃から250℃まで5℃/分で昇温し、TD方向の変形量の温度依存性を測定した。そして、膨張率が急激に上昇する前後の曲線に接線を引き、この接線の交点をTgとした。
測定の結果、ガラス転移温度は135.2℃であった。
(Measurement of glass transition temperature)
About the obtained raw film, it cuts out to width 3mm x length 20mm, produces a sample, and sets to 10 mm between chuck | zippers in a thermomechanical analyzer (the Seiko Instruments company make, TMA), The temperature is 30 to 250 degreeC. The temperature was increased at a rate of 5 ° C./min until the temperature dependence of the deformation amount in the TD direction was measured. Then, a tangent line is drawn on the curve before and after the expansion coefficient rapidly increases, and the intersection of the tangent lines is defined as Tg.
As a result of the measurement, the glass transition temperature was 135.2 ° C.

(位相差フィルムの作製)
得られた原反フィルムを140℃の雰囲気下で、長さ方向を固定し、幅方向に2.2倍のテンター延伸を行うことにより、位相差フィルムを作製した。
(Production of retardation film)
A retardation film was produced by fixing the length direction of the obtained raw film under an atmosphere of 140 ° C. and performing tenter stretching of 2.2 times in the width direction.

(実施例2)
実施例1の(位相差フィルムの作製)において、141℃の雰囲気下でテンター延伸を行った以外は、実施例1と同様にして位相差フィルムを作製した。
(Example 2)
In Example 1 (production of retardation film), a retardation film was produced in the same manner as in Example 1 except that tenter stretching was performed in an atmosphere at 141 ° C.

(比較例1)
実施例1の(位相差フィルムの作製)において、長さ方向を固定し、幅方向に2.5倍のテンター延伸を行った以外は、実施例1と同様にして位相差フィルムを作製した。
(Comparative Example 1)
In Example 1 (production of retardation film), a retardation film was produced in the same manner as in Example 1 except that the length direction was fixed and tenter stretching was performed 2.5 times in the width direction.

(比較例2)
実施例1の(位相差フィルムの作製)において、145℃の雰囲気下で、長さ方向を固定し、幅方向に3.0倍のテンター延伸を行った以外は、実施例1と同様にして位相差フィルムを作製した。
(Comparative Example 2)
In Example 1 (production of retardation film), the same as in Example 1 except that the length direction was fixed and the tenter stretching was performed 3.0 times in the width direction in an atmosphere of 145 ° C. A retardation film was prepared.

(評価)
(1)加熱収縮温度の測定
実施例及び比較例において得られた位相差フィルムを、幅3mm×長さ20mmに切り出してサンプルを作製し、熱機械分析装置(セイコーインスツル社製、TMA)にチャック間10mmにセットし、温度を30℃から250℃まで5℃/分で昇温し、長さの変形量の温度依存性を測定した。そして、膨張から収縮に転じる極大点を示す温度を求め、加熱収縮温度とした。
(Evaluation)
(1) Measurement of Heat Shrinkage Temperature The retardation films obtained in Examples and Comparative Examples were cut into a width of 3 mm and a length of 20 mm to prepare a sample, which was applied to a thermomechanical analyzer (manufactured by Seiko Instruments Inc., TMA). The distance between chucks was set to 10 mm, the temperature was raised from 30 ° C. to 250 ° C. at 5 ° C./min, and the temperature dependency of the deformation amount of the length was measured. And the temperature which shows the maximum point which changes from expansion | swelling to shrinkage | contraction was calculated | required, and it was set as the heating shrinkage temperature.

(2)位相差値の測定
自動複屈折計(王子計測機器社製、KOBRA−21ADH)を用い、波長550nmの光で、位相差フィルムの面内の位相差値Reを測定した。また、厚み方向の位相差Rthについても測定した。なお、Re及びRthは、以下の式で算出することができる。
Re(nm)=|nx−ny|×d
Rth(nm)=|(nx+ny)/2−nz|×d
但し、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率であり、d(nm)はフィルムの平均厚みである。
(2) Measurement of retardation value The in-plane retardation value Re of the retardation film was measured with light having a wavelength of 550 nm using an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH). The thickness direction retardation Rth was also measured. Re and Rth can be calculated by the following equations.
Re (nm) = | nx−ny | × d
Rth (nm) = | (nx + ny) / 2−nz | × d
Where nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the fast axis direction in the film plane, nz is the refractive index in the thickness direction of the film, and d (nm) is the average of the film It is thickness.

(3)加熱による位相差値の変化
位相差フィルムを4cm角に切り出し、面内位相差値を測定後、80℃オーブンに1000時間投入後、再び面内位相差値を測定した。そして、オーブンに投入する前の面内位相差値をRb、オーブンに投入した後の面内位相差値をRaとしたとき、位相差保持率Rr(%)を以下の式で求めた。
Rr(%)=Ra/Rb×100
(3) Change in retardation value due to heating The retardation film was cut into 4 cm square, and after measuring the in-plane retardation value, the film was put into an 80 ° C. oven for 1000 hours, and then the in-plane retardation value was measured again. Then, assuming that the in-plane retardation value before being put into the oven is Rb and the in-plane retardation value after being put into the oven is Ra, the retardation holding ratio Rr (%) was obtained by the following equation.
Rr (%) = Ra / Rb × 100

Figure 2007334140
Figure 2007334140

表1に示すように、実施例1と比較例1とを比較すると、面内位相差値はほぼ同じであるが、実施例1では、比較例1と比較して、Tgと加熱収縮温度との差が小さく、加熱前後における位相差保持率が高くなっていることがわかる。また、実施例2と比較例2とを比較しても、同様の傾向が示すことがわかる。 As shown in Table 1, when Example 1 and Comparative Example 1 are compared, the in-plane retardation value is almost the same, but in Example 1, compared with Comparative Example 1, Tg and heating shrinkage temperature It can be seen that the difference between the two is small, and the retardation retention before and after heating is high. Moreover, even if Example 2 and Comparative Example 2 are compared, it turns out that the same tendency is shown.

本発明によれば、簡易かつ安価に製造することができ、低光弾性係数、及び、低波長分散性に優れるとともに、加熱を行った場合でも高い位相差を保持できる位相差フィルムを提供することができる。 According to the present invention, there is provided a retardation film that can be produced easily and inexpensively, has a low photoelastic coefficient and low wavelength dispersibility, and can retain a high retardation even when heated. Can do.

原反フィルムのTgをTMAにより測定した場合における温度と加熱膨張率との関係を示すグラフである。It is a graph which shows the relationship between the temperature and heating expansion coefficient when Tg of a raw film is measured by TMA. 位相差フィルムの加熱収縮温度をTMAにより測定した場合における温度と加熱膨張率との関係を示すグラフである。It is a graph which shows the relationship between the temperature at the time of measuring the heat shrinkage temperature of a phase difference film by TMA, and a heating expansion coefficient.

Claims (5)

環状オレフィン系樹脂からなる原反フィルムを延伸してなる位相差フィルムであって、前記原反フィルムの熱機械分析により測定されるガラス転移温度と、位相差フィルムの熱機械分析により測定される加熱収縮温度との差が20℃以下であることを特徴とする位相差フィルム。 A retardation film formed by stretching a raw film made of a cyclic olefin-based resin, the glass transition temperature measured by thermomechanical analysis of the raw film, and heating measured by thermomechanical analysis of the retardation film A retardation film having a difference from a shrinkage temperature of 20 ° C. or less. 原反フィルムの熱機械分析により測定されるガラス転移温度は、120℃以上であることを特徴とする請求項1記載の位相差フィルム。 The retardation film according to claim 1, wherein a glass transition temperature measured by thermomechanical analysis of the raw film is 120 ° C. or higher. 熱機械分析により測定される加熱収縮温度は、115℃以上であることを特徴とする請求項1又は2記載の位相差フィルム。 The retardation film according to claim 1, wherein the heat shrinkage temperature measured by thermomechanical analysis is 115 ° C. or higher. 環状オレフィン系樹脂は、環状オレフィン系モノマーと非環状オレフィン系モノマーとからなる付加(共)重合体であることを特徴とする請求項1、2又は3記載の位相差フィルム。 4. The retardation film according to claim 1, wherein the cyclic olefin resin is an addition (co) polymer comprising a cyclic olefin monomer and an acyclic olefin monomer. 環状オレフィン系樹脂は、ノルボルネンとエチレンとからなる共重合体であることを特徴とする請求項4記載の位相差フィルム。 The retardation film according to claim 4, wherein the cyclic olefin-based resin is a copolymer composed of norbornene and ethylene.
JP2006167687A 2006-06-16 2006-06-16 Optical retardation film Pending JP2007334140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167687A JP2007334140A (en) 2006-06-16 2006-06-16 Optical retardation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167687A JP2007334140A (en) 2006-06-16 2006-06-16 Optical retardation film

Publications (1)

Publication Number Publication Date
JP2007334140A true JP2007334140A (en) 2007-12-27

Family

ID=38933659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167687A Pending JP2007334140A (en) 2006-06-16 2006-06-16 Optical retardation film

Country Status (1)

Country Link
JP (1) JP2007334140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816712B2 (en) 2016-06-22 2020-10-27 Lg Chem, Ltd. Optical film and polarization plate comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630797A (en) * 1992-07-14 1994-02-08 Hitachi Ltd Method for analysis of genetic polymorphism
JPH0875921A (en) * 1994-08-31 1996-03-22 Mitsui Petrochem Ind Ltd Phase difference film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630797A (en) * 1992-07-14 1994-02-08 Hitachi Ltd Method for analysis of genetic polymorphism
JPH0875921A (en) * 1994-08-31 1996-03-22 Mitsui Petrochem Ind Ltd Phase difference film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10816712B2 (en) 2016-06-22 2020-10-27 Lg Chem, Ltd. Optical film and polarization plate comprising the same

Similar Documents

Publication Publication Date Title
US20080113116A1 (en) Retardation Film
KR20240042258A (en) Phase difference film and production method for same
KR20070050990A (en) Optical compensation film and display element using the same
JPWO2016067920A1 (en) Resin film and method for producing resin film
JP6428940B2 (en) Long film and manufacturing method thereof
JP2010076128A (en) Optical film
JP2007009010A (en) Optical film
JP2007334140A (en) Optical retardation film
EP2940055B1 (en) Optical polymer and optical element obtained by forming thereof
JP4611803B2 (en) Optical film manufacturing method, optical film and retardation film
JP2006285136A (en) Manufacturing method of retardation film, retardation film, composite polarizing plate and polarizing plate
JP4662855B2 (en) Method for producing retardation film
JP2012159752A (en) Method and apparatus for manufacturing optical film
JP2006327110A (en) Forming method of optical film, optical film and phase difference film
JP2006308917A (en) Manufacturing method of retardation film, retardation film, composite polarizing plate, liquid crystal display device and polarizing plate
JP2005309339A (en) Optical compensating film and manufacturing method for polarizing plate
JP2006018212A (en) Method for manufacturing retardation film
JP2007160720A (en) Optical film and retardation film, and manufacturing method for optical film
JP2006083266A (en) Optical film
JP2004317812A (en) Optical retardation compensation film, compound polarizing plate, polarizing plate and liquid crystal display device
JP2006301522A (en) Method for manufacturing retardation film, and retardation film
JP5509515B2 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
JP2007171290A (en) Method of manufacturing optical retardation film
JP2006317734A (en) Device and method for manufacturing retardation film
JP2006098806A (en) Method for manufacturing retardation film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Effective date: 20101215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02